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1.0 SUMMARY

An integration study was performed by Rocketdyne under contract to
NASA-LeRC coupling an SP-100 reactor to either a Brayton or Stirling power
conversion system. The application was for a surface power system to supply
power requirements to a lunar base. A power level of 550 kWe was selected
based on the NASA 90-day study of the Moon and Mars. Reliability studies were
initially performed to determine optimum power conversion redundancy. This
analysis resulted in selecting three operating engines and one stand-by unit
for both the Brayton and Stirling options. Integration design studies
indicated that either the Brayton or Stirling power conversion systems could be
integrated with the SP-100 reactor. Stirling had a 5% mass advantage for 1000
Vdc output and the Brayton a 2% mass advantage for 1000 Vrms, 1 kHZ output.
The Brayton radiator area was 3.2 times larger than the Stirling.

The same SP-100 reactor was used for both the Brayton and Stirling
Systems. Because of the higher efficiency of the Stirling cycle (29.7% vs
23.8%), a longer reactor lifetime results (9.6 y for the Stirling and 7.6 y for
ghe1B£a£ton). A description of installation and maintenance operations is also

ncluded.



2.0 INTRODUCTION

Under contract to NASA-LeRC, the Rocketdyne Division of Rockwell
International performed an integration study coupling an SP-100 reactor
to either a Brayton or Stirling power conversion system. The object of
the study was to investigate design concepts for integration of a SP-100
reactor to multiple dynamic engines and to assess the ease of
integration for both Stirling and Brayton engines. The application was
for a surface power system to supply power to a mature or evolved lunar
base. General Electric, prime contractor for the SP-100 program,
supplied technical information on the Reference Flight System SP-100
reactor. The Allied Signal Corporation, Fluid Systems Division,
provided information on the Brayton power conversion components. -
Mechanical Technology Incorporated provided information for the Stirling
engine; ' . :
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3.0 OBJECTIVES AND TECHNICAL APPROACH

The objective of this task was to investigate design concepts for
integration of an SP-100 reactor to multiple dynamic engines,
characterize deployment and assembly schemes for such systems, and
assess the ease of integration for both Stirling and Brayton engines.

The technical approach employed to achieve this objective is shown
schematically in Figure 3-1. The first steps, accomplished in parallel,
were to select system state points for the Brayton and Stirling systems,
to pick the optimum number of engines for each system, and to make an
estimate of power conditioning and pumping losses for each system.

These activities made it possible to size the Brayton and Stirling
engines and calculate their performance. Allied Signal characterized
the Brayton engine and Mechanical Technology, Inc., characterized the
Stirling engine. Rocketdyne was responsible for sizing the heat
transport system components such as electromagnetic pumps, heat
exchangers, and expansion tanks. The SP-100 reactor operating
parameters, dimensions, and lifetime vs. power and temperature were
provided by General Electric. A1l of this information was combined to
prepare design layouts of the Brayton and Stirling systems. System mass
estimates were then made based on these layouts.
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4.0 GROUND RULES AND ASSUMPTIONS

The following ground rules for the study were agreed upon between
Rocketdyne and NASA-LeRC and were incorporated in the task work

statement.

Based
features to
integration

Reactor. The SP-100 reactor will be utilized as the heat
source. The reactor will be operated at a power level
consistent with producing 550 kWe net to the output bus, for
both the Stirling and Brayton systems.

Heat Transport System. An intermediate heat exchanger will
be incorporated in all designs to isolate the primary
reactor coolant (Tithium) from a secondary loop that either
contains the power conversion unit working fluid or contains
an intermediate fluid that supplies heat to the power
conversion unit working fluid. The purpose of this heat
exchanger is to facilitate maintenance, such as removal and
replacement, of the power conversion units, and to minimize
activation of power conversion components.

Power Conversion Units. The overall system design will
incorporate the number of engines needed for production of

550 kWe net to the output bus. The peak cycle temperature
shall be consistent with the reactor outlet coolant
temperature while taking into account thermal losses in the
heat transport system.

The number of operating and standby engines will be
determined by an analysis of the system reliability and mass
for various numbers of operating and standby engines, and
any technological limits on engine size that may exist.

Environment. Only the Lunar environment will be considered.
The effect of the Martian environment on the system design
is the subject of a separate proposed study.

nitial Thaw an rtup. A source of auxiliary electrical
power will be assumed available for Tithium thaw and
startup. Lithium thaw shall be accomplished through trace
heating.

on previous lunar surface nuclear power system studies and
enhance safety, the following assumptions were made for the
study:

Emplacement is in a cylindrical, excavated cavity in the
Tunar regolith. A cavity liner (guard vessel) is provided
as an integral part of the system. The cavity liner
incorporates a passive cooling system that transports
deposited heat from reactor/primary cooling system heat
leakage, neutrons, and gammas to the lunar surface, where

5



the heat is rejected to space by a dedicated cavity liner
radiator.

. The SP-100 reactor, primary coolant loop, and shadow shield
is located at the bottom of the cavity. The cavity liner
fits closely around the reactor such that the reactor would
remain covered with 1ithium in the unlikely event of a leak
in the primary loop.

. Reactor decay heat after shutdown is removed by a free
convective branch of the primary heat transport loop. The
heat is transferred to the cavity liner, which in turn
transfers heat to a dedicated cavity liner surface radiator.

. An expansion tank with a free lithium surface is located at
the high point of the primary coolant loop. This allows for
expansion of the lithium as it heats up and for collection
?frhelium gas formed by the neutron interaction with the

ithium. B

. An intermediate heat exchanger, with the primary lithium on
the shell side, is located above the reactor shadow shield.
This isolates the power conversion heat transfer fluid from
the reactor coolant, thereby reducing the possibility of
fission product contamination of any components located at
the lunar surface.

. A11 power conversion equipment, reactor control actuators,
and heat rejection equipment is located at grade level.
Although maintenance was not considered in this study, the
design provides accessibility for above grade component
maintenance if fesible.” - R

. ‘ArA»;;Qer level of 550 kWe at 1000 Vac or dc was selected
based on past NASA power system studies and results of the
"90-Day Study" of the moon and Mars.

Several radiator configurations were considered before deciding on
the configuration shown in this study. The first option provides a
dedicated radiator for each engine whether it be operating or stand-by.
This design results in the simplest piping system, but with a
substantial penalty in mass and area, since there is an extra unused
radiator for stand-by engines.

A second option is to provide only one radiator for each operating
engine, with piping and valves to permit switching to a standby engine.
This option eliminates the mass penalty of the first option, but
1n%roduces additional system complexity and failure modes due to the
valves.

The third option is to manifold all radiators together, so that

they function as a single unit, fed by all operating engines, and with
any standby engines also permanently connected to the radiator complex.

6
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Like the second option, this option also avoids a radiator mass penalty,
but does introduce some extra mass associated with additional radiator
manifolds. However, this additional mass is much less than the mass of
a complete engine dedicated radiator. This third option was selected
for the integration study to minimize radiator area while retaining a
high Tevel of reliability.



5.0 INITIAL STUDIES AND TRADE-OFFS

5.1 SYSTEM PERFORMANCE OPTIMIZATION

Initial parametric performance studies were performed to select
system operating conditions. These initial operating conditions were
used for the power conversion subcontractor design studies. The results
of these studies are presented in Figure 5-1, which gives the specific
mass as a function of specific radiator area for both Brayton and
Stirling systems. The specific mass in this figure is based on previous
scaling studies and does not include the mass of the guard vessel. The
resultant design points selected, with agreement from the power
conversion subcontractors, are shown in the Figure. The peak cycle
operating temperature was based on a reactor outlet temperature of 1355K
ang a heat transport loop AT of 79K, which is the current SP-100
reference.

5.2 SELECTION OF NUMBER OF ENGINES

To achieve a high system reliability, it is desirable to provide
some extra (standby) power conversion capability over and above that
needed to produce the design power level. Unfortunately, extra power
conversion capacity comes at the expense of extra system mass, so a
compromise must be reached. In making a selection of the number of
power conversion units (also called engines), the following conditions
were taken into account.

. The reliability of a single engine and its associated power
conditioning equipment was assumed to be 0.95 for the
operating life of the system (approximately 7 years). Past
studies, for example for the SP-100 Stirling and Brayton
systems, indicate that 0.95 is an optimistic but reasonable
goal.

. Replacement of a failed engine was not considered in
selecting the number of engines. Further study is needed to
determine the feasibility of engine replacement.

. For a 550 kWe system, capability to produce partial power is
probably of greater significance than reliability to produce
100% power. For example, current lunar power architecture
studies indicate that much of this power would be used for
activities such as production of lunar liquid oxygen.
Partial power capability would slow down such an operation,
but not shut it down completely. It is also anticipated
that these systems would operate initially at partial power.
As power requirements increase, the systems would ramp up
gradually to full power capacity.

. The fewer the number of engines, the more easily they can be
integrated into a complete system.
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. While there is no technological 1imit on Brayton engine size
in the range encompassed by this study, Stirling engine
scalability studies conducted by MTI (reference 1) indicate
that for a free piston Stirling engine, power output
probably should not exceed about 100 kWe per piston. .

Figure 5-2 shows the reliability of the power conversion subsystem
(engines and associated power conditioning and controls) as a function
of subsystem mass for both the Brayton and Stirling power conversion )
subsystems. A constant power conversion engine reliability of 0.95 was —
used in these calculations. The total number of engines, including "
standby engines, is noted next to each data point. It can be seen from
examination of Figure 5-2 that there is little advantage from a
reliability standpoint to have two standby engines; and a significant
mass penalty results for both the Brayton and Stirling systems. 1In
order to satisy high system reliability and low system mass, it appears
that four enginees (three required for full power, with one stand-by)
would be a reasonable choice for both Brayton and Stiriing systems. -

To evaluate the partial power capability of systems with various
numbers of engines, the concept of capacity factor was utilized. An
example of how this was calculated is shown in Figure 5-3. In this
example, there are four installed engines, with three required for full
power. The probability of achieving 66%% power to 100% power is 0.9360.
The probability of two engines out of four being in operation is much
higher, 0.9995, and the probability of one engine out of four being in
operation is essential 1.000. The capacity factor is the total area
under the histogram or 99.52%. This is interpreted to mean that, over
its lifetime, the power conversion subsystem can be expected to produce’
99.52% of the total kilowatt-hours it would produce if it operated at
full power 100% of the time. '

Similar calculations were made for two, three and five engines,
for both the Brayton and Stirling systems, and were plotted against
subsystem mass, as shown in Figure 5-4. Inspection of these curves
leads to the conclusion that three, four or five engines are all
candidates, but two engines introduce a large mass penalty with a
relatively small improvement in capacity factor.

For this integration study, four engines were chosen for both the
Brayton and Stirling systems. This provides very close to a minimum
mass system, potential for acceptable complexity, and keeps the Stirling
engine size in the technologically feasible range.

5.3 POWER CONDITIONING LOSSES AND PUMPING POWER
To establish the required engine gross power output to produce 550

kWe net, power conditioning losses and pumping power were estimated, as
tabulated in Table 5-1.
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6.0 SP-100 REACTOR CHARACTERIZATION

The SP-100 reactor and shield dimensions, operating parameters,
and predicted lifetime as a function of reactor thermal power and
temperature were provided by General Electric.

Figure 6-1 shows the key dimensions of the reactor, shield, and
control and safety rod drives. These dimensions are for the Generic
Flight System (GFS) reactor which is rated at a thermal power of 2.4
mwt.

Nominal operating conditions for the reactor are tabulated in
Table 6-1. As noted in the table, the actual operating thermal power
is not exactly 2.4 mwt, but somewhat less, since both the Brayton and
Stirling systems operate at efficiencies allowing 550 kWe net output at
less than 2.4 mwt. The extent to which this can prolong system lifetime
is illustrated by Figure 6-2. This figure provides a family of curves
depicting reactor full power lifetime vs. reactor outlet temperature and
power level. Cladding strain and peak fuel temperature are limiting for
fuel lifetime effects at higher reactor outlet temperature (1400K and
higher). At the nominal 1355K outlet temperature, the predominant
factor is fuel burnup and, therefore, the life increases approximately
proportionately as the thermal power decreases.

15
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7.0 BRAYTON CHARACTERISTICS

The flow schematic and state points (temperature and pressure) for
the Brayton system are shown in Figure 7-1. A single primary lithium
loop transports heat from the SP-100 reactor to the primary heat
exchanger, which then heats the helium-xenon working fluid for the four
Brayton Toops. Only one of the Brayton loops is shown on the flow
schematic. Heat is rejected from each of the Brayton power conversion
loops by means of a cooler and a NaK heat rejection loop which also
cools the Brayton alternator. Each Brayton loop is cross coupled to
each of the four radiator panels so that if a power conversion failure
occurs, there is no loss of radiator area. ‘

A layout of the tuboalternator compressor (TAC) with overall
dimensions is shown in Figure 7-2 and pertinent performance
characteristics are shown in Table 7-1. The TAC has a radical inflow
turbine and a radical outflow compressor. Both the journal end thrust
bearings use compliant pad gas lubricated foil bearings. The gross
cycle efficiency is 25.7%. -
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8.0 STIRLING CHARACTERISTICS

The flow schematic and state points for the Stirling system are
shown in Figure 8-1. Only one of the four loops is shown. A primary
and secondary Li loop are used to transport heat to the Stirling engine
heater. Helium is used as the working fluid for the Stirling cycle.
Heat is rejected from the Stirling cooler through a NaK heat rejection
Toop, which is also used to cool the alternator. As with the Brayton
system, the heat rejection loops are cross-coupled to each radiator
panel. A layout of the Stirling engine with overall dimensions is shown
in Figure 8-2 and pertinent performance characteristics are shown in
Table 8-1. The Stirling engine is an opposed piston configuration to
minimize vibration. The Stirling gross cycle efficiency is 33%.
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9.0 BRAYTON INTEGRATION AND PERFORMANCE CHARACTERISTICS

9.1  SYSTEM CONFIGURATION

The overall deployed arrangement for the Brayton system is shown
in Figure 9-1. The radiator panels are in a vertical cruciform
configuration with the NaK headers located on the bottom of the radiator
panels. Vertical reflux condenser tubes are connected to the header and
reject the waste heat to space. The guard vessel radiators are located
between the main radiator panels. ,

For launch, the radiator panels would be folded 1ike an accordion
and therefore the individual panels would require flexible connections
between them for the NaK piping. The details of these radiator
connection were not worked out as part of this study.

The SP-100 Brayton nuclear power system, without the radiator
panels, is shown in plan and elevation in Figure 9-2. The overall
height of the integrated system is 9 meters and the diameter is 2.3
meters.

The reactor, shield and primary Li heat transport loop is shown in
Figure 9-3. The reactor shadow shield is used to prevent activation of
secondary loop components and coolants. The primary loops includes the
reactor, primary loop heat exchanger, dual wound EM pump, gas
accumulator/expansion tank, flow control venturi (not shown--see flow
diagrams), decay heat removal heat exchanger, and interconnecting
piping. The primary loop heat exchanger is Li to He-Xe. The primary
loop EM pump is a flat linear induction pump with redundant stators and
power supplies. The gas accumulator/expansion tank is of a flow-through
configuration to provide disengagement of the helium gas generated in
the reactor and to provide volume expansion of the Li in going from cold
to hot operating conditions. The decay heat removal heat exchanger
rejects reactor decay heat when the power conversion system is shut
down. This heat is transferred to the guard vessel, which in turn is
rejected to space. Flow to the decay heat exchanger during normal
operation is prevented by flow control venturi (see flow diagrams). All
primary loop components are electrically trace heated to provide for
controlled Li thaw during startup. '

The entire primary loop is contained within a stainless steel
guard vessel. This vessel is closed fitting around the reactor to
prevent uncovering the reactor, should a breach in the Li primary loop
occur. The vessel is borated in the vicinity of the reactor to minimize
the effect on reactor control from back scattered neutrons. The guard
vessel is passively cooled by reflux condenser pipes bonded to the outer
surface. Heat generated in the vessel is dissipated in a separate
radiator located above grade.
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FIGURE 9-2
550 kWe SP-100 BRAYTON
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FIGURE 9-3
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The power conversion equipment and associated gas ducting are shown in
Figure 9-4. Ducts leading to and from the primary loop heat exchanger pass
through the *regolith shield tank and are routed to the turbines, compressors
and gas coolers as shown in the figure. The turboalternator-compressors are
mounted vertically with the recuperators at the upper end. Control and safety
rod drives, hidden in this view, are located just above the regolith shield.

The regolith shield tank, Tocated between the primary loop equipment
gallery and the power conversion equipment, is filled with the local regolith
during installation and functions as a shutdown shield. The shielding
thickness was sized to provide an operating dose rate at grade levels of 50
rem/hr and a dose rate of 1 mrem/hr at 200 m from the reactor (which includes
scattering from above grade components). The dose rate at components located
above grade after shutdown is less than 10 mrem/hr, which is sufficiently Tow
to allow extended maintenance. If above grade access for maintenance is not
required the regolith shield can be eliminated.

9.2 BRAYTON COMPONENT CHARACTERISTICS

Additional detail on the Brayton system components alluded to in the
preceding system description is provided in Table 9-1 which includes a capsule
description of each component along with pertinent dimensions as appropriate.
For the main radiator, H,0 heat pipes were used up to a temperature equivalent
to an internal pressure of 6.9 mpa (1000 psia). For the Brayton system this
resulted in only a few Hg heat pipes (1%). Small cycle changes could be made
that would result in an all H,0 radiators.

9.3 BRAYTON SYSTEM MASS BREAKDOWN

A detailed mass estimate was made for the Brayton system, as
tabulated in Table 9-2. It can be noted that the total mass is different
depending if the output is 1000 Vdc or 1000 Vrms, 1 kHz.

9.4 BRAYTON SYSTEM PERFORMANCE SUMMARY

Performance parameters for the 550 kWe SP-100 Brayton system are
tabulated in Table 9-3. The net cycle efficiency of 23.8% permits the reactor
to operate at about 2.3 mwt instead of 2.4 mwt, thereby extending its 1life from
a nominal 7 years to 7.6 years. It should be noted that this is a
mass-optimized design point and operating characteristics could be varied (at
the expense of increased mass) to increase efficiency or decrease radiator
area. This was illustrated in the initial optimization analysis shown in
Figure 5-1. As the radiator area is increased, efficiency of the cycle
increases. This results since the cycle temperature ratio increases
(compressor inlet temperature decreases).
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FIGURE 94
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10.0 STIRLING INTEGRATION AND PERFORMANCE CHARACTERISTICS

The overall deployed arrangement for the Stirling system is shown
in Figure 10-1. This arrangement is similar to that for the Brayton
system. The guard vessel radiators are not shown in this illustration.
Because of the smaller size of the Stirling main radiators vs. the
Brayton, folding the panels for launch would be expected to be
substantially easier from an assembly standpoint.

The SP-100 Stirling nuclear power system, without the radiator
panels, is shown in elevation in Figures 10-2 and 10-3. The overall
height of the integrated system is 7.9 meters and the diameter is 2.45
meters.

The reactor, shield, and primary Li heat transport loop is shown
in Figure 10-4. The components of the primary Li loop are essentially
the same as for the Brayton system except for the four primary loop heat
exchangers which are Li to Li and therefore more compact than the Li to
He-Xe heat exchangers of the Brayton system.

The power conversion equipment and associated Li piping are shown
in Figure 10-5. Li pipes leading to and from the primary loop heat
exchangers pass through the optional regolith shield tank and are routed
to the Stirling engines as_shown in the figure. Control and safety rod
drives, not shown in the illustration, are located just above the
regolith shield, which is sized to the same radiation dose rates as the
Brayton shield.

10.1 STIRLING COMPONENT CHARACTERISTICS

Additional detail on the Stirling system components is provided in
Table 10-1 which includes a capsule description of each component, along
with pertinent dimensions as appropriate. It can be noted for the main
radiator about 30% of the heat pipes use Hg as the working fluid.

10.2 STIRLING SYSTEM MASS BREAKDOWN

A detailed mass estimate was made for the Stirling system, as
tabulated in Table 10-2. It can be noted that the total mass is
different depending on whether the output voltage is 1000 Vdc or 1000
Vrms, lkHz.

10.3 STIRLING SYSTEM PERFORMANCE SUMMARY

Performance parameters for the 550 kWe SP-100 Stirling system are
tabulated in Table 10-3. Because the Stirling system optimizes at 29.7%
efficiency (higher than the Brayton system), the reactor full power
operating life is extended to 9.6 years. As with the Brayton system,
the Stirling system is mass-optimized and therefore efficiency could be
increased or radiator area decreased with a concomitant increase in
system mass.
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FIGURE 10-2
550 kWe SP-100 STIRLING
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FIGURE 10-3
550 kWe SP-100 STIRLING
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FIGURE 10-4
550 kWe SP-100 STIRLING
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FIGURE 10-5
550 kWe SP-100 STIRLING
SECONDARY LOOP AND
POWER CONVERSION SYSTEM
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11.0 SYSTEM COMPARISON

As shown by this study, either a Brayton or a Stirling power conversion
subsystem can be integrated with the SP-100 reactor to produce 550 kw of
electrical power continuously for more than 7 years.

Figures 11-1 through 11-3 show the layouts of the two systems side-by-side
to facilitate comparison of their characteristics. The salient differences
between the two systems are:

Radiator area for the Stirling system is only 40% of that for the
Brayton system. This would make the Stirling system easier to
package for launch, transit, and landing on the moon. Radiator
deployment would also be simplified.

The Stirling system is less congested than the Brayton system
because the lithium piping is much smaller in size than the
corresponding He-Xe ducting, and there are fewer (and smaller)
components in the power conversion system. As a result, the
Stirling system envelope is over a meter shorter than the Brayton
system envelope. These Stirling system characteristics probably
would render it more maintainable than the Brayton system, although
it should be emphasized that a maintenance study has not yet been
performed. The Stirling engine, however, is more complex
containing the Brayton equivalent of the primary loop heat
exchanger, recuperator, and cooler. This presents not only an
engineering challenge, but results in a more massive engine than
the Brayton turboalternator, compressor, and recuperator
combination.

The Brayton system has gas lines penetrating the regolith shield
while the Stirling has much smaller liquid metal lines. While no
detailed shielding calculations were performed, the Brayton would
have a significantly increased streaming problem, which would
result in a larger shield. '

Finally, the performance parameters of the two systems are tabulated in

Table 11-1.

On a mass basis, the Brayton system offers a 2% advantage for 1000

Vrms, 1 kHz output, and the Stirling a 5% advantage at a 1000 Vdc output. The
Stirling system has a factor of 3.2 area advantage and provides a 26% longer
reactor full power operating life.
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12.0 SYSTEM CONTROL AND PARTIAL POWER OPERATION

12.1 REACTOR CONTROL

The primary control for the reactor is with outlet coolant
temperature. Outlet coolant temperature is sensed and control segments
are adjusted to maintain a value within certain set point limits. Since
the reactor has a negative temperature coefficient of reactivity, power
demand from the reactor is automatically adjusted. For example, if the
power system were operating at full power and one of the engines were
turned off, the power demand from the reactor would be reduced by about
one-third. This lower power demand is reflected in a lower coolant at
(higher average temperature). This higher average coolant temperature
reduces the reactor thermal power because of the strong negative
temperature coefficient of reactivity. Some trim of the control
segments would most Tikely occur to maintain a constant reactor outlet
temperature.

12.2 STARTUP AND SHUTDOWN

The reactor startup is initiated by first thawing the lithium
loops using electrical trace heaters. With all the lithium thawed, the
primary loop pump(s) are turned on to about 25% flow rate and the safety
rods are withdrawn. Reactivity (from the control segments) is then
inserted at a rather rapid rate until just before criticality. The
reactivity insertion is then adjusted to a moderate rate. This rate is
selected to allow the reactor’s negative temperature coefficient of
reactivity to modify the rate of reactor power increase. When
criticality is achieved and sensible heat occurs, reactivity continues
to be inserted to increase coolant temperature. During this period,
reactor power is controlled by the loop heat losses.

As this portion of the reactivity insertion sequence continues, an

~ engine start command is triggered when the reactor outlet coolant

temperature reaches the engine self-sustaining temperature ratio. Each
engine module is started using the alternator as a motor. Reactivity
insertion continues until full power is achieved. The e1ectrica1 power
generated is d1ss1pated in a parasitlc 1oad radiator.

About 25K before the reactor set po1nt is reached the central -
control processor switches the control mode from StAAEUp to operating
(reactor outlet temperature). The reactivity insertion is changed to a
slow rate to prevent temperature overshoot. = o

Shutdown is just the reverse of startup. Reactivity is withdrawn
until the engines shut down. Reactivity is further withdrawn until the
reactor is subcritical or it can be maintained in a warm standby
condition.
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12.3 PARTIAL POWER OPERATION

The power systems can be operated at less than the normal power of
550 kWe by one or a combination of the following methods:

. Use of a parasitic Toad resistor (PLR) bank to dissipate
excess power by radiating it to space at a high temperature.

. Complete shutdown of individual engines can achieve net
power output steps of 183 kWe, 367 kWe, and 550 kWe.

. Engines can be "throttied", causing them to operate at less
than rated power.

. Reactor outlet temperature to lower cycle efficiency.

The simplest control scheme uses a parasitic load radiator for
partial power operation, with the reactor and power conversion engines
operating at a constant full rated power. The disadvantage of this
scheme is that, even if the required electrical output is substantially
less than full power much of the time, the reactor operating lifetime
remains the same since it is operating at full power all of the time.

To improve reactor lifetime for reduced electrical power demand, a
combination of parasitic load control and shutdown of individual engines
can be used. For this type of power control, the reactor thermal power
could be reduced in one-third increments. Such a control scheme would
not require additional controls since these functions are required for
other reasons. Such a scheme is suited for wide savings in electrical
power demand over long periods of time.

For finer control each engine can be individually throttled. For
the Brayton engine, this is accomplished by a gas management sytem that
varies the inventory of He-Xe working fluid. For the Sirling engine,
this is best accomplished by having split alternator field windings
(usually thre). Thus, three discrete power levels for each engine could
be obtained. Such a system would be most effective for minimizing
reactor thermal power for a given electrical power demand. A parasitic
load control would most likely still be required since it may not be
possible to throttle engines at a rate consistent with rapid load
changes. This control scheme would require the addition of a gas
management system for the Brayton system and addition field windings
with switching circuits for the Brayton system.

The final scheme for reduced power operating is to reduce the
reactor outlet temperature set point. Reducing the reactor outlet
temperature effectively reduces the power system cycle efficiency. A
parasitic load would still be required since the reactor temperature
response is much slower than electrical load change transients. Since
the cycle efficiency is being reduced at reduced power demand, the
reactor thermal power will not be proportional to the electrical output
power.
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The most optimum power control scheme will require additional
studies and more information on the lower base architecture and power
duty cycle. For the purpose of this study a parasitic load radiator was
;nc;uded in the mass estimate capable of dissipating the full 550 kWe

oad.

12.4 FAILED ENGINE OPERATION

There are two possible modes of operation for a system having
redundant power converters. These two modes for a system with four
installed engines, any three of which could supply full power, are as
follows:

1. Operate three engines at full power and maintain the fourth
shutdown in a standby condition.

2. Operate all four engines at 75% of full power (for full
power output)

iﬁwfhe %irst opfidn; SHEh]d anroperating ébéfﬁe failure occur,'it 7

would be positively shutdown (using the alternator as a brake). The
standby engine could then be started up using the alternator as a motor.
In the second option, should one of the engines fail, it would be
positively shutdown and the remaining three engines brought to full
power. For the purpose of this study, performance predictions were :
based on having three engines operating at full power.

As with the partial power options, additional studies are required
to determine the optimum engine operating mode. Previous studies
performed on similar systems favor the three operating, one standby
operating mode from a reliability standpoint, however, this is dependent
on the failure rates used. With this mode, the standby engine would be
started up every few months to assure operability. Many people favor
operating all engines at reduced power to assure full power can be
achieved should an operating engine fail.
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13.0 SYSTEM INSTALLATION AND MAINTENANCE

Previous studies (Reference 1) were performed to evaluate methods to
install the power systems on the lunar surface. In addition, separate studies
(Reference 2) were conducted to evaluate methods to robotically perform
maintenance. The following reviews the results of these studies.

13.1 SYSTEM INSTALLATION

The typical steps in installing the power system are shown schematically
in Figure 13.1. The first step is to excavate a crater in the lunar regolith.
One method of making this excavation is the use of pyro-technic devices or
shaped charges. After the rough crater is made, the hole is cleared and the
power system installed. Installation can be made by either a lunar excursion
vehicle payload unloader (LEVPU) or using a block and tackle arrangement as
discussed in Reference 1. After the installation in the crater is completed,
the hole is back-filled. Some compaction may be required depending on the soil
conditions. After back-filling, the radiators are deployed, the regolith
shield tank filled, and the electrical and control connections made. The
system is then ready for startup and operation.

It was assumed that the installation operations would be performed
robotically. Astronauts would be used as backup in the event of a failure or
unplanned occurrence. Operations required of the robot are as follows:

1. Placement of pyro-technic devices - requires drilling small holes
and installing pyro-technics.

2. Digging - Requires cleaning up of excavated hole, back-filling of
regolith, scoping regolith for filling the shield tank, and digging
and back-filling trenches for buried power cables.

3. Lifting and Placing - Requires lifting the power system and placing
it in the excavated hole and beating the power and electronic
equipment.

4. Manipulation - Requires making electrical connections and radiator
deployment.

5. Cable Laying - Requires laying of power and control cables.
13.2 MAINTENANCE

A study was performed in Reference 2 to evaluate maintenance of various
components on the power systems described in this report. The Brayton system
was selected for this study because of the more complex integration compared to

the Stirling system. All maintenance described below could be performed on the
Stirling system, however it would be more easily performed.
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Typical Power System Installation Steps

Figure 13-1.
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To perform the maintenance, it was assumed to be performed robotically
and the robot would contain two 7 degree-of-freedom manipulator arms attached
to a single body, all of which were mounted on a four wheeled surface vehicle.
The manipulator arms were similar to that being developed by Spar Aerospace
Ltd’s (Toronto, Ontario Canada) Special Purpose Dexterous Manipulator (SPDM).
The wheeled surface vehicle was assumed to be similar to "Robie", a four-
wheeled surface vehicle being developed by the Jet Propulsion Laboratory. It
was also assumed that all operations would be performed autonomously, however,
telerobotic methods could be used if autonomous technology is not sufficiently

advanced.

Based on the robotic capabilities described above and the Brayton power
system described in this report, the following maintenance tasks appear
feasible of being performed.

1.

Removal and replacement of a failed reactor PCU such as a Brayton
or Stirling engine.

Removal and replacement of a failed control rod/drum’s electro-
mechanical actuator.

Removal and replacement of damaged radiator panels.
Removal and replacement of liquid metal coolant pumps.

Removal and replacement of failed power conditioning and control
units.

For Tasks 1, 3, and 4, the following steps to be performed by the robot
would most Tikely be required:

a.

g.

Drain and scavenge working fluids from component subsystem to be
replaced.

Cut pipe lines and disconnect electrical wiring from component
being replaced.

Cover/cap exposed piping to prevent lunar dust contamination.
Remove and replace component.
Reconnect pipe 1ines and electrical wiring.

Pull a vacuum down on all process piping to remove contaminant
gases trapped inside.

Refill process piping with working fluid and cover gas.

Tasks 2 and 5 require no cutting of piping lines and handling of working

fluids.

Hence these tasks require fewer steps and would be simpler to perform.
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The removal and replacement of a power conversion unit and control
rod/drum actuator was investigated in more detail.

The design of the Brayton power system presented in this report was
performed on a computer aided design program called “Autocad". The robot
design was also loaded on to "Autocad" to study various views and
configurations. The robot can be moved to allow the designer to mechanically
check for clearances, interferences, and fit-ups. Figure 13-2 gives the design
features that must be incorporated into the power conversion unit assembly for
enabling that component to be removed and replaced. These features are broken
down into structural support features and power conversion unit features. It
was found the rover could fit between radiator panels, however, the vessel
cooling radiators would have to be relocated or removed to allow this access.
It was concluded that with some minor design modifications, the power
conversion unit could be removed robotically.

Figure 13-3 shows the design features of the upper reactor system
assembly for removal and replacement of a drive control/safety rod actuator
mechanism using the Robie/SPDM rover/manipulator robot. Here the end effector
is a specialized socket racket driver attached directly to the manipulator’s
wrist (replacing the welding/cutting head attachment discussed in the paragraph
above for power conversion unit R&R). The figure shows that one of the two
SPDM 7 degree-of-freedom arms is used for SPDM stabilization by reacting out
applied loads near the bolt location rather than transmitting them all the way
back through the wheels of the rover. It appears from the preliminary layout
that the current reactor system design is adequate for providing robotic access
to the internal control/safety drive mechanisms buried within the four power
conversion units. , . .
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14.0 CONCLUSIONS AND RECOMMENDATIONS

The results of this study concluded that both the Brayton and Stirling
systems integrate reasonably well with the SP-100 reactor. The Stirling power
system was somewhat easier to integrate because it had fewer components and
smaller pipe sizes. By folding the radiator panels, both systems could be
launched in a single package.

The design of the power system was such that no component assembly was
required at the Tunar site. There are, however, significant installation
operations that need to be performed prior to startup. These operations will
require multiple robotic skills such as digging, placement, cable laying, and
manipulation. Separate studies performed on maintenance indicated that, with
modest extrapolation of robotic technology, all the above grade components
could be removed and replaced. To perform these operations, modest design
changes would have to be made to the power system.

Performance estimates made for both systems indicated their masses are
about equal. The Stirling system has a smaller radiator area and a longer full
power reactor lifetime because of its higher efficiency. The study concluded
that there was no clear advantage of either the Brayton or Stirling system.

Based on the results of this study, it is recommended that alternate
configurations be evaluated to minimize the installation operations. These
include such things as having an integral shield to eliminate the need to
excavate and sue local regolith shield material. The power system could also
be integral with a Tunar lander to eliminate the need for surface handling
equipment.

Recent tests by General Electric have shown that the lunar regolith is
not compatible with the refractory alloys of construction. Consequently, the
design shown in this report must be modified so that all refractory alloy
components are contained in a dust tight enclosure. Such on enclosure would
complicate maintenance, consequently, this area needs to be reevaluated.
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