N93-22115

SOME MATERIALS PERSPECTIVES FOR SPACE TRANSPORTATION SYSTEMS

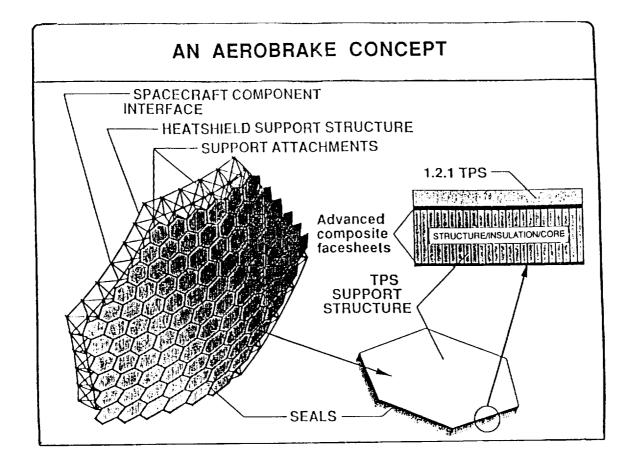
Howard G. Maahs Applied Materials Branch Materials Division NASA Langley Research Center

PREGEDING PAGE BLANK NOT FILMED

PERSONAL BACKGROUND IN ENTRY SYSTEMS

Graphite Ablation (1964-1971)

- Application: single-use ballistic entry manned vehicle
- Materials identification & characterization . - Artificial graphite, glassy carbon, pyrolytic graphite Performance evaluations (arc jet)
- .
- Erosion rates and mechanisms


Carbon-Carbon Composites (1982-present)

- Applications: reusable airframe TPS or hot structure (generic hypersonic • vehicles, NASP)
- Materials identification and characterization •
- Thin, structural oxidation-resistant carbon-carbon composites .
 - New materials/concepts development
 - Mechanical property improvements
 - Oxidation resistance
- Performance evaluations (mission simulation, arc jet)
- Failure mechanisms

COMMON NEEDS FOR SPACE TRANSPORTATION VEHICLES: **PASSIVE THERMAL PROTECTION SYSTEMS**

- Space Shuttle Orbiter
- Shuttle evolution
- Single-stage-to-orbit (NASP)
- Advanced hypersonic vehicles
- Personnel launch system (PLS)
- · Lunar transfer vehicle
- Martin transfer vehicle

Additional performance benefits possible if a single material serves dual functions of TPS and structure.

BASIC AEROBRAKE CRITERIA

Aerobrake Performance Objectives

- Lifetime
 - Lunar missions: \geq 7 flights
 - Mars missions: \geq 2 flights
- Entry velocity range: 6 to 14 km/sec
- Maximum g-loads: 5 to 6
- Aerobrake/vehicle mass fraction: $\leq 15\%$

Basic Heatshield Requirements (configuration & trajectory dependent)

	Environment composition	Maximum radiation equilibrium temperature, °F	Aeropass time, sec.
Earth entry (Lunar mission) air	2000-3000°F	100-300
Earth entry (Mars mission)	air	3500-4000°F	100-500
Mars entry	CO ₂	2500-3500°F	700-1000

AEROBRAKE MATERIALS

General Materials Requirements

- High temperature capability
- High load bearing
- Lightweight
- Fully reusable (mission specific)
- Space durable in LEO/Lunar/interplanetary environments
- Material data base as a function of temperature
- Verified performance capability in relevant service environments

SPECIFIC MATERIALS NEEDS

Thermal Protection System (TPS)

- Capability to 4000°F
- Tailored thermal conductivity for optimum heat distribution
- Non-catalytic surfaces
- High emittance (≥ 0.8)
- Methodology to predict service performance from ground-based and limited flight data

TPS Support Structure

- Low coefficient of thermal expansion
- High temperature insulative capability
- Load introduction concepts/materials to support structure

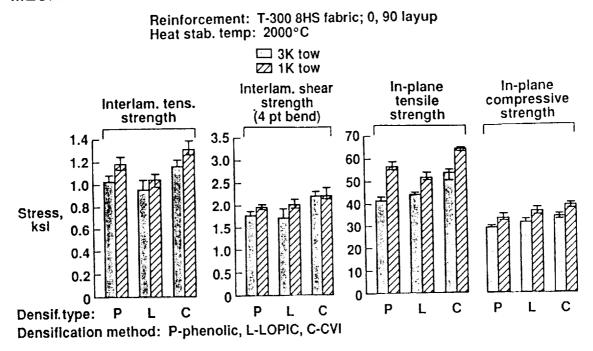
TPS Seals

- Same as for TPS
- Compatibility with TPS materials
- Design concepts for minimum leakage
- Acoustic load tolerance

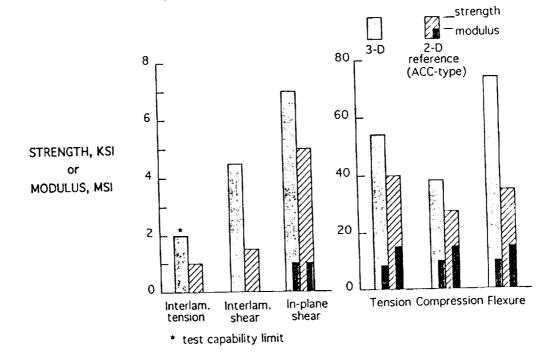
Heatshield Support Structure

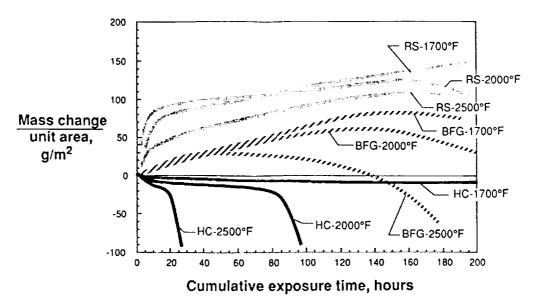
- Concepts for heavily loaded structure
- Lightweight materials
- Low coefficient of thermal expansion

SOME HEATSHIELD MATERIALS OPTIONS

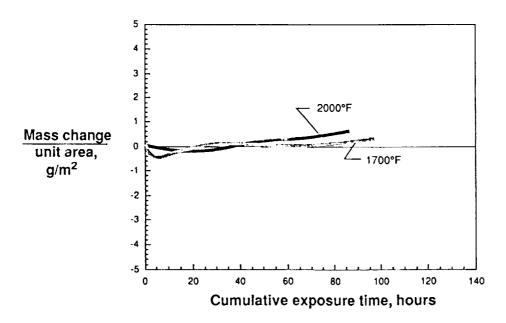

- Ablators
- Oxidation-resistant carbon-carbon composites
- · Rigid surface insulation
- Flexible ceramic materials
- Ceramic matrix composites

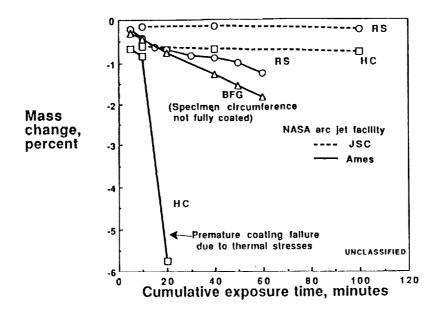
RECENT TECHNOLOGY ADVANCES IN CURRENT PROGRAMS


- Carbon-Carbon Composites -


- Mechanical properties (program focus: generic airframe structure)
 - Improved strengths for 2-D constructions
 - Strength benefits of 3-D constructions
- Oxidation resistance (program focus: NASP)
 - Carbon-carbon mission cycling data to 200 hours
 - Carbon-hybrid materials
 - Dynamic (arc jet) test data

INFLUENCE OF TOW SIZE AND DENSIFICATION TYPE ON SELECTED MECHANICAL PROPERTIES OF 2-D CARBON-CARBON COMPOSITES


STRENGTH BENEFITS OF A CVI-DENSIFIED 3-D ORTHOGONAL CARBON-CARBON COMPOSITE



Typical Oxidation Performance Results for HC, RS and BFG Materials

Typical Oxidation Performance Results for Hitco SiC/C Materials

ARC JET TEST RESULTS AT 2500°F (U)

AEROBRAKE MATERIALS AND STRUCTURES TECHNOLOGY NEEDS

- Mission/configuration/trajectory trade studies ⇒ Environmental definition
- Integrated structures/materials concepts trade studies
- Candidate materials identification/development
- · Materials screening in relevant environments
- Dynamic (arc jet) tests
- · Mathematical models to predict service performance from ground-based test data
- · Materials property design data base
- · Design and analysis of aeroshell and support structure
- · Construct and verify performance of representative subelement assemblies
- Inspection and repair technology
- · Flight experiments to verify predictive capability
- Materials performance/durability certification testing

SUMMARY REMARKS

- A common need for all space transportation vehicles is an effective thermal protection system
- An aerobraking vehicle exemplifies many common TPS issues
- · Numerous materials and structural options exist
- Current programs in oxidation-resistant carbon-carbon composites provide a strong technology foundation for a combined TPS/hot structure approach
- Major materials and structures technology needs must be identified and addressed

10.3.12 Materials and Structures Technologies for Hypersonics by George F. Wright, Sandia National Laboratory

A second s

the structure of the second structure of the second s