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Abstract

A TVD scheme has been developed and incorporated into an existing time-

accurate high-resolution Navier-Stokes code. The accuracy and the robustness of

the resulting solution procedure have been assessed by performing many

calculations in four different areas: shock tube flows, regular shock reflection,

supersonic boundary layer, and shock boundary layer interactions. These

numerical results compare well with corresponding exact solutions or experimental

data.
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1. Introduction

Recently, an iterative-implicit diagonally dominant factorization algorithm,

together with a high order finite-difference scheme, for solving the multi-

dimensional compressible unsteady Navier-Stokes equations has been developed.

The important features of this solution algorithm, the finite difference scheme and

some validated results were reported in Ref. [1]. The present work is a continuing

effort at developing its shock-capturing capability through the use of flux limiters.

A brief description of the resulting TVD (total variation diminishing) scheme is

given in Section 2.

Standard test cases have been carried out to assess the overall accuracy of

the current code, which embodies the solution algorithm/scheme presented in Ref.

[1] and the shock-capturing capability developed under the current effort. In

Section 3, four different shock-tube flows are calculated to demonstrate its

capability of accurately tracking transient flow discontinuities including shock

waves and contact discontinuities. In Section 4, the results of an oblique shock

wave reflection are shown and compared with exact solutions. This demonstrates

its accuracy in computing shocks that are not aligned with grid lines. To evaluate

the possible effects of flux limiters on the numerical solution of flows containing

boundary layers, calculations of a supersonic laminar boundary layer flow have

been performed, the results are presented in Section 5. Using this viscous flow over

a flat plate as the starting condition, an oblique shock wave is then introduced to

examine the interaction of an oblique shock wave with a laminar boundary layer.

Both the transient development of the interaction and the comparison of the steady-

state solution between the current calculation and the corresponding experiment

are discussed in Section 6.
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2. The Solution Algorithm and The TVD Scheme

A relatively detailed discussion of the overall solution algorithm and a high

resolution finite-difference scheme for the inviscid fluxes, termed as the FCTD

scheme, can be found in Ref. [1]. In short, the basis of the solution algorithm is a

diagonally dominant approximate factorization procedure. The factorization error

and the timewise linearization error associated with this baseline procedure are

reduced by performing Newton-type inner iterations at each time step. The

robustness of the overall algorithm is enhanced by carrying out the temporal

iterations in pairs to enforce the operational symmetry of the factorization

procedure. The temporal accuracy is increased to second-order by using three-point

backward time differencing. The viscous fluxes are evaluated by using the half-

spacing second-order central differencing scheme. The inviscid fluxes are evaluated

by the so called FCTD scheme, which is an amended fourth-order central

differencing scheme with its injected numerical dissipation having the same form as

the entire dissipative part of the truncation error intrinsic to the third-order-biased

upwind scheme. Under the current effort, a TVD form of the FCTD scheme has

been developed to capture flow discontinuities that often occur in many practical

problems. A brief description of this development follows.

The two dimensional Navier-Stokes equations in generalized coordinates (^,rl)

can be written as

a
Q + ^E - E^1 +---^F - F„1 = 0

	
(1)

where Q = Q/ J ; Q = (p, pu, pv, of , and J = ^Xrly-VI X is the metric Jacobian. Here, ti

is the time; p is the fluid density; e is the total internal energy per unit volume; u

and v are the velocity components in the x and y directions of a Cartesian
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coordinates system. The transformed inviscid fluxes are denoted by E and F and the

transformed viscous fluxes are denoted by E,, and F,. The specific forms of these

transformed fluxes are well known and will not be repeated here. Using an

iterative implicit technique and three point backward time differencing, equation (1)

leads to

(m

d^c	
+ ' 5 - &E„1 +	 &F - cSF'„1	 = R HS (m)	 (2)

where

RHS(m ) = dT a E 1 ^ SQI l) +( 1 - a1l SQI n 
1)1

l-1
m

-[a E EU ^ + F pJ1 )

	

J	 (3)

and

Of)I = f (1+1) -f (0 	 1 = 1 , 2,3,...m

a= 1.5

In the above equations, f denotes an arbitrary quantity, l represents an iteration

index, and m is an intermediate iteration level between the n-th and (n+l)-th time

levels.

The construction of operators approximating the left hand side of Eq. (2) and

the evaluation of the viscous fluxes in Eq. (3) are the same as those described in Ref.

[1]. The development of a TVD scheme for evaluating the inviscid fluxes in Eq. (3)

is based on the FCTD scheme described in Ref. [1]. Taking 
a 

in Eq. (3) as an

example, and dropping 'A ' from the flux E, the working formula for FCTD scheme is

given by

[FCTD](E)i = (1-(3)[FC](E)i + P[TU](E)i 	 (4)
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where [FC](E)i and [TU](E)i denote the fourth-order central differencing and the

third-order-biased upwind differencing of aE at the spatial point (i,j) respectively.

It is noted here that, for convenience, the index j associated with the 11-direction has

been dropped in Eq. (4).

The numerical dissipation of the FCTD finite-difference scheme is essentially

an infinite series with its elements being the fourth and higher even derivatives of

the absolute fluxes. The relative amount of added dissipation can be controlled

through an adjustable parameter R. When P=O, FCTD becomes the fourth-order

central differencing scheme without numerical dissipation and when P=1, it

becomes the third-order-biased upwind scheme.

Following the steps detailed in Ref. [2], a TVD form of the FCTD scheme can

be constructed, and it has the following form :

a
= Ei+2- E;-2	 (0=1)	 (5)

where
E;+1 = 1 14E+i + Ei) - l (D+Ei - A+Ei)] + (si+ - 8i+i )

2	 2	 2

and

( + - 8,+1) _ L(3-af 0(1 )A+El+ - ^I 1 )A+E+l6	 r^ 	 `r+1	 1
- ^( 1 -Q)^(1 )^+E 1 + ( 1 +R)O(ri+1)O+E;+1

2	
]

1	 r;+1

+ ^J1 (1+P)O(rt )A -Ei+ 1   + ( 1 -P)$(-L A + E--1]	 (7)

r;+ _ (d +E, d +El+1 )
	

(8)0 +E, , , 4 +Ei i )

`4+E,-i , 4 +E1)	 (9)
(4 +Ei , 4 +E,

(6)
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where E is the total flux, E + and E- are the split fluxes, 0+ is the forward
differencing operator, and 0 is a limiter. In Eqs. (8) and (9), the symbol < > denotes

the inner product. The expression of E; zi s obtained by replacing i with i-1 in the

above equations.

Now comes the choice of the limiter and the flux splitting scheme. In the

present work, Roe's "superbee" [3] and flux-difference splitting [4] are chosen. Such

a preference is based on our experience with several Euler and Navier-Stokes

solutions. Nevertheless, it should be pointed out that no limiter has been found to

be universally satisfactory, and a drawback of Roe's flux-difference splitting is that

it may not spread the expansion wave correctly.

3. Unsteady Shock Tube Problems

Numerical results for four different shock tube cases have been obtained by

solving the 2-D Euler equations and compared with the exact 1-D solutions. Table 1

gives the normalized initial conditions of these standard test cases. For Sod's and

Lax's problems, the computational domain is covered by 101x21 uniformly

distributed grid points (Ox=oy=0.1). For the strong shock and large temperature

ratio problems, 201x41 points (Ox=0y=0.05) are used. At the upstream as well as

the downstream boundaries, flow quantities are consistently over specified by

invoking the exact solutions. Along the top and bottom boundaries, symmetry

conditions are imposed. The one-dimensionality of the calculated results has been

confirmed, and the results along the horizontal centerline of the computational

domain will be presented.

The Sod and Lax problems involve only moderate strength shock. For the

Sod problem, constant Ot=0.03 is used to advance the solution over a period of 60

time steps. Results for values of P between 0 and 1 have been obtained and
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compared well with the exact solution. As an example, the solutions obtained with

0=1.0 are shown in Fig. 1. For the Lax problem, constant Ot=0.017 is used to

advance the solution over a period of 85 time steps. Again, various P values have

been used and typical results for P =1.0 are presented in Fig. 2. For the large

temperature ratio problem, fine grids and constant Ot=0.0051 are used. In this

case, satisfactory results can only be obtained with R >_ 0.75 . The results shown in

Fig. 3 are obtained with P =1.0 over a period of 100 time steps. There are some

oscillations in the neighborhood of shock and contact discontinuity.

As mentioned before, an apparent drawback of Roe's flux-difference splitting

is that it may not spread the expansion wave correctly and thus lead to a non-

physical 'expansion shock' appearing in the computed flow. Fig. 4 illustrates such a

case. For this shock tube flow, the pressure ratio is 30, and the density ratio is 24.

The grid spacings are Ax=oy=0.05, and a constant Ot=0.01 is used to advance the

solution over a period of 90 time steps. The comparison between the exact solution

and the computed results obtained from the current TVD scheme with P =1 (i.e., the

third-order-biased upwind scheme) indicates the appearance of an 'expansion shock'

at x=0. It is noted here that the same 'expansion shock' also occurs for other values

of R. When the pressure ratio is increased to the present strong shock level of 500,

the solution procedure quickly diverges as a consequence of a much stronger, non-

physical, expansion shock. One way to fix this problem is to add dissipation

proportional to the strength of the expansion (see e.g. [31). Under the current effort,

the fourth-difference constant-coefficient artificial dissipation model [5] is adopted

for this purpose. Fig. 5 illustrates the solutions obtained with P =1.0 and 6=1.5,

where 6 is the value of the dissipation coefficient. As it can be seen, the calculated

results exhibit some oscillations near the expansion head.
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4. Inviscid Oblique Shock Reflection on a Plane Wall

Numerical solutions of a regular shock reflection with an incident shock angle

of 29 degrees and free stream Mach number of 2.9 have been obtained by solving the

2D Euler equations. The calculations are started by assuming uniform flow with

M-=2.9 everywhere except the top boundary, where the variables are consistently

over specified from the jump conditions. The computational domain extends from

x=0 to x=4 and from y=0 to y=1. Uniform grids are used to discretize the domain.

Both coarse grid and fine grid calculations have been performed for the same CFL

number. Table 2 lists the cases tested in this study. First of all, R >_ 0.5 seems to be a

necessary condition for obtaining a converged solution. Secondly, the observation

that, when P=1.0, the coarse grid calculation without the use of flux limiter

manages to reach a converged albeit smeared solution while its counter part fine

grid calculation can not yield a converged solution, simply indicates that sharpened

shock profile requires the use of flux limiter to maintain its accuracy and numerical

stability. Thus, it is concluded that robust calculation of shocked flow requires the

use of flux limiter in conjunction with a value of p >_ 0.5 . The pressure contours

obtained from 122x42 grid points and with P=1.0 are shown in Fig. 6(a). The

comparison of computed and exact solutions along y=0.4878 is illustrated in Fig.

6(b) and 6(c). Good results along other y=constant lines are also obtained.

5. Supersonic Boundary Layer Flow Over a Flat Plate

A Mach 2.2 laminar flow over an adiabatic flat plate is calculated by solving

the 2D Navier-Stokes equations. The Reynolds number based on the free stream

condition and a reference length of 0.08m is 9.8645x10 4 . In the streamwise

direction (- 0.19<_ X s 2.00 with x=0 being the leading edge of the plate), 74 grid points
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with a constant Ox=0.03 are used. In the direction normal to the wall (0s y<_ 1.19212),

62 grid points with the following distribution are used.

Dye = 1.5625x 10-	1 <_ j 5 4

Dye = 1.18680yj _ l	,	 5 <_j <_ 33

Ay; = 3.75x102 	 j <_ 33 .	 (9)

Several calculations have been performed to investigate the effects of P and

the use of flux-limiter on the calculated boundary layer properties. All the

calculations are carried out with a constant dimensionless time step Ot=0.01. Table

3 shows the parameters of these cases and a short description of the most important

observation. These results suggest that the use of flux-limiter does not degrade the

computed boundary layer flow. Furthermore, the present Navier-Stokes solutions

compare quite well with the corresponding solutions obtained by executing an

existing 2D compressible boundary layer code [61, as illustrated in Fig. 7. These

results are obtained with P=1.0 and limiter on. For the evaluation of boundary

layer properties such as the displacement and momentum thicknesses, the

boundary layer edge is assumed to be at a point where the u-velocity is 99.5% of its

free stream values. The profiles of u-velocity and temperature are normalized with

free stream velocity and temperature respectively. They are then plotted against

y/6 where 0 denotes the local momentum thickness. The skin friction coefficient is

evaluated by using the first order backward differencing, and then plotted against

Rex, which is the Reynolds number based on the local distance from the leading

edge of the plate.
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6. Interaction of Oblique Shock Wave and Laminar Boundary Layer.

The main features of the oblique shock wave and laminar boundary layer

interaction are well understood. A brief description of these features is given in Fig.

8. Since this configuration involves shocks and separated flow, and carries no

uncertainty associated with turbulence modeling, it is chosen here as a test case.

The numerical solutions at the asymptotic steady state are compared with the

experimental data reported in Ref. [7]. In addition, time-accurate calculations are

performed to illustrate the transient development of this interaction.

The flow parameters are such that m- = 2.2, Re= p— umxsh /µm = 9.8645x104,

where Xsh=0.08m is the distance between the leading edge and shock impingement

point in the experiment. In addition, the shock incident angle is 30.027 degrees.

Based on the studies discussed in Sections 4 and 5, the third-order-biased upwind

(i.e., 0=1) TVD scheme is used for the present calculations. The total number of grid

points is 74x62, and they are distributed in two different ways, as depicted in Fig. 9.

For a given grid distribution, a steady-state boundary layer flow is first established.

Then, an oblique shock wave is imposed at the upper left corner of the inflow

boundary and along the top boundary, where the variables are consistently over

specified from the jump conditions. The subsequent transient development of the

interacting process is followed by employing At=0.01, until an asymptotic steady-

state is reached.

The grid distribution denoted by 'initial grids' is deduced from the triple-deck

theory as described by Eq. (9) together with a constant Ax=0.03. The grid

distribution denoted by 'adapted grids' is constructed by using the grid adaptation

package TURBOAD [8]. More specifically, a steady state solution of the interaction

is first obtained by using the initial grids. Using this grid distribution as a baseline

and taking into account the large gradient regions in the flow solution, TURBOAD
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enables a redistribution of grid points to improve the resolution in the shock and

recirculation regions. Such an improvement is demonstrated in Fig. 10(a), which

compares the measured wall pressure data and several computed results obtained

from different grid distributions. It is noted here that, in Fig. 10(a), the pressure is

normalized by Po, i.e., the minimum pressure just upstream of the interaction. The

calculated skin friction distribution is shown in Fig. 10(b). Separation and

reattachment points can be determined from the positions where the skin friction

vanishes. Table 4 gives the locations of these points as determined from

computations and experiment. The values determined from the adapted grids are

in close agreement with the experimental values reported in Ref. [7]. Fig. 11 shows

the measured and computed streamwise velocity profiles in the separated region.

Since the results obtained from the adapted grids require further two-dimensional

interpolations between grid points, the profiles obtained from the initial grid

distribution are used for convenience. It is also noted here that, as discussed in Ref.

[7], there are errors in the experimental velocity measurements due to the behavior

of the seeding particles.

The transient development of the interaction process is illustrated by the

computed flow fields at three time stations, i.e., at the moment of shock

impingement (t=3.3x10 -4 seconds), the subsequent interaction in the upstream and

downstream region (t=5.4x10- 4 seconds), and the final asymptotic steady state.

Figures 12 and 14(a), (b) describe the development of shock reflection and expansion

fan in terms of the static pressure contours and wall pressure distribution

(normalized by P-). Figures 13 and 14(c), (d) illustrate the emergence of a

separation region and the thickening of the boundary layer in terms of the Mach

number contours and skin friction distributions. It is noted here that the wall

pressure and skin friction distributions are plotted in the computational space, i.e.,

the abscissa I is the streamwise grid index, and these results are obtained from the
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adapted grid distribution. These figures, together with many others at different

time stations, indicate that the entire process is essentially monotonic, i.e., no

appreciable oscillation in flow patterns has been observed.

7. Concluding Remarks

Under the present effort, a TVD scheme has been developed and incorporated

into an existing time-accurate high-resolution Navier-Stokes code. Test cases have

been run to assess the overall accuracy and the robustness of the developed solution

procedure. These numerical results compare well with corresponding analytic

solution or experimental data. Its capability of accurately tracking transient

movement of shock waves and contact discontinuities is demonstrated by

calculating the shock tube problems. Its accuracy in calculating multi-dimensional

shock waves and boundary layer flows is demonstrated by solving inviscid regular

shock reflection and a supersonic boundary layer. It is then applied to compute the

interaction of an oblique shock wave with a flat plate boundary layer, both the

transient development and the asymptotic steady state of the interaction are

presented to add some insight into this classical problem.
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0<x <5 5<x< 10

u p p u p

Sod's Problem 8 0 10 1 0 1

Lax's Problem 0.890 0.698 6.179 1 0 1

Large Temperature

Ratio Problem

10/3 0 100 1 0 1

Strong Shock

Problem

400 0 500 1 0 1

Tablel. Normalized Initial Conditions for Shock Tube Cases

limiter Remark

Coarse Grids (61x21) 0.00 on No solution

0.10 on No solution

0.25 on

0.50 on

1.00 on

0.00 off No solution

0.25 off No solution

0.50 off

1.00 off

Fine Grids (122x42) 0.25 on No solution

0.50 on

1.00 on

1.00 off No solution

Table 2. Cases Studied for Oblique Shock Wave Reflection in Inviscid Flow
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limiter Remark

0.0 off significant spatial oscillations in boundary layer

thickness and skin friction

0.5 off no appreciable differences from R =1 and limiter-on

case

0.5 on essentially the same as R =0.5 and limiter-off case

except for some spatial oscillations in boundary layer

thickness

1.0 off slightly higher wall temperature than the Q=1,

limiter-on case

1.0 on Results shown in Fig. 7

Table 3. Cases Studied for Supersonic Laminar Boundary Layer Flow

Separation (X/Xsh) Reattachment (X/Xsh)

Present code (initial grids) 0.745 1.390

Present code (adapted grids) 0.795 1.256

Degrez' experiment 0.78 1.28

Degrez' computation (M=2.15) 0.79 1.24

Table 4. Separation and Reattachment Points in Shock Boundary Layer Interaction
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(a) pressure contours
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Fig. 11. Streamwise velocity profiles (shock boundary layer interaction)
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