
t943 o/ 1 ,4

Efficiently Modeling Neural Networks on Massively Parallel Computers

Robert M. Farber a _O_- (_ _

Los Alamos National Laboratory N _ 8 "_!_ "__ _
Los Alamos, N.M.

87544

/,., /0
Neural networks are a very useful tool for analyzing and modeling complex

real world systems. Applying neural network simulations to real world problems general-

ly involves large amounts of data and massive amounts of computation. To efficiently han-

dle the computational requirements of large problems, we have implemented at Los

Alamos a highly efficient neural network compiler for serial computers, vector computers,

vector parallel computers, and fine grain SIMD computers such as the CM-2 connection

machine. This paper will describe the mapping used by the compiler to implement feed-

forward backpropagation neural networks (D. Rummelhart and J. McClelland 1986) for a

SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Ma-

chines Corporation has benchmarked our code at 1.3 billion interconnects per second

(approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer

1990). This mapping is applicable to other SIMD computers and can be implemented on

MIMD computers such as the CM-5 connection machine. Our mapping has virtually no

communications overhead with the exception of the communications required for a global

summation across the processors (which has a sub-linear runtime growth on the order of

O(log(number of processors))). We can efficiently model very large neural networks

which have many neurons and interconnects and our mapping can be extend to arbitrarily

large networks (within memory limitations) by merging the memory space of separate

processors with fast adjacent processor inter-processor communications. This paper will

consider the simulation of only feed forward neural network although this method is ex-

tendible to recurrent networks.

A simple XOR network can be seen in Fig 1. This network (or any feed-

forward neural network) is "trained" as follows: First, the outputs for each example of a

"training set" of examples are calculated for a given set of network parameters (neuron

thresholds and connection weights). This can be seen for the XOR problem of fig 1 in eqn.

1.1 - 1.4. In these equations W(a,b) means the connection weight from a to b and g0 is a

user specified linear or non-linear function. The fitness of the calculated outputs (and

H= Hthreshold + W(II,H) * I 1 + W(I2,H) * 12

O = Othreshol d + W(I 1 ,O) * I 1 + W(I2'O) * I2

O += g(H) * W(H,O)

o = g(O)

Eqn 1.1

Eqn 1.2

Eqn 1.3

Eqn 1.4

hence the network parameters) is determined by some function of the known and calculat-

ed outputs. A common fitness function is the sum of the square of the differences as

shown in eqn. 2. The parameters of the network are then adjusted by some nonlinear

num examples

Fitness=_ (known_output - calculated_output) 2 Eqn 2

minimization scheme such as powell's method or conjugant gradient (Press et. al._1988).

The network is continually adjusted and re-evaluated until a "best fit" is found. The neu-

ral network is then said to be "trained". If the number of examples is small relative to the

3

https://ntrs.nasa.gov/search.jsp?R=19930013164 2020-03-17T06:15:19+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42808011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

number of network parameters, then the network can "memorize" the training set. In oth-

er words, there are so many parameters in the network that it "memorizes" the training

set. Unfortunately, neural networks which are over parameterized generally predict poor-

ly on examples which were not in the training set. Hence most neural networks are

trained with a number of examples far larger than the number of network parameters.

This "overloading" of the network is done to force the network to "generalize" a solution

from the training set. It is then hoped that the network will then predict well on data

which was not in the training set. The literature abounds with important problems where

neural networks have been shown to be good predictors. For example, neural networks

can be used to predict time series with orders of magnitude increases in accuracy over

conventional methods (Lapedes and Farber 1987 and Lapedes and Farber 1987). Neural

networks have also been shown to be highly accurate predictors of coding regions for

short regions of DNA (Farber et. al. 1992 and Lapedes and Farber 1989). We can see

that the runtime growth for evaluating a neural network during training is on the order of

O(m*n) where m is the number of network parameters and n is the number of examples.

From our discussion we can see that n generally dominates the runtime growth.

This means that contrary to what one would first expect, the most efficient

method of mapping neural networks on to a massively parallel machine is not one neu-

ron per processor. Rather, the most efficient method is to map one example to each pro-

cessor. By using this mapping for SIMD or MIMD (Multiple Instruction Multiple Data)

parallel computers, it is possible to get number of example operations done in each in-

struction cycle of the machine by having each processor evaluate the network for it's ex-

ample. Hence, we effectively get no change in our runtime for a problem which has one ex-

ample over a problem which has 250,000 examples. In reality, there will be a small in-

crease in the runtime as the number of examples exceeds the number of processors.

However this increase is on the order O(number of examples/number_of_processors)

and is very small for the large numbers of processors in current SIMD machines. Thus,

we get essentially large training sets for free. This allows neural networks to be applied

to problems of a size and complexity not possible using serial machines. Our mapping can

also be used to efficiently implement neural networks on vector computers. However, the

runtime growth is much more strongly affected by the number of examples (effectively,

the number of processors is small). Thus conventional vector machines such as a CRAY

cannot achieve the reduction in the runtime growth possible with a SIMD machine con-

taining a large number of processors. This analysis is overly simplistic since there are

complex trade-offs between cycle time, vector pipeline length, and the number of proces-

sors. The bottom line is that given access to both vector machines and highly parallel

SIMD/MIMD machines, we use vector machines for medium sized problems (generally

less than 8,000 examples) and parallel machines for larger problems (from 8,000 exam-

ples to 106 examples).

The overall computational efficiency of a parallel computer can be high only

as long as the associated communications overhead for the problem is low. Otherwise

the parallel processors will spend all their time waiting for data. Using our mapping onto

SIMD hardware, we will show that it is possible to avoid any communications overhead

by mapping neural networks onto the parallel machine via the one example per processor

approach. In our implementation on the CM-2 connection machine, the only communica-

tions required (with one minor exception) are global broadcast and local processor to

processor communications. Since both of these operations occur in one clock cycle on the

4

connection machine, they provide no delay over a simple memory fetch. Hence the rate

limiting step is how fast the parallel hardware of the connection machine can do floating

point operations. In other words, our mapping turns the training of neural networks into a

parallel algorithm which is limited by the computational rate of the hardware and not by
communications overhead.

The mapping onto the CM-2 for the XOR architecture of fig 1 can be seen

in fig 2-4. As can be seen in fig 2, the front-end computer contains all the network pa-

rameters and the SIMD processors contain all examples and temlxrm7 storage for the

network. We can see the initial calculation of the hidden neuron (given in eqn 1.1) as it

would be executed in parallel in Fig 3 - 4. The feedforward pass is initiated by broadcast-

ing the neuron threshold from the front-end computer to all processors (see fig 3). The

connection weight W(llJ-l) is then broadcast to all processors with the insmtction to

multiply it by the local memory location containing the value of 11 and add it to the local

memory location containing the value of the hidden neuron (see fig 4). Since each SIMD

processor contains one example, we get the number_of_examples instructions done per

ins'tngtion cycle with no communications overhead. Similarly the calculations of eqn 1.2 -

1.4 occur using only global broadcast and local processor memory. It is clear that we are

able to calculate the outputs for all the training examples for the XOR architecture or

any arbitrary neural network, without communications delays, using only global broad-

cast communications. (The evaluation of recurrent networks is dependent upon how the

back connections are to be evaluated. It is possible to do a purely parallel implementation

for SIMD architectures using our mapping (see Pincda 1988 for the mathematical descrip-

tion). Other recurrent implementations may require a MIMD architecture as the required

number of conditional operations would result in an extremely inefficient use of the SIMD

processors per machine cycle.) The next step is to evaluate how the calculated outputs

fit the known outputs. To do this the front-end issues an instruction to subtract the

known output from the calculated output and square the result. Since all memory values

are in local processor memory there is no communications overhead. The front-end then

issues an instruction to calculate the summation over all processors of the squared differ-

ences. On the CM-2, the global summation instruction is provided by Thinking Machines

_on and is optimized for their hardware. However, the global summation instruc-

tion has a runtime growth which is approximately O0og(n)) where n is the number of pro-

cessors. Fig 5 diagrams how a O(log(n)) runtime growth could be achieved for a global

summation. Since the run-time growth of this instruction is sub-linear with respect to the

number of processors (or number of examples for our problem), it does not provide a sig-

nificant decrease in the runtime performance. All other network calculations required for

backpropagation occur in a similar manner and have no communications overhead except

for that required by the global summation over processors.

Our mapping of one example per processor also allows networks with

large numbers of parameters to be trained. We can see in Fig 6 that the worst-case

memory growth for a fully interconnected recursive neural network is on the order O(n2);

where n is the number of neurons. Since the network parameters (neuron thresholds and

connections weights) arc the same for all examples and hence for all the SIMD proces-

sors, it is makes sense to store them in one common block of memory and broadcast

them to all other processors. This makes for an ideal mapping onto the CM-2 hardware

as the O(n 2) network parameters can be stored in the large virtual memory space of the

front-end computer and broadcast to the SIMD processors. This frees the limited memo-

5

ry available to each CM processor to be used for the storage of the example input(s) and

output(s) and intermediate values of the calculations.

It is the memory available to each SIMD processor which limits the size of

the neural network, the size of individual training examples, and the amount of training

data which can be evaluated. If the SIMD hardware has fast adjacent processor communi-

cations it is possible to efficiently merge the memory of adjacent processors to allow arbi-

trarily large training examples and neural networks to be evaluated. (It is possible to use

a fast I/O memory device for the SIMD processors such as the CM-2 data vault to allow

essentially unlimited network sizes and number of examples. However, we have not

found it necessary to go to such extremes to train complex networks with even 105 to 106

examples.) This means that the memory map of individual SIMD processors will differ.

However, we can merge the memory space of different processors by defining a special

memory location in the memory map of all the SIMD processors to be a memory data bus.

If we consider the example of fig 4 in evaluating an example of the XOR network, we

would see a mapping onto the SIMD processor as seen in fig 7. If a value is required in

the ftrst processor which is in the memory of the second processor, it is copied to the

common memory bus location and transferred via adjacent processor communications to

the f'trst processor. The arithmetic operation then proceeds on the first processor. Data

shifts between adjacent processors on the CM-2 connection machine occur in one ma-

chine cycle (which is as much as 103 time faster than using the router communications).

Thus we incur minimal communications overhead when using merged processors. Howev-

er, merging processors introduces inefficiencies other than in moving data between the

memory space of separate processors. In the case of merging two processors, only half of

the SIMD processors can be active per computational instruction cycle. Similarly only 1/3

of the processors would be active if three processors were merged together and so forth.

The advantage of the merged memory model is that arbitrarily large neural networks anti

data sets (which normally would be impossible to evaluate due to memory limitations)

can be evaluated and in a manner transparent to the user. Since the number of proces-

sors which have to be merged to provide adequate memory storage is quite small in most

cases, the performance loss is quite acceptable.

At Los Alamos, we have been using the mappings described above within

the context of a neural network compiler since 1988. The details of the compiler are too

numerous to present here. However, the compiler implements a paradigm familiar to any

code developer as seen in fig 8. Aside from receiving the problem specification (the neu-

ral network architecture, initial parameter values, and training data) the compiler does all

the remaining steps automatically for the destination machine including "writing" of the

neural network program. Fig 9 shows how data moves through a complete neural net-

work simulation. We can see that the neural network can be specified interactively by a

graphical interface or by a machine generated file. The graphical interface allows a user

to merge sub-networks "trained" to task into a large complex network. The sub-net-

works parameters may be locked to preserve the functionality of the sub-network or they

may be "equivalenced" to force the unique sub-network parameters to maintain identical

values during training. Of course the user may "unlock" the network parameters at will to

allow "tweaking" of the parameter for the particular problem. The user may also automati-

cally generate the network architecture so that the neural network may be modified so

that various "pruning" or "growing" heuristics may be used. The training set data is pre-

sented to the compiler as either floating point or single bit boolean values. This allows

6

the compiler to mimmize floating point operationsfor the individual training set and can
provide significant increasesin computationalthroughput.The data manipulationprior to
the compiler can be a non-trivial task. We have had intermediateamountsof data ex-
ceeding60gigabyteswhich hadto bepre-processedprior to presentationto thecompiler.

The compiler takes the network/dataspecification and generatesan inter-
mediate language"program". This programthen goes througha dependencyanalysisand
is presentedto a "compiler" which createsa relocatableinstruction streamwhich is then
passedto the loader linker. For the CM-2 the loader/linkercreatesan appropriatememo-
ry map (including mergingmultiple processorstogether)and createsa statemachine in-
struction streamwhich is then executedonce the data is loadedinto the connectionma-
chine.

The compiler automatically calls the user specifiedoptimization code as
well as user functions specifying arbitrary neurontypes. The usercode on the front-end
computer seesthe compiler generatedcalculation of the forward pass,error propagation
and calculationof the gradient(if possible)for thedestinationmachinegiven the specified
training set and neural network architecture.The user can then call theseroutines from
their optimization code. Since algorithms for nonlinearor multidimensionaloptimization
arequite complex andareeitherdifficult or impossibleto implementefficiently on a SIMD
processorarray, they are instead executedserially on the front-end computer. This al-
lows the use of optimization algorithms such as conjugant gradient, powell's method,
steepestdescentsor some other algorithm written in the users favorite language.This
use of the front-end providesadvantageson the connectionmachine.For example, the
optimization code can "twiddle" network parameterswith a 100 ns clock insteadof the
its cycle time of the connectionmachineprocessors.In addition, someof the work donein
the optimization code can be gotten "for free" due to the asynchronousoperation of the
front-endcomputerandtheSIMD arrayof processors.

In summary,we have beenable to exploit the gigaflop capabilities of the
connectionmachineto train arbitrary feed forward neuralnetworkson large,complex, and
noisy data sets with exampleson the order of hundredsof thousandsto millions. We
have done this with a neural network compiler which implementsan extremely efficient
mappingto SIMD architectureparallelcomputers.The mappingallows efficient useof the
computational facilities of the parallel hardwarewith virtually no communicationsover-
head.Arbitrarily large networks can be implementedby using the large virtual address
spaceof the front endcomputerand by mergingthe memoryspaceof adjacentSIMD pro-
cessorstogether via fast local inter-processorcommunications.Thinking Machines Cor-
poration has acknowledgedthat our implementation is considerably faster than other
known implementationsand that our implementation"has either constanttime behavior
or linear time dependencewith respectto the numberof training patterns,dependingon
the sizeof the connectionmachineused"(Singer 1990).Sincethe numberof examplesis
the dominating factor in the runtime growth of training, our methodallows the useof the
CM-2 ConnectionMachine for real world problemsof a complexity not possible using
othercomputationalhardware.

This work was done under the auspices of the U. S. Department of Energy and was partially

funded by a grant from the National Institutes of Health (GM 40789-03). We express our gratitude for

the hospitality of the Santa Fe Institute where part of the work was performed. We also acknowledge

the help and support of Alan Lapedes who has been an integral part of the design and use of this work

and without whc_tn this work would have been impossible.

Fig I: An XOR Neural Network

W(IrO) (_ W(12'O)

//',,.
W(II'H) W(12'H) [2_

Fig 2: Mapping onto the Connection Machine

The Front End Computer (Generally a SUN) holds
all variables for the neural network in virtual memo-

ry. This allows essentially unlimited neural network

sizes and connectivity. The Front End also contains

the energy minimization code written in a high level

language like C. We generally use conjugant gradi-

ent although the user has complete flexibility to use
his own code.

!
1 1

Processor 1

Example I

Temporary Variable

Calculated Output Calculated Output

Calculated Hidden Calculated Hidden

Known Output Known Output

Known Input 2 Known Input 2

Known Input I Known Input I

Processor 2

Example 2

Temporary Variable

1
Processor N

Example N

Temporary Variable

Calculated Output

Calculated Hidden

Known Output

Known Input 2

Known Input 1

8

Fig 3: Example of a global broadcast

_Broadcast to all active

Hthreshold processors

I

Processor 1

Example 1

Temporary Variable

Calculated Output

Known Output

Known Input 2

Known Input 1

Processor2

Example 2

Temporary Variable

Calculated Output

IimUmmlmZm_l_

Known Output

Known Input 2

Known Input 1

Processor N

Example N

Temporary Variable

LCalculated Output

Known Output

Known Input 2

Known Input 1

are

Fig 4: Calculation of Hidden Neuron for XOR Network. All operations

local except for the global broadcast of connections W(II,H) and W(I2,H).

CakulateH+=W(II'H)*II +W(12'H)*I2

ste_ 2: iBroadcast W(12iH):multiplyby _and add
[ii ::i!ii:_iii_iiliiiii!::i:i:_:_iii_:_ii:_i_:iii_/::_:iiii':_:ii:_::::_ i!_ii_ii_!!i:_ii::i:_i_:iiii::i_:_::i_ii::iiiii::ii:i:i:_ii_:i_i::i:,iii

I i I
Processor 1

Example 1

Temporary Variable

Known Output
:i::::.-'.'_.__:i:_A_ _._:!_:_!_'.._.-7._;-_':_:_._:_:_:_:-_$'::i:i:i:i:!

:. _:_._':'._:._.,.'.' ._::_:.-'-_:_:::_:!._.<_.__":':::i:_':_:_:i:
.'::_::: .: . .: :_: _:.'.'<::_:_.._.':::_'_:_:::-:._:::

Processor 2

Example 2

Temporary Variable

Calculated Output

Known Output

:-<::-<::_:i_'_i:i:_!:!_:_.::_:_:.':'._:_:::_::: :_ :_-:': -: :'::!|

• • •

Processor N

Example N

Temporary Variable

Calcula_ted Output
I ,.,

[ii!i::!::i::i::iii_ii_i::_!i!

Fig 5: log(n) Runtime Growth of Global Summation

I
/

• processor 1]

J "-..
+ I I + I [eye,e21

",,, / ",,,
IProce_or21 [p_es_or3] [pro_essor41 [cycle t,,:]

Fig 6: O(n 2) Memory Growth for a Fully Interconnected Neural Network

T
neuron 4 W(4,1) W(4,2) W(4,3)

neuron 3 W(3,1) W(3,2) W(3,4)

neuron 2 W(2,1) W(2,3) W(2,4)

neuron 1 W(1,2) W(I,3) W(I,4)

neuron 1 neuron 2 neuron 3 neuron 4

Fig 7: Calculation of Hidden Neuron (eqn 1.2) for XOR Network. All

operations are local except for the global broadcast of the connections

W(II,tl) and W(12,H) and local inter-processor communications.

Calculate H += W(I1,H) * I 1 + W(12,H) * 12

I 1
Processor 1

Example I
Processgr 2
Example 1

NNN
Temporary Variable I

lit

10

Fig 8: Compiler Paradigm

Neural
Network

Specification
and Data

DependenCYAnalvS_code
Generation

Compilation
Load

Execute

Fig 9: Block Diagram of Neural Network System

Data Extraction

Data Manipulation

\
I I Text Form of

Neural

Network

Specification

Neural Network Compiler

l
SERIAL CRAY CM2 CM5

Results

11

References

A. S. Lapedes, R. M. Farber, "How Neural Networks Work" Proceed-

ings of the IEEE, Denver Conference on Neural Networks, 1987.

A. S. Lapedes, R. M. Farber, "Non-linear Signal Processing using Neu-

ral Networks, Prediction and System Modeling ", LANL technical re-

port LA-UR-87-2662

A. S. Lapedes, C. Barnes, C. Burks, R. M. Farber, K. Sirotkin,

"Application of Neural Networks and Other Machine Learning Algo-

rithms to DNA Sequence Analysis" published in Computers and DNA,

SFI Studies in the Sciences of Complexity, vol. VII (1989).

R. M. Farber, A. S. Lapedes, K. Sirotkin, "Determination of Eukaryotic

Protein Coding Regions Using Neural Networks and Information Theo-

ry", J. Mol. Biol. (1992) 226, 471-479.

F. J. Pineda, "Generalization of Backpropagation to Recurrent and High-

er Order Neural Networks", Neural Information Processing Systems,

Dana Z. Anderson editor, pg. 602-611.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,

"Numerical Recipes in C", Cambridge University Press, 1988.

D. Rummelhart, J. McLelland, "Parallel Distributed Processing", Vol. 1,

M.I.T. Press, Cambridge, MA. (1986)

Singer A., "Implementations of Artificial Neural Networks on the Con-

nection Machine", Parallel Computing, 14:305-315, 1990

12

