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O. Introduction.

This project has been motivated by the study of turbulent fluid boundary layers in

the wall region (Aubry et al. [1]). Numerical investigations of models for the dynamics of

fluctuations in the boundary layer reveal the presence of intermittent solutions ("bursts")

that are persistent over a range of parameter values in the model and that correspond

to heteroclinic cycles in the model equations. Armbruster et al. [2] concluded, using the

dynamical systems analysis, that these intern_ttent solutions of the model are an essential

feature and not accidental.

In earlier papers [7, 8, 10, 11, 16] Doedel and Friedman have developed an accurate,

robust, and systematic method for computing branches of hornoclinic and heteroclinic

orbits. These are orbits of an infinite period connecting two fixed points of an associated

system of autonomous ordinary differential equations. Homoclinic orbits have been shown

to play a fundamental role in phenomena such as bursting in biology, chaotic vibrations of

structures, chaotic oscillations in chemical reactions, etc. Heteroclinic orbits are equally

important in the understanding of the global behavior of dynamical systems and also in

the study of wave phenomena in nonlinear parabolic partial differential equations.

The original goal of this project was to accurately compute heteroclinic cycles and

to investigate numerically how these cycles evolve as the problem parameters vary in

a model 4-dimensional system studied in [1] and [2]. This model system is a singular

perturbation problem. Since homoclinic and heteroclinic orbits often arise in the context

of singular perturbation problems, this project has evolved into the development of general

emcient algorithms for such situations. We developed our algorithms using model 2- and

3- dimensional problems studied by Deng [12].

The organization of the paper is as follows. We first formulate the problem and describe

some algorithms for computation of branches of homoclinics and heteroclinics. Then we

describe application of these algorithms to several problems of interest.



1. Formulation of the Problem and Review of Some Earlier Results.

In earlier papers [7, 8, 10] Doedel and Friedman have considered the problem of finding

a branch of solutions of the system of autonomous ordinary differential equations

(1.1)
a) ,,'(t) - f(,_(t),.X)= O, '4"), /(',') _ W', ._e W'_,
b) lira u(t) = uo, lira u(t) = ,t 1.

t--*-- _0 l_c<)

The method utilizes the linear approximation of the unstable (for t < T_, -T_ > 0, large)

and stable (for t > T+, T+ > 0, large) manifolds, under the assumption that solutions

of (1.1) decay exponentially to their limits at +oo. Since every translation of a solution

of Eq. (1.1) is also a solution, to remove this "phase" indeterminacy we need to add a

constraint. The equation

(1.2) (f(u(t),A) - f(q(t),,\°)) . f(u(t),A)dt = 0
oo

seems to be, computationally, the most appropriate way to do this. It is obtained by

requiring that the current solution u(t) be as "close" as possible to the previously computed

solution q(t) (see [7] for the discussion). Our principle result, Theorem 2 in [10] can be

summarized as follows:

Let (q,A °) be a solution of (1.I), (1.2). Assume thatna = 2-(,7- 2 + n + - n) >_ O, where

n u and n + are dimensions of the unstable and stable manifolds of uo and ua respectively.

Under appropriate assumptions on f and appropriate transversality conditions, in a neigh-

borhood of (q,A °) there exists an unique solution branch (u(s),A(s)), (u(O),A(O)) = (q,A°),

of (1.1), (1.# and for sufficiently large -T_, T+ an unique branch (u(s),AT(s)) of ap-

proximate solutions. Here s is the continuation (such as pseudo-arclength, employed by

A [7TO) parameter.

Moreover, we have an error estimate

(1.3) IIA(_)- Ar(_)ll.._ + ll_(s)- ,,r(_)IIw_(m-<c@ T-'° + e_T+"'),

for some ¢t0 > 0 > ttl .

Similar results were obtained in Beyn [3, 4].

In Friedman and Doedel [11] and Friedman [16] the numerical method and its analysis

have been extended to the case of center manifolds and higher order approximation of the

unstable and stable manifolds.

Continuation algorithm 1. ([10]). The algorithm is based on the following equations:

(1.4) u'(t) - T.f(u(t),A) = O, 0 < t < I,

a) f(uo, ..\) = O,

(1.5) b) f(u1,A) = 0,



(1.6)
a) L,(uo, _)woi = _,o,_'oi,

b) fu(_l,/_)Wli = [tliWli ,

woi E W _, ¢0iER, i=l,...,n0,

Wli E Rn, tqi E R, i = 1,...,hi,

(1.7)
,) ]w0il= 1, i= ],...,n0,
b) Iwlil = 1, i = l,...,n],

(1.s) ] (f(u(t),A) - f(q(l),A°)) • fu(u(t),A)f(u(t),A)dt = O,

(1.9)

1-10 iT0

a) ,,(0)=,,o+<o co, o,, c o,=
i= 1 i= 1

b) u(1)=lxi+qEc, iw, i, Ec_i= 1.
i=1 i=1

Here for x,y E [_n x • y denotes the inner product in R', and we denote by

[.[ the l2 norm in Rn; we shall keep the same notation for the inner product and the norm

for finite dimensional Euclidian spaces of dimension other then n. The above equations

constitute a system of ordinary differential equations subject to constraints. In concrete

cases the number of constraints (and correspondingly, the number of scalar variables) can

often be significantly reduced by simple algebra and variations on the normalization equa-

tions. Equation (1.4) is the differential equation. It is obtained by truncating (1.1a) to an

interval IT_, T+], T_ < 0 < T+, setting T = IT_I+ T+ and then scaling the independent

variable t so that it varies from 0 to 1. The actual period T therefore appears explicitly in

(1.4), whereas T_ and T+ do not appear explicitly in (1.4) - (1.9). There are n_ problem

parameters, viz., hi, i = I, ..., n_x. Equation (1.5) defines two fixed points of the vector field.

In (1.6a) we assume that the Jacobian f_(uo, A) has no distinct real positive eigenvalues

#0i with eigenvectors w0i, and n - no real nonpositive eigenvalues. Similarly, in (1.6b)

we assume that the Jacobian fu(ua, A) has n; distinct real negative eigenvalues #li with

eigenvectors Wli, and n - nl real nonnegative eigenvalues. Under appropriate assumptions

on f, by the stable manifold theorem the fixed point u0 has a (strongly) unstable man-

ifold of dimensionn0 to which the linear subspace So =- Span({woi} n°i=1) is tangent at u0.

The fixed point ul has a (strongly) stable manifold of dimension nl to which the linear

subspace U, __ Span({/li)7_,)is tangent at ul.

We have woi, wli, uo, ul C Pln. Equation (1.9a) then requires that the starting point

u(0) of the orbit u(t) lie in the tangent manifold S0 at "distance" e0 from the fixed point

u0. Similarly, equation (1.9b) requires the endpoint u(1) to lie in U1 at "distance" el from

the fixed point Ul. Finally (1.8) represents the "phase condition".

The unknowns u0 and u_ can be eliminated entirely fi'om (1.4)-(1.9) by using

(1.9). Then (1.4)-(1.8) represent n coupled differential equations subject to nc =



2n + (n + 1)(n0 + nl) + 3 constraints, of which (1.9) is an integral condition. In addi-

tion to the vector function variable u(t) E R '_ we have scalar variables

(1.10)

A E R hA, £O, el E R,

ItOi,COi C R, woi C R n, i = l, ...,no,

[_li,Cli C R, Wli G R n, i = 1,...,nl.

The total number of scalar variables equals nv - nA +(n + 2)(n0 + nl)-t-2. Formally we need

nv = nc -n for a single heteroclinic connection. Usually we are interested in computing an

entire branch (one dimensional continuum) of orbits, in which case n,, = nc - n + 1. This

requirement is equivalent to setting the nmnber of free problem parameters

(1.11) nA = n - (no + 77,1)+ 2.

The period T is kept fixed in tile continuation. For T large and 60 and q small, each

solution on the branch represents an approximate heteroclinic connection. If we want to

increase the period T, then we can replace one of the problem parameters, say A1, by T

(see [10] for an example of such a computation).



2. New Algorithms for Computation of Homoclinic

and Heteroclinic Orbits.

\Ve formulate the algorithms in the situation when the unstable (stable) manifold is

l-dimensional, while the stable (unstable) manifi)ld can have dimension greater than 1.

See also Monteiro [13]. In this case the direction along the unstable (stable) manifold is

locally defined by the eigenvector corresponding to the positive (negative) eigenvalue, while

it is more difficult to determine what linear combination of eigenvectors defines locally the

direction along the stable (unstable) manifold. To be specific and without loss of generality,

we assume that the eigenvector tv_ defines the direction of the one-dimensional unstable

manifold Wl_oc(UO) at the fixed point u0.

Starting orbits can be obtained by using either AUTO itself or some initial value solver.

In applications we used KAOS [14] and VODE [15].

Continuation algorithm 2 (floating boundary algorithm). Eqs. (1.4) - (1.9) are

modified by dropping the equations 'which define the direction along the stable manifold.

The equations now are:

(2.1) u'(t) - Tf(u(t),,\) = O, 0 < t < 1,

(2.2) f(u0, A) = O,

(2.3) fu(u0, A)G' " W',=t%Wo, w_'£ fe_ GR,

5

(2.4) [w_l = i,

(2.5) 1 (f(u(t), A) - f(q(t),A°)) . A(u(t),A)f(u(t),A)dt = O,

(2.6) u(O)= uo + c0w ,

The unknown uo can be eliminated from (2.1)-(2.5) by using (2.6). Then (2.1)-(2.5)

represent n coupled differential equations subject to nc = 2n + 2 constraints. In addition

to the vector function variable u(t) E R n we have scalar variables

AER "_, coER,

(2.7) p_ e R, w_ • I_n.



The total number of scalar variables equals nv --- n,x + n + 2. As in [7] we are interested

in computing an entire branch (one dimensional continuum) of orbits, in which case the

number of free problem parameters

(2.8) 77), -- 1.

Continuation algorithm

algorithm are:

3 (steering vector algorithm).

(2.9) u'(t) - Tf(u(t),A) = O, 0 < t < 1,

The equations for this

f(uo, A) = O,

(2.10) f(ul,A) = O,

(2.11) A(_o,_)w'o' = #_w_, w_ e R_, #_ e R,

(2.12) [dl= 1,
I'_! = 1,

(2.13) fo (f(u(t),A) - f(q(t),A°)) • fi,(u(t),A)f(u(t),A)dt = O,

a) u(O)= _o + _o_,
(2.14) b) u(1)=u,+qd, dcR n.

Again the unknowns u0 and ul can be eliminated from (2.9)-(2.13), by using (2.14).

Then (2.9)-(2.13), represent n coupled differential equations subject to n¢ = 3n + 3

constraints. In addition to the vector function variable u(t) C R" we have nv - nx + 2n + 3

scalar variables

(2.15) A E W', w_, d E R n, co, q,/_ E R.

Again we are interested in computing an entire branch (one dimensional continuum) of

orbits, in which case we have

(2.16) n), = 1, and hence n.v = 2n + 4.



We next give two algorithms for obtaining starting orbits, which can be used in
conjunction with Continuation algorithms 1-3.
Starting orbit algorithm 1 (IVP Solver)

Assume that uo, w__, and )_ are given with Iw_[ = 1. Initialize the "distance" _o by

"small" number, such as 0.0001 and compute the initial value

(2.17) u(O) = u0 + c0w_.

This provides an initial value for an initial value solver such as KA OS [14]. Next solve

the initial value problem: (2.17), (2.18),

(2.18) u'(t) - Tf(u(t),A) = O, 0 < t < 1,

for "large" time T, such as 20 - 100.

Step2 Switch to AUTO. Initialize uo, w_, it, T and A from step I. Read the data generated

by KA OS and interpolate it. This provides an initial orbit u(t) for A UTO.

Step 3. Perform continuation by one of the Continuation algorithms 1-3. Note that in

the case of the Continuation algorithm 1, one first needs to compute the projection of u(1)

found at Step 1 onto the subspace spanned by wli, i = 1,...,nl.

Starting orbit algorithm 2 (floating boundary).

Step 1. Initialize the period T by a "small" number, such as 0.01, and the "distance"

eo by another "small" number, such as 0.0001. Given uo and w_, initialize the solution

by a constant:

(2.19) u (t) = u0 + _0w_, 0 < t < 1.

Step2 Perform continuation in the direction of increasing T, while all other parameters

are fixed, using the equations

(2.20) u'(t)- Tf(u(t),),) = O, O < t < 1,

(2.21) = uo + cow .

Starting orbit algorithm 3 (steering vector).

Step 1. Initialize the period T by a %malI" number, such as 0.0i, and the "distance"

eo by another "small" number, such as 0.0001. Given uo and w_, initialize the solution

by a constant:

U

(2.22) u(t)=uo+_ow o, O<t< 1.

and initialize d, el from the equations:

ul + old = uo +

(2.23) ldl = 1.



Step2 Perform continuation in the direction of increasing T using the equations

(2.24) u'(t) - Tf(u(t),,\) = O, 0 < t < 1,

(2.25) a) u(0) = ,t0 + ¢0,,'_,
b) u(1) = ul + old,

Idl = 1,

(2.26) Iw'o'l = 1.

d E W _

Remark.The integral "phase" condition is rernoved for the Floating Boundary and the

Steering Vector algorithms because its purpose is to prevent the sharp peaks from moving.

In this method the peaks must move to approach the heteroclinic orbit from the constant

solution. AUTO allows the user to set the accuracy to which the variables and parameters

are computed in the continuation procedure, by varying the tolerances. In the beginning

of the continuation one must set high tolerances for the parameters and variables, because

the constant solution is per sea poor appwximation of a heteroclinic orbit.



3. A Model 2-d Singular Perturbation Problem.

3.1 Formulation of the Problem.

The system of equations given below is a model problem which we have used to develop

our algorithms in the case of Singular Perturbation Problems,

= (2- z).(x- 2) + (=+ 2)[_(x - x0) + Z(v- v0)]

(3.1) i/=(2-z)[d(b-a)(x-2)/4+by]+(z+2)[-;3(x-xo)+e_(Y-Yo)]

_ = (4 - z2)[z + 2 - m(x + 2)]- _cz

From Deng [12], it is known that for the parameter values a = l, b = 1.5, c = 2, m =

1.1845, a = 0.01,;3 = 5, x0 = -0.1,y0 = -2,( = 0.01,d = -3.5 the solution is a twisted

homoclinic orbit, while with the same values of parameters except d = -0.2 the orbit is

nontwisted.

Singular perturbation problems are characterized by the appearance of a small param-

eter such as c = 0.01, which in this case makes the system of ordinary differential equations

a stiff system. Stiff equations are systems where the magnitude of one eigenvalue of the

Jacobian is considerably greater than the magnitude of the other eigenvalues.

In this system of equations, it is known that a hyperbolic fixed point exists at

w0 = (2,0,-2). The eigenvalues of the Jacobian evaluated at (2,0,-2) are (#_,#2,tt3)

(-1847,5,3) with associated eigenvectors (w_,w'{,w._). The eigenvalue #1 = -1847 is

responsible for the stiffness of the system. The eigenvector w_ gives the local direction

of the stable manifold, while some linear combination of (w_, w_') defines the direction of

the unstable manifold.

Computing the homoclinic orbit fo,' the 3-dimensional problem is formidable for 3

reasons: (1) the system of equations in Eq. (3.1) is stiff. (2) It is known theoretically

that the direction of the unstable manifold l"I,_Uc(U0) is defined only by the eigenvector w_.

However for the numerically approximate problem (which we solve) both w]' and w_ will

define the direction of Wz_c(U0 ) and the linear combination of w]' and w_ is unknown. (3)

There are several heteroclinic orbits near the homoclinic orbit, and the slightest numerical

instability will displace the homoclinic orbit to one of these heteroelinic orbits. In view

of these reasons, we decided to compute a 2-dimensional homoclinic orbit, to gain some

insight into the intricacies of computing the full 3-dimensional orbit. There was also the

possibility that we could then compute the 3-d orbit by a homotopy from the 2-d orbit.

For the 2-d problem the stable and unstable manifolds, l,Vt_(u0 ) and WlU_(u0) are

each one- dimensional.

We attempt to compute homoclinic orbits for the two dimensional system of equations,

obtained from Eq. (3.1) by setting _) = 0 and y = 3.59 x 10 -a (since it is known that for

the 3-d system (x,y,z) = (1.99,3.59 x 10-3,-1.99) is a fixed point):

(3.2)
:_= (2- :.).(:,.- 2)+ (; + 2)[.(x- xo) + 9(v- vo)]

= ((4-z2)[z + 2-m(x + 2)]- ecz)/e



3.2 Computational Results

We use the following notation:

U It

dl = (dll,d12)

¢o

£1

_o,w_,w_,dl,_,(o),_(1) e n2

¢0, el E R

A = (¢, d) e R2

Fixed Point

Eigenvector tangent to the unstable manifold at u0

Eigenvector tangent to the stable manifold at u0

Normalized steering vector components connecting u(1)

and uo

Distance between uo and u(0)

Distance between uo and u(1)

To compute a homoclinic orbit for this system of equations we use the steering vector

algorithm and after noting that for a homoclinic orbit The homoclinic orbit is obtained

for Eq. (3.1) by a series of steps.

Step 1 (a): Obtain an initial homoclinic orbit for

(3.3)
u' = T.f(u,),), u = (x,z)

subject to the boundary conditions:

(3.4)

and normalization condition,

(.) ¢,(0) = ,,0 + ¢0w]'

(b) u(1) = u0 + qdl

(3.5) Idol= l

for a total of 5 boundary conditions. Note that dl = (d11,d12) E R2. Initialize

T = 0.01, e0 = 10 -7 , u0 = (1.99,-1.99), w_ = (1.0,-5.2 x 10 -4 ) and the tolerances

eu, f_ = 10 -2. Begin computation of the orbit along the unstable manifold. Perform

continuation with respect to T, d11, d12, q using the steering vector algorithm for obtaining

initial orbits. We have now reached Fig. (3.1), where (d = -0.2, e = 0.01,_0 =

1.0 x 10-6,T = 1.15 x 10--_,t_ = -1891), (p_ = 3.99, w_' 1 = 0.99, w_2 = -5.0 x 10-4),

(q = 1.0 x 10-6,dll = -0.99, d12 = 5.2 x 10-4), (u01 = 1.99, u02 = -1.99).
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Step 1 (b): Decreasethe tolerancesso that eu, e,_ = 10 -s. Perform continuation with

respect to T, d11, d_2, q until dl has approximately the same direction as the eigenvector

w_, which defines the direction of the stable manifold WtSoc(UO) near the fixed point.

The computation reaches Fig. (3.2) where cl = 0.078. In Fig. (3.2) (d = -0.2, e =

0.01, e0 = 1.0 x 10-6,T = 3.89,#_ = -1891), (#_' = 3.99, w]' 1 = 0.99, w_2 = -5.0 x 10-4),

(el = 0.078, dll = -0.42, d12 = 0.90), (u01 = 1.99, u0_ = -1.99).

Step 2 (a): Switch from the steering vector algorithm to the eigenvector algorithm

on the right boundary (stable manifold). The problem is formulated as follows:

(3.6)
u' = Tf(u,._), u=(x,z)

with the boundary conditions

(3.7)

eigenvalue problem conditions

(a) _(o) = .o + _ow';

(b) u(1) = uo --I-e,d{

(3.8)

normalization conditions

(_) .o _, t,_'w]'Ju el =

(b) = _ld_f%

(3.9)

and the fixed point conditions

(_) Iw_'l= 1
(b) Idol= 1

(3.10) f(u0,_) = 0

We now have a total of 12 boundary conditions. At this point in the computation, the

direction of the steering vector is only an approximation to the eigenvector which defines

the direction of the stable manifold on the right boundary. Therefore, the tolerances for

the state variables and the parameters should be set rather high when switching from

the steering vector approximation to the eigenvector approximation. Experimentally we

found that we needed eu, e), = 1. Perform a few steps of continuation (NMX = 5) with

respect to T, e, q, d11, dl_, wl' 1, w_2,/_,/_, u01, u02 for a total of 11 parameters. Note the

presence of the singular perturbation parmneter e. After this step of continuation, the

components d11,dle will be aligned along the direction of the eigenvector, which defines

the direction of the stable manifold. We have now reached Fig. (3.3) where q = 0.0752

and dl = (dll = -5.91 x 10 -3, dl_ = 0.99998), is now aligned along the eigenvector w_, but
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the singular perturbation parameter has changed its value to c = 0.0111645. In Fig. (3.3)

the parameter values are (d = -0.2, e = 0.0116, e0 = 1.0 x 10-6,T = 3.85,#_ = -1693),

(#]_ = 3.99, wI_1 = 0.99, w]' 2 = -5.89 x 10-4), (e 1 = 0.07, all1 = -5.9 x 10-3,d12 = 0.99),

(u01 = 1.99, u02 = -1.99).

Step 2 (b): Decrease the tolerances to q_, e,_ = 10-s and proceed with continuation as

in Step 2(a). The singular perturbation parameter ¢ increased in value from 0.01 to about

1.11, whence the orbit obtained was homoclinic. At intermediate values of q the orbit is

not homoclinic. For example for Cl = 0.371, the orbit is not homoclinic. The orbit obtained

for el = 1.117774 is shown in Fig. (3.4), where it is clear that the orbit is homoclinic. The

parameter values in Fig. (3.4) are (d = -0.2, c = 1.12, e.0 = 1.0 x 10 -8, T = 8.75, #_ = -11),

(#]' = 2.85, w1' 1 = 0.99, w]'2 = -0.079), (el = 5.3 x 10-13,dll = -0.59, d12 = 0.80),

(u0x = 1.20, u02 = -1.71).

Step 3: Attempt to decrease e back to the value of 0.01. Freeze the period T from

Step 2(b) and perform continuation with respect t oc, c0, q, d11, dl.2, wl' 1, 'w_'_,,#]', #_, u01, u02

using the same set of boundary conditions described in Step 2(a). A surprising result was

noted: (1) c returned to a value of 0.011117. (2) _0 had started at a value _0 = 10 -6

in Step 1, but on this return journey, it reached a value of e0 = -2.0 x 10 -12 and

¢1 = 1.117 x 10 -9 . This final orbit is shown in Fig. (3.5). The parameter values

in Fig. (3.5) are (d = -0.2, e = 0.011,e0 = -2.7 x 10-1°,T = 8.75,#_ = -1693),

(#]_ = 3.99, w]' 1 = 0.99, w]' 2 = -5.9 x 10-4), (el = 1.1 x 10-9,dll = -5.9 x 10-3,d12 = 0.99),

(u01 = 1.99, u02 = -1.99).

Step 4: We now attempt to compute a branch of homoclinic orbits with respect to

(d, ¢). Add the integral phase condition and fornmlate the problem as follows:

(3.11)
'u = Tf(u,A), u =

with the boundary conditions

(3.12)

eigenvalue problem conditions

(b) u(1) = uo + eldl

(3.13)

normalization conditions

((t) "0 u ujt uwl = #]tl01

(b) = ttldl

(3.14)
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and the fixed point conditions

(3.15) f(uo, A) = 0

oO

(3.16) i (f(u(t),A) - f(q(t),A°)) . _f(u(t),A)dt = 0

Now perform continuation with respect to ¢,d, co,el,dll,dl_,w_l , u uW12,_ 1 , #_, U01, U02.

This is now a two parameter continuation problem with respect to the parameters (e, d).

The parameter d starts at d = -0.2 and continues on until d = -8000 without any

significant change in the orbit. The stiffness of the problem is not altered by this variation

in the parameter d.

3.3 Figures

Fig. 3.1. (d = -0.2, e = 0.01,co = 1.0 x 10-6,T = 1.15 x 10-2,/_ = --1891),

(p_ = 3.99, w_l = 0.99, w_2 = --5.0 X 10-4), (el = 1.0 x 10 -6, rill = -0.99, d12 = 5.2 x 10-4),

(uol = 1.99, uo2 -- -1.99).

Fig. 3.2. (d = -0.2, e = 0.01, eo = 1.0 x 10-6,T = 3.89, p_ = -1891), (/_ = 3.99, w_1 =

0.99, wl' 2 = -5.0 x 10-4), (el = 0.078,dll =-0.42, d12 = 0.90), (uol = 1.99, uo2 = -1.99).

Fig. 3.3. (d = -0.2, e = 0.0116, co = 1.0 >< 10-6,T = 3.85,/_ = -1693), (/_ =

3.99, w[1 = 0.99, w_'2 = -5.89 x 10-4), (q = 0.07, dll = -5.9 x 10-3,d12 = 0.99),

(UOl = 1.99, uo2 = -1.99).

Fig. 3.4. (d=-0.2, c= 1.12, eo = 1.0 x 10-6,T=8.75,#_ =-11), (#_ =2.85,w_1 =

0.99, w1'2 -- -0.079), (q = 5.3 x 10 -13,dll = -0.59, d1_. = 0.80), (uol = 1.20, uo2 = -1.71).

Fig. 3.5. (d = -0.2, e = 0.011,co = -2.7 × 10-_°,T = 8.75,/_ = -1693), (_ =

3.99, w_1 = 0.99, w[2 = -5.9 x 10-4), (q = 1.1 x 10-9,dll = -5.9 x 10-3,d12 = 0.99),

(UOl = 1.99, uo2 = -1.99).
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4. A Model 3-d Singular Perturbation Problem

4.1 Formulation of the Problem

The system of equations given below is the model problem for applying continuation

algorithms to Singular Perturbation Problems,

(4.1)
= (2- z)a(x - 2) + (_+ 2)[o(x- x0)+ _(y - y0)]
= (2- z)[d(b- .)(x - 2)/4 + by]+ (z + 2)[-_(x - x0)+ -(_ - y0)]

_ = (4 - z2)[z+ 2 - m(x + 2)]- _cz

From Deng [12], it is known that for the parameter values a = 1, b = 1.5, c = 2, m =

1.1845, a = 0.01,/3 = 5, x0 = -0.1,y0 = -2, e = 0.01, d = -3.5 the solution is a twisted

homoclinic orbit, while with the same values of parameters except d = -0.2 the orbit is
nontwisted.

Singular perturbation problems are characterized by the appearance of a small param-

eter such as e = 0.01, which in this case makes the system of ordinary differential equations

stiff. Stiff equations are systems where the magnitude of one eigenvalue of the Jacobian is

considerably greater than the magnitude of the other eigenvalues.

In this system of equations, it is known [12] that there exists a hyperbolic fixed point

near u0 = (2,0,-2) for (e,d) = (0.01,-0.2). A more accurate solution with the IMSL

subroutine DNEQNF yields u0 = (1.99469,3.59524 x 10 -a,-1.997886) for Eq. (4.1). The

eigenvalues of the Jacobian evaluated at u0 are (tL_, d' _u,t a,I 2) "_ (-1891, 3.99,5.99) with asso-

ciatedeigenvectors w_ = (-5.3 x 10-a,5.5 x 10-3,0.99), w]'=(0.99, 5.2 x 10-2,-5.2 x 10-4),

w_ = (5.2 x 10-a,0.99,-2.7 x 10-6). The eigenvalue /_ = -1891 is responsible for the

stiffness of the system. The eigenvector w_ gives the local direction of the stable manifold

W_oc(Uo), while some linear combination of (w_, w u) defines the direction of the unstable

manifold W_oc(UO ).

To compute the non-twisted homoclinic orbit, we used the steering vector algo-

rithm. The boundary u(0) was displaced fi'om the fixed point uo by e0 along the eigen-

vector w_ as outlined in [13]; this corresponded to the unstable manifold. The boundary

u(1) was attached to the steering vector dl. The results of the computation are shown

in the attached Figures.

4.2 Computational Results.

Drawing on insight obtained from the two dimensional problem, we attempted to

compute homoclinic orbits for the three dimensional system •

(4.2) u'=Tf(u,A), u=(x,y,z)

which symbolically represent Eq. (4.1). To compute a homoclinic orbit for this system

of equations, we will go through a number of steps, with each step having a different set

of boundary conditions.
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We use the following notation:

u0 = (urn,u02, u03) Fixed Point

w e = (w_l , w_2 , w_3 ) First eigenvector tangent to the unstable manifold at uo

w_ = (W_l , w_2, w_3 ) Second eigenvector tangent to the unstable manifold at uo

w_ = (w_l , w_2, w_s ) Eigenvector tangent to the stable manifold at uo

dl = (dll, d12, d13) Normalized steering vector components connecting u(1) and

tt0

e0 Distance between u0 and u(0)

el Distance between u0 and u(1)

Step 1 (a): Initialize T = 0.01, e0 = 10-7, (e, d) = (0.01,-0.2) and set the tolerances

to eu, e,_ = 10 -2. We attempt to start computing the homoclinic orbit along the unstable

manifold W_o_(Uo) from the boundary u(0). W_(u0) is defined by some linear combination

of the eigenvectors, (w_', w_). This linear combination is not known a priori, so following

Deng [12] we start the computation of the orbit along the eigenvector w_. We obtain an

initial orbit for Eq. (4.1) formulated as follows:

(4.3) u'=Tf(u,A), u=(x,y,z)

with the 6 boundary conditions,

(4.4)
(a) u(O) = u0 + e0{w]' cos_ + w_' sin _}

(b) u(1)=uo+qda

and normalization condition,

(4.5) Idal= 1

Note that dl = (dll,dl2,dl3). Perform continuation with respect to T,q,dll,d12,dla

using the steering vector algorithm for obtaining an initial orbit as described in [13].

Typically, we use NMX = 5 with NBC = 7, NINT = O, NTST = 25, NCOL = 5.

Remark: At Step l(a), we assume that the solution to Eq. (4.3) remains constant

over the interval T = 0.01. The tolerances are set to the high value c,,, e,_ = 10 -2 in the

event that the assumption is not true and the solution does vary substantially

Once the solution reaches Fig. (4.1), AUTO will have computed an accurate enough

solution, so that the next step of computation can proceed with much lower tolerances. In

fact, in the next step, all we do is to lower the tolerances.

Step 1 (b): At this point AUTO has been able to find an initial orbit, so we decrease

the tolerances to eu, e), = 10 -s. Perform continuation with respect to T,q,dla,d12,d13,
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using the sameset of boundary conditions as in Step l(a) until dt has approximately the

same direction as the eigenvector w_, which defines the direction of the stable manifold near

the fixed point. In Fig. (5.2) T = 4.3, el = 0.3, dl = (7.5 x 10 -3, -2.9 x 10 -3, 0.95) and

this is a fairly good approximation to the eigenvector w_ = (-5.3 x 10 -3, 5.5 x 10 -3, 0.99),

which defines the direction of the stable manifold, Wl_oc(uo). At this point we still use

pseudo-arclength continuation with NBC = 7, NINT = O, NTST = 25, NCOL = 5. We

now attempt to switch from the steering vector to the eigenvector approximation at the

boundary u(1).

Remark : It is important to watch the continuation process very carefully in Step

l(b) to see when dl, is approximately aligned along the eigenvector w_. Fig. (4.3a),

shows what happens when u(1) is "too close" to the fixed point for this stage of the

continuation (q = 0.1), but dl = (0.04,-0.99,-2.2 x 10 -5) is a hopeless approximation to

w_ = (-5.3 x 10 -3, 5.5 x 10 -3, 0.99). We used the 7 boundary conditions of Step l(b), and

attempted to perform continuation with respect to T, _, dll, d12,d]3 in the hope that the

steering vector d] would align along the eigenvector w_ for some value of _. Unfortunately,

this was not the case. Once y(t) undershoots (falls below the fixed point value on the right

boundary u(1)) as shown in Fig. (4.31)), it is impossible to compute the homoclinic orbit,

no matter how close one is to the fixed point.

Step 2 (a): Switch from the steering vector a lgorithn-i to the eigenvector algorithm

on the right boundary (stable manifiAd), i.e. Solve the following equation:

(4.6)
fl = Tf(u,_), u = (x,y,z)

with the 6 boundary conditions,

(4.7)
(a) u(0) = u0 + e0{w_ cos_ + w._' sin _}

(b) u(1) = u0 + eldl

9 eigenvalue problem conditions,

(4.8)

3 normalization conditions,

(4.9)

and the 3 fixed point conditions,

a) rO ,u ujutCl = #_W 1

(b) "%," =Ju 2 - _

(C) 0f.dl =

(.) Iwl'l = 1
(b) =
(c) i = 1
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(4.10) f(u0, _)

We now have a total of 21 boundary conditions. Continuation is carried out with

respect to the variables: T,e, (q,dll,dl2,dl3), ([t_, W'_I, ZO_2,W_3 ), (/2_,, ,WoUl W u22,wu3),

(uol,uo2,uoa), #_,n. At this point in the computation, the steering vector has only ap-

proximately the same direction as the eigenvector which defines the direction of the stable

manifold on the right boundary. Therefore, the tolerances for the state variables and the

parameters should be set rather high when switching from the steering vector approxima-

tion to the eigenvector approximation. Experimentally we found that we needed eu, e,_ = 1.

Note that Eq. (4.8c) forces a change from the steering vector algorithm to the eigenveetor

algorithm. After this step of continuation dl is aligned along the direction of the eigenvee-

tot w_ which defines the direction of the stable manifold W_oc(UO ). We have now reached

Fig. (4.4), where q = 0.345 and dll = -4.87 x 10-a,d12 = 5.06 x 10-3,dla = 1.0 are now

aligned along the eigenvector w_, but the singular perturbation parameter has changed its

value to e = 0.0092. The other parameter values are d = -0.2, e = 9.2 x 10-a,T = 4.3, e0 =

10 -T,q = 0.3, x = 5.7 x 10 .4 , (fz_ = -2039, dll = -4.9 x 10 -3,d12 = 5.1 x 10-a,dla = 1.0),

(/_ = 4, wi' 1 = 0.99, w_'2 = 0.05, w_' 3 = -4.9 x 10-4), (¢t_ = 5.99, w_1 = 4.8 x 10-3, w22 =

0.99, w_3 = -2.3 x 10-6), (u0i = 1.99, u02 = 3.3 x 10-a,u0a = -1.99).

Remark: It is also possible to switch from the steering vector approximation to the

eigenvector approximation via a homotopy.

Step 3 (a): Decrease the tolerances to eu, e,_ = 10-1, set NTST -- 100, NCOL =

5, DS = -1.0 x 10 .4 and use NaFural Parameter Cordinuation to solve:

(4.11)
u'= Tf(u,A), u=(x,y,z)

with the integral phase condition,

(4.12)

oo

/ (f(u(t),_)- f(q(t)

the 6 boundary conditions,

d
, _tf(u(t),A) dt

(4.13)
(a) u(O) = uo + eo{w_ cosn + w,_sin_;}

(t,),41) = ,to + qdl

9 eigenvalue problem conditions,

(4.14)

(/) 0 u u u.fu Wl "-" pl Wl

(l,) ,,, ,, ,,,lu zt'2 = tt2 _t'2

(c) .0 sJudl = tlld I

=0
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3 normalization conditions,

(4.15)

and the 3 fixed point conditions,

(a) Iw] [= 1
(b) = 1
(c) Idll= 1

(4.16) f(u0, A)

We now have a total of 21 boundary conditions plus an Integral Phase Condi-

tion. Continuation is carried out with respect to the variables: q,T,e, (dll,dl_,dl3),

wu, 12, w13), (/t_, w_l , w22 , w23), (u01,*,02, u03), t*_, n, e0. Note that continuation is

carried out with q as the primary parameter, which in conjunction with the negative

value of DS and Natural Parameter Continuation, ensures that the length of the steering

vector continuously decreases, pulling the orbit towards the fixed point. Note also that e0

and _¢are allowed to vary so that the correct linear combination of eigenvectors is found on

the two dimensional unstable manifold, l_VtUoc(U0) to compute an accurate homoclinic orbit.

In Fig. (4.5), the singular perturbation parameter e = 9.33 x 10 .3 , el = 0.344.

The parameter values are: d = -0.2, e = 9.3 x 10-3,T = 4.3, e0 = 1.9 x 10 -7,q =

0.34, t¢ = -5 x 10 -6, (p_ = -2025,dll = -,'t.9 x 10 -3,(11._. = 5.1 x 10-3,d13 = 0.99),

(#_ = 4, Wrl = 0.99, w_'2 = 0.05, wr3 = -4.9 x 10-4), (/z_ = 5.99, w_1 = 4.9 x 10-3,w_2 =

0.99, w_3 = -2.4 x 10-6), (u01 = 1.99, u02 = :3.:35 x 10-3,u03 = -1.99). The next step in

the computation is to decrease q still more, while simultaneously attempting to increase

the accuracy of the computation, which involves decreasing the tolerances eu, e,_.

Remark: It was extremely crucial in this step to set NTST = 100 to carry out the

continuation procedure. From the phase space plot of Fig. (4.5), it is clear that there

are several sharp fronts, and this high value of NTST = 55 is the only way to accurately

compute the solution with these sharp fl'onts. For example, a value of NTST = 55 allowed

tolerances of only e_,, e,_ = 1 and this was not sufficiently accurate for continuation.

Step 3(b): The only change from Step (3a) is that we decrease the tolerances and set

eu, e,x = 10 -s. The continuation proceeds as before with Natural Parameter Continuation

with respect to the same parameters as in Step (3a). We stop the computation at the

point shown in Fig. (4.6), where e0 = 3.7 x 10-9, q = 1.0 x 10 -7, ¢ = 9.3 x 10 -3, T = 5.3.

The parameter values are: d = -0.2,_ = 9.3 x 10 -3 ,T = 5.3, e0 = 3.7 x 10 -9 ,q --

1.1 x 10-7, t¢ = -2.7 x 10 .7 , (/,_ = -2026,dll = -4.9 x 10-3,dr2 = 5.1 x 10-3,d13 = 0.99

), (#_ = 4, w]' 1 = 0.99, wl_2 = 0.05, w_'3 = -4.9 x 10 .4 ), (pU = 5.99, w_1 = 4.9 x 10-3,w_2 =

0.99, w_3 = -2.4 x 10 .6 ), (u01 = 1.99, u0_ = 3.5 x 10 .3 , u03 = -1.99).

Remark: The extremely small values of e0 and _1 indicate that the homoclinic orbit

has been computed very accurately. In practice, an accuracy of _0, el = 1.0 x 10 .5 should
suffice.

Step 4: We now attempt to compute a branch of homoclinic orbits with respect

to the parameters (d,_) of Eq. (4.1). Deng [12] notes that the homoclinic orbit is

3O



twisted for d = -3.5 and non-twisted for d = -0.2. Consequently, we again use Natural

Parameter Continuation to decrease d fl'om -0.2 to -3.5. We use the same set of boundary

conditions as in Step (33) but perform continuation with respect to d, _, e0, (q, d11, d12, d13),

(#_,W_I,W_2,W_3), (#_,Wul,WU2,wU3) , (U01,U02, U03), [t_,t;. This is now a two parameter

continuation problem with respect to the parameters (e,d). The parameter d starts at

d = -0.2 and continues on until d = -3.5 with a significant change in the orbit as shown

in Fig. (4.7). The parameter values are: d = -3.5, e = 9.3 x 10 -3, e0 = 4.7 x 10 -°, e I =

1.1 x 10-7,_; = -1.4 x 10 -5 , (IL_ = -2024, dll = -5.3 x 10-3,dr2 = 5.5 x 10-3,d33 -- 1.0

), (#]_ = 4, will = 0.75, w]' 2 = 0.66, w]_3 = -3.7 x 10 -4 ), (#3 = 5.9, w_l = 4.9 x 10 -3, w_2 =

0.99, w_3 = -2.4 x 10 -6 ), (u01 = 1.99, u02 = 1.99 x 10 -3, u03 = -1.99 ). The stiffness of

the problem is not altered by this variation in the parameter d.

Step 5: Deng [12] notes that a homoclinic orbit exists for c = 0.01. Accordingly,

we tried to increase e fi'om _ = 0.0093 (in Fig. 4.6) to _ = 0.01 using the boundary

conditions of Step (2a). We performed continuation with respect to e, _0, (q, dal, d12, d13),

(#_, w_l, w_2, w]_3), (#_, w_l, w_.2, w_3), (u01 , u02, u03), tt_, n using both Pseudo -Arclength

Continuation and Natural Parameter Continuation. The continuation process did not

converge.

We also attempted to use the boundary conditions of Step (3a) and perform con-

tinuation with respect to e,T, (q,dll,d12,d13), (#_1',w]'1 ", w 2,wh),
(uol,uo2,uo3), #_,_, again using both Natural Parameter Continuation and Pseudo-

Arclength continuation. Once more, there was no convergence.

A third attempt to perform continuation, which also met with failure was the following:

At Step (2a) switch from the steering vector approximation to the eigenvector approxima-

tion on the boundary u(1) but hold e constant at e = 0.01 and solve the following problem:

(4.17)
u' = Tf(u,A), u = (x,y,z)

the 6 boundary conditions,

(a) u(0) = u0 + e0{w]' cos_ + w_ sin _'}
(4.18)

= + qd,
3 eigenvMue problem conditions,

(4.19) f°da = p_dl

and the normalization condition,

(4.20) I hl = 1

We attempted to perform continuation with respect to c, T, (el, dll, d12, d13), #_, _ but

the continuation process did not converge.

We therefore conclude that it is difficult, if not impossible to compute the homoclinic

orbit for e = 0.01.
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4.3 The Methods Which Failed

1. Tile Homotopy From Two Dimensions

The solution of problems such as the Josephson Junction [11], have been carried out

using a homotopy from a known solution to a simpler problem. Since we had already

obtained a homoclinic orbit for the simpler two-dimensional problem defined by the system

of equations:

= (2- z)a(._" - 2) + (z + 2)[_(x - xo) + _(y- Yo)]
(4.21)

= (4- z2)[_.+ 2 - ,.(x + 2)1-

we attempted to find a solution to the system,

= (2- z)a(x- 2) + (z + 2)[a(x - x0) + fl(y - Y0)]

(4.22) 9 = 7{(2 - z)[d(b- a)(x - 2)/4 + by] + (z + 2)[-/3(x - x0) + c_(y - Y0)]}

e_? = (4 - z2)[z -t- 2 - m(x -t- 2) 1 - ecz

We initialized 3' = 0, when Eq. (4.22) reduces to Eq. (4.21) and having found a homoclinic

orbit for the system of ODEs in Eq. (4.21), we attempted to increase 3' from 3` = 0 to

3` = 1, which would give a homoclinic orbit in three dimensions. The advantage of dealing

with a two-dimensional problem first, is that the stable and unstable manifolds are one-

dimensional, so we do not have to deal with unknown linear combinations of eigenvectors,

which is necessary to solve the three dimensional problem. However, this approach did

not meet with any success; with hindsight one can see that there is a loop in the three-

dimensional orbit shown in Fig. (4.6), which does not exist in the two-dimensional orbit

of Fig. (3.5), and this is probably why the homotopy fails.

2. Increasing the Singular Perturbation Parameter e

Apart from the fact, that the linear combination of eigenvectors on the two-dimensional

unstable manifold, I_",(u0) is unknown, this problem is compounded by the fact that the

system of ODEs is stiff, which makes the problem of computing homoclinic orbits even

more difficult. For the two-dimensional system defined by Eq. (4.21), it was found that I#_]

could be reduced (thus making the system of ODEs less stiff) by increasing the singular

perturbation parameter, _. With this "insight", we attempted to increase c using the

boundary conditions of Step. (2a) and carrying out continuation with respect to e,T,

(Q,dll,dl2,dl3), (tt?, W_l , w_'),w]'3),. (tt2t, wu21, w_2 , wU3),. (UOl,UO2,Uo3), #[,t¢.

This method failed and the explanation is as follows: It is known theoretically from

Deng [12] that a homoclinic orbit exists for e = 0.01, which means that the orbit must

intersect the stable manifold H_Uoc(U0) defined by the eigenvector w_ at the right boundary

u(1). For larger values of e, there is no certainty that the orbit will intersect this

one dimensional stable manifold; in fact, in general the orbit will not intersect the one

dimensional stable manifold. To guarantee that the orbit intersects the unstable manifold,

the manifold would have to be two-dimensional which is not the case for this problem.
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3. The Initial Value Problem Solver VODE

VODE is an IVP solver designed specifically to tackle systems of stiff ODEs. We

intended to compute an initial orbit with VODE for the system in Eq. (4.1), and then

perform continuation using AUTO, with respect to the parameters (c,d). VODE was

not able to produce the orbits, which were achieved by AUTO in Fig. (4.6). We used

the data from Fig. (4.6), namely, c = 9.3 x 10-3,d = -0.2, It01 = 1.995, u02 =

3.55 x 10 -3, u03- 1.998, w_' 1 = 0.99, w_'2 = 5.21 × 10 -4 , w_'3 = -4.92 x 10 -4 , W_l =

4.92 x 10 -3, w_2 = 0.99, w_3 = -2.4 × 10 -6, c0 = 3.05 x 10 -8, n = -1.89 x 10 -6. The results

of the computation with VODE are shown in Fig. (4.8 al-cl), and for comparison the

results with AUTO are shown in Fig. (4.8 a2-c2). VODE is clearly not able to reproduce

the sharp fronts, which can be computed with AUTO and worse still, the computation of

y(t) is hopelessly inaccurate.

4.4 Figures.

Fig. 4.1. Initial solution showing x(t) which is constant, y(t) and z(t) are also constant.

Fig. 4.2. T = 4.3, Cl = 0.3, dl = (7.5 × 10 -3, -2.9 × 10 -3, 0.95)

Fig. 4.3a. A spurious solution plotted in the phase plane

Fig. 4.3b. Graph of y(t) showing undershooting of the y component.

Fig. 4.4. The other parameter values are d = -0.2, c = 9.2 x 10-3,T = 4.3, co =

10 -7, Cl = 0.3, _ = 5.7 x l0 -4, (#_ = -2039, dll = -4.9 x 10 -3, die = 5.1 x 10 -3, d13 = 1.0),

(tt_ = 4, wl' 1 = 0.99, w'_2 = 0.05, w_'3 = -4.9 x 10-4), (tL_ = 5.99, W_l = 4.8 x 10 -3, w_2 =

0.99, w_3 = -2.3 x 10-6), (u01 = 1.99, u02 = 3.3 x 10-3,u03 = -1.99).

Fig. 4.5. The parameter values are: d = -0.2,_ = 9.3 x 10 -3,T = 4.3, c0 = 1.9 x

10 -7,cl = 0.34, _ = -5x10 -6, (/_ = -2025, dll = -4.9x10 -3,dr2 = 5.1xl0-a,dl3 = 0.99),

(/_l' = 4, Wltl = 0.99, Wl2U = 0.05, W73 -_ -4.9 × 10-4), (tt u = 5.99, w:_1 = 4.9 x 10-3,wU._.. =

0.99, w_3 = -2.4 × 10-6), (u01 = 1.99, uo2 = 3.35 x 10 -3,uo3 = -1.99).
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Fig. 4.6. eo= 3.7× 10 -9, el = 1.0 x 10 -7, c = 9.3 x 10 -3, T = 5.3. The parameter values

are: d = -0.2, c = 9.3 × 10-3,T = 5.3, eo = 3.7 × 10-9,q = 1.1 × 10-7,_ = -2.7 x 10 -7,

(#_ = -2026, dll = -4.9 × 10-3,d12 = .5.1 × 10-3,d13 = 0.99 ), (tt_ = 4, wl' 1 = 0.99, w_2 =

= . = , .. " = -2.4 x 10 -6 )0.05, w]' 3 = -4.9 × 10 -4 ), (t_ 5.99, w_,'1 4.9 x 10 -3 w_ = 0.99, w23

(uo_ = 1.99, uo2 = 3.5 x l0 -3,uo3 = -1.99).

Fig. 4.7. The parameter values are: d = -3.5, e = 9.3 x 10 -3, co = 4.7 x 10 -9, el =

1.1 × 10-7, t_ = -1.4 × 10 -5, (tt_ = -2024,dll = -5.3 × 10-3,d12 = 5.5 x 10 -3,d13 : 1.0

), (#1' = 4, w]' 1 = 0.75, w_'2 = 0.66, w]'3 = -3.7 × 10 -4 ), (#_ = 5.9, w._ 1 = 4.9 × 10 -3, w_2 =

0.99, w_3 = --2.4 × 10 -6 ), (uol = 1.99, uo2 = 1.99 × l0 -3,uo3 = --1.99 ).

Fig. 4.8 Comparison of results obtained with VODE (al-cl) and AUTO (a2-c2). The

parameter values are e = 9.3 x 10 -a, d = -0.2, u01 = 1.995, u02 = 3.55 x 10 -a, u03 - 1.998,

w_' 1 = 0.99, w_2 = 5.21 x 10 -4, Wi_a = -4.92 x 10 -4, w_'1 = 4.92 x 10 -a, w_2 = 0.99, w_3 =

-2.4 x 10 .6 , c0 = 3.05 x 10 -8, n = -1.89 x 10 .6 .
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5. The Fluid Mechanics Problem

5.1 Parameter Assignment ill AUTO

For the generic four dimensional pro])Imn, the parameter assignment is as follows:

u0

cOd, do (4)

#oi , woi

_oi

Ul

qd, dl (4)

_tli, Wli

£1i

par(lO1)-par(104) left fixed point

par(lO6)-par(llO) left steering vector

par(111 )-par(130) 4 left eigenvalues/vectors

par(131)-par(135) 4 left eigenvector weights

par(151)-par(154) right fixed point

par(156)-pa,r(100) right steering vector

par(161)-par(180) 4 right eigenvalues/vectors

par(181)-par(185) 4 right eigenvector weights

ell

el2

e21

e22

S34

par(l)

par(2)

par(4)

pa.r(5)

pa.r(6)

par(7) sign for gqs. (3),(4)
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5.2 Formulation of tile Problem

We study this system of equations which are discussed in Eq.

Armbruster et al [2]:

(2.5) in the paper by

(5.1)

(a) }1 = XlX,2 -Jr YlY2 -F xl (_1 + ellrl +

(b) _11 = %1Y2 - ylx2 -}- Yl(_I -1- elirl 2 q- c127"2)

(c) }2 = Jr" (:l:l- Yl) + x2(_2 + e21rl -1- c22r_)

(d) = ±2. ,1yl+ y., + +
") 2 0 ") ") '9r i" =x +yi" and r{ =x_+y5

This system of equations corresponds directly to Eq.(28) of Aubry [1]:

(5.2)

i,2 = c4,-2(v4v2 + w4w2)+ v.z(a=, + d2,_r_ + d24r4)

= + .,4 + +

The systems in Eq. (5.1) and Eq. (5.2) are obtained fi'om the Navier-Stokes equations [1].

The fluctuating component of the velocity is expanded as a Fourier series in the spanwise

and streamwise directions. A Galerkin projection is applied to convert the system of PDEs

into a system of ODEs. The series is then truncated to retain only the first few terms in

the Fourier expansion becuase the Galerkin approximation minin-fizes the error due to

truncation. The important parameters in the Armbruster system are (1 and (2, which

correspond to the parameters a2 and a 4 of the Aubry system, a2 and a4 are related to the

Heisenberg parameters o'1 and c_2 and the Reynolds' number ReT by the equation:

(5.3)
ak --- a_. + (1 -F Ca_l/ReT)a_

1 2
Ck,,k_ k, = Ck,,k_ k, + Ct2Ck,,k_ k,

The Heisenberg parameters a'1 and a 2 may be adjusted upward and downward to

simulate greater and smaller energy losses to the unresolved modes, corresponding to the

presence of a greater or smaller intensity of smaller-scale turbulence in the neighborhood

of the wall. This might correspond to the environment just before or just after a bursting

event which produces a large burst of small scale turbulence which is then diffused to the

outer part of the layer.

We wish to investigate the dynamical behavior of the system defined by Eq. (5.1).

The initial value used was directed along w_' with _0 = 10 -7 as follows: u(t) = u0 + e0w0.

Continuation was carried out with respect to the period which was initially set at T = 0.01

and increased till T = 130.
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The initial values at the left fixed point u0 were the following:

(5.4)
0.18 0

fu(uo, A) = 0 -0.34
0 0

0 0

w;'--(1 0 0 0)

=o.18

oo)
0 0

-0.40 0

0 0

5.3 Computational Results

We use the following notation:

tt 0 = (U01 , tt02, _t03, 1/04)

Ul = (Ull,Ul2,Ul3,1/14)

dl = (dll, d12, d13, d14)

_0

Fixed Point near left boundary

Fixed Point near right boundary

Eigenvector defining unstable nmnifold at u0

Eigenvalue corresponding to w_

Normalized steering vector components connecting

U l and u(1)

Distance between uo and u(O)

Distance between Ul and u(1)

For the system of equations defined by Eq. (5.1) with the negative sign used in Eq.

(5.1 c-d), we attempt to generate Fig. (5c) in the paper by Armbruster [2] for which we

used the parameter values: ell = -4, el2 = --1,e21 = --1,e22 = --2,{1 = --0.03,{2 = 0.2.

The unstable manifold I'l/'t_c(U0 ) at u0 is one dimensional and its direction is defined by

the eigenvector w_. The stable manifold |¥tso_(ul) at ul is two dimensional and since it is

difficult to determine the linear combination of eigenvectors which determine its direction

we use the steering vector dl at this boundary.

Step 1. Initialize the period T by a "small" number, such a._ 0.01, and the "di._tance"

eo by another "small" number, such as 10 -7 . Given uo and zv_, with [w_'[ = 1 initialize

the solution by a constant:

(5.5) u (t) = uo + eow_, O < t < 1.

and set the tolerances eu = e,_ = 10 -8 and set th.e number of subintervals and col-

location points to NTST = 25 and NCOL = .t respectively. Eq. (5.6) and Eq.

(5.7) represent a total of 9 boundary Conditions. We perform continuation with respect

to (T,q,dll,d]2,dla,d14). We have now reached Fig. (5.1), where (T = 168, c, =

7.5 x 10 -9 dll = 0.04 dl, = 0, dla = 0.99, d14 = 0 )
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We will now attempt to repeat the results of Fig. (Se) in Armbruster [2],

where (41 = 0.135,42 = 0.2). For these parameter values, modulated travelling waves

coexist with the heteroelinic orbit. Moreover it is precisely at these parameter val-

ues that a bifurcation occurs from the 2-dimensional heterocIinic orbit shown in Fig.

(5.1) ( where (41 =-0.03,42 = 0.2)) to a f,tIl 4-dimensional heteroclinic orbit. To reach

(41 = 0.135,42 = 0.2) we follow a multistep continuation procedure, where the problem is

formulated as follows:

(5.6) u'(t)- T.f(u(t),A) = 0, 0 < t < l,

(a) f(u0, A) = 0
(5.7) (b) f(ul,A) = O,

a) u(O)= uo+ _o_,,_,
(5.8) b) u(1) --Ul -]-¢ldl, dl E R n

(5.9) fu(u0, _)w_ = t,0_0", u,_ e n_, t,0u c n,

(.) Idol= 1
(5.10) (b)Iw31= 1,

1(5.11) (J'(u(t),A) -f(q(t),A°)).fu(._,(t),,\)f(u(t),A)dt = O.

There are 22 boundary conditions plus an IntegrM Condition. Continuation is performed

with respect to the 20 parameters.

Step (2a): Perform continuation with respect to (41,(z, T), (u01,u02,u03,u04),

(u11, ul2, u13, u14), (dll, d12, d13, d14 ), (Ido', w_l, w_'2, w_3, w_4 ). The continuation process

fails to converge at the terminal values of (41 = -3.9 x 10-3,42 = 0.198),

(T = 124,_0 = 10-7,(1 = 10-6)), (UOl = 0, u02 = 0, u03 :- 0.315, u04 =- 0), (Ull -- 0, Ul2 =

0, u13 = -0.315, u14 = 0), (dlt = 0.14, d12 = -1.4 x 10-S,d13 = 0.98, d14 = 0.065 ),

(#_ = 0.2, W_1 = 1, w_2 = O, w_3 = O, W_4 : 0 ).

Step (2b): Using these terminal values, perform continuation with respect to

(41, _2, _0), (U01,U02,U03,U04), (Ull, U12,U13,U14), (dll, d12,d13,d14 ), (/t_,W_l, w_c,,wu. 03, w_4 )-

The continuation fails to converge at the terminal values (41 = 0.1,42 = 0.21),

(T= 124,¢o =8.5 x 10-9,_1 = 10-6)), (uox = 0, uo2 = 0, uo3 = 0.323, uo4 = 0), (ull =
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0, ua2 = 0, u13 = -0.323, u14 = 0), (dla = 0.79, d12 = -6.7 x 10-7,d13 = 0.019, d14 = 0.060

), (#_ = 0.326, w_1 = 1,w_2 = 0, w_3 = 0, w_4 = 0 ).

Step (2e): Using these terminal values perform continuation with respect to

, u WU(_1,_2,£1), (U01,U02,_t03,U04), (Ull,_l12,1t13,_14), (dll,dl2,dl3,dl4), (IL_ w_l,w02, 03,W_4

). Continuation proceeds till we reach Fig. (5.2) where ((1 = 0.138,_2 = 0.21),

(T = 124, _0 = 8.5 x 10 -9, £1 _-_ 2.3 X 10 -6)), (_t01 = 0, U02 = 0, lt03 --_ 0.323, u04 = 0),

(Ull "-- 0, U12 -- 0, lt13 = --0.323, tt14 = 0), (dll = 0.96, dla = -8.1 × I0-7,d13 =

4.5 × 10 -3, d14 = 0.268 ), (#_ = 0.:326, w_'1 = 1, w_2 = 0, W'o'3 = O, w_'4 = 0 ).

Step 3: We will also attempt to reproduce the bifurcation diagrana for the branch of

heteroelinic orbits, shown in Fig. 3 in Armbruster [2]. Using the same set of boundary con-

ditions as in Step 2, increase the number of subintervals to NTST = 55. Using the initial

values from Fig. (5.1), perform continuation with respect to (_1,_2, T), (uol, uo_., u03, u04),

(ltll,U12,tt13,1t14), (dll,d12,a13,d14), (tt_ W_l ,u .u, , w02 , wo3 , w_4 ). The bifurcation diagram of

((1,(2) is shown in Fig. (5.3), where the initial values are ((1 = -0.03,_2 = 0.2) and the

final values are ((1 = -0.036, _2 = 0.09). The entire bifucation diagram in Fig. (5.3) has a

number of bifurcating branches. We have traced out onIy one branch. This may account

for the fact that our results do not match those of Armbruster [2].

5.4 Figures

Fig. 5.1 (T = 168,ex = 7.5 × 10-9,dll = 0.04, d12 = 0, d13 = 0.99, d14 = 0 ).

Fig. 5.2 ((1 = 0.138,(2 = 0.21), (T= 124, e 0 = 8.5 × 10-9,61 = 2.3 × 10-6)), (u01 =

0, u02 -- 0, u03 = 0.323, u04 = 0), (ltll = 0'lt1'2 = 0,?-/13 _--- -0.323, u14 = 0), (dll =

0.96, d12 = -8.1 x 10-7,d13 = 4.5 x 10-3,d14 = 0.268 ), (tt_ = 0.326, w_1 = l,'tv_2 =

0, = 0, = 0 ).

Fig. 5.3 The initial values are (_1 =-0.03,_2 = 0.2) and the final values are

((1 = -0.036, (2 -- 0.09).
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6. Conclusions and Recommendations.

Hornoclinic and heteroclinic orbits are orbits of an infinite period connecting two fixed

points of an associated system of autonomous ordinary differential equations. Homoclinic

orbits have been shown to play a fundamental role in phenomena such as bursting in

biology, chaotic vibrations of structm_s, chaotic oscillations in chemical reactions, etc.

Heteroclinic orbits are equally important in the understanding of the global behavior of

dynamical systems, turbulence, and also in tile study of wave phenomena in nonlinear

parabolic partial differential equations.

In earlier papers Doedel and Friedman have developed an accurate, robust, and

systematic mlmerical method and derived error estimates for the computation of branches

of homoclinic and heteroclinic orbits. The idea of the method is to reduce a boundary

value problem on the real line to a boundary value problem on a finite interval by using a

local (linear or higher order) approximation of the stable and unstable manifolds and then

study the reduced problem using a continuation software package such as AUTO.

Theoretical analysis of homoctinic and heteroclinic orbits is often conducted in the con-

text of singular perturbation problems. In this paper we have refined and extended ealier

algorithms of Doedel and Friedman using 2 model singular perturbation problems and a

turbulent fluid boundary layers in the wall region problem. We have thus considerably

extended the range of applicability of our algorithms
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