

Structures and Mechanics Division

Donald M. Curry Sept

September, 1991

SPACE ASSEMBLED ENTRY SYSTEMS CERTIFICATION

Donald M. Curry

۱	SPACE ASSEMBLED
	ENTRY SYSTEMS

ISSUE:

HOW DO YOU SAY YOU'RE "GOOD FOR GO" IF YOU SPACE ASSEMBLE AN ENTRY VEHICLE?

SPACE ASSEMBLED ENTRY SYSTEMS	Structures and Mechanics Division	
	Donald M. Curry	September, 1991

APPROACH:

- SHUTTLE ORBITER THERMAL
 PROTECTION CERTIFICATION
- SHUTTLE THERMAL PROTECTION
 SYSTEM FLIGHT EXPERIENCE
- SPACE ASSEMBLED ENTRY SYSTEM
 CERTIFICATION

- ORBITER TPS CERTIFICATION PROCESS
 - TESTS
 - THERMAL PERFORMANCE
 - AERODYNAMIC FLOW
 - ACOUSTIC FATIGUE
 - STRENGTH INTEGRITY
 - MATERIAL PROPERTIES
 - · ANALYSIS
 - NATURAL ENVIRONMENTS
 - INDUCED ENVIRONMENTS
 - MISCELLANEOUS
 - SIMILARITY
 - COMMIT-TO-FLIGHT

SPACE ASSEMBLED ENTRY SYSTEMS

Structures and Mechanics Division

Donald M. Curry

September, 1991

ORBITER TPS ENVIRONMENTS FOR CERTIFICATION

Natural Environments

Temperature - Atmospheric Thermal - Vacuum (Solar Radiation - Thermal) Pressure Fungus Meteoroids Humidity Lightning Ozone Rain Selt Spray Sand/Dust Solar Radiation - Nuclear Wind Induced Environments Temperature Ascent Heating On-Orbit and Entry Heating Pressure Acoustics Shock Random Vibration Structural Loads Limit and Ultimate Acceleration

Miscellaneous Environments Life - Full and Limited Fluid Compatibility

SPACE ASSEMBLED ENTRY SYSTEMS	Structures and Mechanics Division	
	Donald M. Curry	September, 1991

SHUTTLE TPS FLIGHT EXPERIENCE

IMPACT DAMAGE

-

.

- GAP FILLER DAMAGE
- WINDOW CONTAMINATION

September, 1991

ORBITER TPS FLIGHT EXPERIENCE

- STATIC AREAS
- DYNAMIC INTERFACES

SPACE ASSEMBLED ENTRY SYSTEMS	Structures and Mechanics Division	
	Donald M. Curry	September, 1991

ORBITER TPS FLIGHT EXPERIENCE

GAP FILLER DAMAGE/TILE SLUMPING

Structures and Mechanics Division

Donald M. Curry

September, 1991

CERTIFICATION OF SPACE ASSEMBLED ENTRY SYSTEM

- SCOPING OUT THE ENVIRONMENT
 - TEMPERATURES SURFACE, STRUCTURES
 - · VIBROACOUSTIC/AEROSHOCK
 - AIRLOADS

HOW THE VEHICLE IS DESIGNED

- IDENTIFY CRITICAL LOCATIONS
 - TEMPERATURE
 - · LOADS
 - MARGINS OF SAFETY
 - MATERIALS DATA BASE
- HOW THE VEHICLE IS BUILT/ASSEMBLED
- CRITICAL PROCESSING PARAMETERS
 - INSPECTION POINTS/RIGOR
 - ACCEPTANCE CRITERIA
 - REPAIRS/MAINTAINABILITY
- FLIGHT EXPERIENCE
 - LESSONS LEARNED
 - FLIGHT TEST
 - ANOMALY RESOLUTION

Structures and Mechanics Division

Donald M. Curry

September, 1991

FACTORS THAT INFLUENCE TPS DESIGN

Maturity

Density Aerothermal (Temperature) Strength(Airloads/Vibroacoustic) Outgassing Oxidation Resistance Atomic Diatomic Damage Tolerance/Impact Resistance Repairability Refurbishment Long Term Space Exposure Multi-use Man-rated Size Limits - Fabrication

Structures and Mechanics Division

SPACE ASSEMBLED ENTRY SYSTEMS

Donald M. Curry S

September, 1991

CERTIFICATION - KEY ISSUES

- DESIGN/ASSEMBLY
 - GAP HEATING IN JOINT REGIONS BETWEEN SEGMENTS
 - SEAL PERFORMANCE AT INTERFACES
 - PREVENTION OF HOT GAS/RADIATION LEAKS
 - TPS PENETRATIONS

SUCH DESIGN PROBLEMS ARE NOT REALISTICALLY ASSESSED UNTIL A REQUIREMENT EXISTS TO "FLY THE SYSTEM."

- MATERIALS
 - DAMAGE TOLERANCE/IMPACT RESISTANCE
 - LONG TERM SPACE EXPOSURE

SPACE ASSEMBLED ENTRY SYSTEMS	Structures and Mechanics Division	
	Donald M. Curry	September, 1991

CERTIFICATION - METHODS

- UTILIZATION OF EXISTING DATA BASE
 - Analytical Methods
 - Ground Test Results
 - Flight Tests
- GROUND-BASED TESTING OF SPACE ASSEMBLED ENTRY SYSTEM CONCEPTS
 - Ability to simulate environment
 - Lack of correlation with actual flight environment
- ANALYTICAL CERTIFICATION
 - Verified models using available flight and ground test data
 - Aeroassist Flight Experiment (AFE) data

Structures and Mechanics Division

Donald M. Curry

September, 1991

CERTIFICATION - METHODS (cont.)

- FLIGHT TEST OF A SPACE ASSEMBLED ENTRY SYSTEM
 - Forces disciplined Design and Fabrication
 - Encourages acceptance of new (revolutionary) concepts
 - Addresses complex problem of mutual interactions within system
 - Acquires vital quantitative data not available through ground test

	SPACE ASSEMBLED	Structures and Mechanics Division	
ENTRY SYSTEMS	Donald M. Curry	September, 1991	

SUMMARY

- Significant advances have been made in the design, fabrication, certification and flight tests of entry systems (Mercury through Shuttle Orbiter).
- Shuttle experience has identified some key design and operational issues.
- Space assembled entry system certification/verification
 - Demonstration of advanced technology
 - Attention to vehicle design, fabrication and assembly
 - Flight experience

Structures and Mechanics Division

Donald M. Curry S

September, 1991

ORBITER TPS FLIGHT EXPERIENCE

WINDOW HAZING/CONTAMINATION

10.3.2 Thermal Protection System of the Space Shuttle Orbiter by F.E. Jones, NASA KSC

A DESCRIPTION OF A DESC