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ABSTRACT

A fully coupled mathematical model describing the interactions between a vibrating thin

cylindrical shell and an enclosed acoustic field is presented. Because the model will ultimately

be used in control applications involving piezoceramic actuators, the loads and material contri-

butions resulting from piezoceramic patches bonded to the shell are included in the discussion.

Theoretical and computational issues lead to the consideration of a weak form of the model-

ing set of partial differential equations (PDE's) and through the use a semigroup formulation,

well-posedness results for the system model are obtained.
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1 Introduction

The active control of noise generated by structural vibrations has been studied for several

years in various applications. One recent motivation leading to an intense study of prob-

lems involving the reduction of structure-borne noise has resulted from the development

of a new class of turboprop and turbofan engines. These engines, although very fuel ef-

ficient, are also very noisy. Specifically, the low frequency, high magnitude exterior noise

fields produced by these new engines cause vibrations in the fuselage which, due to struc-

tural acoustic coupling between the fuselage and the interior acoustic field, lead to un-

acceptably high cabin noise levels. The problem is exacerbated by the increased use of

lightweight, composite materials in the cabin walls. In order to make the use of the en-

gines feasible in commercial aircraft, a great deal of research has been aimed at developing

control techniques to reduce this unwanted interior noise.

Control techniques for structural acoustics problems of this type have been studied from a

variety of perspectives [2, 7, 12, 13, 14, 15, 16, 20, 21, 25], one of which is through the use of

piezoceramic patches which are bonded to the enclosing structure [2, 7, 14, 16]. As detailed

in [8, 9], the patches create bending moments and in-plane strains when a voltage is applied,

and through these actions, can be used to alter the structural dynamics in a manner which

ultimately reduces interior noise.

In this paper, we develop a fully coupled mathematical model, as well as well-posedness

results for this model, which can be used when applying parameter estimation and PDE-based

control strategies to problems involving the use of piezoceramic actuators. This model extends

the 2-D results in [2, 7] and the 3-D results in [10] to the cylindrical domain of interest (the

3-D domain in [10] consisted of a hard-walled cavity with a thin plate at one end). While

ultimately motivated by the cabin noise problem mentioned above, the model is designed to

be consistent with an experimental apparatus being used at the Acoustic Division, NASA

Langley Research Center. This setup consists of a thin-walled hollow cylindrical shell which

is supported by rigid caps at the ends. Piezoceramic patches bonded to the walls of the shell

are then used to control interior noise which has been generated by the vibrations of the walls.

Tlfis mathematical model differs from previously used 3-D shell/acoustic models in that

it fully incorporates the backpressure and momentum conditions which couple the structural

dynamics with the interior acoustic response, thus yielding a time-dependent system of partial

differential equations which describe the system dynamics. Because the acoustic/structure

interactions are fully incorporated, this model is useful for control strategies which utilize the

natural "feedback" loop due to the coupling between the acoustic fields and the structural

vibrations. Moreover, by incorporating the piezoceramic patch/shell interaction results of [8],

the model can be employed in devising control techniques utilizing piezoceramic actuators.

After the development of the mathematical model, well-posedness results are presented.

These are important not only for determining the existence and continuous dependence of

solutions, but also in providing an initial framework that can be used when determining

suitable approximation schemes. By carefully noting the Hilbert spaces containing the state

variables and test functions, appropriate choices can be made for the approximating subspaces

which contain the basis functions used in finite element or spectral approximations. This is

important not only when considering forward simulations but also when considering theoretical

issues concerning the parameter estimation and control problems.



Section 2 of this presentation contains a description of the components of this system

along with the strong form of the equations of motion for the system. Tile disadvantages of

the strong form are discussed ill Section 3 and a weak or variational form of tlle system equa-

tions is presented. An abstract framework amenable to forward simulations, the estimation

of physical parameters, and the implementation of PDE-based feedback control strategies is

also developed in this section. In Section 4, the abstract model described in tim third section

is shown to be well-posed. This is accomplished using "extrapolation space" ideas and argu-

ments similar to those presented in [5, 6, 17]. Having obtained the existence and continuous

dependence of solutions for the model, approximation and LQR optimal control techniques

similar to those discussed in [2, 7, 10] can be applied to the problem in an effort to suitably

reduce interior pressure levels.

2 Strong Form of the System Equations

As motivated by the experimental setup described in the Introduction, the structural acoustics

problem under consideration is assumed to consist of a cylindrical acoustic cavity fl(t) which

is enclosed by a thin cylindrical shell (see Figure 1). Hard wall conditions are taken at the

ends P of the cavity in order to model the rigid end caps used in the experimental apparatus.

These end caps also dictate the use of clamped boundary conditions when approximating the

shell dynamics.
As outlined in the discussion in the previous section, the dynamics of the coupled system

are composed of an acoustic response, shell dynamics, piezoceramic patch/shell interactions,

and the coupling acoustic/structure interactions. Each of these components is briefly described

and the results are summarized in a coupled system of PDE's which describe the system

dynamics.

\
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Figure 1. Cylindrical acoustic cavity fl(t) with hard end caps P.

2.1. Acoustic response

The acoustic wave motion inside the cavity can be described either in terms of a velocity

potential ¢ or the acoustic pressure p (the two are related through the relationship p =

P]¢t where pf is the equilibrium density of the atmosphere); motivated by control theoretic
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considerations and to simplify the presentation which follows, we choose the former as tile

second-order state variable. The acoustic dynanfics inside tile cavity are then modeled by the

undamped wave equation

6u=¢_X_ , (,',0, z)_(t),t>0,

VVS._,=0 , (r, 0, z) CI',t>0

where c is the speed of sound in the cavity, fi is the outward axial unit normal to the cavity

end caps, and the Laplacian in cylindrical coordinates is given by

AO c92_ 1 i)_ 1 024 024
= 07..--7 + 7"& + 77 O0---7 + Oz---7

Again, P denotes the circular caps at the ends of the cavity f_(t) (the cavity is variable in

time due to the fact that the enclosing shell is vibrating), and a: is the axial direction in the

cavity. Finally, we note that air damping inside the cavity was omitted due to the relatively

small dimensions of the experimental cavity, and could readily be incorporated for significantly

larger cavities.

2.2. Shell dynamics

In order to specify the equations of motion of the bounding structure, we consider a thin

cylindrical shell having length g, thickness h and radius R with axial direction taken along

the z-axis (see Figure 2). The displacements of the middle surface in the axial, tangential and

radial directions are taken to be u, v and w, respectively. Furthermore, the shell is assumed to

have density p, Young's modulus E, Poisson ration t/, and damping coeflqcient (7,/3. Finally, we

assume that the shell's length is relatively short in relation to it radius and hence the Donnell-

Mushtari equations can be used when approximating its motion [18]. This last assumption

is made purely for ease of presentation and higher-order theories such as the Byrne-Flfigge-

Lur'ye model can be substituted for that of Donnell and Mushtari as warranted by the shell
dimensions.

X

z=o _

Figure 2. The cylindrical thin shell.



As presentedin [8, 19],the Donnell-Mushtariequationsfor a thin cylindrical shellaregiven
by

R h 02u - R ON_
P-gg 5-;x

ONox .O(Xx)p_
O0- -1_ _ S1,2(x),__1,2(0)

t_ph 021) ONo t_]VxO O( X____n)Pe Sl,2(x),_l,2(O) (1)
Ot2 O0 -_z - ov

02w RO2M, 1 02Mo 202M_o RO2(M_:)w 1 02(Mo)w
Rph-_ Ox 2 R 002 OxO0 + No = Rgl,_- Ox 2 R 002

Here M,:, Mo, Nx and No are internal moments and force resultants, (Mx)w, (Mo)w, (N,)w

and (No)w are the resultants for the loads generated by the piezoceramic patches when a

voltage is applied, and 0,, is the external, normal load on the shell. For a patch with uniform

thickness and bounding values xl, x2, 01 and 02 as depicted in Figure 2, the presence of the

indicator function

1 , X < (X 1 -[" X2)/2
s,,.,(/) = o , x = (x, + x._)/2

--1 , X > (Xl -t-X2)/2

(2)

derives from the fact that the forces generated by the patch in the x-direction are antisym-

metric (equal in magnitude but opposite in sig@ about the line 2 = (x_ + x2)/2. The same

holds true for the forces in the 0-direction and S1,.z(O) is defined in an analogous maimer.

From the discussion in [9], internal damping can be incorporated in the shell equations by

assuming a constitutive law which posits that stress is proportional to a linear combination of

strain and strain rate. This yields a a Kelvin-Voigt type of damping in the shell with internal

resultants for shell regions not covered by patches given by

N_'- (l_u2) --_x + U \ R O0 + + ( f - ; 2) Ot -_x + v -_ N +

eh [2o 
No- (1-,")tnoo

w Ou] CDh 0

+_ +"_] + (1- _,_)ot 1 0v w u--0u]_N+_ + 0_

N_°=N°x-2(l+v) -_z+-R-_ +2(l+u) 0t _x + RO0]

Eh 3 [ _2l/) 1-" 02W]

M_- 12(1- ,,_)10_ + n_ b-_J 12(1-Ve)Ot [_ -I- R2 -_-_1

(3)

Mo-

Eh 3 1 02w

12(1-u 2) R 2 002

O_w] CD h3 0

+ UOx--T] - 12(1 - u "2)Ot

Mxo = Moz =
F_h_ 0% Cvhz 0 [ 0"_ ]

12R(1 + u) OxO0- 12R(1 + u) Ot [_]

=

2

i
f
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Similar expressions (e.g., see [9]) can be derived for those regions of the structure in which

piezoceramic patches are bonded to the shell. In those areas, the internal force and mo-

ment resultants contain contributions not only from the shell but also from the internal

stresses ill the piezoceramic patches. The contributions resulting from the external loads

(M,:)p_, (Mo)p_, (N,:)p_, (No)p_ and (},, will be discussed further in the next two subsections.

Finally, we note that the boundary conditions for the shell must be consistent with the

rigid end cap conditions on the experimental apparatus. Depending on the exact nature of

the end caps, one may enforce either the clamped edge condition

U:V:W-- -0
Ox

or tile simply supported edge condition

u=v=w= _ =0

at the ends of the shell. For definiteness, we will employ the first while simply noting that

the latter often adequately models the conditions being maintained at the edges of the shell.

2.3. Piezoceramie patch/cylindrical shell interactions

In order to specify tile moment and force resultants which result from tile activation of tile

piezoceramic patches, we consider patches which are bonded to the inner and outer surfaces

of the shell in a manner such that their edges are parallel to lines of constant x and 0 as shown

in Figure 2. When it is necessary to differentiate between tile two patches, the outer will be

denoted with a subscript pc1 with a subscript pc2 being used to denote the inner patch in

each pair. We point out that in order to keep this presentation compact, we have assumed

that both patches are active, and we refer the reader to [8] for the case when only one patch
is bonded to the shell.

As discussed in [8], the total line moments and forces for a single patch pair with bounding

values xl, x2, 01 and 02 are

(M_)p_ = [(Me),_, + (Mo)7,_:][H,(x) - H2(x)][H,(O) -//2(0)1

= [(Mz)ve,+ (Mx)pe=][Hl(x)- H2(x)][H,(O)-//2(0)]

= [(N_)m + (N_);_=][H_(x)- H2(x)][H,(0) - H2(0)],5'1,2(X)S1,2(0 )

(4)

(No)v_= [(No)m + (N0)m] [Hi(x) - H2(x)][H1(O)-- H2(0)]Xl,2(X)_l,2(0 ) .

Here H is the Heaviside function with H_(x) - H(x - x_), i = 1,2, and 5,,2 is the indicator

function defined in (2) with similar definitions being used in 0. The individual components



are given by

)) )]=- E,_ 4 +T 2_h2 +_-1 1 S :_+Th _h 3 (1+,%)%<
-- lpe

Eve

_)4 @(t'_-q-T)3-h:O](l+v'P_)%_2

Eve 4 + T - h 2 (l+up_)epq
( Mo )p¢_ - 1 - ur_

Ep_ 4 +T -h 2 (l+up_)%_
(Mo)p_ - 1 - u_

[ 11(( ), )]Ep_ T + 4 + T h e
('N_)P_' -- 1 ,2 R8 - (1 + uw) ew,

-- Ipe

(s)

lV
1--- 2 /Q_ 4 -I-T -h 2 (1 + uw) %_=

-- lJpe

( =
f--Cpe

2
1 - lYpe

X (l -Jr _'iOf: ) epe, 1

Epe

(No)p_._ =- 1 .,2 T(1 +lll, e) f-pfI •
-- Ipe

where Ew, uw and T are the Young's modulus, Poisson ratio and thickness of the patches,

respectively (it is assumed that the inner and outer patches have the same material properties).

With dsl, 14 and V2 denoting the piezoceramic strain constant and voltages into the two

_ d_,._>- = g_-I.'._ provide a relationship between the appliedpatches, the terms CpeI -- T Vl and ep_=

voltages and the resulting in-plane mechanical strains.

From (4) and (5), it can be seen that the resultants due to the activation of the patches

depend on the material and geometric properties of the patches, the radius of the shell, and

the voltage being applied to the patches. Once determined, these resultants are substituted

into (1) as the external loads on the shell. If multiple patch pairs are present, the resultants

for each pair are incorporated in the. shell equations in a similar manner.

2.4. Normal loads and coupling conditions

It can be seen in (1) that the shell equations also contain the term (_,, which rel)resents the

normal load on the shell. In writing the equations in this form, we have made the assumt)tion

that the only loads on the shell are the contributions due to the patches, and the normal

load which is due to the exterior noise fieht f as well as backpressure generated by the interior

acollstic field. This assumption was made merely to simplify the discussion, and more complex



acoustic or mechanical loads on the shell can be incorporated as additional external forces and

moments in the shell equations. Because 0,_, in this case, consists of contributions from the

exterior and interior acoustic fields, tile first coupling relation is

O,_(t, O, x)= f(t,O,x)- pf¢_(t,w(t,O,x),v(t,O,x),u(t,O,x))

and is in general nonlinear since the backpressure onto the shell occurs at the shell's surface.

The second coupling condition is the velocity constraint

O_ (t, w(t, O, x) _,(t,O,x) _,(t,O,x)) = w,(t,O,x)
07" '

which simply states that the shell is impermeable to air. Note that this second constraint also

provides a boundary condition for the acoustic response.

2.5. Fully coupled system: strong form

Under the assumption of small displacements which is inherent in the linear shell theories,

tile variable domain f_(t) is approximated by the fixed domain f_, and the general nonlinear

coupling conditions are approximated by their linear approximations. Let the boundary F0

denote the shell in its unperturbed state. For s pairs of piezoceramic patches, this then yields
the linear model

¢. = d_x¢ , (_,o,x) _ a, t > o,

V¢.fi=O , (r,O,x) cr,t>o

0¢(t, R,O,x) = _,_(t,o,x) (O,x) • r0 ,t > 0

i=1

i 02v ONo N_o
Rp _ _-_ O0 R Ox -

i=1
O0

R . 02w _ RO2M_: 1 02Mo 202M_o
ph--_- _ R O0 '2 OxO0 + No

= R [f(t, O, z) - pjCdt, R, O, z)]

_{02[(M_)p_]i 1 02[(Mo)v_]i}- R Ox 2 + R2 002
i=1

(O,z) • F0 ,t > 0

Ow

u=v=w- Ox -0 , x=O,g.

¢(o, _,o, _) = ¢o(_,o,_)

_(o,o,x)= _o(O,x) ,

v(O,o,_) = vo(O,x) ,

w(o,o,_) = wo(O,x) ,

, ¢_(0,,,,0,_)= _,(r, 0,x)

_,(o,o,x)= ul(O,x) ]

_,(o,o,_)= v,(O,_) I
wt(O , O, X) = WI(O , 2C)

, (r,O,x)•a

(0, x) • F0 .

(6)



Recall that the internal shell moments and forces are summarized in (3) while the expressions

for the external loads generated by the i th pair of piezoceramic patches are given in (4). The

notation [S1,2(x)]i and [___'1,2(0)]i denotes the indicator functions (see (2)) which are centered

over the i °' pair of patches. Note that this representation admits different voltages and

geometries for the .s patches, thus increasing the flexibility of the model for control purposes.

We also reiterate that the only damping in the system is the internal Kelvin-Voigt damping

in the shell although medium damping inside the cavity can be added if cavity dimensions

become significant. Without medium damping, however, the system is only weakly damped,

and this nmst be considered when discussing theoretical convergence and well-posedness results

for the problem.

3 Weak Form of the System Equations

As can be seen in the model (6), the use of the strong form of the systein equations leads to
first and second derivatives of both the internal and external moment and force resultants.

This leads to difficulties both in approximating the behavior of the system and in solving the

control problem. The first problem results fi'om the presence and differing material properties

of the piezoceramic patches. As noted in [11] where piezoceramic patches are bonded to

a beam, the material parameters of the combined structure must be modeled as piecewise

constants in order to accurately match structural frequencies. Hence the parameters p, E, v

and CD are expressed in terms of a Heaviside basis with the edges of the patches defining the

support of the functions. This leads to difficulties in the strong form since it necessitates the

differentiation of discontinuous material parameters. A similar problem arises when including

the moments generated by the patches. As seen in (4), the support of the contributions is

given in terms of Heaviside functions which implies that the use of the strong form yields an

unbounded control operator (it involves the differentiation of the Heaviside functions as well

as the Dirac delta). To avoid these difficulties, it is advantageous to fornmlate the problem in

weak or variational form (the use of the variational form also admits the use of basis functions

having less smoothness than those used when approximating the solution to the strong form

of the equations).

3.1. Weak formulation

The second-order state for the problem is taken to be y = (¢, u, v, w) in the Hilbert space

H = L2(a) x L'2(P0) x L2(F0) x L2(P0). The choice of the space L,2(f_), defined as the quotient

of L2(f_) over the constant functions, results from the fact that the potentials are determined

only up to a constant.

To provide a class of functions which are considered when defining a variational form of

the problem, we also define the Hilbert space V =/_ (9t) x H0_(P0) × H0_(P0) x Ha(G) where

/}_(f_) is the quotient space of H _(£t) over the constant functions. The subscript 0 in the

remaining components of the product space denotes the subset of functions in the traditional
0w 0 atSobolev spaces which satisfy the essential boundary conditions u = v = w - o_ -

z = 0, g.



A complete discussion concerning the derivation of the a variational fornmlation of the

shell equations from energy principles can be found in [8]. For our purposes here, we simply

note that integration in combination with the use of Green's theorem yields the second-order

variational system

L pf 02¢-;, }c2__a_+£pfV¢.Ve&o+ fror 02u_ . 0711 1 Orli
I ph-_rll + JVz-_Z + -_ No_:--_- d7

+fro( 02v 1. 0,]2 . 0,]2}I ph-_7--ff + -_ lVo--_- + lVzo--_z d7

f . 02u, 1 0271-----_31., 02_]3 2. 02r/3 }

-E } e-y

_1 1 _ 02,13fr _ [(Nx)P_]i -b-_z + R= o -
i=1

1 02,]3 l

R2 [(Mo)p_]i _ j, d7

(7)

for all ((, rh, r/2, r/3) E V (note that do2 = r dr dO dx and d 7 = R dO dx). The complex L 2 inner

products are used in anticipation of the possibility of employing complex Fourier expansions

in 0 when developing suitable approximation schemes for the problem.

We note that, as is usual, in this variational form, the derivatives have been transferred

from the plate and patch moments onto the test functions. This eliminates the problem of

having to approximate the derivatives of the Heaviside function and the Dirac delta which

arises in the case of the strong form of the equations.

The system (7) can be formally approximated by replacing the state variables by their

finite ditnensional approximations and constructing the resulting matrix system. In order to

discuss convergence results for the approximation, parameter estimation, and control prob-

lems, however, it is advantageous to pose the problem in terms of sesquilinear forms and the

bounded operators which they define.

3.2. Abstract weak formulation

Before proceeding with the abstract formulation, it is necessary to describe the inner

products for the spaces H and V since these will be needed when determining the continuity

of various operators. From energy considerations, it is appropriate to use the inner products

('I',*),, = £ 7



and

= i_ pfV_. V_dc_

k {[ou,,:0v )]o,,,, r0 ,,0ul  + 0(1-"2) _ +_\00 +w _+_-f(1-r,)L0x+R. 00j 00jd7

+ o(l_--u2 ) _ _N+_+uO--_ -_-+-_(1-U) kZ_z+ROOj-_- x d7

+ o (1 ---7,21) R 0-0+ 5 + "_ N+ 77 L_-7:+ R_ 00_] Ox2

h 2 [ 1 02w 02w] 02713 h 2 . OZW 02713 )

+ _ t-_-- + u Ox--_] --0-_- + (l-u) '00_ _ 0_-7b-0_ j' <z..,,

(_)

where _ = (¢, u, v, w) and k0 = (_, /]1, 772,T]3). _ge remark that the inner product for the state

space H contains terms which arise when considering the kinetic energy for the shell while

the shell contributions in the V inner product are motivated by the form of the strain energy

for a thin cylindrical shell (see [8]). Also, we note that with this choice of spaces and inner

products, we can form the Gelfand triple V _ H "_ H* '--, V* with pivot space H (see [27]

for a complete discussion of these ideas).

To define appropriate sesquilinear forms cri : V x V _ C, ,i = 1,2, we group the stiffness

and wave contributions separately from damping and coupling terms, thus leading to the

definitions

<,,(*,*) = (_, _)v

_ iF _)Dh {[OU l] (OV)] 0,]1

+goc.,,{lr,o,,(l-T-) tnoo

(1 :_2) LR o0

h2 [ 1 02w 02u,] 0'_713

--
+_(1- ROOJ 00 J

-t- _ -t- Ox --_- -F (l-u) + d7"-- ' _ R OOJ Ox J

_, Ou] h2 [ O_w " e_'] 0_"3+5+"_ m+15 [_z_+ R_ 00_J Ox_

-- t[2 "1 02w 02_13

+ -6-_( - U)OxO00xO0 J d7

(9)

To account for the control contributions, we let U denote the Hilbert space containing the

control inputs, and we define the control operator B C f_.(U, V*) by

(f_,,,,'_)v.,v = [(Nx)_]_7x + _ -N- - [(M_)v]_Ox_ R_[(Mo)_]_-b7r d7
o i=1

10



for q2 C V, where (',')v*,v is the usual duality pairing. Finally, by letting F = (0,0,0, _),

we can write the system in tile abstract variational form

(v.(t),q,),.. v + _:(yt(t),*) + 0-1(y(0,*) = <B_,(0+ F,*)v. v • (10)

We reiterate that the state for this second-order system is y(t)= (_(t, ., ., .), u(t, -, -), v(t, -, .),

w(t,., .)) in V _-_ H.

Ill order to write the system in terms of associated bounded operators, we first note

that 0-1 and 0" 2 are bounded (there exist C 1 and c2 such that [0-1(_, @)[ < Cl](I)[v]kI/lv and

[a2(qb, _)] < c2]OlvIqJIv), and hence we can define operators A_,A2 G I:(V, V*) by

(Aidp, _)v',y = 0-i(_, _)

for i = 1,2. This then yields the abstract second-order system

y,(t) + A2yt(t) + A,y(t)= Bu(t) + F

in V*.

To apply infinite dimensional control results for periodic forcing functions to this problem,

it is advantageous to write the system in first-order form. This is accomplished by defining

the product spaces _ = V x H and ]2 = V × V with the norms

an d

We point out that ]2 _-_ 7-/__ 7-l* _ Y* again forms a Gelfand triple.

The sesquilinear form 0- : F x Y _ (L' is then defined by

a(O, X)= a((T, A), (_, _)) = -(A, _)v + 0-1(T, _) + 0-2(A, qJ)

where X = (_, _) and O = (T, A).

Fo,_the state y(t) = (y(t), y,(t)) in _, we can subsequently write the system in the first-

order variational form

<y,(t),x),. , + 0-(y(t), x)= (_(t) + >-(t), x),. , (11)

where 9v(t) = (0, F(t)) and Bu(t)= (0, Bu(t)). As usual, the relation (11) must 11oi,1 for all

C ]2. Finally, the weak form (11) is formally equivalent to the system

y,(t) = Ay(t) + _,,(t) + 7(t,) (12)

in 7-{ where
domA= {O= (T,A) ¢7-{:A • I/;AIT+A2A ¢ H}

11



Henceweseethat the systemcorrespondingto tile original modelcall bewritten in various

forms whose utility depend on the applications of interest. For approximating the dynamics of

the systeln, the formulation (7), or equivalently (10) or (11), is useful and ultimately leads to a

first-order matrix system when considering the resulting finite dimensional problem. Moreover,

as will be shown in tile next section, the weak form (10) provides a setting in which one can

determine well-posedness results for the problem. Finally, the first-order infinite dimensional

formulation (12) is an abstract Cauchy equation which facilitates the application of infinite

dimensional LQR results to the problem of controlling interior acoustic pressure levels.

4 Well-Posedness of the System Model

In this section, the system model described in strong form in Section 2 and weak form in

Section 3 is shown to be well-posed. The strategy used to do this can be summarized as follows.

By employing the properties of the sesquilinear forms oh and a2, it is demonstrated that the

operator .A of (13) generates a C0-semigroup ,5"(t) on _. Due to the fact that the control

and forcing terms lie in 12" rather than _, however, one is prevented from simply applying

a variation of parameters approach to define mild solutions as is often done in problems of

this type. Instead, a construction due to Haraux [17] is used to extend the semigroup $(t)

to the space 14;* = [dora M*]* where an extension of the variation of parameters technique

for describing a mild solution to the problem can be employed. By formulating the problem

in this generalized manner, the well-posedness of the system solution can be established in a

form that can be used in parameter estimation and control problems.

4.1. Generation of the C0-semigroup S(t) on 7-/

Before proving that the operator ,A generates a C0-semigroup on _, we recall several

definitions that will be needed (we note that these definitions vary slightly among authors,

e.g. see [24, 27], and that the definitions given here will be used in the discussion which

follows).

We say that the sesquilinear form o" : V x V + @ is V-elliptic if there exists a constant

c > 0 such that

Re a(qS,(F) > cl01 for all q5 E r.

The sesquilinear form c_ - V × V _ @ is called H-semidliptic if there exists a constant b >_ 0

such that

Re _(q,,O) >_bi¢15 for all • E V.

Finally, we say that the sesquilinear form er is symmetric if

_r(q5, k0) = _(k0, 4)) for all (I), k0 E V.

The following theorem can be used to establish that the operator A given in (13) generates

a C0-semigroup on _. The proof depends on the Lumer-Philips Theorem and arguments can

be found in [1] and pages 82-84 of [3].
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Theorem 1. Let V _-_ H __ H* _-_ V* and suppose that o1 and o'2 of (10) satisfy the

properties: o'1 is V-elliptic, continuous, symmetric, and o'2 is continuous, H-semielliptic.

Then al defined in (1:3) generates a C0-semigroup on 7-{.

To see that our system (10) satisfies tile hypotheses of this theorem, we first consider the

sesquilinear form o',(q_, _) = (q_, qJ)v given in (8). Tile boundedness of o', (which results from

Schwarz's inequality for inner products in conjunction with equivalence results for various

Sobolev norms) was noted in the last section. The V-ellipticity and symmetry of o'1 follow

directly from the definition of the sesquilinear form as the V norm. W_ note that the sylnmetry

of o'1 depends on the symmetry of the Donnell-Mushtari shell operator, and while some other

shell theories such as that of Byrne, Flfigge and Lur'ye also provide symmetric operators

and resulting sesquilinear forms, others such as the Love-Timoshenko theory do not yield

symmetric operators (see [19]) and hence would not fall directly into our framework here.

From a physical perspective, the symmetry of the shell operator and resulting sesquilinear

form guarantees real vibration frequencies. This symmetry also guarantees that the shell

model satisfies the Maxwell-Betti Reciprocity Theorem which essentially states that for a

linearly elastic body, the general displacement at a point m resulting from a load at the point

n is equal in magnitude to the displacement at n resulting from an equal magnitude load at

m (see for example, [2:3]).

We next turn to the sesquilinear form o'2 of (9) and recall that the boundedness of o'2 was

also noted in the last section. This follows from the definition of tile o.2 and the equivalence

of various norms which arise from the components of the V norm. The H-semiellipticity of

o2 follows directly with the choice b = 0.

Tile results from Theorem 1 guarantee that the operator A given in (13) generates a C' 0 -

semigroup ,5"(t) on the state space 7Y. Moreover, tile semigroup satisfies the exponential bound

IS(t)l _< e_'' for t _> 0 (where in fact, _o = 0 due to the fact that A is dissipative as shown in

[a]).
In the case of a bounded (in H) control input operator, the usual procedure is to use a

variation of parameters approach to define a mild solution to the system. As noted in the

last section, however, the control input B C £(U, V*) defines the product space control term

13u(t) = (O, Bu(t)) E {0} x V* C V x V* = 12". Since Bu(t) lies in V* rather than in 7-{, the

usual variation of parameters ideas are not feasible. We are therefore motivated to extend the

semigroup S(t) on H to a semigroup S(t) on a larger space IV* D {0} × V* so that the mild
solution

,,( ° )y(t) = S(t)Yo + Bu(.s) + F(.s) d.s (14)

is well-defined for Bu+ F C L2((O, T), V*) (in the following development, it will be shown that

the space W* is given by W* = [domA*]*). This then provides a setting in which to guarantee

the well-posedness (including continuous dependence on initial data and nonhomogeneous

input terms) of the solution.
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4.2. Description of .4* and dom.4*

Before discussingthe extensionof S(t) froln _ to W*, it is useful to describe .4" arm

dora .4". We first recall from (13) that A and dora A &re given by

domA= {O=(T,A) E_:AE V,A,T+A2A cH}

( A ).40 = -A1T - A2A

From the usual definition of the adjoint .4", we now want to find dora .4* and .4" satisfying

domA* = {X = (_, °2) ¢ _10 _ (AO)(x)is continuous on dora.4}

all d

(.40, x)u = (o,

for all @ = (T, A) ¢ dom .4 and X = (q_, qJ) C dom .4*. It follows directly from the definition

of the adjoint operator that X E dom ,4* if and only if there exists F = (')'1,72) E 7¢ = V x H

such that

<.4o, = (o,

for all 0 e dora .4. The expansion of this relation yields the condition

(A, dP>v + ((-AIT - A2A), *)H ---- (T,7'>v + <A,72>H (15)

for all O = (T,A) e dora A and X = (@,q') C dora.4*. By noting that (15) must hold for

A = 0, it follows that

(-A, T, q0H = (T, 7,>v = (A, T, 7,>.

for all T E dora A1. The second inequality results from the observation that (T,71)v =

cr,(T,')',) = (A,T,')q)v. v = (A,T,7_)H for 0 = (T,O) ¢ dora.4. It follows immediately that

(AIT, -qJ - 71)t_ = 0 for all T C dora A1, which implies that

due to the V-ellipticity of o1. Moreover, *Yl E V implies that qJ E V.

When 71 = -qJ is substituted into (15), the relationship

(AIA, (I))H + (-A2A, q*>H = (A, 72>H

results for all A e V. From the last equality, it follows that the mapping A _ (A1A, (I))H nt-

(-A2A, @)n is continous in H. This in turn implies that A_q_ - A._qJ C H and that

(A,A;@- A_qJ)n = (A,72).

for all A E V. Ilence we have

= A;,- A;q,.
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Thus A* and dora .a* are given by

domA*= {X = (_,*)C HI _ _ _A;_-A;_ C H}

(-,)A'x= AT*-A;q_

Finally, we note that because • G V for any X E dora ,,4*, it follows immediately that

domA*C Vx V=12.

(16)

4.3. Extension of S(t) to [dom.,4*]*

With A* and dora A* described as above, we now consider tile extension of the semigroup

$(t) generated by A fl'om H to a larger space 142" which is defined below. This will be

accomplished by employing the extrapolation space techniques discussed by Haraux in [17].

Other, more detailed examples using these techniques can be found in [5, 6].

Tile space 142 =[dom .,4*] is taken to be dora A* with the inner product

(*, q')w = ((_o - A*)q,,(_o - A').).

for some arbitrary but fixed Ao with Ao > w (recall that the original solution semigroup satisfies

the bound ]S(t)l _< c_°t). As proven in [6], the resulting W norm is equivalent to the graph

norm corresponding to A*; that is, there exist constants cl and c2 such that for any • C W,

We have

I(A0- A*)O[_ _<c, (flu + IA*_I_)
(17)

As discussed in [5, 6], tile space W defined in this manner and with this norm is densely and

continuously embedded in H. Hence we can formulate the Gelfand triple 142 ¢-+ H "" 7-/* _ 142"

with pivot space H. Moreover, the dual space W* is isomorphic to tile completion of H with

respect to the norm lhl_. = I(A0- .a)-' hl_.
To facilitate the arguments for extending the operator A from dora A C _ to all of H, we

define the sesquilinear form _ : H x W --+ _I_ by

c,(O,x) - (o,A*x),,

for all O C H, X C 14;. Due to the equivalence of the 142 norm and tile graph norm corre-

sponding to A*, it follows that

la(o, x)l _ IOl_lA*xl_ _ _IOlulxlw •

This then implies that for each 0 E H, tile mapping X H &(O,x) is in W*. ttence we can

define .40 C W* by (AO) (X) = &(O, XT)or equiwdently,

(Ao) (x) = (o, A*x)_,
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for all O E 7-/,X E 142. From this definition, it follows that .A. E £::(_, W*) with dora _ = 7-t.

Moreover, if O E dora A, it follows from the Riesz representation theorem that

(Ao) = = <Ao, =

for all k" C dora A*. Thus we see that A is an extension of the original operator A from

dora .4 C 7"t to all of 7-/.

Having extended the operator to the full state space, our final objective in this subsection

is to observe that .A is the infinitesimal generator of a C0-semigroup on 14/'*. The proof of

this result is given in [6], and we simply state the conclusion in the following theorem while

directing the reader to that paper for details.

Theorem 2. The operator A is the infinitesimal generator of a C0-semigroup ,_(t) on FV*

which is an extension of $(t) from 7-/to FV*.

Having described how the original semigroup S(t) can be extended to a semigroup ,_(t) on

W* = [dora.A*]*, we now want to show that the space {0} x V* which contains the control and

force input terms is itself contained in 142". It is tempting at this point to recall that we have

the Gelfand triples ]2 _ 7/__ _* _-_ _* and W _-_ 7{ __ _* _ W* as well as the embedding

W C l), and from this assume that the desired result is obvious. We point out, however, that

while W C 12, the embedding is not in general continuous which implies that 1.V _ l} can not

be assumed to be true (if .4* is V-elliptic for example, one can obtain the desired continuity

of the einbedding; however, this is not the case in this problem). Hence more care must be

taken in order to argue that 142" D {0} x V*

To this end, let h = (0, A*) be an arbitrary functional in {0} x V*. In order to show that

h C W*, we need to show that X = (q), qJ) _ h(x) is bounded on W. Now, it follows that

Ih(x)l = IA'(_P)I _ IA*lv, l_Plv _ kl_lv • (18)

Moreover, from the definition (16) of A', we see that A*g = (-qJ, A;_ - A_qJ) which implies
that

IOlv _< ]A*xl_ _< ].A*x]_ + Ixl_ _< c2[x]w. (19)

(The latter inequality results from the equivalence of the W norm and the graph norm cor-

responding to A* as described in (17).) From (18) and (19) it follows that there exists a
constant c such that

Ih(x)l _< c[xl_

therefore showing that h C IV*. We have thus established the following result which is essential

in developing expression (14).

Lemma 1. th,der the assumption of Theorem 1, we have {0} x V" C IV* = [dom A*]'.

In summary, we are now able to show the following. The system (11) is well-posed in the

sense that (14) is a well-defined entity that can be taken as the mild solution to (11). More-

over, because (14) is well-defined, the usual theorems for continuous dependence with respect
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to initial data and nonhomogeneousterms (control and external forces) follow immediately.
This facilitates the discussionof approximation and control ideasfor theseproblems (seefor
example, [:3,4]).

In the eventthat _r2of (10)is alsoV-elliptic, one can argue (see [5] for details) existence of

a weak or variational solution to the system (10) which agrees with the mild solution obtained

from (14). Ill the example of Section 3, the form o2 is not V-elliptic; nevertheless, one can

turn to standard results from the theory of U0-semigroups, [22, 26], to obtain existence and

uniqueness of solutions for the system under consideration in this paper. For example, we

have the following result.

Theorem 3. Consider tile system represented by (10), (12) or (14) and suppose that tile map-

pings t _ u(t) and t _ f(t) from [0, T] to IR_ and V*, respectively, are Lipschitz
continuous. Then for each Y0 E _ = dora ft., we have that (12) taken with Y(0) = Y0

has a unique strong solution given by (14).

This theorem is readily established by appealing to Corollary 2.11, p. 109 of [22], in the

context of our arguments above. Letting G(t) = (0, Bu(t) + F(t)) T and considering S(t) on

the reflexive Banach space X = IV*, we can argue that G is Lipschitz continuous under the

hypotheses of the theorem. In particular, the inequalities (18) and (19) imply

c21B**(*,)+ f(t,)lv,,

so that

IG(t) - a(.__)lw. _< c2 {IBlc(u,y,)lu(t) - _('_)1 + IF(t) - F('-_)lv'} •

It follows that (14) provides the strong solution (i.e., differentiable a.e. in the IV* sense -

see [22]) to (12) interpreted in the IV* sense.

5 Conclusion

In this paper, a modeling set of partial differential equations describing tile dynamics of a

structural acoustics problem was presented, and a mathematical frainework amenable to the

development of approximation schemes for forward simulations, parameter estimation, and the

application of PDE-based feedback control strategies was developed. The structure consists

of a thin cylindrical shell with hard caps at the ends, and this COlnponent of the system was

modeled by the Donnell-Mushtari shell equations. A constitutive law postulating that stress

is proportional to a linear combination of strain and strain rate was assumed which yields a

Kelvin-Voigt type of damping in the shell. The structural dynamics were then coupled to thc_

interior acoustic field through pressure and momentum balance conditions. Finally, this model

includes the contributions due to the activation of piezoceramic patches which are bonded to

tile shell and ultimately will be used to control ttle interior acoustic pressure levels.

To accommodate the presence of the piezoceramic patches and differing material properties

of these patches, the material parameters for the combined structure should be taken to be

piecewise constants. This leads, however, to difficulties in the strong form of the systom
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equations since these parameters are contained in moment and force resultants which are

differentiated when forming the equations of motion for the shell. Moreover, tile discontinuities

introduced by the patches lead to an unbounded control operator since it involves derivatives

of the Heaviside fimction and Dirac delta. To avoid these problems, tlle weak form of tile

system equations was also presented.

In tile weak form, tile derivatives appear on the test functions instead of on the moments,

thus eliminating tile difficulties associated with the discontinuous parameters and patch inputs.

The weak form is also advantageous for many approximation schemes since it reduces the

smoothness requirements for tile basis elements. Finally, when the weak form is posed in the

context of sesquilinear forms, convergence and well-posedness issues can be considered.

The first step in proving the well-posedness of the system model was to verify that the

first order system operator .4 : dom A C _ --+ 7Y generated a C0-semigroup S(t) on _. This

semigroup was then extended via the extrapolation techniques described by Haraux to a larger

space l/V* = [dom A*]* so as to be compatible with tlle force and control inputs which lie in

{0} x V*. Finally, the mild solution in terms of the extended semigroup was formulated and

existence and uniqueness results were obtained. Hence tlle framework and model presented

here is mathematically well-posed as well as amenable to the development of computational

strategies.
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