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I.INTRODUCTION

This work is the continuation and the end of a cooperative effort made by the following

persons:

-_ Hieu HAMINH, Professor at INP, Toulouse, France,

Dany VANDROMME, Professor at INSA, Rouen, France,

Wolfgang KOLLMANN, Professor at UC Davis,

--¢ John VIEGAS, Research scientistat ARC,

Morris RUBESIN, Senior Research scientistat ARC.

to develop a second order closure turbulence model for compressible flows and to implement

it in a 2D Reynolds-averaged Navier-Stokes solver. This work has been initiatedin the

early 80'swhile one of the authors (DV) was NRC Research Associate with the Ames CFD

branch. During the subsequent years,the NASA grant NCC2-186 allowed the continuation

of thiswork through repeated funding from the Experimental Fluid Dynamics branch, lead

by Dr. Joseph MARVIN.

From the beginning of this work where a k - _ turbulence model was implemented

in the bidiagonal implicit method of MACCORMACK (referred to as the MAC3 code) to

the final stage of implementing a full second order closure in the efficient line Ganss-Seidel

algorithm, numerous work have been done, individually and collectively by the individuals

mentionned above.

Besides the collaboration itself, the final product of this work is a second order closure

derived from the Launder, Reece and Rod] model to account for near wall effects, which

has been called FRAME model, which stands for FRench-AMerican-Effort.

Another benefit of this collaboration was the proposition and extensive testing of

various turbulence model corrections to account for strong compressibility effects. Among

the various contributions in this field, the following main lines has been worked out:

The modelling of the pressure and density correlations based on, among other as-

sumptions, the polytropic assumption. This approach has been initiated early in the

70's by Rubesin, and taken over by Vandromme.

Kollmann and Vandromme have introduced the compressible version of the e equation

with specific compressibility corrections mostly based on the mean velocity divergence.

Later, the various proposals based on the compressible dissipation made independently

by Sarkar and Zeman has been tested also by Viegas and Rubesin and compared to

the various Rubesin proposals for the compressible mixing layer.

More recently, Vandromme continued to work on new models for the pressure dilata-

tion in presence of strong shocks. This work, which has been conducted during a work
at the Center for Turbulence Research with Zeman aimed also to cross-check earlier

assumptions by Rubesin and Vandromme. : : : :

In common with all the contributions which have been done under the ARC-UCD

grant, the authors must recognize that they spent a lot of time to play with the numer-

ics, rather with the strict model of physics of turbulence. That confirmed, as a general



conclusionthat:

a turbulence model is never independent of the numerics,
---, there is no hope to develop a universal model of turbulence, the best to be expected

being a well-calibrated model for a given type of flow,
a turbulence can not be used asa black box without a minimum of expertise

During this last summer period, two different problems have been worked out. The
first was to provide Ames researcherswith a reliable compressibleboundary layer code
including a wide collection of turbulence models for quick testing of new terms, both in
two equations (k - e, k - w 2, q - w, k - kl etc... ) and in second order closure (LRR and

FRAME). The second topic was to complete the implementation of the FRAME model
in the MAC5 code. The work related to these two different contributions is reported in

the following two chapters.

II. NUMERICAL PROCEDURE FOR BOUNDARY-LAYER EQUATIONS

II-1. INTRODUCTION.

Originated by PATANKAR and SPALDING [1], the numerical procedure presented here

contains several specific modifications, concerning more particularly

i) the treatment of source terms,

ii) the slip false grid points,

iii) the boundary conditions, and

iv) the numerical algorithm

used to solve the coupled partial derivative parabolic equations.

The procedure concerns a set of partial derivative transport equations including:

• Continuity equations:

_X 1 O (rapV) = 0 (II- 1)pU + r_.O---_

• n transport equations:

1 0 (r_:D._r_) + S. (zz- 2)

II-2. TRANSFORMATION OF THE EQUATION SET

To avoid the continuity equation (II-1), we can define a stream function ¢ as:

pU 1 0¢-

pV = r _ r

(II- 3a)

(n - 3b)



Therefore, all variable function @(X, r) will be considered as function of the VON

MISES variables x and ¢ _ q_(x, ¢), x being the longitudinal coordinate on the internal

boundary of the flow field (Fig.l).

Figure 1

_
0_o _

* Remark: Neither the internal boundary I nor the external boundary E is necessary a

streamiline, except if the equations are no longer parabolic.

The elementary flow rate through the crown area ds = 27rr.dr is:

dQ = 2_r.r.dr.p.Ucos_ = 2_'cos_.d¢

(_(x) being the local angle of the velocity vector).

Assuming that fl << 1 _ cos_ - 1:

x = x(_, ¢) r = r(x,¢) (/z-4)

with

x = X de = p.U.r.dr

r X

r \Or; X

=0

=pUt a

oo o,o°,

1 0 [pUr2a O_i

= _pu_ _ pU_2_)
Z 9r,

0 [0w2_v(0v) 1
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Therefore, the equation (I1-2) becomes:



Let us introduce now new variablesdefined as:

,T =:)" X*-_-X _ ::::_--
¢-¢r(z)

CE(X)-- ¢I(_)

w is function of ¢ and x (through Cz and CE).

1(o_)-___,

with:

Defining:

a

( 0_ ) O_ Oz * 0'_ cow

O_--(_)_

1 0¢z

¢_ - ¢_" O_

_1 [ c3_bi (C3¢E 0¢I (-_) x'C30(_ o1)_ +_,_ o_)]

(oo) ooo_.ooo_N _- o_-=_7+N.N
1 Oq,

0 [jcO__] = 10IKO.._ ]o¢ (¢_ - ¢,) o_
1 0 [ K 00 l

_[ _]= (¢E -¢z) 2_ Jc

]C = r2a p.U.:D

(H-6)

(tr-7)

(H-s)

(II- 9)

(II- iO)

(/I- 12)

(II- 13)

(II- 14)
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II-3. ORIGINAL EQUATIONS TO BE SOLVED

0 ~ 0 ~

_(,_u) + _(,_v) = o

. aO . aO a aO _(__) aP

[O.o_' -o_ o r,' i_._2 ,-r a'i'

_ p oO n -r-1 R O_"
Oz + - . .0._n l -7 "_"_y

n 7-1 [.}'.fi-v O0
+ (,- 1)_'_c,, " _ a_

P u% O0 P 0 o_

(n- _)c,,"_" ou (.-1)c,,'_." au
p gr_ o'_ _' xoO2

+ + p_

[~&,_ . a,,_1
_tU_-x +vwj a _, , _.,,_ _,)o,,G1= + WJ

_00 4 2 2]+ _'-bZ [5_ - _ -
Y

g _ 2T¢)_2__- c_#_(,.,_- _ _,o_

ey y

o r,,,c,__.__ #) o_]_Lk. "P-K += -_uJ
_oO 2

Y

_ O02_)+ 2c,,,o_--_-1
ey

(It- _)

(II- 16)

(zz- _7)

(H- 18)

(II- 19)



roo_ . o_ 1 o _. , _.;_ ,)o_ 1#t -_-+. oyJ : NL(C'_--g-+ -EJ
_aO 2+_._=[-_o-_]

Y

- #%A(w2-

--:-._0._%(...-5_)

[- o_T _o_ 1 o r, ,__.7_ _0_1
_tv a_+v_VJ : N [t.c'"T +"J--aT]

- 06" __a0 - or?

- - - #_fsuvClp-_uv

P/_ _ _ ,72"OO1
C3#_uv C4p(_T[ _ + -_)_J

0[7 _ _._*

- .U._T='-
ou__ - c', k (, - _)cfi' oue.

g 7-I ,-,....O#

In the successive transformations:

(x,_) _ (_,_) = (_',_)

0_ 0¢ O_ O_ O_

ox - o{ _.v._ N =_.v._

[U 0_ 0{I} 0{I} 0{I} 0{I} 0{I}P
L

-,,,,_+¢;:,_,[_,,+_(,,,,_,,,,)1(_)
O [_] _ ,oE a.(_)
aT (¢E - ¢,)"

(n - 20)

(n-2_)

(II- 22)
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Therefore, the generalform for all equations to be solved is now written as:

r oq_. o,_,,1 _o[ o_,1
:[_-_; +v-_:j = ,:, _ Lrk,Wj

M 0(I) 1 M

+_-":'_'W +F_.A..., +_,_ (II- 23)
i=1 i=1

0ffk . a_k

O'-'_ +(A + Bw)--_-

1:hi
A-

¢_ - Cx

p.U.Y'kl
Ckl =

Akl
Rkt =

p.U

M C_ r i=3¢tl

= _ _. Lc,,-_--j
I=]

M 0_i (II -- 24)+E D,.-_-
/=1

M

Rla.C't + Qk+

/=1

:hE -- _l
B-

¢_ - ¢_

Akt
Dkt --

CE --¢i

Qk-
p.U

II-4.- THE BLOCK-SOLVER TECHNIQUE.

The previous P.D.E. could be solved by using a Block-Solver technique (See Ref.[2]).

This technique is presented as following:

Denote _i =- (_i,j+l _ =- _i,j- and integrate over Vi (Fig.2):

Figure 2

_Jf_i

i+lj

ij

, (0,)d=.d,, = :,_(,.,,+, -,,,_,) _-=

i-lj

i+l,j+l

ij+l

,v
u

, k

i-lj+l

lO0 x

½(_,+ _,+0" _,+l
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00

VaCation of _x with w:

i+i_L

i

• = 0i +(_ -wi) 'I'i+_ -__2

Figure 3

0 = 0i--1 71- (OJ --_i--1)
0i - Oi-t

03i -- 03i--1

[00_ ¢ + -07 0/-0;
_,}_'x/- Az Ax

Hence:

2 (_),

_ ,. _i_.o_/_o_)
-- AX(OJi+I--_.di--1)

_ (LT, io'+, L'_, i°'+'!ix t-x'wi+l Wi-l" • dwO + awi d,wO - i dwO- -- Jwi dwO-

Finally:

(_),-,_' {o,-,
--07_ 1

_i+1 -- 03i--1

0.7i -- Wit

_gi+l -- _i--1

+ 30/+ 0i+I _0i+1 -- Wi

03i+1 -- _i-1

- 30. - 0_-+1 wi+_ -.,i
_i+1 -- ca)i-1 J

(H-25)

10



• Discretization of'. A.-_, with A = constant:

2

 A.(F a-2+/
i i J_al

2A {_i0" _i+,(A'O-'_-_)i : ( ¢Oi+1 -- ¢°i-1) i _do) + "'if _,d2}O_

2A { _i - _i-: (w_ - _i) + ff_+' - ffi
(wi+a - wi-1) wi - wi-i wi+l - wi

Finally:

(A.O__) = A.@i+l - @i-i
i Wi+l -- _i-1

(:: - 26)

• Discretization of'. B.w-_, with B = constant:

1// OPhi ( 0(_V, ,t_.,Z,.B._ = B.,,,._),

r._oo_: _._.{L''°°_:_+/°'+'L--*}_
\ " "-O"_]i _i+1 --¢di-1 i "_i

Finally:

(B.w.O.._) B{ _oi +wi-1 3wi +wi+l }= -_i-1 - _i + _i+1 .....
i 7 Wi+I -- _oi--1 02i-1-1 -- _it

(II- 27)

o [,-, 0_'_
• Discretization of: _ _._):

1 0 (C-_-)= [(C_)]

[(_)], (_,+,-_,_,){-- ¢:),o,,,- (_-2)
Finally:
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1

(c_ + c_+, + c_+ c__,]- _,,_7, _,,,---;.,,,,_,,,,_,'.

+ 'I'i+1 ',Wi+x - wi'z

(n- 28)

, Discretization of: Dl(w)-_:

1

(II - 29)

Finally:

The finite-difference equation.
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+

:{4Ax + (i)ik_I 0di--(di-I "}" 3(I)t -]- "_i+1 _ :':Cdi-I
udi+l -- uPi-I

-_t:,_'-_'-'- 3_,'-_'-_'+::_ }
_i+l --0di--I -- =i+10di+l --0di--I

(I)k
+ A i+_ - _-'

B

+-4-{-
M

: {(_,,+,-_,,_,) _ +
l=l

_i+1 -- udi-1

_i+l -- _i-1 _i+1 -- _di-1

M

I I {
4(wi+,-wi-1) E (D__,+

l----I

i--I_: c',+c:_,+_I+,c:+c'
"*'l--l" _i -- 03i--1 Od/+l -- (_tdi

__ _
z \ _di+l _ _tdi _di _.)i--1

t l ¢t D l i l3Di)((I'i - i-1) + ( i+1 + 3Di)(_i+l

M

Ri.g)i + Qi

/=1

(II- 30)

k = 1, 2, ...M

By multiplying by (wi+: -wi-1), we obtain:

1 {(w,-w,-,)@L, + 3(udi+l-cdi-l)(I)_ q-(cdi+ I -°di)(_t+l
4Az

--({di- Odi--l)_t--I q" 3(_0i+I -- Odi--l)_/k- q-(_di+l -- Odi)_t_l }

Jc'A:_+I- _-1)Jr _{-_t-l( 30d/ -_-odi-1)- _t(_i-t-1-_a3/-1) q- (I)_+,(3odi q- o3i-t.1)}

,+c,_,c:+c:+,= Y:_ _I-: + _i + It _i +
Odi -- Odi--l Odi+l -- Wi Wi -- (_)i--X _di+l -- Wi

/=1 (II - 31)
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Otherwise:

A- B(3wi +wi-1) -
C_ _ + C _i--I

4Ax wi - wi-1
_ f_kk -- ,_kk

.__ (_/k { 3(_i-I-1 -- 03i-1 ) B [t.q -1- t_i.t. 1-7 --S, +

4

+ ':I'i+ 1 4Ax +A+ (3wi + wi+l) - wi+l -wi

(_ i--1 4 wi - wi-,
+ _-_ t _ i-_

i#k

C_k+ Ckk k,M 4)! C_k + C'k'l'kl + i-1 + mi+l "J- mkit-1+
-' wi+l -wi wi-wi-s 4

t:_ k

M { k, 3D_1 t',kk _t_ f',kk}+ E I Di+l + _ "zi__T_ vi-I-1¢I'i+1 4 wi+_ - wi
l#k

= Q_(_i+_ - _i-1) +

+ D_k-1 +4 3D_ }

C_k+ Ckki-,]
O2i -- t,di--1

kk 3D_kDi+l +

- R,,t(,,,i+, - ,,,i-,)}

wi -wi-1 _"[_1 + 3 wi_l)_.k
4Ax 4--_x (wi+l -

+ wi+l -- wi ¢-k
,+14Ax

(II- 32)

Let us call:

wi+l-Wi_A_ B
Za -" 4Ax 7 (_0i+1 "1- 302i)

Wi -- Wi--1 B

Zs = 4Az + A + _(wi-1 + _,'i)

Zc ( 34Sx --wi+l)

(II-- 33)
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To apply a block-solver algorithm, let us put this system into this form:

Ci.xi-1 Jr Ai.xi + Bi.Xi+l - Yi

with 2 < i < N1. Except:

Al.xl + BI.x2 + C1.x3 = y,

BN.ZN-2 + CN.XN, + AN.XN = YN

(II- 34)

(zz- 35)

(II - 36)

In (34),(35), (36) Ai, Bi,Ci bring (M x M) matrices, xi and Yi being (M) vectors

(M=number of equations to be solved).

Then, the matrices Ai, Bi and Ci are:

C_t - Ckt Ckl -- Ckl Di+ 1 - D_t_.l_[ , + i+, i + i-,] k,
_ZT+T---E,-+-7-,-_,_-C-, _ _

A_ = + Rikk(Wi+l --Wi-1) -- ZA for l = k (II- 37)

,',kl -- Ckt ,,,kt -- Ckl Di+l Dikl_l
[;"_' "J" i-l-1 t'_' "t- i--l] kl

+ Ri (wi+a - k

cy+ct_

+ +
_k 6di+l -- _i
lid i ct'+ ct_,

+ ------ +
oJi+l -- _oi

kt 3Dikt }

Di+l +
4 + Za for l = k

D _I 3D/kt
i+1 + for l 7_ k

4

C_ t + C J't D_l_1 + 3D_'

+ i-1

,,.-,t wi - wi-1 4

Ct k + C_l_, D_L, + 3D_'
+

wi - wi-_ 4

+ ZB for l = k

forl# k
}

(II- 38)

1 [(wi--(_i-1)(I)?._k 1 -1I- 3(Wi+l --OJi--1)(I)? k

- (-i+, --i-,)0k
(II- 39)
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II-5.- BOUNDARY CONDITIONS.

The previous relationships are only valid for all points i from 3 to (N - 2). We have to

modify the previous results for the point 2, assuming an integration to the wall, and for

the point (N - 1), assuming an integration to the outer boundary.

4 + R_i(w3 + w2 - 2wl )

act'+ ct'
B k = w2 -- Wl

3D_ t + D_'

4

B

A - _(w3 + 3.02)

%

4Az

3wa + 0.,2 - 4wl )

4Az

(II- 40)

(n-41)

c_ = { c,"'+ ct'
_2 -- 021

+ 2A - B(wl + ¢Q2)
w2 -W' (Dk2' +AxDtlt)} ( II - 42)

1[
- (u3 + '_2- 2_I).Q2

"{" (3033 + _2 -- 4031 )_fk + 4(w2 -- Wl )_1 k]
(//-43)

i ki kl kl kl }

[ CN +CN-1 ' 3CNt +CN_] ' ---- B'4w -w "
[ _ -_-, * KJ;,---E2,_,J* "__-T_ _* N,-_,j-

kl kl ki
4DN + DNt -- DN2 , 1,1,1 ._.. , 4_N -- WN_ -- 3_N2

4 -1- ZtN1 _,z.,_N -- WNt -- LdN_ ) 4Ax

(II- 44)

B

_ 3c_'+ c_' +,4+ 7(a_, +,,,,,,,)
CkN1 --- 20; N, -- O_N2

+
4

wNt -- WN=

4Ax } (II- 45)

BkN, = { odNC_--O2N--I-_-CkNlt -- 2A - B(OJN -JVO2Nx )
1

(II- 46)
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1

4Ax

-- (2.,N --"_N, --'N,).QN-_
(II- 47)
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III.- IMPLEMENTATION OF THE COMPRESSIBLE SECOND ORDER

CLOSURE IN THE MAC5 CODE

From the various attempts which have been worked out previously, a simple method is to

be used for the treatment of the source term collection, to ease their numerical treatment.

III-1.- The FRAME model

The second order moment closures (or Reynolds stress models) are currently the most

general one-point correlation models from the point of view of physical theory. These

models requir__e the solution of additional field equatio....ns for the complete set of Reynolds

stresses pv_,v_, the turbulent heat flux vector fiv'_T" and, frequently a scale equation

which can be e or w 2, similar to that one used for the two-equation models. These models

are obviously more complicated than the eddy viscosity based models. One of the most

important physical properties contained in these models is however a stress relaxation

property which cannot be correctly represented in the eddy viscosity models.

From a simple manipulation of the instantaneous Navier-Stokes equations, derivation

of a transport equation for the Reynolds stress components yields:

0 v .... 0 ,, ,'-'-z.... _ ---"7 "
o---i(zo,v_)+ _ # %oo_ + pv,,,vov.,+,_o,.,,,_p+,5_.,v,,,p- ,(s,:,,,v_+ s_,_'_)

= -j tv:% + v_v., + :, +Oz--'_ Oz..,J kOz,_ _ ]

- z - + - v:Ox_
W

(zzz- i)
By taking advantage of the contracted index convention (_ = # and summation) and

dividing the resulting equation by 2, we obtain the exact form of the transport equation

for the turbulent kinetic energy:

°(# k)+ 8-2_,
(III-2)

O_ Or" -- O# _ Ov_
= -# ve, v.t_-:'--" + - vc, "x"-

Ox_ Oz_ Oz_ s_'Yaz_

The modelling of the turbulent stresses and fluxes introduces a lot of new terms, so far

not defined by experiments. It is not possible at this time to reach definitive conclusions

on the validity of all these closures. For this reason, in the following, emphasis is put

on the modelling of the Reynolds stresses whereas the remaining turbulent fluxes will be

handled with a general anisotropic form of the gradient approximation.

This remark seems very restrictive, but in fact the lack of experimental results makes

the Reynolds stress modelling problem sufficiently complex to delay the equivalent treat-

ment of others fluxes. Practically, the application domain will be restricted to compressible

flows with moderate heat and mass transfers, although extension for combustion flows has

been made already [3].

18



Let us return now to the open transport equation for fiv'_v'_ (eq. (III-1)) in which all
new unknown terms need to be modelled.

This equation can be modelled by extending the incompressible models of Launder,

aeece and Rodi [4] and Hanjalic and Launder [5] to compressible conditions, i.e. using

Favre decomposition, introducing the non-zero divergence terms that were eliminated in the

original models and accounting for the non-zero mean mass-weighted fluctuating velocities

[6]. In this report, we restrict the discussion to the important points of modelling.

• turbulent flux of Reynolds stress : = pv_,vZv, r

Starting from the exact transport equation for pv_,v/_v.r, it is possible, as shown by

Hanjalic and Launder [5], by neglecting diffusive and convective terms, to obtain the

following form:

(zzz- 3)

This form conserves the symmetric character of the third order tensor ve, v/_v. r but, for

practical purposes, a simpler form, suggested by Daly and Harlow [7] seems to produce

results of similar quality.

(zzz-4)

m

• pressure diffusion: = v"_p' 6_. r + v_p g,_._

Most people neglect pressure-induced diffusion term, mainly due to the lack of exper-

imental information. The measurements of Irwin [8] in a wall jet suggest that this term

cannot be very important. Furthermore, some authors argued that the pressure induced

diffusion, if non negligible, would act to destroy the symmetry character of the triple

correlation term and support the use of the compact form given by equation (III-4).

a( . )• viscous diffusion term: = - Oz-----7 v_ # S_-r + vZ I.tS,,.r

Assuming that a) the correlation between viscosity fluctuations and other quantities

is weak, b) the product of density correlations with velocity gradients is small. Then the

development of the molecular diffusion term is written as:

If the flow is incompressible or solenoidal (weak compressibility,Dussauge [9]),the

viscous diffusion can be written as:

vise.diff.- ,x, r (zzz- 5)
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v_* pressurestrain correlation: = p'(Ov_' _v"

In strongly anisotropic flows, i.e. in situations where second order closures are needed,

this term is a central piece for explaining the redistribution mechanism between Reynolds

stresses. To model this term, the approach is an incompressible-like technique, which

consists in integrating a Poisson equation for the fluctuating pressure. The result of this

integration, transposed to variable density flows is written as:

(Hz-6)

where

and

P = b =-z <,.; a2;. = (ZII-7)

. ,-z-_,,O_ --_--_,,OvT,

. -_,, 0_ "_,, 0,,".,

(zzz-s)

(ZH- 9)

-2.5
fl = exp (III - 10)

1 + Ret/50

The first two lines of equation (III-6) represent the redistribution mechanism in the

flow field far from the wall (Launder, Reece and Rodi [4]) and the last two lines of this

equation take into account the wall influence in this mechanism (Hanjalic and Launder

[5]). The effect of this last contribution is twofold:

* it has an opposite effect to the classical return to isotropy term of Rotta [10].

* it acts also as a rapid term to increase the anisotropy of the stress production terms.

It must be emphasized that the transposition of an original incompressible technique

to a variable density situation is not free of uncertainties. For instance a corrective term

appears in the development of the non linear contribution due to the use of Favre averaging

(see [11]). Also, the fourth rank tensor, corresponding to the high Reynolds number rapid

term does not possess all the mathematical properties of its incompressible counterpart,

e.g. b-y_ _'t __,_ _ b6_ or b&, -_ 0

Finally, the whole term can be considered as a pure redistribution contribution only

in the case of solenoidal turbulence field. Otherwise the bulk deformation is a source/sink

term (Dussauge [9], Vandromme [121).
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The real weaknessof this approachis the useof an incompressibleapproach (Poisson
equation) when the flow is compressible. It would be more justified to introduce a wave-

like operator to evaluate the fluctuating pressure field, like Feiereisen [13] tried from the

results of his direct simulations. Unfortunately, the results, which have been obtained are

nearly identical to those of the incompressible formulation.

* mean pressure gradient term: -v_ Ox_ c3x_

According to Rubesin's proposal for the one-equation turbulence model, that term

can be treated like compressibility terms for two-equation turbulence models, assuming a

polytropic behaviour of the fluid (see chapter 6).

* viscous dissipation

It has been shown, in incompressible case [14], that the dissipation tensor is diago-

nally dominant and nearly spherical. The ratio of the deviatoric to the diagonal terms

being related to the Reynolds stress anisotropy, the dissipation is described with a com-

pound function which is scalar in the high turbulent Reynolds number zones and allows

an anisotropic dissipation elsewhere (wall vicinity for instance).

(zII-11)

with

y. = 1/(1 + m,/10) ; Ret = k2/ve

Nevertheless, some of the "slow" pressure strain terms may also represent anisotropic eij.

To summarize the assumptions made above, the modelled Reynolds stress equation

can be written as:

_x_VaV_

30C2 - 2 -- e. ,-7-_, 2 6
55 _ksoa-c,p-_(vov_- 5 _k)

+ -

+Cs#k (O_ 0_-_ 2 6 OQ_+ 5

(III- 12)

The last unknown, which remains in the modelled Reynolds stress transport equation,

is the turbulent dissipation rate e. The modelling of a transport equation for this quantity

has been given already for the first two equation model, and only the discrepancies due to
the different level of closure are of some interest here.
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A basic differencecompared to the eddy viscosity model is that the Reynoldsstresses
can be considerednow asexact quantities. This yields a more accurate evaluation of P_,

the production term. Furthermore, as the eddy viscosity does not exist any longer, the

turbulent diffusion transport of the dissipation is modelled by a generalized gradient flux

approximation from Launder [15]:

_ ,,-'-;, Oe (III- 13)- v,_e = C_ k vc, v_

As far as compressibility terms are concerned for the dissipation equation, the exact

derivation of the equation introduces variable density terms as shown in [11] but the usual

method is to ignore these terms and keep the e-equation similar to its incompressible

counterpart. The modelling is done globally. If compressibility terms are introduced in

the turbulent energy equation or here, in the Reynolds stress equations, experience shows

that their counterpart is needed in the dissipation equation as well.

The modifications induced for the total energy equation are derived similarly; the

turbulent fluxes are expressed with an anisotropic relationship and the triple correlations

follow the same approximation as in the Reynolds stress equation. The modelled total

energy equation writes now as:

treatment.

(III- 14)

=0

III-2.- Implementation

For many years, the development of numerical methods has been motivated by the need

of solutions for the Navier-Stokes equations. Only recently, has interest increased in the

solution of turbulence models and the development of accurate turbulence models has been

recognized as a necessary route. Indeed, the interest in algebraic models has been due in

part to their inherent simplicity, but also to the straightforward extension from laminar to

turbulent cases by merely an alternate definition of the viscosity coefficient. Unfortunately,

experience has shown that such a crude modelling assumption was not satisfactory as

soon as the flow was slightly complex. The use of transport equation turbulence models

introduces the turbulent kinetic energy, which needs to be accounted for in the total energy

budget. For incompressible flows, this concept is not relevant, since the pressure is not a

thermodynamic variable, but has only a mechanical role. In compressible flow the situation

is quite different and the existence of k is felt everywhere in a Navier-Stokes solver, even

inside the Euler part.

A second difficulty, which is associated with transport equations for turbulence models

is the treatment of non conservative source terms. As most of numerical schemes for Navier-

Stokes equations took advantage of their strong conservative character, problems related
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to the stability and the stiffnessof sourceterms hasoften beendiscarded. We will examine
in this report, various techniquesto handle theseproblems,especially in the framework of
implicit schemes.

II-2-1. Energy coupling

The instantaneous form of the total energy definition is:

1
p E = pe + _ pv,,,v,,, (III- 14)

In terms of Favre mean and fluctuating components, this equation becomes, after time

averaging:
1

= _ + 2_ + k (III- 15)

Therefore the solution of the temperature field from the total energy equation requires

the knowledge of the turbulent kinetic energy. Neglecting that quantity [16] is equivalent

to ignoring the energy which is extracted from the mean motion to constitute the turbu-

lence energy. For incompressible flows, this is ignored and the turbulent motion is only

superimposed to the mean. The coupling appears only through the mechanical role of the

turbulent stresses, which are added to the viscous terms. For compressible flow calcula-

tions, all the energy exchanges between the various scale motions must be considered to

satisfy the global energy budget. It is well understood that, in most of the inviscid part of

a flow field, the turbulence level is very low and the energy budget is not affected. But in

regions with high shear or strong pressure gradients, the turbulent kinetic energy can be

of the order of the mean, and must not be neglected as done usually [17],[18],[19].

The complete formulation of the constitutive relationship for the Reynolds stress is

written in terms of density weighted variables as:

2 6_ 6,,,_pk (III- 16)

in which the turbulent kinetic energy term makes the contracted index form possible. This

feature appears explicitly in the momentum and total energy equations where a turbulent

normal stress is added to the mean pressure. A so-called effective pressure can be defined

in the following way:
2

p" = p + 5ilk (III - 17)

In fact, this turbulent contribution to the pressure field is only an approximation

neglecting the anisotropic nature of the Reynolds stress tensor. It was only introduced to

insure a non-zero trace of this tensor.

Such an approximation does not take place within the framework of a second order

closure. In that case, the normal stresses appear explicitely in the momentum and total

energy equations. Then, the relevant effective pressure is not isotropic any longer, but

also depends on the turbulent energy distribution on its three normal components. For

instance, in the (_-momentum equation, the effective pressure will be:

-.2 (III is)p_ = _ + pv,,,
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Unfortunately, the concept of an anisotropic pressurefield is difficult to handle, es-
pecially with respect to the temperature field. Therefore, it is necessaryto follow the
samereasonningasfor the static pressuredefinition from the kinetic theory of gases,and
approximate the turbulent pressureby the mean of three components, i.e. ]#k.

III-2-2. Diagonalization ofjacobian matrices

To avoid the severe limitations of explicit methods, implicit schemes are preferred. A

classical (but non unique) method for obtaining an implicit approximation is to take the

time derivative of the original system.

00U OF OG H] (III-19)

with the vector elements:

U

pu

pv

Zu"_2 

pW"2 .

r _.

pu

_, + _u"v"

Zr,u" o"
pue_

G ....

pv

+ pu"v'--

_,E + (p + _v"2)_, + _u v

pve__

p_w"2

Define the jacobian matrices as:

OH
C.-m

OU

the implicit approximation writes as:

At 0,4* At OBo
(I + Oz + _ - At.C)6U "+1 = AU"

(III- 20)

(III-21)
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with the following increments:

OU "+_ OU"

_U n+l -" At 0"""_ ; AU n+l = At _ (Ill - 22)

Equation (III-21) can be solved either by approximate factorization or by classical

relaxation methods such as line Gauss-Seidel or point Jacobi.

Equation (III-15) is used in the development of the diagonal form of the jacobian

matrices A and B. Consider, for instance the x-direction, the jacobian A can be related

to its diagonal form by the relation:

A = SX -1 . AA. SX (III - 23)

To illustrate that, only the A jacobian is shown here:

0 1 0 0 0 0 0 0 0

A21 A22 0 0 1-
2 2 2

-fi_) _ fi 0 0 0 0 0 0

A

A41 A42 -/3fi_5 _,fi _3 0 (1--32)fi -3 2 -/3 2

-u"v"fi u"v" 0 0 fi 0 0 0 0

-e_ e 0 0 0 fi 0 0 0

-u"2fi u ''2 0 0 0 0 fi 0 0

-v"2fi v ''2 0 0 0 0 0 fi 0

-w"2fi w ''2 0 0 0 0 0 0 fi

(III-24)

with the following terms:

A21 = aft - fi2

A22 = (2 - 3)fi

A41 = 23_fi - "/_'_ +/3k - fro"v"

A42 = 3,L' - 3 3fi_ + 52
2

_ _U'2

3k + u "2

These matrices show clearly the coupling between the Navier-Stokes equations and the

transport equations for the normal components of the Reynolds stress tensor, just because

of the introduction of the turbulent kinetic energy in the global energy budget, whereas

there is no apparent coupling with the shear stress and the dissipation rate equation. In

fact, these equations are related to the previous through the source terms only.

III-2-3. Treatment of non-conservatlve equations

To treat implicitely the source terms, various techniques are available. Recall first the

general implicit approximation:

At c3A° At c3Be - At.C),SU "+_ = AU" (III - 25)(z+ +
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The simplest way, which is somehow trivial, is to apply a first approximate factoriza-

tion, without considering the formal content of the source terms. Then it comes:

0__ . OBo AtOA° AtOB°(z+ext Ox + Oy (HZ-26)

The C matrix can be considered as diagonal whatever the formal content is, i.e.

C ._,.

"0000 0 0

0000 0 0

0000 0 0

0000 0 0

0 0 0 0 H,,"v"__ 0

pu v

H,
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 000 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

HU" 2

0 0

pU" 2

0 Hv"_ 0

_V"2

0 0 Hw"2

_W"2

(III-27)

Before doing the work on the space operator, the inversion of the diagonal source term
matrix is straightforward:

(I + AtO"4° . cOBo.ox + nv "+' = Au".(I + :,tlCl)-' (III- 28)

Therefore, the explicit increment is modified first by the source term contribution,

before being updated by the space derivative operator(s), either with an approximate

factorization or a relaxation technique.

A slightly different method avoids the factorization for the source contribution. Then

the source terms are grouped with the transverse advection operator [20],[21]. In that case,

the same eigenvalue is used, which is the the maximum value among all equations to be
solved.

Unfortunately, the use of these blind forms, without accounting for the formal content

of the source terms does not guarantee the stability. Therefore, it has been found necessary

to develop more exact forms of the jacobian matrix. Although various developments are

possible, we will develop here a typical form which has been prooved very efficient, as far

as stability is concerned.

Consider the set made only with the turbulence transport equations. The convective

and diffusive parts are supposed already solved with the Reynolds averaged Navier-Stokes

equations. Then we have only to work on:

OU

= H (ZZZ- 20)
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wherethe two vectors U and H are now:

An implicit approximation of equation (III-29) is:

U "+1 = U" + At. H "+1 (zzz- 31)

in which H "+1 is evaluated at time (n + 1). This can be achieved by a first order serie

expansion:
OH

H "+_ = H" + -ffff6U; with 6U = U "+_ - U"

Then the implicit approximation can be rewritten as:

OH Hn
(I- = (Ill-32)

The task is to evaluate properly the jacobian matrix. Let first discriminate between

positive and negative source terms. An rather elementary stability analysis on equation

(193) shows that stability cannot be obtained with an implicit approximation when the

source term is positive. The same is true for an explicit approximation with negative

source terms. Therefore we keep only in the implicit approximation the "good" terms,

which are negative. All the permanently positive contributions are treated exclusively in

the explicit part of the scheme.
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IV. CONCLUSIONS

In the framework of this report, the following tasks have been accomplished:

* Implementation of variety of transport equation turbulence models in a versatile

boundary layer code. These models range from the algebraic Baldwin-Lomax to the

full second order closure, derived from the LRR approach.

* Implementation of a full second order closure in an implicit solver (MacCormack

scheme complemented with flux vector splitting and line Gauss-Seidel relaxation

method.

These various turbulence model implementations have been applied to a wide range

of compressible flows in two dimensions.

The second order closure have been shown to account impllcitely for complex turbu-

lence effects, like strong anisotropy variations or curvature effects. Nevertheless, experience

of the authors have shown that its use for routine computation is still limited by stiffness

of numerics and computational costs.
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NAVIER-STOKES COMPUTATION OF COMPRESSIBLE TURBULENT

FLOWS WITH A SECOND ORDER CLOSURE.

Final report for NASA-Ames grant no. NCC2-186

Part II.

C. Dingus and W. Kollmann, MAME Dept., UCD, Davis, CA.95616

Objective.

The objective of the present part of the project was the development of a complete second

order closure for wall bounded flows including all components of the dissipation rate tensor

and a numerical solution procedure for the resulting system of equations. The main topics

of the present grant were the closure of the pressure correlations and the viscous destruction

terms in the dissipation rate equations and the numerical solution scheme based on a block-

tridiagonal solver for the nine equations required for the prediction of plane or axisymmetric

flOWS.
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1.0 Full second order closure for wall bounded flows.

1.1 Introduction.

A full second order closure for wall bounded shear flows is developed, which includes the

Reynolds stress equations and the equations for all relevant components of the dissipation

rate tensor. Incompressible and compressible plane flows are considered, but this report is

only concerned with incompressible flows.

There are several reasons for the development of a complete second order closure. It can

be shown that the anisotropy of stress and dissipation rate tensors approaches the same limit

at the wall, but the derivative of the anisotropy of the dissipation rate is twice the derivative of

the stress anisotropy at the wall. Another reason is the possibiity of constructing apppropriate

time scales in the near wall region. The standard second order closure incorporates the

transport equation for the trace of the dissipation rate tensor and relates the components of

the tensor via local relations to the trace. The time scale for the destruction of the trace is

usually modelled using the time scale

where the modified dissipation rate _ is defined by

\or]

with V denoting the coordinate normal to the wall. This is an acceptable model in the region

close to the wall if and only if the dissipation rate is a nondecreasing function of the distance

from the wall, because the kinetic energy is of order O(k) = y2 near the wall which implies

that the second term in the modified dissipation rate is constant. Direct simulations of

boundary layers and channel flows, however, have shown (see Mansour et al., 1988) that the

dissipation rate is a rapidly decreasing function of the wall distance in the viscous sublayer

and the destruction model using the time scale ro becomes thus a production term in the near

wall region. This is clearly a violation of realizability for the destruction model. It follows

that this type of closure model does not represent properly the production of dissipation rate

near the wall and the sign reversal of the viscous destruction model must make up for this

deficit in production. The motivation for the modified time scale is the fact that the time

scale
k

goes to zero as the wall is approached. It will be shown below that the full dissipation rate

tensor allows a realizable and tensorially invariant construction of a time scale or a time scale

tensor that reaches a finite and nonzero limit value at the wall.
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A secondpoint that sets the near wall region apart from the high Reynolds number

regime of the boundary layer is the growth of the pressure corelations with distance from the

wall. It will be shown below that the usual split of the pressure correlations into pressure

transport and pressure rate of strain correlations is not appropriate near the wall, because the

split correlations grow with different rates and the Taylor series for the original correlation

involving the fluctuating pressure gradient can be expressed locally up to second order in

terms of velocity correlations.

1.2 Exact equations for the dissipation rate tensor.

Incompressible flows are considered first. Standard manipulations lead to the transport

equations for the dissipation rate tensor in a Cartesian coordinate system defined by

e_ z - 2uO._v_O._v_ (I)

with expectation denoted by (eaZ). The equations can be given in the form

(at + (v.r)O._)(e(_#) = O_[v0_(e_#) - (v_ree#) ] + S_# + S_# + S_# + S_# + S_# - D(_# (2)

The various source terms are defined as follows.

- -

2/] 2 t t 2 i t

S_4__2u( , , 2 , , 2

2 2 t 2 I

Furthermore is the fourth order dissipation tensor defined as

-,6 2vO_v,_O.rv__afl _ t t

(3)

(4)

(5)

(6)

(7)

(s)

(9)

The properties of the source/sink terms on the right hand side need to be established before

closure expressions can be constructed.

1.2.1 Equivalent forms of the pressure correlations.

34



The pressurecorrelations S_a can be given in several equivalent forms. It is instructive to

split them analogous to the pressure-rate of strain correlations in the stress equations. It

follows from (6) that

2/]

sZ4-
P

where the non-gradient part is defined by

The non-gradient part B_Z resembles the pressure-rate of strain correlation and shares with

it the property
B_o = 0

It follows that B_a redistributes intensity among the components of the dissipation tensor

and leaves its trace unaffected. Further splitting of Bc, a leads to

2/] -2 i - - i

Bo_= _o,(o,p'(o_,,_'_+ O_v'))- -;<o,_p¢oov_+ o_v'))
P

The non-diffusive part of B_,a contains the Laplacian of the pressure fluctuations which is

governed by

1 -2 , 2oq v_O#<v,_} 2 , ,' ' O_(_,o_)--&vrP = O_v,_c%v_ +
P

This equation has an important consequence: The non-diffusive part of BaZ can be repre-

sented locally in terms of velocity fluctuations. We get

Bo4= ko_(oJ(oov'_ + o_v'))+
P

We conclude that the non-diffusive and non-gradient part of the pressure correlations does

not contain a direct influence of the wall and the wall effects can be represented as gradients

and divergence of a flux. This property very important for the modelling effort. Inspection

of the local part of BaZ shows that it has the structure of the primary production term (5).

Recasting this part in terms of vorticity and strain rate defined by

1 !

and
1

s_,_ - -_(O_vo+ O_v_)
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leads to
I I I I I I I I I I

8v(s_'o4%)4v(s_#%6%6) -

whereas tile primary production terms appear as

S3# -4v(' ' "' "' ' 's' J " ' ' ' ' ' '

The last term can be recast in terms of the Kronecker delta using the tensor relation

/' 6-_a 6v# 6-.i '_

e',_,_#,1 = det [ 6,_6 6,_# 6,_,7)\6_6 6,_# 6,., 7

leading to

S_# I I i .I , I I I I

jf_l .l I l l 4! ! I _ J I I I _ I I l

It is apparent that no complete cancellation of triple correlations takes place. The pressure

correlations appear now as a combination of the divergence of a flux and sources.

where the flux is defined by

$4# P p= &F_ + Q,_

21,1 I l

__'_ - -_( _,..,,_.,o<o.,pO,,vA + _,o_,,_,o.,_<O.,p'O,,v',,))

or

2v

F_#a = -7( (&pl(Gv'Z + Oar'))- ,5_,a{Gp'O.,v'_) - ,SZa{Gp'O.,v;) )

The trace of the flux F_#a is not zero but given by

Fp 4v_._ = ---(O.m'O-M)
P

The redistributive sources are given by

I 1 I I

Q:a - 2v(O'rv_O_v'_(O'_va + O;_va)} + 4v(cg._v;(cO,_v_ + O#vX)}cOs(v.r}

where the trace of Q_# is zero. It is noteworthy that one of the components of (c9.rp'i:O,_v_}

can be expressed in terms of a component of the dissipation tensor

4v'" i,,v,, vo%(q2}+O(y)-_o_po_ _) =
P
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according to the power seriesfor the pressuregiven below(19). For 3'_ 2 the gradient of the

wall pressure can be expressed in terms of velocity using the momentum balances. In fact

_10_ p, 2 ,VOyyY 7
P

holds at the wall y = 0.0. It follows that the wall pressure does not exert a direct influence on

the dissipation rates if the expansion is carried out to second order. It is clear that modelling

can be based on the properties of the flux and the redistributive source terms. However, the

growth rates for the terms in the different formulations of the pressure correlations decide in

the end their usefulness. This will be investigated in the following chapter.

1.2.2 Taylor series expansions for the near wall region.

The near wall region can be analyzed with Taylor series. The coordinate system is

assumed to be located at the wall and x2 is the direction of the wall normal pointing into

the flow field. It is convenient to rename the coordinates and variables as follows: xl = x,

x2 -- V, x3 = z and vl - u, v2 -- v, v3 - w. The velocity components can be expanded with

respect to the wall normal y

u(x,y,z,t) = ao + aly + a2y 2 + a3y 3 + O(y 4) (10)

v(x,y,z,t) - bo + bly + b2y 2 + b3y 3 + O(_l 4 ) (11)

w(x,y,z,t) = co +cly -}- c2y 2 + c3y 3 + O(y 4) (12)

where the coefficients are stochastic functions of x, z, t but not y. They are defined by

10Ju

ai(x,z,t) = j!

10Jv

bi(x,z,t ) =- j! _yj(O)

1 aJw

cj(x,z,t) =_ j! OyJ (0)

The noslip condition at the wall implies that

a0 = b0 = c0 = 0

holds and mass balance

O_v_ = 0

leads to

O_vo = bl = 0

(13)

(14)

(15)
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and
O_a, + O,c, = -(n + 1)b,+1

for n = 1, 2,.... The Taylor series for a fixed wall without suction or blowing are therefore

given by

u(x,y,z,t) = ely + a_y 2 + a3y 3 + O(y 4) (16)

v(x,y,z,t) = b_y2 + b3y3 + O(y 4)

w(z,y, z,t) = cly + c2y _ + c3y 3 + O(y 4)

The expansion for the pressure can be given as follows

p(x, y, z, t) = Po + 2ttb2y + 3#bay 2 + PaY 3 + O(Y 4)

where tt denotes the dynamic viscosity and

10Jp

pj(x,z,t) - j! _(0)

(17)

(18)

(19)

and the momentum balance normal to the wall was applied to a point at the wall. The

expansion for the pressure gradient can be shown to be

O_p = 2# + 2#y l 3ba + 3y 2 + O(y 3)

\ c_ \ 03b_ \ .0363

which shows that the terms up to first order are proportional to viscosity. The components

of the Reynolds stress tensor appear in expanded form as

(u2) = y2(a_) + 2y 3(ala_) + y4(2{ala3) + (a_)) + O(y2) (20)

(_) = p (b_)+ 2y_(b_b_)+ O(_°) (21)

(?A,2) ._ _2 <el2) ._ 2_3(C 1 C2) -{- 4(2(CIC3 ) ___ (Ci)) jr. o(yS) (22)

(uv) - ya(a,b2) + y4(<alba) + (a2b2)) + O(y a) (23)

The components of the dissipation rate tensor vary near the wall according to

(el,) ---- 2v{(al 2) q- 4y(ala2)

+g2(6(a, aa} + 4(a_) + ((0_a,) 2} + ((0:al)2}) + O(yS)} (24)

(e_) = 2v{4y2(b_} + 12ga(b2bs} + O(y4)} (25)
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+y2(6(c, ca> + 4<c22>-{- ((c')_:cl)2> + (c_zc,>)-F O(y3)} (26)

(e,2) = 2u{2y(alb2) + y2(4{a2b2) + 3(alb3)) + O(y3)} (27)

It is apparent from these series that different components grow differently near the wall. It

follows that the boundary values for the dissipation rate tensor are given by

(2S)

(e22}(0) =0.0 (29)

{e33)(0) = 2v(c_) (30)

(e,_)(O)=O.O (31)

It can be shown that the anisotropy of the Reynolds stress tensor is equal to the anisotropy

of the dissipation rate tensor at the wall and that the normal derivative at the wall of the

anisotropy tensor of the dissipation rate is twice the normal derivative for the stress ten-

sor. We consider now the near wall variation of the individual terms in the dissipation rate

equations.

1.2.2.1 Viscous Diffusion.

The dominant term in viscous diffusion is the normal derivative given by

c_.gy(UOy<e,,)) ----4u2(6(ala3) + 4(a_) + <((:9.a, )2) + ((o':gza, )2)) + O(y) (32)

O_(ur_.gy(e22)) = 16v2(b_) + 0(9') (33)

Oy(ua_(e33)) = 4u2(6(c, c3) + 4<c]) + (((:9,c,) 2) + ((0,c,)2)) + O(y) (34)

oq_(uCg_(e,2)) = 4u2(4(a2b2) + 3(a, b3)) + O(y)

and they emerge as terms of order unity near the wall for all components.

(35)

1.2.2.2 Turbulent diffusion.

Turbulent diffusion of the dissipation rate component e,_ is defined by
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For the caseof boundary layer type flows only the flux normal to the wall is relevant. The

series expansions lead then to the following expressions for the components of the dissipation

rate tensor

(_yF 11 = 211<b2611(0)) -3t- O(y 2) (37)

OyF_ 2 = 4y a (b2en(0)) + O(y 4) (38)

%F: 3 = 2y<b_33(o))+ O(y_) (39)

%F__ = 3y_(_0_,2(0)>+ O(y_) (40)

The expansions show that turbulent diffusion is not of leading order near the wall.

1.2.2.3 Secondary production S_#.

The interaction of the mean rate of strain and the dissipation rate tensor acts as production

for the dissipation rates in the same fashion as the Reynolds stress and mean strain rates

for the stresses. There is however a fundamental difference between this type of production

for dissipation rates and stresses: It is of leading order for the stress balance but of second

order for the dissipation rates for high Reynolds number flows. The situation near the wail

is entirely different. The components of S_# turn out to grow with wall distance as follows

s_, = -2y0_(_)(o)0_(_2)(o)+ o(y_) (41)

sh = -_6.y'a_,<v)(o)(b_>+ o(y') (42)

s:13= 0.0 (43)

S_2 = -8vy2Oy(u)(O)(b_) + O(g 3) (44)

The secondary production terms S_Z are not of leading order near the wall, but closed. Hence,

they need not be neglected.

2
1.2.2.4 Secondary production S_#.

The series expansions lead to the following results

= 9 2s_, -,y(%(_)(o)o_(,,l>(O)+ _o_y(_)(o)(,,,)(o)}+ o(__) (45)

s_ = -2,_ _{2%<u)(0)0.<_>+ 8o_.(,)(o)<b_)}+ 0(_')

S_, = -g{i.gy(u)(O)O,<e3,)(O) + 20_y(v)(O)(e33)(O)} + O(y 2)
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S22 = -2py2{2(_.3y(u)(O)((b20,a,) + (atoqxb2)) + 4(.,q_y(v)(O)(alb2)} + O(y 3) (48)

It is clear from these expansions that the source terms S_Z are of second or higher order for

boundary layer flows.

1.2.2.5 Primary production.

The primary production or vortex stretching terms are the dominant production terms in

high Re-number flows. For the near wall region they appear in expanded form as

1

S_I = -4v{y(_Ox(a_) + 3(a_b2)) + O(y2)} (49)

S_2 = -4u{y3(lO(b_) + c3,(a,b_) + O(y4)} (50)

10 as_, = -4.{_(_ .(,4) + 3(4_)) + o(y_)} (st)

s132= -2,_{u_(0x(b2_l2) + S(a,b_)+ 2(c_b20_a,)+ (a,c,O, b2))+ O(y')} (52)

The primary production is not of leading order near the wall, but grows with the same order

as the secondary production term S_Z with wall distance.

1.2.2.6 Viscous destruction.

Viscous effects can destroy the rate of dissipation and this process is contained in D_. The

series analysis shows that the components of D_/3 are near the wall given by

D_l = 4v2{4(a_)+ 2((0_a_ )2)+ 2((0:al)2)} + O(y) (53)

D22--4u2{4(b22) 4- 24y(b2b3)} 4- O(y 2) (54)

Da3 = 4v2{4<c_> + 2((0xCl)2)+ 2((0_c,)2)} + O(y) (55)

D,2 = 4v2{4<a2b2) + y(4<c.3,a, c3,b_) + 4<O,a, c3_b2)+

12<a2b,) 4- 12<a3b2))} + O(y 2)

All components of D_ turn out to be of leading order.

(56)

1.2.2.7 Pressure correlations.
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The Taylor seriesfor the pressure(19) containsviscousterms which aredue to the momentum
balances. Differentiation of (19) leadsto expansionswhich contain viscous contributions in
lowest order. The componentsof the pressurecorrelations S_Z appear as follows

$14, = 4u 2{6(a,b3) + y(2<O,a,O_a2) + 2(O=a,O_a2) + 4<a20_b2) + 6(a,O,_b3)) + O(y2)} (57)

s_: = 4_{12_(_b3)+ o(y_)} (5S)

s#3= 4,_{6<c,b,)+ _(2(O,c,O,:a4+ 2(a,c,a,b_)+ 4(c_O,c_)+ 6(c,a,b_))+ o(y')} (59)

$42 = 2u 2{6(a, b3 ) + ?(2(O,a, c_.3,b2)+ 2(Oza, Ozb2) + 12(a2 b3) + 4(b20_b2) + 6-'-_-(a,p3)) + O(y:z)}
pu

(60)
The series expansions of the pressure correlations lead to several important conclusion: The

effect of the pressure correlations in lowest order is local in terms of velocity correlations. No

Poisson integral appears in lowest order since the wall pressure does not appear in the lowest

order terms. The split of the pressure correlations obtained in chapter 2.1 leads to a flux

F_.y such that the corresponding source term is strictly redistributive and local in terms of
velocity fluctuations. The pressure flux is local in velocity in expanded form up to second

order. Note that there is a clear advantage for not splitting the pressure correlations in the

Reynolds stress equations near the wall since the split terms (rate of strain correlation and

pressure transport) grow with different rates in the viscous sublayer. This is not the case for

the pressure correlations in the dissipation rate equations. The components of the pressure

flux emerge for the case of a flat plate boundary layer as

4v

F_,_= T <o_Wo,v,,>

F_22 =--4u{(O_pO3' v'2)+(O,p'Oiv_)}
P

4v

2u _ v_
F_2 = TI(O_p'O,,,;> - (&p O_,>}

which can be analyzed with the aid of Taylor series. We get the following estimates for the

divergence of this flux near the wall
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It follows that

o%FG_= -4._<c_0..c,)+ o(v)

O_F?,_+ a_tJ'3_= -a_(,,o_(_)) + o(y)
holds. This proves that the pressure flux terms are of leading order near the wall because

viscous diffusion is of leading order in this region.

1.2.2.8 Near wall production.

The production terms proportional to the curvature of the mean velocity profile are respon-

sible for additional production in the near wall region. The series expansions lead to

S_1 4u{y 2 2 2 a 2 3= (%)Oxy(u)(O) +Y ({ l)O,:yy<u)(O) + 3(al a2)Ox,(u)(O)+2(a2b;)O_,{u)(O))+O(ya)}2

(61)
S_2 = O(y 3) (62)

S_a = 0 (63)

2 3
S_2 = vy 2{ (a,)Oxyu<u>(O) + (a, b2)O_y(u)(O)) } + O(y 3) (64)

The near wall production emerges as second order effect near the wall if the boundary layer

assumptions are satisfied. The component {ell) receives all the energy in lowest order.

1.2.2.9 Transport equations in lowest order.

The series expansions for the source and diffusive terms allow the set up of the transport

equations for the components of the dissipation rate tensor in lowest order. It turns out that

all equations are of the same zeroth order.

O,<e,,) = O_(vO_(E,,)) - D,, + S_, (65)

o = o.,(,o.,(_))- D_ (66)
o,(,_) = o.,(,,o.,<_._))- zh3+ g_ (67)

o = o.(.o_(e,_))- D,_+ Sh (68)
These equations are valid near the wall provided none of the surviving correlations vanishes.

For steady flows the following equations hold then at the wall

D,, - S_, = O.y(,.,O.y(e,,))

D22 = O,(vcg,(e22) )

D33 - S#._ = O._(vO-_(_a3))

D,_ - sh = o_(.o_<_,_))
which can be combined with the limit relations for the stress balances to establish constraints

for the modelled terms at the wall.
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1.3 Closure model for the dlsslpation rate equations.

The series expansions for the near wall properties of the dissipation rate equations can be

used to analyze and to modify closure expressions. In several cases no model expressions

exist and new models will be developed and analyzed.

1.3.1 Time scales.

Several time scales can be constructed for the near wall region with the aid of the dissipation

rate tensor. First we note that a scale dependent on the wall normal vector can be obtained

in the form k
r -- (69)

If n-_ = 5-_2 it follows that this time scale is given by

and the series expansions show that both numerator and denominator depend quadratically

on wall distance. The wall limit is in fact a nonzero value given by

7-(o)= + (OywoO wo) (70)

Hence, a time scale with a nonzero limit at the fixed wall was constructed. This time scale

avoids the problem associated with the modified (also called homogeneos) dissipation rate

- e - 2.(0y 2

which may change sign in the flow field. The inverse of another time scale with tensorial

character using the dissipation rate tensor can be set up as follows

(71)

where , i --1(v._v6) denotes the inverse of the Reynolds stress tensor. Conversely is a time scale

given by

1 , , )-Ir_ = _.{t,_v_)(e_ (v_v}) (72)

where (l_c_} -1 denotes now the inverse of the dissipation rate tensor.

1.3.2 Turbulent diffusion.
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The gradient flux model for F_ '_ can be given in the form

e
(73)

where the kinetic energy is denoted by

1

=

and the dissipation rate e by
1

=

The constant c, has values in the range 0.15 - 0.18. The near wall properties of this model

follow from the series expansions (10) to (27) as

= 0(¢)

whereas the exact term has a first order variation with respect to the wall distance according

to (37). Similar discrepancies are observed for the other components. It is clear that model

expressions developed for the high Re-number regime will not represent the near wall region

properly. The present model (73) implies that near the wall turbulent diffusion is essentially

neglected in comparison to the exact term. Inspection of the model (73) shows that there are

k approaches zero at the wall andtwo reasons for its failure near the wall: The time scale 7

the diffusivity is solely determined by the normal stress component ((v') 2) which varies as y4

near the wall. The situation can be improved if a composite time scale that approaches the

scale defined by (69) near the wall is used. The modified closure model is then given by

F____ 2 k , i
_c_ <e,_> <v_v_)O_ <_o_) (74)

The factor 2/3 results from the requirement that the high Re- number limit of the time scale

must agree with k/e.

A different model that satisfies all growth estimates and has the correct tensorial and

dimensional properties can be constructed if the dependence of the turbulent flux on the wall

parameters n_ and R_t is taken into account and the near wall model is combined with the

high Renumber model. The near wall model is given by

I ~ l I I _n-(v.ye._)=c,f,_2(R_, )[n,lnr, (v,lvg)] -_<eo_)

It is straightforward to check that it has the same growth rate and the same tensorial prop-

erties as the exact term. The model represents turbulent transport towards the wall and

has the form of a convective term. There exist several high Reynolds number models for the
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turbulent flux of dissipation rate (Hanjalic and Launder, 1972,Lumley, 1978). The present
model is an analogueof the flux model for the stresses.It is given by

, k , , 0

The combined closure model is the set up as follows

-(v_eo,Z)_c'ef_2(Retl[nnn((v'nv_)]_nT(e_) + ce(1 - fw2(Ret)) k (v_v_) _O"_-"
UZ6

(_c,3)

where fw2(R_,) denotes a function of the local Reynolds number such that f_2 goes to unity as

the wall is approached and to zero in the turbulent zone. Furthermore, The function fw2(Ret)

should be nonnegative and it should not modify the dependence on the wall distance for the

near wall model. It follows that f,,,2 must be an exponential function of the Reynolds number

given by
O

f_,2( R_t) = exp[-(
f]

where R_2 is a constant measuring the range of influence for the near wall model. This

function of the Reynolds number has the well known property that all its derivatives at zero

vanish. Hence, it does not modify the growth rate of the near wall model.

1.3.3 Secondary production S_Z.

The properties of S2Z in the high and low Re-number limits will be considered first. Local

isotropy requires that
. ._ 2
hm te _ = -_-y6e

9

holds. It follows that the secondary production terms S_ are for high Re-numbers given by

lira S_=-96c,/3_O.y(v.y )
Re-.,*oo ""

(75)

The divergence of the mean velocity is zero for incompressible flows and it follows that the

high Re-number form of the secondary production terms can be neglected. The near wall

variation of the secondary production term S_1 according to (45) can be regarded as

s, = -(,,)o,(,,,) - +

and it follows that this term is at best of the same order of magnitude as the mean convection

term. Similar relations hold for the other components and we conclude that the secondary

production terms S_ can be neglected.

1.3.4 Primary production and viscous destruction.
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The closuremodel for theseterms is fundamentally different in the high and the low Reynolds
number limits. Both limits needto be consideredand the correspondingclosuremodelsmust
be mergedto cover the rangeof Reynolds numbersfrom zero to infinity.

High Reynolds number limit.

The order of magnitude estimates for primary production and viscous destruction at high

Re-numbers shows that they are of leading order, but their difference is of the same order

as the secondary production term S_Z. It follows that they should not be treated separately
but their difference should be modelled as function of the available information. The model

consistent with second order moments is in general given by

o¢3a_ - _ i t- D,_Z=r_,_Z((e6,,,), <v6v,,,),O6(v,,,))
(76)

The dimensionless and symmetric tensor ql,_Z should represent both production due to the

interaction of vorticity and strain rates and the desctruction due to viscous effects. If we

impose the condition of local isotropy on this model we get the following variant

where the first part represents the productive and the second the destructive contribution to

the model for the difference of $3_ and D,,Z. The model can be set up to be consistent with

the standard expressions for the trace equation (see Launder, Reece and Rodi, 1976)

, v, {e.z)'_o_'--- c,1 6_,_(Vj_o._{v6) - c,2 e

and the time scale is given by

The closure model

k
7-____ m

1 _ I I f-

S_Z - Do_ = - c,, 56_Z-'£<v.rve)O._{v6) - c,2{e,,_)-£
(77)

emerges. It is, however, not applicable to wall bounded flows since the destructive part of

this model becomes singular as the wall is approached. This deficiency can be corrected

either by defining a time scale that does not go to zero at the wall or by merging low and

high Reynolds number closures with a Reynolds number dependent function such that the

singularity is removed. Finally, we note that this model is not necessarily positive definite

because the productive part _(1) is not positive definite, a property shared with the exact

term. Refined closure models can be constructed using tensorial time scales introduced in

chapter 1.3.1.

Low Reynolds number limit.
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The dependenceon the wall distanceis the deciding property as the wall is approached. We
recall that the primary production terms decaywith wall distance,according to chapter 2.2.5,
asfollows

= =

o( )= y

O( )= y2

whereas the viscous destruction terms are all of leading order

O(D,_) = 1

according to chapter 2.2.6. It follows that they must be modelled separately in the near wall

region. The first step in the construction of the low Reynolds number version is the analysis

of the near wall properties of the high Re-number model. It follows from (77) that

0(}9 ('))= u

which is at variance with the detailed decay laws for S_Z given above for a = /3 = 2 and

a = 1,/3 = 2. However, since the primary production is not of leading order near the wall
'T'(2) If weit would be acceptable. A more serious problem arises in the destructive part x_,_.

construct a time scale such as (69) for the near wall region we avoid the singularity, but it is

not possible to satisfy the decay laws for the destructive terms Dc, z. It follows that the time
.v.(2)

scale in any closure of the form given by ,eo_ cannot be a scalar but has to be a tensor of

rank two (or higher) with positive eigenvalues. It is not difficult to construct a closure model

k9(2) such that the decay law is satisfied. For instance, the model

7"6 0ec_.7 0e_- t
D,_Z-:= - c_ OxeOx, I OzeOx, 7

with (69) as time scale possesses the correct tensor properties and the correct decay law as

the wall is approached. However, it is unacceptable as closure model because it produces

in regions where the second derivatives are all positive a second order pde with negative

diffusivity. The initial/boundary value problem for such an equation is not well posed and

the numerical solution futile. Furthermore, this model would not be realizable, because the

limit (ea_) _ 0 does not imply that the second derivatives of (e_) go to zero. It follows that

the closure model for the viscous desctruction of the dissipation rate components must be of

the form

Do_:Fo_( (%,J (v'v'),Oc,(e.7,,),O,:(v'.y,),R_t)"7 q

where R_t denotes the turbulent Reynolds number defined by

Ret = -- (78)
EI]
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The examplecited abovefor the destruction of dissipation rate showedthat derivatives lower
that secondshould be used. Severalclosure models can be set up that are tensorially consis-

tent, have the correct decay law near the wall and avoid the stability problems incurred by

negative diffusivities. We note two of them, first

O.a'- - c,2 C_3T2n-rn6
r Oz.y Ox6

and (S0)
D,_# "--- c,2- r c,auen._n_ Ox.r e Ox6 e

as second variant. Note that na denotes the unit normal vector of the wall pointing into

the flow field. The time scale 7" is given by (69) to avoid a singularity at the wall. The two

models look very similar, but inspection of the time scale (69) shows at once that the first

model is most likely unstable. Suppose that kinetic energy k and dissipation rate component

n._n6(e.r6 } = (e22} are in equilibrium, then assume that this equilibrium is disturbed, say the

kinetic energy is reduced by a small amount. It follows from the fact that the second part in

the first model is quadratically proportional to the kinetic energy that the rate of destruction

of the dissipation rate components is decreased by the disturbance and consequently are the

normal stresses further decreased and the equilibrium state is not recovered. Hence is this

model unstable. It follows that the second model is the preferred one.

Merger .of low and high Re-laumber models.
The closure models for the destruction term (79) or (80) valid for the limit R_ --* 0 and

the destructive part of (77) valid for the high Re number limit must be merged together to

produce a model valid throughout the flow field. Suppose both limit expressions have decay

laws near the wall that do not need change via the function weighting them according to the

local Reynolds number (or any other function propertional to the distance to the wall). The

we need a weight flmction that does not change the dependence on wall distance near the

wall. This implies that we must find a flmction which has zero derivatives at zero. It is well

known that the exponential function

f(Y) = exp(-_7)

has the desired property, in fact, it is infinitely often differentiable but not analytic at zero

(its Taylor series is identically zero at y = 0). Hence, we can establish a low Reynolds number

function

f(R_) = exp[- )21

which is zero at zero Re-number and unit), at infinite Re-number. The constant R ° determines

the range of Reynolds numbers for which the function is close to zero. Other functions

have been proposed that are proportional to some power of the wall distance and change

therefore the decay law. Several models have been proposed for the functions fl, multiplying
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the production of dissipation rate, and f_, multiplying the destruction of dissipation rate.

Vandromme et al. (1983) suggested

fl = 1.0

and

, Re, )2
f2 = 1.0- 0.22expt-t--_- }

based on the original model of Hanjalic and Launder (1976) and obtained good agreement

with measurements in flat plate boundary layers. Recent developments surveyed by Launder

(1989) use the second and third invariants of the Reynolds stress tensor to represent the wall

influence on production and destruction processes.

1.3.5 Pressure correlations.

It was shown in chapter 1.2 that the pressure correlations can be split into transport and

source terms such that the source terms are strictly redistributive and have no effect on

the trace of the dissipation rate tensor in analogy to the pressure-strain correlations for the

Reynolds stress tensor. It follows that they must redistribute intensity among the components

of the dissipation tensor. Kolmogorov's hypothesis of local isotropy requires that the dissi-

pation rate tensor approaches its isotropic form as the Reynolds number approaches infinity.

It follows that a return to isotropy model given by

p _- 2 6_e) (79)-

would satisfy this condition. The open question is the time scale. The scale

k

is the obvious choice for the high Re-number limit, but the model becomes incorrect as the

wall is approached because 7"-1 goes to i1_nity with V -2. Modification of the time scale

according to (69) solves this problem and

Q°z- - c4 k -_6c, ze) (8o)

emerges as nonsingular variant. The transport part of the pressure correlation can be mod-

elled in terms of the viscous diffusion terms because the wall limits indicate this form. The

model
//

fP._7 "- - _ O_(e'_)n6{e°'_'tab_ + e_'_'t°b'o - e°e'ot'bz - eao_t'b`'} (81)

where the tangential unit vector is defined by

(vo)(6) (82)
- I<v )(6)l
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and the binormal by

satisfies the near wall properties for the components F_I 2 and F_'32 and neglects the compo-

nents F2P22 and F_'22. The effect of the diffusive part of the pressure correlations is therefore

inhibition of the viscous diffusion near the wall for the diagonal components corresponding

to motion parallel to the wall. The effect on shear component and the diagonal component

corresponding to the motion normal to the wall are neglected.

1.3.6 Near wall production.

The near wall production requires in general flows a closure model. However, for the near

wall region in boundary layers expressions can be given that are exact in the wall limit.

= = o.o

S_ ___ ,2

(83)

(84)

(s5)

The model assumption is essentailly the assumed validity of these expressions for finite dis-

tance from the wall. Since all expressions are proportional to the laminar viscosity, quick

decay with increasing wall distance can be expected.
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2.0 Reynolds stress and complete second order models.

The usual closuremodelsbasedon the trace of the dissipation rate tensor will be considered
first. Severalversionsof the Reynolds stressmodel are available and the most relaJblestress
model (Vandromme et al., 1983)will be evaluated. It will serveas test bed for the complete
secondorder closure.

2.1 Stress equations.

The balancefor the Reynolds stresscomponentsis given by

0 _ O(vo ) _ tp,(Ov_ Ov_

+;5__(#a<¢v_)_ , , , ,,ax_ (p)(v,:,v,_v.,)- ,5o.,<Vv_>- ,5_,.,(pvo))- (p)_ (86)

where the dissipation rate tensor is defined by (1). The split of the pressure correlation into

pressure transport and pressure rate of strain correlations can be shown to be inappropriate

near the wall. It follows from (19) that the Taylor series for the pressure gradient is given in

terms of velocity derivatives at the wall up to second order. Hence, it is possible to represent

the Taylor series for correlations involving the pressure gradient in terms of local velocity

correlations at the wall up to second order. If the pressure correlations are split as in (86)

the pressure fluctuation itself appears and the solution of the Poisson equation introduces

the well known integral contributions.

The standard second order closures employ the equation for the trace of the dissipation

rate tensor
1

which follows at once from (2)

(o,+ (_)o.). = o.[.o_. - <.,,;_)+ £_]+ s' + s_+ s_+ s_- D (87)

The source terms are defined as follows. There are two groups of secondary production terms

(88)

and

S2 _=_(_& , /v_O.,o)(O.(_)+ o_(_.))

The primary production term is given by

(S9)

S_ --(_o_O,v') (9O)
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and the pressurecorrelations can be given in the form

$4 _ 2//,,_2 i_ t/ _

_ P /c%._p c,_ _) (91)

It was shown in chapter 1.2.1 that the pressure correlations can be represented as the sum of

the divergence of a flux and a redistributive source which has zero trace. Hence we get

S 4 = c%F p (92)

where the flux is defined by

or

2/,,

F_ =_--e,_6,,e,o._,,{O._p'O,lv" } (93)
P

"9//

F[ = ---(O.d/O.rv'_) (94)
P

The near wall production of dissipation rate is proportional to the curvature of the mean

velocity profile

S _ --"9//<,,'_O_,,'>O_(vo) (95)

and the viscous destruction of dissipation rate is given by

D = _// /c,_./,c%.yt e) (96)

The properties of the source terms have been established in chapter 1. and we observe that

none of the source terms is closed in contrast to the equations for the dissipation rate tensor.

2.2 Standard second order closure model.

The development of the full second order closure was based in a systematic way on

existing closure schemes. The standard second order closure using the trace of the dissipation

rate tensor set up by Vandromme et al. (1983) was an important stepping stone and can be

applied to test closure models for the various processes governing the dissipation rate tensor.

The model is given by

+ (v.,> )<v,v;,>= -<p)(<_,',,,:,> + <,,,,,,.,>o-.g-i-T,)

o , o(,,'0,,',,>
+,I,o_,+ o-_.u, o._,., - Fo_.,}-(p)<,o,_)

The pressure rate of strain correlations are modelled by

(97)

, , 2. .-c2+8.p o 2
0_'-:- - c,f,,(R_ )(p)k(<v,:,v,_) - 5O,:,_k) - fp(R,,)(,o) { --.i.._ t o,p - 56,_P)
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8c2 - 2(D_,# 26ozP) 30c2 - 2k(0(v,z) O(vo,) ,,,
11 - 3 -gg Oxo + _ ) + _ °_}

as the sum of return to isotropy, fast response and wall contributions, where

and P = 1/2P_o and

p,,,_- _<v,o:,)°<'-'_)
Ox._

, , O(v._)

The wall contribution is given by

,)

,_,,, =_ , e ' ' 36o_k ' Do,# csb( O(v,_)o,_-(p>{q #((,.,ovz)- ) + c_(Po,z - )+ Ox#

(98)

(99)

(100)

f,(Re) = t.,_h(Re/50) (105)

The equation for the trace of the dissiaption rate tensor requires closure for all relevant

processes on the right hand side. Following Vandromme et al. (1983) the model

_ , , O(v_)(0_ O O k (v,v,) Oe] _c,,(o).f,(R,)f,,(R,,Ry)..£(v,_v# ) Ox_o, +("">o-i-;_)'- 07. [" '+_'7 ", oxo

_c,2(p>f_(Re)._£[e_ 2vf O'¢fk'_ 2 e 02(va) 02(va) (106)

( -2 )f_(Re) = exp 1 + Re/30 (104)
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and

= 0.0133,

where f_ depends on the local Reynolds number. The turbulent flux is modelled by

The constants are given by c_t = 0.25, cl = 1.5, c2 = 0.4, c_ = 0.1597, c_

c5 = 0.0041. The low Reynolds number functions are given by

(104)

_ k 1.5
O(v_) 6o,# )} (I01)

Jr Ox_

The dissipation rate tensor must be modelled in terms of its trace and the anisotropy of the
stress tensor

~ _ i t 2

(eoe)=_. (f_(v_v#> + (i - f,)g6_zk) (102)



The low Reynolds number functions are given by

f_ [1 - exp(-fv17_)]2(1 + f_2)
R,

(107)

and

where

fl=l+
+ 10- o) a

f2 = 1 - 0.22 exp(- )

(10S)

(109

v/ky
R_ =_ (Ii0)

V

and fvl : 0.0165, fv2 : 20.5. The performance of this closure model was tested in fiat plate

boundm-y layers. The results are contained in fig.l to fig.& The mean velocity in fig.l is in

good agreement with the law of the wall. The turbulent Reynolds number and the damping

function f,(R,) in fig.2 and fig.3 prove that the boundary layer is fully developed. The

Reynolds stress components in riga to fig.8 show the expected distributions with maximal

values in reasonable agreement with the experiments.
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with wall distance in will units
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2.3 Full second order closure model.

The development of the full second order closure was prepared in the first chapter which

contains the properties of all transport equations for second order moments derived from

series expansions with respect to wall distance. The results obtained with series expansions

are called growth laws since they describe in first or higher order the growth of correlations

with wall distance. The challenge is now to construct a closure model that satisfies all tensorial

and realizability conditions and the growth laws.

2.3.1 Closure model for the stress equations.

The closure model for the stress eqtmtions follows closely the model developed by Van-

dromme et al. (1983). The only difference is that the model (102) for the components of the

dissipation rate tensor is not used. The stress equations appear then according to chapter
2.2 as

(a)(N + (''') ,. ) " '

, , 2 -c2 + 8,p,_ 26o;_p) 8c2 - 2(D_z_ 2-Cl h( R_ )(P) k ( {V_vZ) - 5'5°Zk )- h( R_)(P} {--i-_l' _ - 5 11 5 6_'zp)

30_ - 0<,_) 0<vo)
55 2_,(Oxo + Ox--7) + ¢_ }

(111)

where PoZ and Do,_ are defined in (99) and (100) respectively and the wall contribution

to the pressure correlations is given by (101). The low Reynolds number functions are all

established in chapter 2.2.

2.3.2 Closure model for the dissipation rate equations.

The transport equation for the dissipation rate tensor

0 _ OF,,z.y 1 2 3 4 8(-_ + (v.,) _ )(eo#) - c37 + S_.# + So,# + S_,_ + So# + S_,# - Do,_ (112)

requires closure for the turbulent flux contained in the total flux F,,_._ and the source terms

S_, a S4 5S_, o;_, So_ and D,_;3.
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Model for tile turbulent flux: This model follows the suggestion of Vandromme et al.
(1983) for the turbulent flux of the trace of the dissipation rate tensor

0<e_) k , , 0(e_) (113)
Oz-----(+ c <p>

The only modification is the use of the time scale (69) to improve the behaviour near the

wall. The value for the constant c, = 0.1 is consistent with the six-equation model. A more

sophisticated model was developed in chapter 1.3.2.
2 .

Model for the source So_. The secondary production can be neglected near the wall

according to chapter 1.2.2.4.
3 .

Model for the source Saa. The primary production is not of leading order near the wall

but varies like the closed production term S_Z in the near wall region according to ch.1.2.2.5.

The present model utilizes this property and the analogy to the stress transport exploited

in the equation for the trace (106), where the high Re-number part of the model for the

difference between the leading terms having the character of a production term is modelled

proportional to the production of kinetic ernergy

_ o(v ) o<,vo)
Ox, (114)

The constants are given by c(1 = 1.45 and c,3 = 1.0.
4 ,

Model for the source term So_. The pressure correlations were shown to be of leading

order near the wall for all dissipation rate components except e22 (see ch.1.2.2.9). They can

be split into diffusive and reditributive source terms (ch.l.2.1). The diffusive part is assumed

to be represented by the closure for the turbulent flux (113). The model for the redistributive

source is analoguous to the return to isotropy model for the stress transport equations. It is

given by
4 _ e 2

S_= - c(4(p)_( (_z) - -_6_ze) (115)

with c(4 = 12.5.

Model for the destructive term Do_: It was shown in chapter 1.3.4 that the high Re-

number model for the difference of primary production and viscous destruction becomes

singular as the wall is approached. Furthermore, the growth law for the viscous destruction

term D_Z implies that a model similar to the high Re-number case

Do.z=c_(p ) (eoZ)
7-

with a scalar time scale is impossible. It follows that a tensorial time scale m ust be con-

structed to conform with the growth law. The present closure is a composite expression

containing the high and the low Re-number models
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+c_22(p}n_nzn_n6(1 - fs(Ret))k (e_>. + c_23(p}fs(R_,) n_'_6(e'r_)k <e°Z) (116)

where the preliminary values for the constants are c_21 = 0.32. 10 -4, co2 = 26.25, and

c_23 = 12.5. The low Re-number functions are set up as follows:

20.5

f,,(R_t) = (1 - exp[-0.0165Rv]12(1 - R--T) (117)

where

R v =
V

denotes the dimensionless wall distance and

f ,( R,, ) = tanh( O.OO4Re, ) (118)

The turbulent Reynolds number is defined by

_2

Rat -"
_V

2.3.3 Preliminary results for the complete second order closure.

The system of nine parabolic differential equations was tested in reduced form by pre-

scribing the profiles for mean velocity m_d the Reynolds stress components which were ob-

tained with the six equation model discussed in chapter 2.2. The numerical solution for the

remaining equations for the disssipation rate tensor was carried out and convergence was

achieved after a few hundred steps. The results are presented in fig.9 to fig.16. The figures

contain also as broken line the dissipation rate components deduced from the local relation

suggested by Launder and Reynolds (1983) and modified by Lai and So (1990)

9

(e_Z)&3(1 - fu,(R,,))6,,Ze

I t Lfll

+f.(R,,) k 1 + _n-n,h,' vC)'2[¢ r _ "l o

where

fw(Re,) = exp[-( 1_ )2]

The dissipation rates in the figures are normalized with the wall variables v and u_.

(119)

e +
u_
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with Ur = _ denoting the wall shear velocity. The symbols in the figures represent the

results of the numerical experiments carried out by Mansour, Kim and Moin (1988).

The component e+l in fig.9 (logarithmic scale) and fig.10 (linear scale) shows a negative

gradient near the wall which implies that the time scale

r- 1 e v fOv/'k_ 2
ay /

would chmlge sign and the destructive term would become a production term violating real-

izability. The prediction of e+l in the outer (fully turbulent) part of the flow field is too small

and the near wall part appears too large compared to the direct simulation, but the profile

shape is in good agreement with the numerical experiment. The component e+2 in fig.ll and

fig.12 reasonable agreement between the full second order closure and the direct simulation,

but the local relation of Launder and Reynolds overpredicts the component by a factor of

three. The prediction of the component e+3 in fig.13 and fig.14 shows a similar behaviour as

the component e+_ in fig.9/10. The shear dissipation e+_ in fig.15/16 shows overprediction by

the full second order closure and underprediction by the local relation near the wall whereas

the outer part is in good agreement with the direct simulation data.

2.3.4 Conclusions.

The results presented lead to several conclusions. It is clear from the theoretical develop-

ment that only the full second order closure offers the tools to construct the appropriate time

scales in the near wall region of a turbulent boundary layer. The growth laws for the various

correlations appearing in the stress and dissipation rate balances limit severely the model

expressions and indicate that composite models for the high and the low Reynolds number

regimes must be established. The model discussed in this chapter produces good results if

velocity and stress components are held fixed and this indicates that the model expressions

are consistent with the direct simulations. However, the stability of the closure needs to be

investigated and this part may lead to modifications of the present version of the full second

order closure. This part of the project is currently under way.

63



0.8

eu =+¢ (I.0- fw)+ 2.0 fw_

aunder & Reynolds Equation (2k+ 3.0 u2 u_ )
0.6

+

"I ! Pseudo 9 eq model

,

0.1 1.0 I0 + I02 103
Y

Figure 9 :Variationof Psuedo 9 equation model of normalized

dissipationrated with wall distance. O" Results from Mansour,

Kim, and Moin directsimulationresults. • Launder & Reynolds.
-- :Pre_t Work.

0.8--

0.6--

0.4_
b

4-

Eli-

0.2- UUDO

0.0- _, ,9,9

Pseudo 9 eq model

I I I I

+ £11V
511= ""7"

U¢

I I I I

0.0 50.0 I00.0 + 150.0 200.0 250.0
Y

Figure 10 :Variationof Psucdo 9 equation model of normalized

dissipation rated with wall distance. O: Results from Mansour,

Kim, and Moin direct simulation results. • Launder & Reynolds.
-- :Present Work.

64 I



0.06 m

0.05-

0.04-

0.03-
+

_22

0.o2-

0.01-

0.00-

Axial Locations:

X/8 inh 70.26
X/8 init76.39

X/8 init82.84

X/S init88.74

£22" 2--.-.f (I.0- SW) + 8.0XwE u_ u---_
3le It!

g

I

m

, (2k+ 3.0 u,:,u2 )
i

I

i

: Pseudo 9 eq model
| i

I |

! tla.t, i

m i

|

. • + ½2v
:' _ E22 =

+ I02 103
0.I 1.0 I0 y

Figure 11 :Variationof Psuedo 9 equation model of normalized

dissipationrated with wall distance. O: Results from Mansour,
Kim, and Moin directsimulationresults. • Launder & Reynolds.

-- :Present Work.

0.06
a

m

- 2'.

| |
m

:4,
o.o4" ;

i

I

I |

O.O3 ',
+ -: .

8, 2 , ,

Pseudo 9 eq model

0.o2_":: '.
t

: ÷
w •

,E22-- _,,_',

°oq

+

0.0 50.0 100.0 Y 150.0 200.0 250.0

Figure 12 :Variationof Psuedo 9 equation model of normalized

dissipationrated with wall distance. O: Results from Mansour,
Kim, and Moin directsimulationresults. • Launder & Reynolds.
--- :Present Work.

65



0.10

0.08_ _3-_ e_.o-fw>+

0_ _+ _3v

E,, '_33" '_ ,. ._ Pscudo9eqmodel
0.04

°o" (1

• ., O
0.02 ', o. "'

Io

)

0.0(I

(2k+ 3.0 u2 u2 )

÷
Y

0.I 1.0 I0 I02 103

Figure 13 :Variationof Psuodo 9 equation model of normalized

dissipationrated with wall distance. O: Results from Mansour,

Kim, and Moin directsimulationresults. • Launder & Reynolds.
:Present Work.

0.I0

0.08

0.06 °

+

_33 "

0.04

m

0.02

0.00
O O

Pseudo 9 eq model

÷ _3v
S33 = -'7"

U,_

l I I I

0.0 50.0 I00.0 y + 150.0 200.0 250.0

Figure 14 :Variation of Psuedo 9 equadon model of normalized

dissipation rated with wall distance. O: Results from Mansour,
Kim, and Moin direct simulation results. • Launder & Reynolds.
--- :Present Work.

66



0.000

-0.005

-0.010

-0.025.

-0.030.

Pseudo 9 eq model

I I

i
+ 10 10 2 10 30.1 1.0 y

Figure 15 :Variation of Psuedo 9 equation model of normalized

dissipation rated with wall distance. O: Results from Mansour,
Kim, and Moin direct simulation results. • Launder & Reynolds.

D :Present Work.

oooo" °

-0.010

g12

-0.015
i

-0.020

-0.025

-0.030

OC

Pseudo 9 eq model

U_

+

0.0 50.0 100.0 y 150.0 200.0 250.0

Figure 16 :Variation of Psuedo 9 equation model of normalized

dissipation rated with wall distance. O: Results from Mansour.
Kim. and Moin direct simulation results. • Launder & Reynolds.
B :Present Work.

6?



References.

Hanjalic, I(. and Launder, B.E. (1976), "Contribution towards a Reynolds stress closure for

low-Reynolds number turbulence", JFM 74, 593.

Lai, Y. G. and So R. M. C. (1990), "On near-wall turbulent flow modelling", J. Fluid Mech.

221,641

Launder, B.E. and Reynolds, W.C. (1983), "Asymptotic near-wall stress dissipation rates in

a turbulent flow", Phys. Fluids, 26, 1157

Launder, B.E. (1989), "Phenomenological modelling: Present and future", Whither Turbu-

lence? or Turbulence at the Crossroads Conf., Cornell Univ.

Lumley, J. L. (1978), "Computational Modeling of Turbulent Flows", Adv. Ar_pl. Mech. 18,
123

Mansour, N. N., Kim, J. and Moin, P. (1988), "Reynolds-stress and dissipatlon-rate budgets

in a turbulent channel flow", J. Fluid Mech. 192, 15

Shima, N. (1988), "A Reynolds stress Model for Near-Wall and Low-Reynolds-number Re-

gions", Trans. ASME J. Fluids Engng. 110, 38

Vandromme, D.D., Ha minh, H., Viegas, J.R., Rubesin, M.W. and Kollmann, W. (1983),

"Second order closure for the calculation of compressible wall bounded flows with an implicit

Navier-Stokes solver", 4th Syrup. on Turbulent Shear Flows, Karlsruhe, Germany.

68


