CORE

<u>N93-22112</u>

10.3.8 Ceramic Matrix Composites (Continuous Fiber Reinforced) Thermal Protection Systems by Salvatore R. Riccitiello, NASA ARC

NASA National Aeronautics and Space Adminstration

SPACE TRANSPORTATION MATERIALS AND STRUCTURES TECHNOLOGY WORKSHOP

Salvatore R. Riccitiello Ames Research Center, Moffett Field, CA

CERAMIC MATRIX COMPOSITES [CONTINUOUS FIBER REINFORCED] THERMAL PROTECTION SYSTEMS

BACKGROUND

- Initiated program with American Inc. to develop continuous fiber reinforced CMC thermal protection materials based on silicon carbide
- Reticulated low density ceramic foam core panel structures, based on silicon carbide, were fabricated and evaluated
- \boldsymbol{o} Reticulated silicon carbide low density foam susceptible to thermal shock
- o "TOPHAT" thermal protection system utilizing a continuous fiber reinforced CMC and reusable surface insulation developed
- Single-ply/multi-ply continuous fiber reinforced silicon carbide CMC successfully evaluated, in the "TOPHAT" thermal protection system, to 3100° F

BACKGROUND cont.

- The carbon reinforced CMC material showed little degradation after a 100 minute exposure to surface temperatures of 2000° F and 2700° F
 - The carbon reinforced CMC material showed little change in physical property after 100 minutes exposure to surface temperatures of 2000° F and 2700° F

CERAMIC MATRIX COMPOSITES [CONTINUOUS FIBER REINFORCED] THERMAL PROTECTION SYSTEMS

TECHNOLOGY NEEDS

- o Fabrication Methods / Processes (silicon carbide based systems)
 - * Large Components
 - * Architecture
 - * Costs
- Material Property Data Base
 * Fatigue (loaded, unloaded, thermal, isothermal)
 - * Baseline Thermal/ Mechanical Properties
 - * Environmental Effects
 - Aero-acoustic (with/without shock impingement)
 - sound levels in excess of 170 db
 - oscillating pressure (1-5 psi peak to peak)
 - Particle Impact
 - Water Adsorption/Absorption

- o Attachment Techniques
 - * Integral Structure / TPS
 - * Hot Structure
 - * Warm Structure
 - * Seals

o Non-Destructive Evaluation

- * Quality Assurance
- * Flaw / Separation Detection

CERAMIC MATRIX COMPOSITES [CONTINUOUS FIBER REINFORCED] THERMAL PROTECTION SYSTEMS

TECHNOLOGY GAPS

- o High Temperature Continuous Fiber Reinforced CMC Materials
 * Temperatures > 3500° F
 - o High Strength / High Temperature Fibers
 - * Property Retention At Temperatures > 2200° F
 - o High Temperature / High strength Matrices
 - * Property Retention At Temperatures > 2200° F
- o Process Developments
 - * New Processes
 - * Shorter Fabrication Times

HIGHEST PAYOFF AREAS

o High Temperature / High Strength Continuous Fiber Reinforcements

- * Temperatures > 3500° F
- ★ Strength Retention > 3500° F
 - High Temperature Strengths Comparable To RT Strengths of present State-of-the-Art Fibers

10.3.9 Thermal Protection Systems for Space Transportation Vehicles by Howard Goldstein, NASA ARC

τ

`

111

1

1