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Summary

A joint U.S. Army/NASA flight investigation was

conducted utilizing a single-rotor helicopter to deter-
mine the effectiveness of horizontally mounted tail

boom strakes on directional controllability and tail

rotor power during low-speed, crosswind operating

conditions. Three configurations wcrc investigated:

(1) baseline (strakes off), (2) single strake (strake at
upper shoulder on port side of boom), and (3) double

strakc (upper strake plus a lower strakc on same side

of boom). Tile strakes were employed as a means
to separate airflow over the tail boom and change

fuselage yawing moments in a direction to improve

the yaw control margin and reduce tail rotor power.
Crosswind data were obtained in 5-knot increments

of airspeed from 0 to 35 knots and in 30 ° increments
of wind azimuth from 0° to 330 °. At the most crit-

ical wind azimuth and airspeed in terms of tail ro-

tor power, the strakes improved the pedal margin by
6 percent of total travel and reduced tail rotor power

required by 17 percent. The increase in yaw con-

trol and reduction in tail rotor power offered by the

strakes can expand the helicopter operating envelope
in terms of gross weight and altitude capability. The

strakes did not affect the flying qualities of the ve-

hicle in forward flight at airspeeds between 35 and
100 knots.

Introduction

Single-rotor helicopters sometimes experience
minimal yaw control margins and, in some cases,

complete loss of yaw control during low-speed cross-

wind operating conditions (rcfs. 1 7). Meeting satis-
factory yaw control criteria remains a difficult prob-

lem for the designer, in part because of numerous

contributing factors that make up the total require-
ment for yaw control. These factors include fuselage

aerodynamic yawing moments, main rotor torque,

yaw maneuver requirements, and external distur-

bances such as ambient winds and self-generated ef-

fects (downwash, ground recirculation effects, and
stability and control cross coupling). In addition,

helicopters experience an increase in installed engine

power and gross weight over their life cycle, which

reduces yaw control margin because of an attendant
increase in main rotor torque. A number of investi-

gations have been conducted to define tail rotor per-

formance and directional handling-quality character-
istics. The results from some of these investigations
are available in references 8 16.

Results from a wind-tunnel investigation (ref. 17)

quantified the importance of the fuselage contribu-

tion to low-speed yaw control requirements. Analy-
ses of the data indicated that the aerodynamic side

forces on the tail boom are a significant portion of

the yaw control requirement. For example, estimates

based on the model data indicated that tile fuselage

yawing moment could require on the order of 10 per-

cent of the total yaw control authority. It was rea-
soned that the tail boom aerodynamic side force was

a major contributor to the fuselage yawing moment.

As a means of reducing the undesirable fuselage yaw-

ing moment, the idea of a spoiler or strake placed
along the boom was proposed (ref. 18). Subsequent

wind-tunnel investigations (rcfs. 19 and 20), per-

formed on large-scale two-dimensional cross-sectional

shapes of representative U.S. Army helicopter tail
booms, clearly indicated that adverse aerodynamic

side forces could be generated by the boom and that

strakes were useful in reducing these forces. Several

flight efforts in the United States and abroad have
been conducted to evaluate the effect of tail boom

strakes (refs. 21-24). In addition, means to reduce

the adverse effects of boom aerodynamic forces on
main rotor and tail rotor power are offered through

cross section shape design (ref. 22).

A flight investigation utilizing an instrumented

single-rotor helicopter (fig. 1) was conducted jointly

by tile U.S. Army Aeroflightdynamics Directorate
and the NASA Langley Research Center in an effort

to obtain flight data to augment wind-tunnel results.

Data were obtained on three configurations: (1) base-

line (research helicopter without strakes), (2) sin-

gle strake (strake located longitudinally at the upper
shoulder of the port side of the boom), and (3) dou-

ble strake (upper strake plus a lower longitudinally

mounted strake on same side of the boom). Low-
speed crosswind data were obtained in 5-knot incre-

ments of airspeed V from 0 to 35 knots and in 30 °

increments of wind azimuth _ from 0° to 330 °. In-
crements in wind azimuth of 15° were investigated

where abrupt or significant changes in flying qualities

and performance were observed. A limited amount

of testing that yielded qualitative results was con-
ducted in forward flight, including climbs, descents,

left and right turns, and autorotation. A summary

of the results of the flight investigation, the major

part of which was directed toward tail rotor power
required, yaw control margin, and general handling-

quality characteristics as influenced by the tail boom

strakes, is presented. Qualitative assessment is given

in the form of pilot commentary.

Symbols

b maximum width of tail boom cross

section (wind-tunnel model), ft

BS tail boom station, in.
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section side-force coefficient,

Side force per unit length
bq

(positive right)

section normal-force coefficient,

Longitudinal force per unit length
bq

(positive down)

mean tail rotor power, hp

standard deviation for tail rotor

power, hp

dynamic pressure, ½ pv 2, lb/ft 2

tail rotor torque, in-lb

aircraft angular yawing velocity,

deg/sec

time, sec

free-stream velocity in tunnel, ft/sec

airspeed, knots

change in mean tail rotor power
compared with baseline, hp

change in mean tail rotor power

compared with baseline averaged

over the azimuth range (0°-330°),
hp

mean pedal control position

(filtered), in.

standard deviation for pedal

position, in.

free-stream air density, slugs/ft 3

angle of flow incidence in plane
normal to axis of two-dimensional

wind-tunnel model, deg

wind azimuth relative to nose of

helicopter, increasing clockwise

as viewed from above (0 ° is a
hcadwind, 90 ° is a right crosswind,

etc.), deg

Crosswind Design and Handling-Quality

Considerations

During low-speed, crosswind flight, aerodynamic
forces on the tail boom are affected by several fac-

tors such as main rotor and tail rotor wakes, ambient

winds, maneuvers, ground effects, and the helicopter

geometry. Over the years, single-rotor helicopters en-

counter low-spccd directional control problems that

degrade handling qualities and mission performance

(refs. 2, 3, 5, 6, and 7). Mthough sideward flight op-
erational requirements vary, many military designs

call for a capability to hover in winds from any az-

inmth at speeds from 0 to 35 knots with a 10-percent

pedal control margin remaining at the most critical
azimuth and speed. Recent military requirements

call for the ability to perform rapid aircraft heading

changes in winds of 45 knots from the most critical

direction, while civilian requirements call for a 17-

knot capability with winds from the critical azimuth.
During design, the tail rotor is sized to balance main

rotor torque and directional stability moments of the

fuselage/tail rotor combination, to provide a suffi-

cient margin for flight maneuvers, and to compen-
sate for ambient wind effects. Demands on tail ro-

tor thrust increase with increasing gross weight and

density altitude because of the greater antitorque re-

quirement of the higher gross weight vehicle and the
decreasing efficiency of the tail rotor in lower density

air. Some of the installation design factors that affect

tail rotor thrust arc tail rotor/vertical fin blockage,
distance between the fin and the plane of the tail ro-

tor, and vertical and horizontal placement of the tail
rotor relative to the main rotor. Of course, the de-

sign of the tail rotor itself is important in terms of

thrust capability. These considerations, however, fall

outside the scope of this investigation.

Generally, in right sideward flight as airspeed

is increased, the requirement for tail rotor thrust
is increased. Conversely, in left sideward flight as

airspeed is increased, the requirement for tail rotor

thrust decreases to zero and then, at some point, the

tail rotor must thrust in the opposite direction. The

static-directional stability of the fuselage/tail rotor
combined is the major factor that influences this
characteristic.

In trimmed right sideward fight, the tail rotor

operates in what is termed the normal working state,
where the inflow to the tail rotor is in the same

direction as the induced velocity produced by the

tail rotor, which results in smooth, steady operation
and no handling problems. The problem normally

associated with right sideward flight is insufficient

yaw control caused by either insufficient tail rotor

pitch travel or tail rotor aerodynamic stall. The wind
azimuth where this problem occurs has been found

to bc vehicle configuration dependent and generally

occurs at 60 ° < ¢ < 105 °. For the helicopter used in

this investigation, it occurred at g2 = 60 °. The term
configuration dependent relates to factors specific to a

particular helicopter design such as tail rotor vertical

placement; height of the main rotor relative to the
tail boom and tail rotor; shape, size, and location
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of the tail boom; and location and direction of the

engine exhaust relative to the tail boom. Another

problem that can occur in right (30 ° < ¢ _< 80 °) and

left (280 ° <_ ¢ < 330 °) sideward flight is ingestion of
the main rotor wake rollup into the tail rotor. This

can cause large and rapid changes in aircraft heading.
Whether this phenomenon occurs on a particular

helicopter design, or at precisely what wind azimuth

it occurs, is also configuration dependent.

In left sideward flight, the handling qualities in a

portion of the sideward flight speed and azimuth en-

velope are characterized by aircraft unsteadiness and

the inability of the pilot to hold aircraft trim, partic-

ularly aircraft heading. This unsteadiness normally
occurs at 240 ° <_ ¢ < 300 ° and is caused by tile tail

rotor operating in the vortex-ring state, where the

wind velocity approaching the tail rotor is about one
to two times the induced velocity of the tail rotor.

The vortex-ring state is characterized by the absence

of a well-defined slipstream through the rotor and

by large recirculating flows through the rotor. The

result is rapidly fluctuating yawing moments that
make precision heading control for the pilot virtually

impossible.

Finally, yawing moments from the static-

directional stability contribution of the fuselage/tail
rotor combination create what is commonly termed

weathercock stability and produce the moments that

tend to turn the nose of the helicopter into the

wind. For example, in a tail wind, the helicopter

experiences a static-directional instability that re-

quires constant pedal control movement by the pi-
lot to maintain aircraft heading. If the pedals are

left unattended, the tail of the helicopter will swing
180 ° in either direction so that the nose of the air-

craft points into the wind. There are also factors

caused by ground effects that affect crosswind han-

dling characteristics, but these will not be discussed
herein.

Wind-tunnel investigations (refs. 19 and 20) per-

formed on typical helicopter tail boom cross-sectional
shapes clearly indicated that rotor downwash could

combine with crosswinds (modeled by airflow in the

tunnel) to produce right yawing moments in right

sideward flight. When this occurs, additional tail ro-
tor thrust is required to trim tile aircraft. During

stringent flight conditions, such as high gross weight

or high density altitude when little or no yaw control

margin remains, loss of yaw control may occur. It
was also determined during the wind-tunnel investi-

gations that a strake placed longitudinally along the

upper shoulder of the model boom was effective in

disrupting the airflow over the boom. This disrup-
tion of the flow significantly changes the magnitude

of the side force. In figure 2, an increase in side-force

coefficient C v (from negative to positive values) in-

dicates a change in boom side force in a favorable
direction (reduced tail rotor thrust). Also, a pos-
itive increase in the normal-force coefficient Cz in-
dicates an unfavorable increase in boom download.

Based on the results in figure 2, the overall effec-

tiveness of the single- and double-strake (a second

strake placed longitudinally along the boom, ref. 20)

configurations would be expected to bc comparable

in right sideward flight (comparable values of C v at

positive values of ¢). The results from a double-
strakc configuration indicated promise in extending

the improvement in side force well into left sideward

flight (-45 ° < ¢ < -10 °) as well as reducing down-
load over a portion of the range of angles investigated

(-35 ° < ¢ < -20 °) (fig. 2).

The size and angular placement of the upper and

lower strakes used in the present investigation were
derived from experience during the same wind-tunnel

investigation, although a detailed parametric study
of the cffects of strake height and angular location

was not nlade. The strake height of 3 in. used in this

investigation is conservative and was selected to en-
sure that the flow did not reattach to tim boom; how-

ever, the strake height required is a function of boom

depth (including the shaft cover). More detailed ex-

periments (unpublished) performed by industry have
determined that the strake height should be 6 7 per-

cent of the boom depth, including the shaft cover.

For this investigation, the height was 7 percent and

12 percent at the most forward and most rearward
points on the boom, respectively. Of course, it is im-

portant to minimize the height in order to minimize

download, and a set of strakes tapered in height was

designed and fabricated, but only qualitatively eval-
uated. It is important that the download penalty on

the main rotor (typical power loading of about 8 lb

thrust/hp) be more than offset by the side-load bene-

fit gained through the strake unloading the tail rotor

(typically about 4 lb thrust/hp). The strake should
include as much of the lcngth of the boom as prac-

tical and extend rearward beyond the normal main
rotor wake location to account for movement of the

wake due to forward speed. Both wind-tunnel and

flight experiments on specific helicopter designs are

desirable when considering the use of strakes.

Apparatus and Procedure

Test Helicopter

The test helicopter used in this investigation was

a civil version of a turbine-powered vehicle that is

representative of a medium weight, utility-class he-

licopter. This helicopter series has been in service



for about35years,andthemodelusedhereinwasa
Bellmodel204B.It hasatwo-bladed,48-ft-diameter,
teetering-main-rotorsystemwith a gyro stabilizer
bar. Figure l(a) showsa photographof the test
helicopter,and tableI lists its physicalcharacter-
istics. A three-viewsketchof the basichelicopter
showingsomeof the principaldimensionsis given
in figure1(b). Takeoffweightfor this investigation
variedfrom about8000to 8300lb, dependingon
thecorrectionin weightneededto matcharefercncc
baselinedensityratiobascdonaircraftgrosswcight
anddensityaltitude.Thehelicopterwaspoweredby
a singlefree-turbineenginewith 1100shafthp. No
electronicstabilityaugmentationsystemwasusedon
thehelicopter.Thepilot's cockpitcontrolsincluded
theconventionalcyclicstick,rudderpedals,andcol-
lectivestick,whichwerepoweredby an irreversible
hydraulicboostsystem.Adjustablefrictiondeviccs
wereusedwith thecyclicstickandthccollectivestick
to providecontrolsystemfeelforcesto thepilot. The
pedalcontrolshadno frictiondevice.Controlforce
centeringwasavailablein thecyclicanddirectional
controlsbut wasnot usedbecausemostof the test
flyingrequiredconstantout-of-trimconditions.The
horizontalstabilizerwasconnectedto thelongitudi-
nalcycliccontrolandwasriggedto resultin aposi-
tive longitudinalcycliccontrolpositiongradient.

Strakes

The installationof the upperandlowerstrakes
on thetesthelicoptertail boomis illustratedin fig-
ure3. Thestrakesweremountedon the port side
of theboom.The threeconfigurationsinvestigated
include:(1)baseline(nostrakesattached);(2)single
strake(upperstrakcinstalled);and(3)doublestrake
(upperandlowerstrakesinstalled). The3-in-high
strakeswerefabricatedfrom 0.06-in-thick6061-T6
aluminum.Bothstrakcsweremadein threesections
to accommodatelongitudinalcurvaturein theboom.
Tofacilitateattachmentandremovalduringtestse-
quences,machinescrewswerefastenedthroughholes
intoself-lockingnutplatesmountedinsidetheboom.
The heightand angularplacementof the strakcs
werebasedon forceand pressuredataobtainedin
the wind-tunnelinvestigationof reference20. The
preciseangularlocationfollowedexistingrivet lines
alongtheboomto avoiddrillingadditionalholesin
theboom.

Instrumentation

Instrumentationonboardthetesthelicoptermea-
suredandrecordedaircraftcontrolpositions(longi-
tudinal cyclicstick, lateralcyclicstick, pedal,and
collectivestick), tail rotor bladepitch angle,air-
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craft angularvclocities(pitch, roll, and yaw),air-
craft normalacceleration,aircraftattitudes(pitch,
roll, heading),cngineshafttorque,tail rotoroutput
shaftstrain,mainrotor rotationalspeed,tail rotor
rotationalspeed,andaircraftairspeed.In forward
flight, at airspeedsabove40knots,aircraftangleof
attackandsideslipangleweremeasuredwith vanes
mountedat the endof the noseboom. Thevanes
andboomwereremovedfor thehoverandlow-speed
tests.Datawererecordedonapulsecodemodulation
(PCM)systemandtaperecorderslocatedon instru-
mentationracksin thepassengerseatingareabehind
thepilotandcopilotscats(fig.4). Wooltuftswereat-
tachedto bothsidesofthetaiIboomandvideotaped
to indicatethe airflowconditionswith tile strakes
on andoff (fig. 5). The time codeson tile PCM
datatapeandvideotapeweresynchronized.A data
couplingdevice(Acurex1200BUniversalDataCou-
pler) was used at the tail rotor output drive shaft to

telemeter the data signal from strain gauges on the
rotating output shaft to the nonrotating side at the

90 ° tail rotor gearbox (fig. 6). This was the first time
such a device had been used on a helicopter flight

project at Langley in lieu of a more conventional slip
ring assembly. This device was used because the heli-

copter was utilized for several other projects, making
slip ring contact wear a concern.

A pace van (fig. 7) was used to assist the pilot

in establishing and maintaining the desired test air-
speed during the sideward flight portion of the in-

vestigation. The van used a speed-measuring radar

device that was accurate to within ±2 mph. A

portable weather station was mounted approximately
12 ft above the van bumper on a pole and mea-

sured wind velocity, wind direction, air temperature,
and barometric pressure. The output from this sta-

tion was displayed and videotaped along with a time
code synchronized with the aircraft PCM data sys-
tem. A radar altimeter was installed on the air-

craft with a cockpit dial readout gauge to assist the
pilot in maintaining height above the runway dur-

ing the sideward flight portion of the tests. Data

on/off switches and instrument system status lights
were located on a control panel in the cockpit and

operated by tile copilot during the operation. The

PCM data system was set up for 52080 bits/see,

10 bits/word, 38 words/frame, and a tape recorder
speed of 71/2 in/see that resulted in a data sample

rate of 137/see. The data were not filtered (luring

the data recording or reduction process.

Test Procedure

Generally, data were obtained in 5-knot incre-

ments of airspeed between 0 and 35 knots and in 30 °
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increments of wind azimuth over the entire heading

range during the low-speed portion of the investi-
gation. The matrix of speeds and azimuths tested

is given graphically in figure 8. In rearward flight

at azimuths of 150 °, 180 °, and 210 °, a 30-knot air-

speed limit was observed, as required by the opera-

tor's manual (ref. 25). Also, in cases where signifi-
cant parameters were changing rapidly as a function

of azimuth, data were taken in 15° increments. Dur-

ing this investigation, azimuth (g)) is defined as the

direction from which the wind is approaching the air-
craft. For instance, ¢ = 90 ° would denote a direct

right crosswind and ¢ -- 0 ° would denote a head-
wind.

Most of the testing was conducted at the NASA

Wallops Flight Facility to take advantage of facilities

unique to Wallops, including the airport with three
runways and little competing air traffic. The low-

speed testing was performed at a landing skid height

of 40 ft to achieve a near out-of-ground-effect condi-

tion (ratio of rotor height to rotor diameter equal
to approximately 1.0). During the initial part of

the investigation a laser tracking radar system on

the Wallops airfield was utilized to monitor the heli-

copter height above the runway during acquisition of

data to ensure that the pilot was maintaining steady
level flight. The pilot utilized a radar altimeter read-

out (analog dial indication) in the cockpit to assist

in maintaining a constant height above the runway

and thus minimize power changes due to climbing
or descending while taking data. Main rotor power

changes associated with climb and descent would af-

Presentation of Results

The data are presented graphically as outlined below:

fect the pedal position and tail rotor power results.

Low wind conditions with the prevailing wind di-

rection aligned with one of the runways were re-

quired prior to initiating a data flight. Winds were

required to be steady (less than 5 knots) with de-
viations of =t=2 knots and with the direction within

4-15 ° of the operating runway heading. Corrections

were then calculated for wind velocity and direction
between each pass down the runway, and the pace

vehicle speed and aircraft heading were adjusted ac-

cordingly to account for the wind. Typically, four to

seven data points (constant heading and airspeed)

were collected during each pass down the runway
while aircraft heading was held constant and airspeed

was varied. To take a point, the aircraft was stabi-

lized on a desired test airspeed and a 20-sec record

was taken. A typical flight lasted 50 75 min with

40 55 data points collected during each flight. Usu-

ally, three flights per day (one flight in each configu-
ration) were performed, with the first flight starting

at sunrise to take advantage of low wind conditions.

For the total program, 37 test flights were performed,
which required 28 flight hours.

In forward flight, the handling-quality character-

istics were evaluated with strakes on and off (the
three test configurations). Maneuvers performed in-

cluded slow, level flight accelerations and decclcra-

tions (change in airspeed of 1 knot/see or less) be-

tween 35 and 100 knots, left and right 30 ° banked
turns at 60 knots, left and right sideslips to sideslip

angles of 30 ° at 60 knots, 1000 ft/min climb at

60 knots, 1300 1400 ft/min descents at 60 knots, and

autorotations at 50, 65, 75, and 85 knots.

Figure

9

10

12

13

14

15

16

17

Parameters plotted

Mean pedal position vs. airspeed

Tuft patterns on tail boom

Yaw rate, pedal position, tail

rotor torque vs. time

Mean tail rotor power

vs. airspeed

V, knots

0 35

0 35

124-3

0 35

Mean tail rotor power 5-35
vs. wind azimuth

Change in mean tail 0-35

rotor power vs. airspeed

Climbing and descending flight 60

Slow trim-level-flight
acceleration and deceleration

35-100

¢, deg

0:330

6O

300

0 330

0 330

Comparison

Baseline vs. single
strake vs. double strake

Baseline vs. double strake

Baseline Vs. double strake_

Baseline

strake

Baseline

strake

0 33O

(averaged) __
0

0

Baseline

....... Strake
Baseline

vs. single
vs. double strake

vs. single
vs. double strake

vs. single
vs. double strake

vs. double strake

Baseline vs. double strake
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Thedata fromfigures9 and 13aretabulatedin
tablesII, III, andIV. TableII containsdatafromthe
baselineconfiguration;tableIII containsdatafrom
thesingle-strakeconfiguration;andtableIV contains
datafromthedouble-strakeconfiguration.

Results and Discussion

Effect of Strakeson Mean Pedal Control
Position

Meanpedalcontrolpositionasa functionof air-
speedispresentedin figure9 forthe3 configurations
and16windazimuthsinvestigated.Asindicatedin
tableI, thepedalcontrolstopsareat.4-3.44 in., where

+3.44 in. is full left pedal. Also, the tail rotor pitch

angle varied linearly with pedal position, and full left

pedal resulted in +19.4 ° of tail rotor pitch and full

right pedal resulted in -7.1 °. A blade pitch of 0° oc-
curred at 1.6 in. of right pedal. The 10-percent total

travel control margin called for in military specifica-
tions is shown in the plots.

Right sideward flight. For the baseline config-
uration, the largest left mean pedal requirements oc-

currcd in right sideward flight at ¢ = 45 °, 60 °, and

75 ° and at V = 10--25 knots (fig. 9(a)). The peak
left mean pedal requirement occurred at ¢ = 60 °

and V = 20 knots, where 2.9 in. of left mean pedal

were required for trim. This peak value is only about
0.5 in. from the left pedal stop and represents about

93 percent of total pedal travel (as measured from
right pedal stop) and violates the 10-percent control

margin required for maneuvers by some handling-

quality specifications. At these azimuths (¢ = 45 °,

60 °, and 75 °) and airspeeds (V = 1(_25 knots), the
normal deviations in pedal motion about the mean
value resulted in numerous contacts with the left con-

trol stop, and on occasion the pedal was on the stop

for up to 1 sec with the aircraft heading drifting
slowly from trim.

Operation at conditions that require more engine
torque, such as higher density altitude and higher

vehicle gross weight, would require full pedal control

with no margin for maneuvers. For these conditions,

the probability of loss of directional control would
bc greater. Comparison of the baseline results with

the results from the singlc-strake and double-strake

configurations indicated an improvement in the mean

pedal control margin by an average of about 0.7 in.

at "_b= 45 ° (single-strake data only), V = 20 knots;
0.4 in. at ¢ = 60 ° , V = 20 knots; and 0.6 in. at

= 75 °, V = 15 knots.

At _ = 0 ° and V = 10 20 knots, an increase in

left mean pedal is required (fig. 9) because of the

strakes, but it is not critical since the mean pedal

control is near midrange (between about + 1 in. mean

pedal). The effect of the strakes on mean pedal

position is minimal at ¢ = 30 ° and ¢ = 120 ° .

Although ¢ = 150 ° is not a critical wind azimuth
in terms of mean pedal travel near a control stop

or pedal activity, there was a significant benefit

due to the strakes, particularly at speeds between
25 and 30 knots. In fact, at V = 27-28 knots,

the average benefit for the single- and double-strake

configurations compared with the baseline was about

0.7 in. improvement in mean pedal position. Similar
effects of lesser magnitude were noted in the third

quadrant at _ = 210 ° and 240 ° for V = 15 35 knots.

Three-dimensional effects, such as the longitudinal
velocity component from the helicopter translational

airspeed acting on the boom, may contribute to these
results.

Analysis of the tail boom tuft visualization data
eonfirmed'_hat the strakes induced flow separation

during the critical right sideward flight condition
(¢ 45 °, 60 ° , 75 ° , 90°; V = 0 35 knots). Tuft

patterns as observed on the left side of the boom

over the speed range of V -- 0 35 knots and ¢ =
60 ° are illustrated in figure 10 for the baseline and

double-strakc configurations. Analysis of the tuft
data indicated that the results for the single-strake

and double-strake configurations were virtually the
same for the ¢ -- 60 ° azimuth condition. The

tufts attached to the boom from approximately the

horizont_ls)abilizcr to the rearward end of the boom
were not readable primarily because of the small

viewing angle of the camera. Note that for the
baseline configuration, the tufts indicated attached

flow with very little back-and-forth motion of the
tufts for all speeds investigated. The effectiveness

of the strake configurations in smoothing out the

peaks in the curves of the baseline configuration, as

illustrated particularly at ¢ = 75 ° and V -- 10-

25 knots (fig. 9), indicates that the peaks arc caused
by an aerodynamic side force on the tail boom when

the boom is "flying" in the main rotor wake.

The strakes caused increasingly larger separated
flow areas on the boom at V = 0 and 5 knots,
and then at V = 10 35 knots the entire boom

area back to the horizontal stabilizer was separated

except for a small corner near the forward end of
the strakes. In right sideward flight, at airspeeds

above about 25 knots, wake skew angle calculations
indicate that the main rotor wake would clear the

boom, and the flow on the boom in the baseline

configuration would be fully separated because the
angle of attack would be about 90 ° . This did not
occur at _b = 60 °, as indicated by the tuft pictures

III



(fig. 10, V = 25, 30, and 35 knots). These results are

confirmed by the data in figure 9 0P = 60°), which

indicate that the advantage in pedal control position
for the double-strake configuration compared with

the baseline configuration is retained through 25, 30,
and 35 knots.

For a given single-rotor helicopter where direc-

tional control is the limiting factor, improvements

in pedal control margin afforded by the strakes at

the critical right sideward flight azimuth and speed

(¢ = 60 °, V = 20 knots for the test helicopter) can
expand the operating envelope of the helicopter in

terms of gross weight and density altitude. Simple

calculations indicate that a 10-percent improvement
in pedal control margin (about 0.7 in. for the test

helicopter) at the critical condition can improve tile

operational altitude by about 6000 ft or increase the
gross weight capability by about 1700 Ib for a UH-1

or an AH-1 class helicopter. A figure taken from an

Army helicopter operator's manual (ref. 25) shows

areas of reduced directional and longitudinal control

margins as a function of translational flight speed and
direction, and is presented as figure 11. The data in

figure 11 are for the in-ground-effect case and apply

to UH-1D/H and EH-1E helicopters. It is also shown

in the manual that a 5-percent improvement in pedal
control margin will provide an additional 2000 fl. of

altitude capability or 500 lb of payload.

Left sideward flight. In terms of yaw control

margin, the concern in left sideward flight is running
out of right pedal during certain flight conditions.

In figure 9, right mean pedal position is denoted by

negative numbers. High-frequency pedal control ac-

tivity when the tail rotor is operating in the vortex

ring state is also of concern in left sideward flight
and will be discussed later. It is helpful to remem-

ber that tail rotor pitch is 0 ° at a pedal position of

-1.6 in. and increases linearly to -7.1 ° at the right

pedal stop (3.44 in. right pedal). Therefore as pedal
position moves from -1.6 in. to a larger more neg-

ative value, the tail rotor power required increases
as the tail rotor thrusts in the opposite direction. In

rearward flight (¢ = 180 ° and 210°), little effect from
the strakes was noted with the pedals within about

1 in. of the center of travel except at speeds of about

25--30 knots at ga = 180 ° and 20-30 knots at ¢ =
210 °, where the strakes caused about a 0.5-in. shift

in right pedal compared with the baseline. For the re-

maining wind azimuths of 240 ° 330 °, the mean pedal

positions are closer to the right stop for the strake
configurations compared with the baseline except at

ga = 270 °. The 10-percent control margin (pedal

at -2.75 in.) was exceeded for ¢ = 270 ° , 285 ° ,
300 °, and 315 °. The single- and double-strake con-

figurations had generally the same characteristics for

¢ = 270 °, 315 °, and 330 °, whereas at ¢ = 285 ° and

300 ° the double-strake configuration requires more

right pedal. This effect was probably caused by the

increased sideward drag of the boom with strakes in-

stalled and should be considered prior to strake appli-
cation, since it caused an excecdance of the control

margin in left sideward flight. Optimization of the

strake height (limit height to 6 to 7 percent of boom

depth) would likely reduce the requirement for right
pedal and help minimize this effect.

Effect of Strakes on Precision

Controllability

Disturbances that affect precision controllability

of the aircraft include operation of the tail rotor in
the vortex ring state, which occurs in left sideward

flight at azimuths of about 210 ° to 330°; ingestion of

the main rotor tip vortex into the tail rotor, which
occurs when the wind is from the front left or front

right quadrants; and weathercock instability of the
fuselage, which occurs in rearward flight at azimuths
between about 120 ° and 240 ° .

With the baseline configuration, the major prob-

lem in terms of the pilot's ability to hold the aircraft

steady occurred at speeds between 10 and 15 knots at

+', = 300 °. The addition of either the single strake or
the double strake reduced the unsteadiness by about

50 percent according to pi]ot comment. Time histo-

ries (fig. 12) of angular yawing velocity, pedal posi-
tion, and tail rotor torque with double strakes on and

off show reduced amplitude and frequency with the

strakes on and thereby confirm the pilot comment.
The increased steadiness of the aircraft with strakes

on is probably achieved because airflow separation
is fixed on the boom so tim! random separation and
reattachment of airflow does not occur.

Effect of Strakes on Tail Rotor Power

The mean tail rotor power required as a function

of airspeed is presented in figure 13 for the base-

line, singlc-strake, and double-strake configalrations

for all azimuths inw'stigated. As expected, the gen-
eral shapes and trends of the curves are similar to the

mean pedal position data shown previously (fig. 9),
since tail rotor pitch varies linearly with pedal
position.

Right sideward flight. For right sideward
flight, the azimuths under discussion are 0 ° to 150 ° in

figures 13(a) and 13(b). The largest mean tail rotor
power requirements in right sideward flight occurred

for the baseline configuration at V = 15-20 knots

and ¢ = 45 °, 60 °, and 75 ° with the peak at _p = 60 °

and V = 20 knots, where the mean tail rotor power
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requiredwas120hp with transients(not shown)
to 150hp. A moderatelyhigh powerlevelis also
notedforthebaselineconfigurationat _p= 150° and
V = 28 knots. According to the manufacturer, the

maximum continuous power rating for the 90 ° tail

rotor gearbox, located at the tail rotor, is 105 hp.
Transients in power above 105 hp are allowed in the

operating procedures, and the mechanical condition

of the gearbox was monitored through routine main-

tenancc inspection procedures.

At _ = 45 ° and V = 20 knots (fig. 13), the sin-
gle strake reduced the mean tail rotor power required

from 99 to 78 hp (21 percent). For the critical con-
dition (¢ = 60 ° and V = 20 knots), the strakes re-

duced the mean tail rotor power required from 120 to

100 hp (17 percent), and for ¢ = 75 ° and V = 15

knots (peak condition for baseline at ¢ = 75°), the
strakes reduced the mean tail rotor power required

from 108 hp to an average of 83 hp (23 percent).
At ¢ = 90 ° and V = 15 knots, the strakcs reduced

the mean tail rotor power required from 89 hp to an

average of 76 hp (15 percent).

The trends of the data for ¢ = 0°, 30 ° , and

120 ° (fig. 13) follow the pedal position data and will

not bc discussed further. At _;, -- 150 °, the signif-

icant power benefit over most of the speed range is
in agreement with the large pedal benefit afforded

by both the single- and double-strake configurations

compared with the baseline. In fact, the largest

power benefit yielded by the strakes during this in-
vestigation occurred at V = 28 knots and ¢ = 150 °.

For this condition, the single- and double-strake con-

figurations reduced the power required from 91 hp to

an average of 60 hp (34 percent). This average reduc-
tion of 31 hp was significantly greater than that es-
timated from the two-dimensional wind-tunnel data

of reference 20 (22 hp).

Left sideward flight. For y) = 180 ° 330 ° in

figures 13(e) and 13(d), the trend of mean tail rotor

power as a function of airspeed is generally toward
lower power levels as speed increases for the three

configurations. As mentioned previously, the most

significant problem in left sideward flight was the

inability to maintain precision control (particularly

at _b = 300 °, V = 10-15 knots) and tile need for an
adequate control margin from tile right pedal stop.
These factors were discussed in the section on the

cffect of strakes on mean pedal position and will not
be reiterated here.

Effects of single-strake versus double'strake

configurations. The mean tail rotor power bene-

fit or deficit of the singlc-strakc and double-strake
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configurations compared with the baseline configura-

tion is given in figure 14 as a function of wind az-

imuth for airspeeds of 5, 10, 20, 25, 30, and 35 knots.

A beneficial mean tail rotor power change that re-
sulted from both the single- and double-strakc con-

figurations compared with the baseline is presented

as positive values of AP in the figure. Recall that the

absence of data at V = 35 knots between ¢ = 120 °
and 240 ° was due to an operational limit of 30 knots

on the rearward flight airspeed of the test helicopter.

The curves for this figure were obtained from the
data in figure 13 by noting differences in mean power

between tile configurations every 5 knots and then
fairing through the data points.

Examination of the curves over the entire air-

speed and azimuth range (fig. 14) indicates that both

the single- and double-strake configurations yield an
overall mean tail rotor power benefit. Also, the data

indicate that both strake configurations continue to

be effective in reducing mean tail rotor power re-
quired up to an airspeed of 35 knots. For exam-

plc, when the baseline boom is no longer immersed

in the main rotor wake at airspeeds of 25 knots and
above, the angle of attack on the boom would be

nearly 90 ° and fully stalled. Once the baseline boom

is stalled, the straked configurations, which are de-
signed to stall the boom, can have little or no fur-

ther benefit in terms of reducing tail rotor power re-
quired compared with the baseline. However, based

on these data, the strake configurations remained ef-
fective compared with the baseline at least to an air-
speed of 30 knots.

Compared with the baseline, the strakes were also

beneficial over a larger wind azimuth range than an-
ticipated. The reason for the beneficial peaks in the

left and right rear quadrants (90 ° _< _' _< 270°),

particularly at V = i0 30 knots, is not fully un-
derstood at this time. As previously mentioned,

three-dimensional effects, such as a longitudinal ve-
locity component from the helicopter translational

airspeed, may contribute to these results. For many
of the speeds, the peaks in the second wind azimuth

quadrant (90 ° < ¢ N 180 °) approach the size of the
peak in the first quadrant, and at V = 25 knots the

second peak is slightly larger.

At the critical condition of ¢ = 60 ° and V =

20 knots, the singie-strake result indicates a larger
benefit in mean tail rotor power reduction compared

with the double strakes (22 hp versus 18 hp). At

the other less critical airspeeds (V = 5, 15, 25, and
30 knots), the results shown in the same quadrant

indicate that the double strakes yielded a larger mean

tail rotor power benefit. In addition to the 20-knot

case, the results in the right front quadrant show
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that the single strake had the larger mean power
benefit at V = i0 and 35 knots. Large and rapid

changes in the increment in mean tail rotor power at

¢ = 260 ° 330 ° and V = 10 and 15 knots are another

indication of the unsteadiness and precision control

problem discussed previously.

The single- and double-strake configurations were
further analyzed by taking the data in figure 14 and

averaging the power saved or lost compared with

the baseline over the entire azimuth and airspeed

range (except 35 knots; recall data were not available

for _p = 150°-210°). This method approximates
integrating the areas under the curves in figure 14.

Based on this method of averaging the data, the

results (fig. 15) indicate that the double strakes were

more effective than the single strake in reducing mean
tail rotor power required over most of the airspeed

and azimuth range.

Effect of Strakes in Forward Flight

In forward flight, as discussed in the Test Proce-
dure section, standard handling-quality testing tech-

niques were used to evaluate the test helicopter

without strakes and with single and double strakes.

Maneuvers performed included slow, level flight ac-

celerations and decelerations at airspeeds between
35 and 100 knots, and turns, turn entries, sideslips,

and climbs and descents at 60 knots. Also, auto-

rotations with power recovery were performed and in-

eluded turns during the steady-state descent portion
of the autorotation at V = 50, 65, 75, and 85 knots.

According to pilot comment, the strakes had no dis-

cernible effects on aircraft handling qualities in for-

ward flight at speeds between 35 and 100 knots. This
result agrees with qualitative flight experience with a

_,Vestland Sea King helicopter that employed a single

upper strake (ref. 22).

Quantitative results from two of the runs are pre-

sented in figures 16 and 17 for the baseline and

double-strake configurations. Figure 16 includes

climbing fight for the first half of the run and de-
scending flight for the second half of the run. In

figure 16, the major differences between the base-

line and double-strake configurations in terms of

pedal position, tail rotor blade angle, and tail rotor

power resulted from a rate of climb of 1300 ft/min

for the double-strake configuration compared with

1000 ft/min for the baseline configuration (rate of
climb information based on pilot comment). This

was also reflected in the engine shaft power data

where nearly 120 more horsepower were used to ini-
tiate the climb in the first 15 sec of the time history.

The remaining parameters are in agreement with pi-

lot comment, which indicated no discernible differ-

ences in forward flight due to the strakes. The re-

sults in figure 17 agree with pilot comment except for

differences in pedal position, longitudinal stick posi-

tion, tail rotor blade angle, collective stick position,

and engine shaft power caused by the pilot initiating
the maneuver with a larger initial pitch control input

(see pitch attitude, fig. 17) for the double-strake case.
The remaining parameters are in close agreement for

the baseline/double-strake comparison.

Concluding Remarks

A joint NASA/Array flight investigation was con-

ducted to evaluate the effects of horizontally mounted
tail boom strakes on the directional controllability

and tail rotor power of an instrumented, medium size,

single-rotor helicopter during low-speed, crosswind

operating conditions. Data were obtained on three

configurations: (1) baseline (strakes off), (2) sin-
gle strake (strake located longitudinally at the up-

per shoulder on the port side of the boom), and

(3) double strake (upper strake plus a lower longi-
tudinally mounted strake also on the port side of

the boom). Based on the analyses of the data ob-

tained during this investigation in conjunction with

pilot comments, the following concluding remarks are

given:

. For the baseline configuration, a maximum mean

tail rotor power of 120 hp was measured at ¢ =
60 ° and V = 20 knots; the mean pedal position

was within 7 percent of the left control stop, and

during excursions about the mean, the pedal was

occasionally on the stop. With the addition of the

single and double strakes, the mean pedal margin

was increased by about 0.4 in. (6 percent of to-
tal travel) and the mean tail rotor power required

was reduced from 120 to 100 hp (17 percent). Im-
provements were also measured at other azimuths

up to a maximum mean tail rotor power reduc-

tion of 34 percent averaged for the double-strake

and single-strake configurations.

. When power differences due to the strakes were

averaged over the azimuth range, the double

strake was more effective than the single strake
over most of the low-speed envelope. Analysis of
tail boom tuft videos confirmed that the strakcs

induced flow separation.

. In left sideward flight (¢ = 300 ° , V = 10 15

knots), a marked increase in aircraft unsteadi-

ness and difficulty of precision control of aircraft
heading were noted. According to pilot comment,

the addition of strakes improved these effects by

50 percent. However, in left sideward flight, the

9



addition of the strakes caused the right pedal con-

trol margin to exceed the 10-percent control limit

but the right pedal stop was not contacted.

4. The strakes had no discernible effects on aircraft

handling qualities in forward flight at speeds be-

tween 35 and 100 knots.

NASA Langley Research Center

Hampton, VA 23681-0001

January 8, 1993
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Table 1. Physical Characteristics of Test Helicopter

Main rotor:

Diameter, ft ............................... 48

Number of blades ............................. 2

Blade chord, in .............................. 21
Airfoil section .......................... NACA 0012

Twist, deg (linear) ........................... - 11
Flapping angle range, deg ........................ +10

Blade taper ratio .............................. 0

Disc area, ft 2 ............................. 1810

Solidity ............................... 0.0506

Tip speed, ft/sec ............................. 815
Normal operating speed, rpm ....................... 324

Engine to rotor gear ratio ....................... 20.37:1
Tail rotor:

Diameter, ft. ............................... 8.5

Number of blades ............................. 2

Blade chord, in .............................. 8.4
Airfoil section ........... " ............... NACA 0015

Twist, deg ................................ 0

Blade taper ratio .............................. 0

Disc area, ft 2 .............................. 56.7

Solidity ................................ 0.105

Blade area, ft 2 ............................. 5.954

Tip speed, ft/see ............................. 740
Normal operating speed, rpm ...................... 1663

Blade pitch angle, deg:
Full left pedal ............................ +19.4

Full right pedal ........................... -7.1

Delta-three hinge angle, deg ........................ 35
Direction of rotation .................. Bottom blade rearward

General:

Normal weight (max. gross), lb ..................... 8500
Weight (as tested), lb .......................... 8200

Empty weight, lb ........................... 4600

Overall length, ft ........................... 56.1
Overall height, ft ............................ 14.6

Landing gear tread, ft .......................... 8.4

Power (Lycoming T53):

Normal, shp .............................. 900
Normal, rpm ............................ 6600

Takeoff, shp ............................. 1100

Maximum-level-flight airspeed, knots ................... 110

Center of gravity (as tested):

Longitudinal (fuselage station) ..................... 131.60
Lateral ................................ -.03

Control travels (from grip centers):

Lateral stick, in ............................ +6.17

Longitudinal stick, in ......................... 4-6.43
Pedals, in .............................. 4-3.44

Collective stick, in.:

Full up ................................ 10.6
Full down ................................. 0
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Table II. Mean and Standard Deviation Values for Tail Rotor Power and Pedal Position From Data

in Figures 9 and 13 for the Baseline Configuration

_b = 0 ° _ = 75°

V, knots P, hp Pa, hp 5, in. 5a, in.

0

5

10

15

20

25

30

35

61.59

68.73

49.77

40.03

30.38

26.65

24.03

22.74

4.58

7.07

3.59

3.98

3.60

4.02

4.04

3.65

1.13

1.31

.83

.44

.00

-.26

-.44

-.52

0.08

.17

.09

.07

.10

.15

.13

.10

V, knots P, hp Pa, hp 5, in. 5a, in.

0

5

10

15

20

25

30

35

61.59

79.06

94.48

107.76

93.80

76.51

81.32

91.33

4.58

5.36

11.37

11.21

12.16

10.25

6.75

5.21

1.13

1.64

1.99

2.36

2.01

1.75

1.89

2.16

0.08

.11

.22

.18

.24

.18

.10

.09

¢ = 30 °

V, knots P, hp Pa, hp 5, in. 5a, in.

¢ = 90 °

V, knots P, hp Pa, hp 6, in. 5o, in.

0

5

10

15

20

25

30

35

61.59

68.98

75.22

78.39

65.75

58.07

59.03

61 .O4

4.58

4.11

4.59

4.12

4.60

7.09

4.44

3.91

1.13

1.35

1.64

1.69

1.35

1.24

1.28

1.34

0.08

.08

.08

.06

.10

.20

.09

.10

0

5

10

15

20

25

30

35

61.59

75.34

80.28

89.41

80.44

75.98

86.74

90.46

4.58

4.21

4.31

10.35

8.26

5.63

5.86

5.97

1.13

1.51

1.61

1.82

1.74

1.72

1.99

2.10

0.08

.06

.06

.17

.12

.09

.11

.08

¢ = 45 ° ¢ = 120 °

V, knots P, hp Pa, hp 5, in. 5a, in.V, knots P, hp Pa, hp 5, in. 5a, in.

0

5

10

15

20

25

30

35

61.59

71.29

75.88

90.23

99.18

79.35

72.98

81.11

4.58

4.84

7.26

6.86

11.69

8.48

9.81

8.98

t.13

1.41

1.59

1.92

2.51

2.12

1.85

2.13

0.08

.ii

.12

.12

.21

.18

.20

.19

0

2

15

20

25

30

35

61.59

63.72

71.31

68.24

73.53

78.95

84.77

4.58

5.24

5.02

6.80

8.13

9.52

9.23

1.13

1.11

1.42

1.41

1.61

1.81

1.98

0.08

.14

.09

.14

.18

.18

.18

= 60 °

V, knots P, hp Pa, hp 5, in. 5a, in.

= 150 °

0

8

9

10

15

20

25

30

35

61.59

83.55

86.61

86.43

99.54

119.64

98.29

92.08

72.87

4.58

5.70

7.30

6.92

12.65

11.48

22.22

19.83

11.00

1.13

1.79

1.72

1.90

2.22

2.94

2.50

2.38

1.92

0.08

.14

.17

.13

.22

.25

.66

.52

.26

V, knots

0

8

18

23

28

33

P, hp

61.59

70.64

70.27

75.92

90.72

79.77

Pa, hp

4.58

6.54

6.93

4.93

5.81

5.90

5_ in.

1.13

1.27

1.40

1.64

2.02

1.75

,_o, in.

0.08

.18

.18

.11

.13

.11

13



¢ = 180°

TableII. Concluded

¢ = 285°

V, knots P, hp Pa, hp 6, in. 6a, in.

4.58 1.130

5

10

15

20

25

30

61.59

65.72

49.75

44.80

38.48

35.34

27.33

5.86

4.48

4.00

4.05

6.93

9.74

1.21

.73

.58

.33

.20

-.27

0.08

.12

.13

.12

.08

.23

.28

¢ = 210 °

V, knots P, hp

0 61.59

2 55.10

8 52.66

10 55.63

15 44.03

20 43.15

25 29.91

30 26.44

P_, hp

4.58

3.22

4.06

4.81

4.69

6.00

7.26

7.23

_ in,

1.13

.84

.63

.65

.32

.29

-.36

-.60

6a, in.

0.08

.09

.07

.12

.09

.14

.25

.31

¢=240 °

V, knots P, hp Po, hp 6, in. 6a, in.

0

2

8

15

2O

25

30

35

61.59

55.96

50.11

34.I2

25.58

2.1.07

22.56

11.89

4.58

4.78

5.53

7.78

7.09

8.08

7.86

5.46

1.13

.90

.65

-.22

-.78

-.82

- .92

- 1.90

0.08

.15

.20

.34

.28

.46

.28

.30

¢=270 °

V, knots P, hp Pa, hp 6, in. 6a, in.

4.58 1.130

5

I0

15

2O

25

30

35

61.59

58.18

29.42

15.99

13.90

11.60

7.38

5.25

3.58

6.58

4.34

3.47

4.61

3.31

3.37

1.01

-.21

-1.24

-1.47

-1.72

-2.17

-2.47

0.08

.08

.32

.30

.12

.19

.14

.15

V, knots

0

5

10

15

20

25

30

35

P, hp

61.59

55.83

30.74

15.73

13.57

11.86

6.83

3.17

Pa, hp

4.58

3.98

7.24

3.94

3.66

3.76

3.43

2.53

¢ = 300 °

6, in.

1.13

.94

-.10

-1.16

-1.40

-1.58

-2.19

-2.71

6a, in.

0.08

.09

.34

.16

.10

.I4

.13

.17

V, knots P, hp Pa, hp 6, in. 6a, in.

0

2

8

10

15

20

25

30

35

61.59

55.80

63.14

40.91

28.61

12.32

6.44

5.38

5.92

4.58

5.20

8.56

6.00

6.62

4.37

4.30

4.94

4.71

1.13

.90

1.30

.63

-.23

- 1.59

-2.39

-2.71

-2.65

0.08

.17

.33

.28

.34

.21

.27

.17

.20

¢ = 315 °

V, knots P, hp

0 61.59

5 58.54

10 57.60

15 31.58

20 16.04

25 4.49

30 3.38

35 3.79

Pa, hp

4.58

5.38

7,75

5.21

3.94

5.30

3.47

4.85

6, in.

1.13

1.03

1.35

.07

-1.07

-2.06

-2.14

-3.09

6a_in.

0.08

.12

.23

.21

.23

.17

.22

.21

-g, = 330 °

V, knots

0

2

8

10

15

20

25

3O

35

P, hp G, hp

61.59 4.58

66.15 5.62

57.57 5.25

44.38 7.54

36.40 8.64

20.85 4.92

14.97 7.76

6.37 7.14

5.69 6.83

6, in. G, in.

1.13 0.08

1.19 .11

.90 .15

.69 .32

.22 .40

-.94 .21

- 1.36 .37

-2.08 .31

-2.21 .25

=

m

m
=-

14

I11



Table III. Mean and Standard Deviation Values for Tail Rotor Power and Pedal Position From Data

in Figures 9 and 13 for the Single-Strake Configuration

_b = 0 ° ¢ = 75 °

V, knots P, hp Po, hp 5, in. 6_, in.

0

4

10

15

20

25

30

35

66.85

64.78

64.04

45.98

37.75

31.69

27.22

25.63

6.26

7.54

4.46

4.07

4.56

3.30

3.54

3.68

1.36

1.32

1.23

.64

.32

.09

-.20

-.33

0.16

.18

.09

.12

.12

.05

.10

.13

V, knots

0

4

10

15

20

25

3O

35

P, hp

66.85

79.57

98.44

87.66

72.45

75.67

79.53

93.58

Pa, hp

6.26

6.07

!7.83

8.64

5.07

5.11

5.70

5.97

5, in. 5_, in.

1.36 0.16

1.71 .11

2.14 .37

1.97 .19

1.61 .06

1.73 .06

1.90 .08

2.22 .09

_b = 30 °

V, knots P, hp Pa, hp 5, in. 5G, in.

¢ = 90 °

0

4

10

15

20

25

30

35

66.85

69.32

83.98

87.22

75.50

56.64

55.99

56.62

6.26

7.96

5.62

6.33

6.37

4.50

5.44

5.59

1.36

1.43

1.81

1.88

1.74

1.22

1.27

1.23

0.16

.22

.09

.10

.14

.07

.15

.13

V, knots P, hp

0 66.85

4 78.42

lO 75.41

15 78.57

20 73.93

25 80.22

30 83.77

Pa, hp

6.26

7.58

8.82

5.24

4.73

5.84

7.56

5, in.

1.36

1.67

1.48

1.58

1.61

1.81

1.94

5o, in.

0.16

.18

.20

.09

.08

.09

.12

¢ = 45 °

V, knots P, hp Pa, hp 6, in. 6a, in.

¢ = 120 °

13

15

20

25

30

35

84.80

86.35

77.61

68.10

57.02

61.73

6.72

9.02

8.72

7.53

8.63

7.28

1.58

1.72

1.83

1.54

1.04

1.23

0.12

.24

.14

.16

.22

.17

V, knots

0

4

t0

15

20

25

30

35

P, hp

66.85

71.40

70.27

69.56

68.10

71.75

86.55

104.77

Pa, hp

6.26

7.58

4.50

6.00

5.57

6.27

5.92

7.13

6_ in.

1.36

1.45

1.40

1.42

1.44

1.60

2.00

2.43

5a, in.

0.16

.18

.08

.14

.09

.12

.10

.09

¢ = 60 ° _b = 150 °

V, knots P, hp Pa, hp 6, in. 6a, in.

6.26 1.360

4

10

15

20

25

30

35

66.85

79.74

97.76

104.40

98.03

81.96

69.16

78.I7

6.07

7.38

11.06

8.83

10.64

7.03

6.72

1.74

2.07

2.27

2.41

2.10

1.68

1.91

0.16

.I1

.12

.19

.17

.27

.16

.09

V, knots

0

4

10

15

20

25

30

P, hp Po, hp

66.85

58.77

62.55

60.51

62.90

57.65

65.74

6.26

5.64

4.66

5.11

5.26

8.92

9.25

5, in.

1.36

1.07

1.18

1.14

1.22

1.11

1.36

50" _ in.

0.16

.13

.07

.08

.07

.25

.22
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¢= 180°

TableIII. Concluded

¢ = 285°

V, knots

0

4

10

15

20

25

30

P, hp

66.85

55.04

52.43

50.12

40.81

28.59

26.97

Pa, hp

6.26

5.46

4.04

5.47

6.41

6.04

8.45

6, in.

1.36

.99

.84

.72

.39

-.21

-.33

6a, in.

0.16

.14

.10

.16

.16

.22

.25

¢ = 210 °

P, hp Pa, hp 6, in. 6a, in.V, knots

0

4

10

12

15

2O

25

30

66.85

53.85

42.91

42.36

38.01

34.21

22.14

17.70

6.26

4.25

4.23

5.63

5.51

6.78

5.83

5.51

1.36

.97

.53

.29

.07

-.13

-.91

-1.25

0.16

.10

.12

.14

.19

.25

.23

.18

¢ = 240 °

P, hp Pa, hp 6, in. 6a, in.

V, knots

0

4

10

15

2O

25

3O

35

P, hp

66.85

61.07

39.82

16.35

10.73

8.82

6.68

2.02

Pa, hp

6.26 1.36

7.73 1.25

6.92 .53

3.68 -1.13

3.95 -1.86

4.07 -2.09

3.55 -2.29

1.95 -2.83

6, in. 6a, in.

0.16

.21

.29

.15

.16

.17

.14

.09

¢ = 300 °

V, knots P, hp Pa, hp 6, in. 6a, in.

6.26 1.36 0.160

4

10

15

20

25

30

35

66.85

58.02

56.72

41.57

13.19

8.24

7.05

6.40

5.03

6.86

5.97

6.30

6.22

5.47

7.32

1.09

1.20

.56

- 1.59

-2.26

-2.61

-2.86

.10

.22

.21

.41

.27

.28

.35

¢ = 3150

V, knots

-- 0

4

12

15

20

25

30

35

V, knots

0

4

10

15

2O

25

3O

35

16

66.85

54.36

41.04

20.98

18.56

15.61

10.22

8.14

6.26

5.58

5.55

5.11

4.79

4.30

4.59

4.53

1.36

1.00

.30

-1.00

-1.24

-1.49

-1.99

-2.29

0.16

.14

.12

.19

.15

.17

.24

.20

¢ = 270 °

P, hp

66.85

58.44

25.17

24.61

13.89

11.35

7.18

4.72

Pa, hp

6.26

7.59

5.66

5.25

3.68

4.20

3.68

2.65

6, in. 6a, in.

1.36 0.16

1.15 .20

-.47 .21

-.49 .26

-1.44 .12

-1.71 .16

-2.18 .17

-2.48 .18

V, knots

0

4

10

15

20

25

30

35

P, hp

- 66185- -

65.26

38.13

25.22

13.80

4.74

2.51

3.01

Pa, hp

6.26

7.56

5.15

6.34

4.66

4.83

2.97

3.86

1.36

1.31

.45

-.41

-1.30

-2.16

-2.71

-3.02

6, in. 6a, in.

0.16

.20

.11

.35

.13

.20

.11

.18

¢ = 330 °

V, knots P, hp Pc,, hp 6, in. 6a, in.

0

4

10

15

20

25

30

35

66.85

63.65

62.28

32.42

17.43

8.60

6.53

7.56

6.26

8.19

11.75

8.84

8.70

7.07

5.78

5.28

1.36

1.28

1.49

.12

-.87

- 1.85

-2.15

-2.20

0.16

.21

.34

.44

.46

.24

.16

.17

II



Table IV. Mean and Standard Deviation Values for Tail Rotor Power and Pedal Position From Data

in Figures 9 and 13 for the Double-Strake Configuration

¢=0 o ¢=90 °

V, knots P, hp Pa, hp 6, in. 6o, in.

0

5

10

15

2O

25

30

35

56.24

64.28

65.28

58.58

42.25

32.68

26.70

24.58

4.46

4.25

4.01

3.80

4.45

3.22

3.11

3.55

0.98

1.24

1.34

1.18

.53

.17

-.21

-.32

0.10

.10

.08

.06

.16

.07

.08

.14

V, knots P, hp Pa, hp 6, in. 6a, in.

0

5

10

15

20

25

30

35

56.24

79.96

72.57

74.07

72.42

75.57

84.49

88.39

4.46

6.33

5.79

5.04

5.21

4.68

4.82

6.27

0.98

1.64

1.45

1.51

1.58

1.73

2.03

2.20

0.i0

.09

.13

.i0

.I0

.07

.07

.Ii

,¢, = 30 ° = 120 °

V, knots P, hp

0 56.24

5 73.59

10 77.69

20 71.69

25 53.62

30 51.38

35 51.75

Pa, hp

4.46

4.60

6.20

7.30

4.33

4.24

4.52

6, in.

0.98

1.51

1.73

1.62

1.15

1.12

1.12

6a, in.

0.10

.11

.11

.17

.08

.09

.10

V, knots

0

5

10

2O

25

30

35

P, hp Pa, hp

56.24

70.51

60.75

69.79

71.42

76.17

85.81

4.46

4.39

4.72

5.38

4.98

6.40

6.40

61 in.

0.98

1.34

1.14

1.45

1.62

1.80

2.05

60, in.

0.10

.07

.08

.09

.09

.12

.11

¢ = 60 ° ¢ = 150 °

V, knots P, hp Pa, hp 6, in. 6a, in.

0

5

10

15

20

25

30

35

56.24

70.19

79.25

105.70

102.14

75.09

66.54

76.96

4.46

4.99

5.94

8.14

10.00

12.22

9.63

7.06

0.98

1.38

1.81

2,48

2.61

1.89

1.78

1.91

0.10

.10

.08

.15

.17

.37

.20

.14

V, knots P, hp Pc,, hp 6, in. 6a, in.

0

5

10

15

20

25

30

56.24

64.45

53.95

52.42

51.82

54.61

62.56

4.46

4.98

3.88

4.80

6.55

6.41

5.58

0.98

1.19

.88

.85

.86

1.02

1.23

0.10

.10

.10

.11

.21

.15

.08

_b = 75 ° ¢ = 180 °

V, knots P, hp Pa, hp 6, in. 6a, in.

0

5

10

15

18

23

28

32

56.24

83.48

76.29

77.64

78.13

70.93

73.23

83.28

4.46

8.22

5.62

4.86

5.12

3.98

4.53

5.84

0.98

1.75

1.58

1.63

1.67

1.60

1.72

2.00

0.10

.14

.12

.09

.07

.06

.06

.09

V, knots

0

5

10

15

2O

25

3O

P, hp

56.24

58.47

51.41

48.95

43.50

39.85

37.00

Pc,, hp

4.46

4.89

3.46

4.94

7.13

6.14

6.47

6, in. 6o, in.

0.98 0.10

.99 .ll

.89 .06

.76 .15

.60 .23

.44 .21

.32 .20
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¢ = 210 °

Table IV. Concluded

V, knots

0

5

10

13

15

20

25

3O

P, hp

56.24

55.68

46.15

43.87

37.94

30.54

23.73

16.76

Pa, hp

4.46

4.56

4.77

5.03

4.80

5.70

6.38

5.80

5_ ill.

.... 0.98

.89

.69

.32

.14

-.37

- .80

- 1.35

¢=240 °

6a, in.

0.10

.12

.15

.13

.13

.19

.29

.23

¢ = 300 °

V, knots P hp Pa, hp 5a, in.

V, knots

0

5

10

15

20

25

30

35

P, hp

56.24

53.13

45.30

25.15

18.37

16.72

10.98

7.87

Pa, hp

4.46 0.98

4.88 .77

6.02 .37

5.89 -.83

4.64 -1.28

4.86 -1.42

4.76 -2.12

4.35 -2.55

5, in. _, in.

0.10

.13

.14

.30

.12

.15

.31

.24

0

5

8

11

13

18

20

25

30

35

¢ = 270 °

V, knots

0

5

10

15

20

25

3O

35

P, hp Pa, hp

56.24 4.46

57.29 9.56

33.71 6.70

17.30 3.66

13.33 3.62

11.70 3.77

7.71 3.77

5.97 3.65

6, in. 5_,in.

0.98 0.10

1.02 .29

.20 .35

-1.03 .15

-1.51 .16

-1.75 .17

-2.25 .20

-2.82 .20

¢ = 285 °

V, knots

0

5

10

15

20

25

3O

35

V, knots

0

5

10

18

23

29

34

38

P, hp

56.24

62.74

17.93

11.52

8.67

8.56

6.86

8.14

Pa, hp

4.46

10.00

3.79

4.05

6.05

,i.21

4.48

5.51

5, in. 5G, in.

0.98 0.10

1.36 .29

-.98 .13

-1.86 .19

-2.39 .32

-2.47 .12

-2.79 .18

-3.47 .02

V, knots

0

5

14

20

25

30

35

56.24

61.68

59.69

56.25

50.88

16.59

7.53

8.86

8.15

9.03

4.46

5.42

13.14

9.58

9.33

5.69

5.65

6.30

6.11

5.77

5, in.

0.98

1.06

1.29

1.08

1.01

-1.15

-2.49

-2.89

-3.14

-3.20

0.10

.16

.41

.31

.44

.29

.25

.30

.30

.30

= 315 °

P, hp

56.24

58.09

50.67

25.34

16.57

5.63

4.46

8.49

Pa, hp

4.46

9.69

11.67

5.47

5.48

4.92

5.54

4.87

(_1 in,

0.98

1.18

1.00

--.40

- 1.05

--2.07

-2.71

-3.36

_¢:r_ in.

0.10

.27

.41

.28

.26

.17

.18

.15

_, = 330 °

P, hp Pa, hp

56.24 4.46

73.85 7.00

46.84 8.52

14.36 5.29

12.31 4.71

9.96 4.74

9.37 4.86

5_ in.

0.98

1.49

.59

-1.51

-1.68

- 1.97

-2.16

6o, in.

0.10

.21

.35

.08

.07

.07

.11

18

tt



L-88-4841

(a) Test heIicopter with upper and lower strakes installed.

(b)

1.83

1.75l

40.4044"65

l
Three-view sketch of test helicopter indicating some of the principal dimensions. Dimensions are in feet.

Figure 1. Test helicopter.
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model boom configurations (ref. 20).
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Installation of upper and lower strakes on tail boom of test helicopter.
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Figure 4. Instrumentation racks installed behind pilot and copilot seats.
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Figure 5. Tail boom with wool tuRs used _r flow visualization.
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Figure 7. Pace van used to establish airspeed of test helicopter during low-speed sideward flight.
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Figure 8. Nominal airspeeds and azimuths investigated during low-speed, crosswind testing.
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Figure 10. Tail boom airflow patterns for the bascline and double-strake configurations for V = 0-35 knots
and _p = 60 °. Tufts aft of horizontal stabilizer were not readable.
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Figure 11. Typical low-speed crosswind control margin in ground effect for the UH-1D, UH-1H, and EH-1H
helicopters (ref. 25). Shaded areas indicate control margins may be less than 10 percent of total control
travel. Progressing from area D to area A indicates effects of higher gross weight and altitude.

Baseline Double strakes
20°/sec

r r_

2 in.

I I I 1 I

0 5 10 0 5

t, sec t, sec

Figure 12. Effect of strakes on precision control while hovering out of ground effect at ¢ = 300 ° and
V = 12 knots 4- 3 knots.
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represented by positive values of AP.
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