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At the core of any autonomous rendezvous guidance system must be two

algorithms for solving Lambert's and Kepler's problems, the two fundamental
problems in classical astrodvnamics. Lambert's problem is to determine the

trajectory connecting specified initial and terminal position vectors in a specified
transfer time. The solution is the initial and terminal velocity vectors. Kepler's

problem is to determine the trajectory that stems from a given initial state (position

and velocity). The solution is the state at an earlier or later specified time.

To be suitable for flight software, astrodynamics algorithms must be totally

reliable, compact, and fast. Although solving Lambert's and Kepler's problems has

challenged some of the wortd's finest minds for over two centuries, only in the

last year have algorithms appeared that satisfy all three requirements just stated.

This paper presents an evaluation of the most highly regarded Lambert and

Kepler algorithms known to me. One Lambert and one Kepler algorithm are clear

winners. All algorithms are available on request on floppy disks or by electronic
mail.

Lagrange is credited with deriving the first analytic expression for the

Lambert time of flight in 1778. In 1801, Gauss devised a method for solving

Lambert's problem and used it to determine the orbit of the planetesimal Ceres

from a 3 o arc traversed in 41 days. He published solutions for both problems in

his theoria rnotus in 1809. Hundreds of solutions have been published; improved

methods continue to appear frequently.
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The outstanding recent contributions on Lambert's problem came from E. R.

Lancaster and R. C. Blanchard l, and on Kepler's problem from W. H. Goodyear 2'3,

both in the 1960s. Recently, Robert H. Gooding 4 of the Royal Aerospace

Establishment has made major improvements in the Lancaster-Btanchard algorithm.

Francis M. Stienon s of the Jet Propulsion Laboratory has improved the Goodyear

algorithm to handle high-energy hyperbolic trajectories, which caused the original

Goodyear algorithm to overflow. I have made minor corrections for special cases

to Gooding's end Stienon's solutions. The resulting algorithms are equal or

superior, in every respect, to all other algorithms evaluated, hence are the clear

winners. No cases have been found that the Gooding algorithm will not handle.

The Stienon algorithm degrades on!y for extremely high-energy hyperbolic

trajectories, more so for trajectories inbound with respect to the central body than

for trajectories outbound (Stienon's original caseis essentially outbound}.

Other major contributions have been made by Richard H. Bat'tin, his thesis

students at the Massachusetts Institute of Technology, and Stanley W. Shepperd

of the C. S. Draper Laboratory. Batl:in and Shepperd 6 improved the Lancaster-

Blanchard algorithm in a number of ways. Most significantly, the Battin-Shepperd

algorithm eliminates a singularity for transfer angles that are a multiple of 180 °.
- = .....

Battin land VaughanT"8-_;mprove-d_Gauss'_i80-9-_.ambert algorithm so that it

converges for virtually all realizable trajectories. Basin an_d Loechler 9 extended the

Gauss algorithm to handle multiple-orbit transfer,% but this extension is not

implemented in the algorithm evaluated here because the extension substantially

complicates the algorithm. Shepperd 1° developed a universal-variable equivalent

of the Goodyear Kepler algorithm. Battin and Fill 11'12 extended Gauss _ i809

Kepler algorithm to trajectories not necessarily reckoned from periapse in which

the eccentricity and arc length are arbitrary. Improved versions of these

algorithms were published in Basin's 1987 book 13. ! further improved the Battin-

Vaughan Lambert algorithm, and extended the Battin-Fill Kepler algorithm to
14,15,16

trajectories for which the original did not converge

Unfortunately, each of the algorithms of the preceding paragraph falls short

of those by Gooding and Stienon in one or more important ways. The Battin-

Shepperd Lambert algorithm is slower than the Gooding algorithm, and less

accurate in some extreme cases. The Battin'Vaughan Lambert algorithm requires

up to 660 iterations and a great deal of time for minimum-energy orbits

approaching 3600 transfer angle, whereas the Gooding algorithm handles all

single-orbit transfers in five iterations (more precisely, five evaluations of

normalized time). Furthermore, the Gooding algorithm is much more compact,

and, again, far more accurate in some extreme cases. Shepperd's Kepler

algorithm, although slightly faster than Stienon's for imore-common trajectories, is

much slower and much less accurate for high-energy hyperbolic trajectories. My
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extension of the Bat-tin-Fill Kepler algorithm is very robust, but the Stienon

algorithm is just as robust, many times faster, and more compact.
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