CONCEPTS AND ANALYSIS FOR EXPLDRATION MISSIONS. IMPLEMENTATION PLAN AND ELEMENT

Unclas DESCRIPTION DOCUMENT (DRAFT FINAL). VOLUME 5: NUCLEAR ELECTRIC PROPULSION VEHICLE (Boeing Aerospace and Electronics Co.) 460 p

Space Transfer Concepts and Analyses for Exploration Missions

NASA Contract NAS8-37857

Nuclear Electric Propulsion Implementation Plan and Element Description Document

Boeing Aerospace and Electronics
Huntsville, Alabama

G. R. Woodcock

STCAEM
Project Manager
Boeing Aerospace and Electronics

1

Space Transfer Concepts and Analyses for Exploration Missions

NASA Contract NAS8-37857

Nuclear Electric Propulsion Implementation Plan and Element Description Document

Boeing Aerospace and Electronics
Huntsville, Alabama

Documentation Set:
D615-10026-1 IP and ED Volume 1: Major Trades, Books 1 and 2 D615-10026-2 IP and ED Volume 2: Cryogenic/ Aerobrake Vehicle D615-10026-3 IP and ED Volume 3: Nuclear Thermal Rocket Vehicle D615-10026-4 IP and ED Volume 4: Solar Electric Propulsion Vehicle D615-10026-5 IP and ED Volume 5: Nuclear Electric Propulsion Vehicle D615-10026-6 IP and ED Volume 6: Lunar Systems
1

Implementation Plan and Element Description Document Nuclear Electric Propulsion (NEP) Table of Contents

Section Page
Cover Sheet 1
Title Page 2
Table of Contents 3
Symbols, Abbreviations and Acronyms 4
I. Evolution of the Concept. 11
A. Concept Development 13
B. Architecture Matrix 45
II. Requirements, Guidelines and Assumptions 137
A. Reference and Alternate Missions. 139
B. Performance Parametrics 151
C. Levied Requirements. 173
D. Derived Requirements 177
E. Guidelines and Assumptions 187
III. Operating Modes and Options 191
A. Reference. 193
IV. System Description of the Vehicle 217
A. Parts Description 219
B. Weights Statement. 241
C. Artificial Gravity 247
V. Support Systems 261
A. Space 263
B. Ground. 383
VI. Implementation Plan. 397
A. Technology Needs and Advanced Plans 399
B. Schedules. 425
C. Facilities 437
F. Costs 445

Symbols, Abbreviations and Acronyms

ACRV	Advanced crew recovery vehicle
ACS	Attitude control system
AFE	Aerobrake Flight Experiment
A\&I	Attachment and integration
Al	Aluminum
ALARA	As low as reasonably achievable
ALS	Advanced Launch System
ALSPE	Anomalously large solar proton event
am	Atomic mass (unit)
AR	Area ratio
ARGPER	Argument of perigee
ARS	Atmospheric revitalization system
art-g	Artificial gravity
asc	Ascent
ASE	Advanced space engine
AU	Astronomical Unit ($=149.6$ million km)
BIT	Built-in test
BITE	Built-in test equipment
BLAP	Boundary Layer Analysis Program
BFO	Blood-forming organs
BMR	Body mounted radiator
C	Degrees Celsius
CAB	Cryogenic/aerobrake
CAD/CAM	Compter-aided design/computer-aided manufacturing
CAP	Cryogenic all-propulsive
$\mathrm{Cd}_{\text {d }}$	Drag coefficient
CELSS	Closed Environmental Life Support System
CHC	Crew health care
CG	Center of gravity
C_{L}	Lift coefficient
cm	Centimeter $=0.01$ meter
c / m	Crew module
CM	Center of mass
c/o	Check out
C of F	Cost of facilities
conj	Conjunction
COSPAR	Committee on Space Research of the International Council of Scientific Unions
CO 2	Carbon dioxide
Cryo	Cryogenic
C3	Hyperbolic excess velocity squared (in $\mathrm{km}^{2} / \mathrm{s}^{2}$)
C\&T	Communications and Telemetry
CTV	Cargo Transport Vehicle (operates in Earth orbit)
d	days
DDT\&E	Design, development, testing, and evaluation
DE	Dose equivalent
deg	Degrees
desc	Descent

$\begin{aligned} & \text { DMS } \\ & \mathrm{dV} \end{aligned}$	Data management system Velocity change ($\Delta \mathrm{V}$)
EA	Earth arrival
E art	Earth arrival
Ec	Modulus of elasticity in compression
ECCV	Earth crew capture vehicle
ECWS	Element control work station
ECLSS	Environment control and life support system
EP	Elecric propulsion
ESA	European Space Agency
e.s.o.	Engine start opportunity
ET	External Tank
ETO	Earth-to-orbit
EVA	Extra-vehicular activity
F_{c}	Circulation efficiency factor
FD\&D	Fire Detection and Differentiation
$\mathrm{F}_{\text {ew }}$	Life support weight factor
FEL	First element launch
$\mathrm{Ff}^{\text {f }}$	Specific floor count factor
$\mathrm{Ffa}^{\text {a }}$	Specific floor area factor
F_{i}	Aerobrake integration factor
F1	Specific length factor
F_{n}	Normalized sparial unit count factor
F_{0}	Path options factor
F_{p}	Useful perimeter factor
F_{p}	Parts count factor
Fpr	Proximity convenience factor
F_{r}	Plan aspect ratio factor
${ }_{\text {Frs }} \mathrm{FS}$	Flight support equipment
$\mathrm{F}_{\text {s }}$	Vault factor
Fss	Safe-haven split factor
F_{u}	Spatial unit number factor
F_{v}	Volume range factor
FY88	Fiscal Year 1988 (=October 1, 1987 to September 30, 1988. Similarly for other years)
	Acceleration in Earth gravities (=acceleration/9.80665m/s ${ }^{2}$)
GCNR	Gas core nuclear rocket
GCR	Galactic cosmic rays
GEO	Geosynchronous Earth Orbit
GN2	Gaseous nitrogen
GN\&C	Guidance, navigation, and control
GPS	Global Positioning System
Gy	Gray (SI unit of absorbed radiation energy $=10^{4} \mathrm{erg} / \mathrm{gm}$)
hab	Habitation
HD	High Density
HEI	Human Exploration Initiative (obsolete for SEI)
HLLV	Heavy lift launch vehicle
hrs	Hours

hyg w	Hygeine water
HZE	High atomic number and energy particle
H 2	Hydrogen
$\mathrm{H}_{2} \mathrm{O}$	Water
ICRP	International Commission on Radiation Protection
IMLEO	Initial mass in low Earth orbit
in.	Inches
inb	Inbound
IP\&ED	Implementation Plan and Element Description
IR\&D	Independant research and development
Isp	Specific impulse (=thrust/mass flow rate)
ISRU	In-situ resource utilization
JEM	Japan Experiment Module (of SSF)
JSC	Johnson Space Center
k	klb
keV	Thousand electron volt
kg	Kilograms
klb	Kilopounds (thousands of pounds. Conversion to SI units=4448 N/klb)
klbf	Kilopound force
km	Kilometers
KM	Kilometers
KM/Sec	Kilometers per second
KM/SEC	Kilometers per second
ksi	Kilopounds per square inch
LCC	Life cycle cost
LD	Lift-to-drag ratio
LD	Low density
LDM	Long duration mission
LEO	Low Earth orbit
LET	Linear energy transfer
LEV	Lunar excursion vehicle
LEVCM	Lunar excursion vehicle crew module
Level II	Space Exploration Initiative project office, Johnson Space Center
LH2	Liquid hydrogen
LiOH	Lithium hydroxide
LLO	Low Lunar orbit
LM	Lunar Module
LOR	Lunar orbit rendezvous
LOX	Liquid oxygen
LS	Lunar surface
LTV	Lunar transfer vehicle
LTVCM	Lunar transfer vehicle crew module
L2	Lagrange point 2. A point behind the Moon as seen from the Earth which has the same orbital period as the moon.
m	Meters
[MarsGram	Western Union interplanetary telegram]
[MARSIN	Martian pornography]
MASE	Mission analysis and systems engineering (same as Level II q.v.)
MAV	Mars ascent vehicle

$\mathrm{M} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$	Ballistic coefficient (mass / drag coefficient imes area)
MCRV	Modified crew recovery vehicle
m_{m}	Mass of electron
MEOP	Maximum expected operating pressure
MeV	Million electron volt
MEV	Mars excursion vehicle
MLI	Muli-layer insulation
mm	Millimeter ($=0.001$ meter)
MMH	Monomethylhydrazine
MMV	Manned Mars vehicle
MOC	Mars orbit capture
MOI	Mars orbit insertion
mod	Module
M\&P	Materials and processes
MPS	Main propulsion system
MR	Mixture ratio
$\mathrm{m} / \mathrm{sec}$	Meters per second
MSFC	Marshall Space Flight Center
Msi	Million pounds per square inch
mim	Merric tons (thousands of kilograms)
mT	Metric tons
MTBF	Mean time between failures
MTV	Mars transfer vehicle
MWe	Megawatts electric
m^{3}	Cubic Meters
N	Newton. Kilogram-meters per second squared
n/a	Not applicable
NASA	National Aeronautics and Space Administration
NCRP	National Council on Radiation Protection
NEP	Nuclear-electric propulsion
NERVA	Nuclear engine for rocket vehicle application
NTP	Nuclear thermal propulsion (same as NTR)
NSO	Nuclear safe orbit
NTR	Nuclear thermal rocket
N2O4	Nitrogen tetroxide
OSE	Orbital support equipment
OTIS	Optimal Trajectories by Implicit Simulation program
outb	Outbound
O2	Oxygen
PBR	Particle bed reactor
Pc	Chamber pressure
PEEK	Polyether-ether ketone
PEGA	Powered Earth gravity assist
P/L	Payload
POTV	Personnel orbital transfer vehicle
pot w	Potable water
PPU	Power processing unit
prop	Propellant
psi	Pounds per square inch
PV	Photovoltaic

Q	Heat flux (Joules per square centimeter)
Q	Radiation quality factor
RAAN	Right ascension of ascending node
RCS	Reaction control system
Re	Reynolds number
RF	Radio frequency
RMLEO	Resupply mass in low Earth orbit
ROI	Return on investment
RPM	Revolutions per minute
RWA	Relarive wind angle
R\&D	Research and Development
SAA	South Atlantic Anomaly
SAIC	Science Applications International Corporation
SEI	Space Exploration Initiative
SEP	Solar-electric propulsion
SI	International system of units (metric system)
SiC	Silicon carbide
SMA	Semimajor axis
sol	Solar day (24.6 hours for Mars)
SPE	Soalr proton events
SRB	Solid Rocket Booster
SSF	Space Station Freedom
SSME	Space Shutle Main Engine
STCAEM	Space Transfer Concepts and Analysis for Exploration Missions
stg	Stage
surf	Surface SI unit of dose equivalent = Gy
Sv	Sieviert (SI unit of dose equivalent $=\mathrm{Gy} \mathrm{x} \mathrm{Q}$
S1	Distance along aerobrake surface forward of the stagnation point
S 2	Distance along aerobrake surface aft of the stagnation point
S3	Distance along aerobrake surface starboard of the stagnation point
t.	Metric tons (1000 kg)
TBD	To be determined
Tc	Chamber temperature
TCS	Thermal control system
TEI	Trans-Earth injection
TEIS	Trans-Earh injection stage
t.f.	Tank weight factor
THC	Temperature and humidity control
TMI	Trans-Mars injection
TMIS	Trans-Mars injection stage
TPS	Thermal protection system
TT\&C	Tracking, telemetry, and control
T/W	Thrust to weight ratio
UN-W/25Re	Uranium nitride - Tungsten/25\% Rhenium reactor fuel
VAB	Vehicle Assembly Building
VCS	Vapor coolled shield
Vinf	Velocity at infinity

$\mathrm{WBe}_{2} \mathrm{C} / \mathrm{B}_{4} \mathrm{C}$	Tungsten beryllium cabide/Boron cabide composite
WMS	Waste management system
W/O	Without
WP-01	Work package 1 (of SSF)
w/sq cm	Watts per square centimeter (should be Wcm^{-2})
Z	Atomic number
zero g	An unaccelerated frame of reference, free-fall
[order: numbers followed by greek letters]	
100K	$\leq 100,000$ particles per cubic meter larger than 0.5 micron in diameter
7 7 7	Where $\mathrm{n}=(0,2-6)$: Boeing Company jet transport model numbers
q	Kelvin (K) _
+	Positive charge equal to charge on electron
-	Charge on electron
$\Delta \mathrm{V}$	Change in velocity
5	Standard deviation
$\mu \mathrm{g}$	Microgravity (also called zero-gravity)

This page intentionally left blank

I. Evolution of Concept

This page intentionally left blank

Concept Development

D615-10026-3

EVOLUTION OF THE NUCLEAR ELECTRIC (NEP) VEHICLE

TECHNICAL ARCHITECTURE PRESUMED LEVEL I REQUIREMENTS -

 During the course of the STCAEM study, and particularly during the 90 Day Stucty, many SEI (then HED) ransportation requirements were generated by Office of Exploration Level II. These are reported as appropriate and necessary in various sections of this report, as well as in the STCAEM Implementation Plan \& Element Description Document technical volumes. Here, space only permits a summary discussion of the Level I requirements adopted by STCAEM as they evolved during the course of the study. The concepts developed and analyzed ultimately were to accommodate the in-space transportation functions required to support the buildup of a permanent presence on the Moon and initial human exploration of Mars. Thus, our Level I requirement was simply to deliver cargo reliably to the surfaces of the Moon and Mars, and to get people to those places and back safely. Vehicles in support of missions to other destinations are not part of SEI per se, and were not addressed by STCAEM. Planet surface system characteristics and Earth-to-orbit (ETO) launch vehicle characteristics were adopted as needed for manifesting purposes, largely intact from other sources. No design work was performed for these two categories. In addition, the mission planning horizon was limited to the year 2025, about 35 years from now.The chief Level II requirement governing the dimensions of the vehicle concepts we developed came to us during the 90 Day Stucty, and was a crew size of 4 for Mars missions. Subsequently, STCAEM performed a simple skill mix analysis or these long-duration missions. Our result was that doubling up on critical skills (for redundancy), given reasonable expectations of how many skills each crew member could become expert in, requires in fact a minimum of 6 7 crew members for Mars missions. For the sake of consistency, our vehicle concepts are shown comparable to the 90 Day Stucty results, sized for four crew. Impacts accruing from larger crew sizes are discussed in Section x.3.

CONCEPT DEVELOPMENT METHODOLOGY - A vehicle concept emerges gradually through the iterative combination of requirements analysis, subsystems analysis, mass synthesis, performance analysis and configuration design. Because of the cascading, cause-and-effect nature of specific tectnical decisions in this cyclic process, the ability for a particular concept to remain fully parametric is incrementally lost, sacrificed for depth of detailing. The need to penetrate deeply even at the conceptual stage is twofold: (1) to uncover subtle integration interactions
whose ramifications fundamentally revise the concept as they reflect back up the information hierarchy; and (2) to enable the producrion of graphical images of the concepts capable of being communicated widely but grounded firmly in engineering detail. If circumstances allow the concept development process to engage many cycles of reflexive adjustment, from requirements all the way down through subsystem detailing, the design oscillations subside eventually and the product that emerges is a robust and defensible concept. Basic differences in problems posed and solutions engineered lead concept developments in different directions. "Like" problems and solutions gravitate together, their recombination and resolution results in distinct, identifiable vehicle concepts which constitute vehicle archerypes. A concept is archetypal if it spawns concept progeny whose ancestry is clear, and if in so doing its salient features recognizably survive subsequent refinement, development and scaling. The ultimate purpose of the STCAEM Conceprs and Evolution tasks was to generate, analyze, evaluate and describe such vehicle archetypes, and the role they could play in human space exploration missions.

The STCAEM architecture analysis identified seven major classes of transportation architecture for SEI lunar and Mars missions. Some are derived from different propulsion technology candidates; some are derived from distinct mission philosophies independent of propulsion method; most have many sub-options. Vehicle archerypes are keyed more closely to propulsion method than to mission mode, however, so we found that all seven SEI transportation architectures can be accomplished by derivative combinations of just five archetypal Mars transfer vehicle (MTV) concepts, two archetypal Mars excursion vehicle (MEV) concepts, and one archerypal lunar transportation family (LTF) concept. The concept evolution of these archetypes is outlined in the Major Trades P\&ED book.

DESIGN AND NECKDOWN CRITERIA - STCAEM concept development was punctuated by four "neckdowns", which winnowed down the option candidates generated at each successive level of detail throughout the study. The four neckdowns were intended to result in: (1) feasible options, based on promising propulsion technologies capable of performing SEI-class missions; (2) preferred options, representing the handful of candidates whose performance and technological readiness were judged to warrant detailed study; (3) integrated concepts, vehicle archetypes developed sufficiently to uncover their major integration concems and architectural context ; and (4) detailed concepts, based on the reconciled integration of traded subsystems. The 90 Day Study occurred such that the first two neckdowns were effectively reversed; cryogenically propelled, aerobraking technology was necessarily preferred at that time, due to
depth of understanding. However, STCAEM later rounded out the picture by completing all four neckdown activities, in an ongoing manner throughout the study.

Studying the program architecture implications of various technology options for SEI missions led to the conclusion that the most generally accessible discriminators, cost and risk, are driven by more subtle technical discriminators than, for instance, initial mass in low Earth orbit (IMLEO). These can be grouped into three broad categories: feasibility, flexibility, and multi-use design. As indicated above, feasibility was the first filter for all concepts considered by STCAEM. Flexibility has three components: (1) robustness, which is the ability to perform nominally despite variable or unanticipated conditions; (2) resiliency, which is the ability to recover from accidental delays or mishaps; and (3) evolurion, which is an adaptation over time to changing requirements. Flexibility is thus a measure of a program's technical strength and safety in the face of variable extrinsic factors. Multi-use design has two components: (1) re-usability, which means using the same hardware item more than once; and (2) commonality, which means using the same hardware design in more than one setting. Multi-use design is thus a measure of a program's cost-effectiveness and intrinsic longevity. These two key architecture drivers were paramount in interpreting the results of STCAEM's technical trade studies, and figured prominently in the development of element concepts.

MARS TRANSPORTATION - Four Mars transfer propulsion candidates survived all STCAEM neckdowns: cryogenic chemical, nuclear thermal, nuclear electric, and solar electric. Analysis of aerobraking resulted in two performance ranges of interest for Mars entry (hypersonic $L / D=0.5$, and $L / D=1.0$), as well as the use of high-energy aerobraking (HEAB) for capture at Mars. Consequently, the five archetypal MTV concepts are based respectively on: cryogenic/aerobraking (CAB), cryogenic all-propulsive (CAP), nuclear thermal rocket (NTR), nuclear electric (NEP), and solar electric (SEP) propulsion technologies. The two archetypal MEV concepts are based on the "low" and "high" L/D performance ranges analyzed.

NER - Nuclear electric propulsion represents a power-rich STCAEM approach to extremely efficient, low-thrust propulsion for long range missions. The NEP concept archetype we developed specifically addresses several important system interactions:

1) We started with power plant schematics and state-point characterizations from Rocketdyne. To these we added mission performance requirements consistent with the rest of the STCAEM
study, and developed a hardware concept that could be modeled, measured and specified in detail. The result is the-first NEP concept to detail the power system plumbing, from reactor to radiator.
2) The high equipment density and challenging operating conditions of a dynamic power conversion system introduces concems about mission safety due to meteoroid impacts and equipment reliability, respectively. Redundancy solutions to the critical power equipment failure problem (analogous to redundant valving and manifolding for chemical propulsion systems) introduce complex plumbing implications for NEP.
3) The most immediately recognizable feature of NEP cartoons in the exploration mission literature is their large radiator area, typically shown simply as a conical device following the contour of a protected zone behind a small radiation shadow shield. Engineering analysis to develop a modular, buildable radiator subsystem integrated with the rest of the vehicle, and to minimize shield mass, challenges this simplified picture.
4) The real possibility of an eventual requirement to provide essentially continuous artificial gravity during thrusting portions of an electric propulsion mission leads directly to serious configuration complications. In particular, precession of the angular momentum vector, and transfer of high electrical power levels across rotating joints pose challenging concept and technology problems.

Early on we tried to develop a vehicle concept that could easily optimize for both microgravity and artificial gravity mission profiles, that had the engines at the center of rotation, thrusting normal to the vehicle's long axis. The geometry requirements proved incompatible, and we subsequently allowed designs for the two types of missions to diverge. The microgravity version became an axial vehicle, with engines at the stern, payload attached around the spine, and power system at the bow. From the reactor's standpoint, the entire vehicle looks like a thin line; this permits a small, carefully-shaped shadow shield to be used, which limits its mass. The artificial gravity version was much more complex, consisting fundamentally of the addition of a cross-axis outrigger amidships for the engines so they could be despun and located near the axis of . rotation. This configuration went through many stages during which detailed alternatives were sequentially explored. It is reported on more fully later in this section, along with the other artificial gravity concept development results.

Our archerype features two redundant reactors, five identical power conversion systems (2 of which are spares), and large expanses of stiffened radiator planes, comprised of over five thousand identical, finned, 30 m long, liquid-sodium heat pipes. The structural spine of the vehicle is a lightweight truss, along which are arrayed all the armored fluid-carrying loops of the power production and conversion system. The "front end" of the vehicle, containing reactors and dynamic conversion machinery, was configured both to allow straight-line access for robotic maintenance activity and also packaging in a 10 m launch shroud. Thus the power system itself can be integrated on the ground, and requires liquid-metal-temperature joining at pipe interfaces to the heat rejection system assembled on orbit. The integration of a large NEP vehicle represents an unprecedented orbital operations challenge, which makes the assembly of SSF look easy. The NEP's superior mission performance comes at a high operations and infrastructure price.

ARTIFICIAL GRAVITY (NEP) - The need for artificial gravity on long-duration interplanetary transfers has not been established. Neither has the lack of such a need, however, so STCAEM was obligated to examine the penalties incurred by requiring continuous artificial gravity en route between Earth and Mars. Various approaches to rotating artificial gravity have been proposed; STCAEM assessed all of them, and invented some new ones. The fundamental design problems associated with artificial gravity derive from: (1) the need for a countermass for rotation; and (2) the high mass cost of precessing the angular momentum vector of a system having large rotational energy. Elegant solutions to both are elusive, and vary widely with propulsion option. Secondary complications are communications and navigation pointing, flight structures sized to hang heavy vehicles, and possibly material fatigue. The fundamental operations problems associated with artificial gravity involve crew EVAs during rotation, robotic maintenance in the vehicle's gravity field, crew physiological and psychological responses to a rotating environment, performing minor course-correction propulsive maneuvers and testing the capability prior to departure. Our work has verified that artificial gravity appears feasible for Mars-class missions, for all propulsion options, at fairly modest mass penalties.

Vehicles based on electric propulsion pose the toughest integration challenge of all for artificial gravity. Being low-thrust systems, they must burn for a substantial fraction of the transfer time. One simple approach is to rotate the vehicle only during the mid-transfer coast period (1-2 months) and upon arrival at Mars (if a conjunction profile is used to allow long stay times in Mars space). In case intermittent artificial gravity is an insufficient solution, however, it is important to develop full-blown altematives. STCAEM examined several configuration options. Required thrust vector histories for low-thrust transfers are not completely understood at this time. Another simple approach would be to keep the thrust vector attitude constant in space, avoiding a
need for spin-vector precession. To first order, however, it appears that such repointing would be required, and it is expensive propulsively. We examined using a "cross-product" electric engine located on a long outrigger, even with generous configuration assumptions, the mass penalty is about 10% of IMLEO. If the spin vector is normal to the transfer plane, little repointing would be required, and we selected this option for both NEP and SEP. We solved the problem of what to use for countermass (particularly acute for the SEP) by baselining a new invention called the "eccentric rotator". With this approach, everything on the vehicle except the habitable and payload systems is the countermass. This leads to the despun electric engines themselves tracing out small circles rather than lying along the spin axis. However, their attitude (all that counts for low-thrust propulsion) can remain constant, and the-CM excursion is typically small (of order a few meters for NEP and a few tens of meters for SEP) so the gravity loads on the propulsion system are small. The dynamics of such rotating vehicles are not yet fully studied. Mass penalties as well as trip-ime penalties appear small, of order 5% of IMLEO for NEP including a spinup/spindown propellant budget presuming efficient electric thrusting for that purpose. SEP suffers more complications because its distributed structure is so fragile. Effects of the 4 rpm cyclic loading, and the bending moment introduced into the fragile structure by the unbalanced rotor, remain unstudied. Gravity loading of the main truss structure in the eccentric rotator configuration is as high as 0.46 g , and preliminary estimates of the vehicle's structure mass were increased 20% over the microgravity version to accommodate this (because the SEP structure amounts to only 14% of the vehicle inerts, however, this results in an inerts increase of 2.6%).

Low-L/D Mars Excursion Vehicle (MEV) - The MEV archetype development began during, and was resolved just following, the NASA 90 Day Study. It was originally conceived as a means of delivering 25 t of undefined payload to the surface of Mars. However, the specification of crew cab provisions, the analysis of vehicle mass balance, and consequently the configuration design of the vehicle all depend on specifics of the payload manifest. We assumed a 20 t reference surface module as an integral part of the MEV. This led to a "Mars campsite" design intended to support a crew of four for $30-60 \mathrm{~d}$ and became or standard lander design. Chief departures from the lunar campsite mode of operation were:

1) The MEV arrives with the crew already onboard, and so is capable of a really selfcontained mission.
2) The MEV also brings with it an ascent vehicle (MAV) with a separate propulsion system, configured optimally for the ascent phase (or ascent after breakaway from the descent stage during a descent abort). The crew cab for the MAV is the operations bridge for the MEV during all its mission phases.
3) The MEV is configured for packaging within an $L / D=0.5$ aerobrake. For $C A B$ missions, this brake captures the as-yet unmanned MEV into Mars orbit autonomously, before rendezvous with the MTV, and is used again for the descent. For CAP and other types of missions with propulsive Mars orbit capture, this brake is used only for descent. In all design cases, terminal descent engines are extended through ports in the windward surface of the brake at low Mach number, and the brake is jettisoned subsequently, prior to touchdown.

The MEV configuration was developed to permit later removal and relocation of the surface habitat module, with the aid of surface construction equipment. A variant of the MEV, without either surface module or MAV, was analyzed for delivery of heavy cargo on unmanned missions. A quick assessment was made of the feasibility of re-using an MEV, presuming in situ production of oxygen and retention of the aerobrake until touchdown. The outcome was positive, although: (1) additional brake hatches appeared necessary for landing gear deployment, crew egress, and cargo offloading, and (2) a lightweight top-shroud appeared advisable due to aerodynamic drag on ascent, and to permit the crew bridge to prorude beyond the presumed wake-protection limit for direct surface viewing during terminal approach. Configuration options for a "split-stage" MEV,
in which the same, or a portion of the same, propulsion system is used for ascent as for terminal descent, were also investigated, and shown to be simple variations of the archetype.

Our baseline aerobrake assembly concept presumed robotic-mediated final assembly of prefinished, rigid aerobrake segments at Freedom. Packaging such segments efficiently by nesting them in an ETO launch shroud is made challenging because of: (1) the aerobrake's asymmetrical, deep-bowl shape, in which the maximum depth of a typical "slice" is comparable to reasonable shroud diameters; and (2) the aerobrake's lip, required for both aerodynamic performance and structural stiffening around the free brake edge. Subsequent manifesting analysis, in which segments were configured according to arrinitial rib-and-spar structure concept, indicated that two ETO flights would be required to launch a single aerobrake in several pieces. Such extremely volume-limited and volume-inefficient manifesting is an unacceptably poor use of the expensively developed capability that a heavy-lift ETO system represents.

In response to this manifesting problem, STCAEM proposed the "integral launch" concept, in which a fully assembled, integrated aerobrake is launched externally, mounted on the side of the launch vehicle exactly analogous to current STS operations. The low-L/D brake is comparable to the STS orbiter in linear dimensions, and is light enough to launch two at once, with capacity to spare for other, shrouded payload as well. Ascent performance of such a flight configuration requires study; the critical question is whether ascent loads would size the aerobrake structure out of the competitive mass range for the mission itself.

Our structural analysis indicates that since the deep bowl-shaped aerobrake loads like a doubly-curved shell, it may be possible to construct an actual "aeroshell" without resorting to ribs and spars or some other articulated skeletal structure system. The shell would be made of a relatively thin honeycomb-type material system with integral TPS. However, lip buckling would still require a suiff rim, probably facilitated by a closed-tube-section structure. Such a brake may be lighter, and cerrainly simpler, but the thickened rim would still cause packaging problems due to nesting interference.

High-L/D Reusable Mars Excursion Vehicle (RMEV) - The RMEV archetype development occurred in response to three drivers:
(1) Analysis so far indicates that $L / D=0.5$ is sufficient at Mars for controlling an aerovehicle at Mars. However, the existence of some mission design studies in the literature which advocate L/D > 1.5 for Mars, combined with our preliminary understanding of controllability under Mars conditions, make it important to know in detail how different the configuration constraints imposed by higher L / D would be from those imposed by the lower L / D (which by 1989 had come to be regarded generally as appropriate).
2). As the 90 Day Study stimulated thinking about what the purpose of SEI Mars surface missions should be, concern developed that global, or at least wide, access to the surface of Mars was potentially important. High-thrust Mars transfer propulsion systems (chemical or NTR) tend to be mass-constrained by arrival and departure vector geomerry to certain parking orbit conditions. Although there is no lack of interesting (scientifically important) landing sites accessible from the periapsis of any orbit at Mars, the fact that performance-optimized parking orbits are unique for each high-thrust opportunity causes a site-access problem if returning to the same surface site is required (for base buildup). Thus for high-thrust transfer propulsion options particularly, an ability to achieve cross-range on lander entry may be important. High L/D enables greater crossrange capability.
3) Certain Mars lander issues not imposed as requirements during the 90 Day Study required analysis and design validation. Developing a new MEV concept, substantially different from the baseline MEV, allowed us to investigate those issues simultaneously and thoroughily. Specifically, we addressed: (1) a deep aerobrake structure concept, of interest for maximum structural efficiency and therefore reduced brake mass; (2) the ability to deliver large-envelope cargo manifests, represented in our design by a long-duration surface habitat module sized for 10 crew; and (3) re-usability of the MEV, based on in situ production of cryogenic propellant.

The vehicle shape represented by the RMEV has applications for other interesting mission modes, concepts for which have yet to be investigated in detail. Three examples are: (1) a smaller RMEV, sized commensurately with the MEV to be a modest cargo-delivery vehicle; (2) a directlanding MTV, whose retum propellant would be manufactured in situ on Mars; and (3) re-usable aerobraked "taxi" vehicles capable of performing the Earth-Mars cycler embark/debark function.

D615-10026-3

Nuclear Electric Propulsion (NEP) - Description

This system creates electrical power necessary for the propulsion system with a nuclear reactor power system. Thrust is obtained as a result of charged particles accelerated through an electric field. Argon propellant is first ionized in the thruster discharge chamber. The propellant, which is in a plasma state, is contained within the discharge chamber by a magnetic field. The propellant then "drifts" towards the accelerating grid where the charged particles are repelled out at an extremely high velocity. The charged particles must then be neutralized to prevent them from coming back to the spacecraft, which would negate thrust. An issue confronting the propulsion system involves the expected lifetime of the thrusters due to cathode and grid erosion. Expected thruster lifetime is $10,000-20,000 \mathrm{hrs}$.

The reactor power system is composed of twin uranium fast reactors. The reactors heat a working fluid which is used to drive turboaltemators. The expansion of the working fluid drives the alternators, producing electricity. The working fluid must then be cooled for reuse through a radiator subsystem. The electrical power is then conditioned for transmission and sent to the thruster system on the distribution bus. Expected power plant lifetime is 10 years. Disposal locations of the spent reactors are yet To Be Determined (TBD).

Mission analysis for various vehicles has revealed that high power levels (20-40 MWe) coupled with low vehicle specific mass (alpha $=4.7 \mathrm{~kg} / \mathrm{kW}$) offer fast trips and low associated IMLEO (400-600 t) for most mission opportunities. As used in this section, alpha is defined as the specific mass of the vehicle and has the units of $\mathrm{kg} / \mathrm{kW}$. Since a vehicle's alpha plays such an important role in its performance, technology areas associated with this aspect of electric propulsion must be given serious attention early in the development program.

Certain gravity assists offer significant benefits for electric propulsion, without imposing launch window restrictions. The gravity assists that offer benefits are a Lunar fly-by, Mars fly-by, and an Earth fly-by. During Earth escape, the vehicle swings by the moon to gain a velocity boost on the order of $600-1000 \mathrm{~m} / \mathrm{s}$. During a Mars fly-by, the vehicle approaches Mars with excess velocity, drops the MEV off, and continues in heliocentric space in close proximity to Mars. When the vehicle decelerates enough to capture at Mars, the vehicle enters a highly elliptic orbit to allow the MEV multiple attempts to rendezvous with the transfer vehicle. The time frame for vehicle deceleration and Mars capture is calculated to be the same as the surface stay time. An Earth fly-by is similar to a Mars fly-by in the sense that the vehicle starts the deceleration phase of the mission leg, later than it normally would. As the transfer vehicle approaches the Earth with excess velocity, the crew is dropped off and the vehicle continues in heliocentric space. When an Earth fly-by is employed, the transfer vehicle cannot rendezvous back with the Earth for a considerable length of time (-200 days). This length of time may be detrimental to thruster lifetime. Therefore, the recommended gravity assists are Lunar and Mars fly-bys. These fly-bys can offer trip time reductions on the order of 40 days total.

A major operational issue confronting the NEP is departure and refurbishment orbits. Due to differential nodal regression, severe debris environments, and Van Allen belt radiation, the NEP is forced to operate from LEO (400 km) or GEO ($35,000 \mathrm{~km}$) and higher. A LEO operational node would offer the greatest advantages for the NEP, if nuclear safety operational issues can be resolved. Preliminary analysis from Bolch er al, Texas A\&M [A Radiological Assessment of Nuclear Power and Propulsion Operations

Near Space Station Freedom, NAS3 25808, March 1990], indicates that a multi-megawatt vehicle can -operate safely in LEO. Electric propulsion, unlike ballistic trajectories, spirals in and out of Earth Orbit in a circular path. This type of circular spiral eliminates the risk of accidental Earth atmosphere re-entry.

Advanced Propulsion Summary
都

:STCAEM/Drc/14Jun'90
This page intentionally left Jlank

D615-10026-3

- D615-10026-3

Nuclear Electric Propulsion
 Reference Vehicle Configuration

Introduction

The Nuclear Electric Propulsion (NEP) Mars transfer concept offers advantages of a reusable, extremely high Specific Impulse ($I_{s p}=10,000 \mathrm{sec}$) system; a fully propulsive capture at Mars and Earth which avoids the need for high energy aerobraking; great mission flexibility (relative insensitivity to mission opportunity, capture orbit astrodynamics, or changes in payload mass); and low resupply mass (the argon propellent amounts to roughly a third of total vehicle mass). Disadvantages of the concept are its high technology development cost with a complex, high-performance power system and large, liquid-metal radiator system.

Nominal Mission Outline

- The NEP vehicle is assembled and checked out in LEO
- TMI is a slow spiral out of Earth's gravity well
- Just prior to Earth escape, the crew transfers to the NEP via an LTV
- Thrust continues throughout the interplanetary transfer, first accelerating relative to Earth and then decelerating relative to Mars, except for a 45-60 day nothrust period enroute.
- MTV flies by Mars with low relative encounter velocity
- MEV separates from MTV for aeroentry
- MEV descends to surface, jettisoning aerobrake prior to landing
- Surface operations ensue
- MTV continues decelerating into loosely captured, highly elliptical orbit
- Ascent vehicle leaves descent stage and surface payload on surface
- MAV rendezvous occurs at MTV periapsis; berthing and crew transfer
- MAV jettisoned in Mars orbit
- Reversal of interplanetary acceleration / coast / deceleration sequence
- Crew departs MTV for direct entry at Earth
- MTV spirals back to LEO for refurbishment (optional loose capture at L2 is
attractive, if refurbishment infrastructure is available and if resupply trips from LEO use EP or beamed power propulsion for high efficiency)

Vehicle Systems

Primary vehicle systems are: power plant at the bow; radiators amidships; main propulsion astern; vehicle bus; and crew systems near the stern.

Power plant - The power plant consists of reactors, shadow shields, boiler (heat exchanger), electromagnetic pumps, and turbo-alternators. Two fast-spectrum (UN-W/25Re) reactors are used for redundancy. The reactors are positioned in line with the main vehicle axis to maximize mutual shielding of the rest of the vehicle. A radiation shield ($\mathrm{WBe}_{2} \mathrm{C} / \mathrm{B}_{4} \mathrm{C}$ composite) is required aft of the reactors to protect the crew and sensitive electronic equipment from direct and scattered neutron and gamma fluxes. The shield is shaped to produce a shadow-cone with rectangular cross-section, tailored to the reactors' view of the rest of the vehicle. Lithium is the primary coolant, pumped by redundant electromagnetic pumps through the boiler. The secondary, potassium loop, also pumped electromagnetically, carries heat from the boiler to the rurbo-alternator assembly. There are 5 pairs of turbo-alternators (3 primary and 2 backup pairs), which generate 40 MWe for propulsion. Each turbo-alternator pair counter-rotates to cancel its gyroscopic acceleration. This machinery is configured to permit straightforward robotic maintenance access when the reactors are not running, but the entire turbo-machinery assembly can be launched as one unit in a 10 m launch shroud, already integrated with the pumps, boiler and dormant reactors. The potassium runs through the condenser pipes which form the vehicle spine along the length of the radiator system. Reduced-diameter, armored pipes return the low-quality two phase (mostly liquid) potassium to the boiler to complete the loop.

Radiators - The radiator system consists of a primary assembly, an alternator assembly and an auxiliary assembly. A typical assembly consists of several hundred individual, identical, sodium-containing, carbon/carbon heat pipes, whose evaporator ends are bonded mechanically to the secondary-loop condenser pipe.

Their radiator fins are oriented in the plane of the overall array, and are bonded mechanically together for overall structural stiffness. The primary assembly cools the secondary-loop potassium; the alternator assembly cools the dynamic power conversion system (turbo-altemators); the auxiliary assembly provides cooling to the electromagnetic pumps during normal operations, as well as to the reactors during shutdown.

Propulsion - The propulsion system includes engine assembly, propellant storage subsystem, and plumbing. The engine assembly has 40 individual ion thrusters (including 10 spares) in a 5×8 rectangular array. Each thruster is 1 m wide by 5 m . long; beam neutralizers are located between the thrusters. The argon propellant is stored cryogenically in insulated, spherical tanks, mounted on the forward side of the engine assembly via structural and fluid quick-disconnects. Including tanks, the propellant storage system masses 185 t ($\sim 35 \%$ overall vehicle IMLEO). This low propellant mass is a strong resupply advantage.

Vehicle bus - Thrust loads are extremely low for the EP system. Probable maximum loading is from impulses such as Attitude Control System (ACS) firings, berthing operations, and construction and maintenance activity. The primary vehicle structure is the armored, liquid-metal-carrying condenser pipes of the conversion and radiator systems. Additional lightweight, out-of-plane stiffening structure for the large, flat radiator panels is not shown. Astern of the radiators, an SSF-type truss continues the vehicle spine. The crew systems are attached to this, and the power feeds for the engines are deployed within it. Two communications satellites are embedded in the truss near the crew systems, to be deployed in Mars orbit for maintaining communication with Earth. Also mounted to the truss and not shown are deployable solar arrays which provide habitat and vehicle power when the nuclear power system is shut down (during LEO operations and interplanetary coast).

Crew systems- The crew systems consist of a long-duration transit habitat and one or more MEVs (the reference design shows one MEV). All habitable volumes are contiguous throughout each mission. The crew systems are wrapped around and hung on the vehicle bus, as far from the nuclear sources as practical without propulsion interference. The separation shown reflects an initial radiation shadow shield designed for crew system separation exceeding 100 m . Electric propulsion
has the least sensitivity to increased payload mass, so an important option is provision for multiple MEVs. A multiple docking adapter (not shown), would allow several MEVs to be used without altering the vehicle configuration (additional propellant tanks would be required).
NEP Configuration
The following charts depict the reference nuclear electric propulsion vehicle that has been
modeled on the Intergraph CAD workstation. Many views are shown to provide the detail that
the vehicle has been designed to. The vehicle model has verified conceptual design.

line drawing of the side view of the turbo-alternator area

line drawing of the end view of the NEP turbo-alternator area
This page intentionally left blank

D615-10026-5

Architecture Matrix

L1615-10026-5

Reference Matrix to Alternative Architectures

In considering a complex task, it is useful to organize it into a heirarchy of levels. The higher levels are more important or more encompassings, while the lower levels include more detail or are more specific. Constraints (e.g., requirements and schedules) flow down from the higher levels and solutions or implementations build up from the lower levels. The first figure shows a heirarchy of six levels from national goals to performing subsystems. The following section discusses the fourth level, exploration architectures, in terms of the lower levels: element concepts and performing subsystems. Selection of preferred architectures will require the Govemment (the National Space Council, the President, and the Congress) to first define the top three levels.

Implementation Architectures

Seven architectures have been selected for examination: four different propulsion types (Cryogenic/Aerobrake, NEP, SEP, and NTR); two variations of In-Situ Resource Utilization (ISRU) for propellants with Cryogenic/Aerobrake propulsion (Lagrange point 2 refueling and Mars surface refueling); and a cycling spacecraft concept. Three basic levels of program scope are identified: small, moderate, and ambitious.

Multiple options can be generated within the basic architectures, varying launch vehicle capacity, orbital node type, and mission profile and propulsion type for the various Lunar and Mars vehicles.

Aerobraking is found to be applicable to all seven architectures, placing it as a 'critical' technology. Electric propulsion leads to the lowest reference vehicle mass, and also almost the lowest resupply mass. ISRU/Cryo leads to the lowest estimated resupply mass since most of the propellant is derived locally rather than coming from Earth.

Cost Models

Cost estimation is being performed using "parametric" methods. This technique uses a parameter, usually weight, as an input to empirically derived equations that relate the parameter to cost. It should be recognized that the source data for the cost models is past program experience, while the hardware being estimated will be built one or two decades from now. Therefore these cost estimates should be assumed to have a standard deviation on the order of $+-100 \%$. Hardware at technology readiness level 5 may be assumed to have a standard deviation in cost estimate of $+30 \%$. No revenues from sale of products, services, or rights (i.e. patent rights, data rights), or commercial investment, are assumed in the cost estimates. These might appear in a scenario such as the Energy Enterprise.

Aa an example, the cost estimate for a NEP architecture shows an average annual funding level of $\$ 8$ billion per year after initial ramp-up.

The principal cost drivers identified include number of development projects, reuseability, mass in Earth orbit, and mission/operational flexibility.

Analysis Methods

Individual trade studies are performed within each architecture to optimize it against evaluation criteria. The principal evaluation criteria to date has been initial mass in low Earth orbit, as a proxy for cost. The results of this optimization will then be compared to each other in groups. The early Mars group will compare all-propulsive, aerobraking,

This page intentionally left blank

D615-10026-5
direct travel, and nuclear thermal among themselves. The electric propulsion group will compare SEP and NEP. The innovative group will compare Lunar oxygen to cycler orbits. These concepts may both be retained if it is advantageous to do so. Finally, the choice between early Mars and Late/Evolving Mars will need to be made on the basis of cost, risk, and performance, while combining the best features from each group.
Logical Types for Space Programs
\downarrow
—
Overall Study Flow
The study flow, as required by MSFC's statement of work, began with a set of strawman concepts, introduced others as appropriate, contions.
concepts and associated recommendation
 As the study progressed, much discussion among the , this study, architectures were more or less synonymousing operations, support, technology, and so ,
 We started with ten concepts as shown on the facing page. Conined to be uneconomic in view of high
 development costs. Further, we found that electric propur the electric system at about lunar distance cargo Mars missions if crews are transported to and from the electric system at abo by a lunar transfer vehicle. New systems introduced included nuclear thermal rocket (NTR) and Mars direct. NTR was introduced as an option by NASA during the " 90 -day study". We ind with oxygen and perhaps fuel (everything is landed on Mars; the return propulsion subsequently publicized one variant of this , for the Lunar oxygen for Mars missions was found to be uneconomic because of long payback time for the
launch mass required to emplace lunar oxygen production on the Moon. Lunar oxygen has a
reasonable return on investment for lunar transportation at two or more lunar trips per year.
The cycler architecture was broadened to include semi-cyclers. Late in the study we introduced ant
NTR-dash mode (described later in this briefing) closely related to the semi-cyclers.
Program Implementation Architectures
Program Implementation Architectures

We believe that
Some architectures
 The second important feature of the scopes we intend to investigate is' that they cover on the Moon for short periods, or few people on Mars for short periods every detrial development erios leads to numbers of people presently of lunar resources on a scale of helium-3 2050 . Beginnings of humans settlement of Mars estimated in the range of thousands by 2050. The 20-25 horizon for SEI is expected to permit growilh in numbers of people only to dozens or so.

Descriptor	Small	Moderate	Ambitious
Lunar Operations Mars Operations	Man-tended science station Expeditionary visits ~ 4 people	Permanent science base 6-12 people Permanent science base 6-12 people	Industrial development of lunar resources Beginnings of human settlement

Architecture Evaluation

促 pau!e utinond (ara! human presence. The minimum program had only three missions to Mars. The median (full scimum program aimed for satisfying most of the published science objectives for lunar and Mars and for the beginnings of colonization of Mars. industrialization of the Moon, for return of practical benefits to Earth, a 10 . The range of activity levels, as measured by people and materic delivered op preliminary trade studies, selecting more The range of Earth-to-orbit launch rates was less, sinces for greater activity levels.

Activity levels were selected with underlying program objectives in mind:

(1) The minimum lunar program establishes astrophysical observatories on the Moon and provides a man-tending (1) The minimum lunar program esability to maintain them. To the extent that man-tending lunar visits are not needed for the observatory system, the transportation capability can be used to explore interesting lunar sites for lunar geoscience objectives.
(2) The minimum Mars program is very similar to Apollo, i.e. six sites visited for short periots (two sites per mission (2) The minimum Mars program is very shisee missions); samples obtained within a few km . of each landing site. If the manned visits are preceded by suitable robotic missions, the scientific payoff for these visits can be high relative to the investment.
(3) The "full science" lunar program adds human permanence at the Moon for extensive scientific and technological exploration. Where the minimum program offers very little opportunity for lunar geoscience, this program offer much. also permits development of in-situ resource technology for production of surface systems. The reference program aso emplaced a lunar oxygen production system to serve the transportation system.
(4) The "full science" Mars program multiplies by several the crew person-days on Mars by including more missions and
by more staytime per mission. This program falls short of a permanently-occupied base on Mars, but achieves surface
stays greater than a year.
(5) The lunar industrialization program adopts production of helium-3 as a strawman industrial objective and places
enough facilities and infrastructure on the Moon by 2025 to return 1 GWe helium- 3 fusion fuel to Earth.
(6) The Mars settlement program moves towards Mars settlement. A robust nuclear electric propulsion system is fielded, with convoy flights by 2015. Mars population reaches 24 by 2025, and the transportation system is capable of increasing Mars population by 24 per opportunity by 2025.

[^0]The minimum program reference averages about $1 / 2$ lunar trip per year and has only three Mars missions. Lunar science facilities are man-tended. Each Mars mission carries two lab 30 days. for added exploration capability and a measure of rescue capability Lunar and Mars in-space transportation systems are expendable.

[^1]Industrialization and Settlement Program
The industrialization and settlement program is very aggressive for both the Moon and Mars. Thousands of tons of industrial equipment are delivered to the Moon, driving lunar cargo trips up to five per year. Lunar oxygen is placed in production as early as possible. One crew trip per year leads to a population of 30 because crew stay times on the Moon increase to several years.
Initial Mars missions use a cryogenic/all-propulsive system because the aggressive nature of the scenario merited an initial Mars mission as early as possible, and the reference nucd in a crew propulsion system cannot be ready in time. The NEP missions are operated (about 2.2 years). The reference scenario evolves to res 250 t. per opportunity by 2020 . The Mars resources. Heavy cargo capability is provide up population grows to 24 , and by the end of the scenario can continue to grow by opportunity.
Lunar/Mars Program Comparisons
The next two charts compare the lunar and Mars program scenarios in terms of population, cumulative cargo delivered, and flight rate. The lunar population for the minimum scenario is four people for 30 to 40 days about every other year. The Mars population for the minimum scenario is 6 people on each of 3 conjunction missions, with 30 to 40 day surface stays. The full science menu scenario grows to year-long surface stays on conjunction missions. The lunar industrialization program goes to long stay times with indigenous food growth to build population. The Mars proto-
 in crew rotation/resupply mode. Later in this scenario, a second NEP is operated to provide iwo trips to Mars each opportunity.
These scenarios were the "input" to the manifesting and life cycle cost analyses.

Issues

- Launch vehicle size, shroud size, and lift capacity.

- On-orbit assembly complexity
- Number of launches per year
- Development cost
- Per-mission cost
Trends from Architecture Analyses
- Large launch vehicle (up to $\mathbf{3 0 0} \mathrm{t}$. lift) does not eliminate on-orbit assembly.
- Keys to on-orbit assembly are (1) design the vehicle to keep it simple; (2) design for automation
Keys to on-orbit assembly are (1) design the vehicle to keep it simple; (2) design for automation
and robotics; (3) reusable space vehicles to reduce the frequency of assembly operations.
- Advanced in-space transportation technology reduces launch requirements enough that a $100-\mathrm{t}$, 10 -meter shroud launch vehicle is adequate.
- Ultra-large launch vehicle results in high early program costs and is much more costly than advanced in-space transportation technology.
Available Options
The facing page is a typical listing of the element options making up a total transportation
architecture for SEI missions. The options listed are all candidates for incorporation into
architectures. Trade studies have not eliminated any of these options. (The list is
representative and not necessarily complete.) The number of options on this chart for each
row of options is indicated on the far right. In most cases, any option can be combined with
any other set of options. Thus, the total possible combinations number in the millions. It is
clear that available future effort can not hope to examine all combinations. This drives us to
a strategy for architecture sensitivities analysis, to develop key trends and conclusions from
relatively few architecture combinations.

No. of
options
3×2

Total possible combinations 2,799,360

$$
\begin{array}{ll}
200+\text { t. } & \begin{array}{l}
\text { Add prop } \\
\text { tanker }
\end{array}
\end{array}
$$

tanker

$\begin{aligned} & \text { Wet } \\ & \text { tanks }\end{aligned}$
L2/lunar oxygen $\begin{array}{lll}\text { Fully } & \text { Partially } & \text { Expend- } \\ \text { reusable } & \begin{array}{l}\text { Eeusable } \\ \text { able }\end{array}\end{array}$ Partially
 Refuel depot
$\boldsymbol{1 0 р \boldsymbol { 0 }}$
需
$\begin{array}{ll}\text { NTR } & \begin{array}{l}\text { NEP/SEP } \\ \text { cargo }\end{array} \\ \text { Combined } & \begin{array}{l}\text { Fully } \\ \text { with LTV } \\ \text { reusable }\end{array}\end{array}$

$200+1$.
SSF +
separate
LOR
Cryo
aerobrake

O.LIT 140 t.
Separate
Direct/
lunar ox. Storable NTR
Combined
with LEV NTR
Combined
with LEV with LEV
Mars
mode
MTV
Mars
node
MEV

Table

The facing page considers mission profile, basing at Mars, and propulsion. Four important issues are central to mission

 Mars round-trip mission should be completed in a year or trips, as described later in this section of the briefing. At the echnologies, but at considerably higher cost than than minimum mass and cost; conjunction profiles should be used. eraft design. Increase in risk with duration is difficult to Crew time in zero g can be minimized by arrificial-g spa mainly with cosmic ray exposure.
(
Crew radiation exposure comes from solar proton events (flares) and galactic cosmic rays, and from manmade sources if nuclear propulsion or power are used. Unshielded energy deposition fom Mars mission architectures, but the high end rad) per year. The low end of the unshielded range does not constlasieverts/yr (this guideline is for space shuttle and exceeds the present NCRP astronaut radiation guideline of 500 missions). It is possible that guidelines will be reduced in

$$
1
$$

Five profile options are presented. Conjucntion fast transfer implies transfers much less than one year. Opp, wilhout

If galactic cosmic ray exposure must be controlled, we must either provide shielding on the transfer vehicle crew habitat or reduce exposure times. Shielding the transfer vehicle habitat dramatically increases its mass, requiring high performance' propulsion such as nuclear, or favoring a cycler concept where massive (a) conjunction missions with fast repeating trajectory and left there. To reduce exposure time, the applicable than 1-year round trip, and (c) Mars surface rendezvous (Mars direct). The cycler/semi-cycler archiectures offer suring the long stay at Mars, the crew must be on the and provides a 5-6 month conjunction te mars orbit habitat is also provided.
surface most of the time unless a shielded Mas

[^2]

Mission Profile	Propulsion				Basing	
	$\begin{aligned} & \hline \text { Cryo/ } \\ & \text { All-Prop } \\ & \hline \end{aligned}$	Cryol Aerobrake	NTR	NEP/ SEP	Orbit	Surface
Conjunction Minimum Energy	V	No advantage over propulsive capture	\checkmark	$\sqrt{ }$	\checkmark	Later
Conjunction Fast Transfer	Excessive IMLEO	\checkmark	\checkmark	\checkmark	No. Reason for fast trans fer is less GCR dose	\checkmark
Opposition/ Swingby	Same	\checkmark	$\sqrt{ }$	Note 1	\checkmark	As a resupply mode
Opposition/ Fast	Same	Excessive IMLEO	$\sqrt{ }$	Not able to make fast trips	\checkmark	Same
Opposition/ Split Sprint	Same	Same	\checkmark	Cargo only	\checkmark	Same

Note 1: NEP flies an opposition/swingby-like-profile but does not benefit from Venus swinghy.
Architecture Results for Three Activity Levels
The top-level architecture selection results for the three activity levels are shown on the facing page. For the minimum program, a cryogenic expendable tandem-staged direct mode is the clear economic winner. Its lower development expense causes the operational cost savings for a reusable LOR system to have little payoff. At the median activity level, the reusable system gives about a 5% return on investment (ROI). Our baseline program included lunar oxygen at the median level, but return on investrins and lunar the ROI is estimated only about 3%. At the hol is about 10%
The minimum Mars program is most economic with cryogenic all-propulsive expendable vehicles
 IO甘 \%91 e Sey yif әul '\{әлә| e se әını!d әчl oju! səu00 dヨS pue dnyoeq e S! uo!ponpas plojual e '1]em/00I\$ ol paэnpar aq ues

 a settlement-scale Mars program, the NTR/dash and Mars direct modes are viable options.
Architecture Results for Three Activity Levels

> Median(full science)

|settlement
 option
 crew rotation and resupply.

Lunar:

. Cryogenic all-

$$
\begin{aligned}
& \text { Unless radiation } \\
& \text { environment requires } \\
& \text { reduced trip times; }
\end{aligned}
$$ then nuclear rocket or cryo aerobrake conjunction fast transfer

SICCAEM/grw/AJan91
Lunar:
Expendable

D615-10026-5
Seven Architecture Recommendations
The next seven pages contain our main architecture recommendations with data illustrating key points.

> - System can be designed to eliminate on-orbit assembly; one docking
or berthing required.

- The number of development projects is minimized. Offers
reasonable expectation of return to the Moon by 2004 under
likely funding constraints. - Flight mechanics constraints for LOR operations are avoided. - Tandem-direct LTV is a starting point for evolution to all other
identified lunar architectures. - Lunar aerobrake can be tested on the unmanned booster
stage without risk to the crew. Stage is otherwise expended.
STCAEM/grw/4Jan91

(

Accelerate aerobraking technology for Mars aerocapture as backup to
nuclear rocket.
Target decision between the two in the 1996-2000 time frame.
NTR performance and cost uncertainties, especially test facilities and
testing, merit backup.
- Aerobraking needed for Mars landing. Technology challènges less daunting than aerocapture, but merit technology program.
- Aerobraking technology keeps other options open.

- Aerobraking is economic for lunar transportation at >= two flights/year.
.STCAEM/grw/4 lan91

 The facing page indicates uses of aerobraking for the various architectures. As noted, some form of aerobraking occurs in all of the architectures, in particular for Mars landing include Earth capture on return from lunar missions. In adut, crew to Earth in cases where, an Earth crew capture vehicle (ECCV) for direct return of the crew to Earthe case of an NTR for example, an NEP or SEP vehich highly elliptic orbit. where the vehicle captures into a highly elliptic orbit.
Program Implementation Architectures

Architecture
 Cryogenic/aerobraking

Cryogenic chemical propulsion and
aerobraking at Mars and Earth.
LEO-based operations.
Nuclear-electric propulsion for Mars transfer; optionally for lunar cargo.
Solar electric propulsion for Mars
transfer; optionally for lunar cargo. Features Aerobraking Functio Mars Mars Earth Earth Earth Mars Mars Earth Earth
cap land cap/ cap/

*** MEV-class crew taxi (not a large MTV) Nuclear rocket propulsion for
Lunar and Mars Iransfer.
L2-based operations; optional
use of lunar oxygen.
Combined MTV/MEV refuels
at Mars and LEO. "Fast"
conjunction profiles.
Cycler orbit stations a la 1986 Space Commission report
Notes: * optional/emergency mode **opposition class only
NEP
SEP
NTR
NTR (nuclear rocket)
L2 Based cryogenic/ aerobraking Direct cryogenid aerobraking

/STCAEM/grw/) Jan91

(d)

/STCAEM/grw/4Jan91

quantitative, but reliability and safety estimates for SEI hardware and maneuvers are no more the ballpark guesses today. We made representative estimates with an attempt to be consistent, i.e. the
 e.g. aerocapture was judged higher risk than propulsive capture. Abort modes were included where available.
The facing page shows comparative risks for crew loss and mission loss for several architectures and modes.
NTR shows the least risk because of the propulsive capture advantage, and because a free return abort was assumed, as it was for the cryo/aerobrake. The NTR/dash mode does not permit free return abort or descent abort at Mars, so some mission loss risk turns into crew loss risk. As Mars transportation matures and a safe refuge on the surface of Mars is available, the NTR/dash mode is deemed acceptable. The NTR split sprint mode also exhibits higher risk because of lack of abort modes, e.g. no free return. NEP is shown comparable to, but slightly riskier than NTR. The NEP case is sensitive to the lifetime dependability of the propulsion system; this figure is much more uncertain than NTR reliability. Mars direct has a higher mission loss risk because of its complex automated operations, but the crew loss risk is comparable to the others. The perception of crew loss risk for Mars direct is probably higher than the real risk.
Mission Risk Comparison

the
to man-rating and lists
Man Rating Requirements The facing page describes our recommended approach
systems/subsystems for which we believe man-rating is required.
Nuclear Rocket Man-Rating Approach

> A sequence of major tests and demonstrations to achieve nuclear rocket man-rating is shown. Note delivery to Mars is needed before the first manned missi, as transfer and long surface stay is required on the first mission to reduce galactic cosmic ray exposure to the crew.
Technology Advancement and Advanced Development The next three charts present our current recommendations for technology advancement and
advanced development, with schedules and funding estimates. The funding level averages about $\$ 300$
million per year. If we consider the median (full science) program as representative, the
technology/advanced development program is about 0.2% of the life cycle cost of the program to
2025 , a very modest investment.
Technology Development Schedules

- Overview -

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- |(-2010)

AD comp. ∇

LTV design complete $\boldsymbol{\nabla} \quad$ Flt. tests comp $\nabla \quad \nabla$ Mars tank design comp.

Final AR\&D fli. test ∇
$\nabla^{\text {Struct. concepts validated }} \boldsymbol{\nabla}$
Adv. dev. complete

\section*{| $\nabla^{\text {Lunar engine AD complete }}$ |
| :---: |
| LTV design complete ∇ |
| Final AR\&D fli. test ∇ |
| Struct. concepts validated |
| TV Ady dev finteg complete ∇ |}

Lun. outpost shield. concepis validation $\nabla \quad$ Mars veh. shield. concepts valid $\nabla \quad$ MTV Adv. RLS tech. dev. complete

3. Cryo. Systems
4. Veh. Avionics
5. Veh. Structure
6. Crew Mod. \& Sys.
7. ECLSS
8. Vell. Assembly
9. On Orbit Assy.
10. Veh. Fit. Ops.
11. Art. Gravity
12. NTR

NEP
13. SEP
/STCAEM/jrm/16Jan91

Funding Estimates												
Technology Category	1	2	3	4	5	6	7	8	9	10	11	Total
8 - Vehicle Assembly - Tech. - Adv. Dev.	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{gathered} 5 \\ 40 \end{gathered}$	$\begin{gathered} 5 \\ 40 \end{gathered}$	40	40	40	40	10			$\begin{array}{r} 20 \mathrm{M} \\ 255 \mathrm{M} \end{array}$
9 - Orbit Launch \& Checkout - Adv. Dev.	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	15	$1 \begin{gathered} 5 \\ 16 \end{gathered}$	5	10	10	10	10	5		$\begin{aligned} & 20 \mathrm{M} \\ & 85 \mathrm{M} \end{aligned}$
10 - Vehicle Flight Operations - Adv. Dev.	0	0	9	15	10	15	15	15	10	5		94 M
11 - Artificial Gravity - Tech. - Adv. Dev.	0	0	0	2	5	10	10	10	10	3		50 M
12 - Nuctear Propulsion NTP - NEP -	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	20	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	20	20				$\begin{aligned} & 85 \mathrm{M} \\ & 165 \mathrm{M} \end{aligned}$
13 - Solar Electric Ion Prop. Array manufac. Tech.	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{array}{r} 10 \\ 0 \end{array}\right.$	15	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{array}{l\|l} 10 \\ 30 \end{array}$						$\begin{aligned} & 60 \mathrm{M} \\ & 90 \mathrm{M} \end{aligned}$
14 - Electric Thrusters	0	5	10	20	20	20	10					85 M
Tech. Development Total	23		367	182	461	410	380	460	276	138	30	3147 M

Life Cycle Cost Model Approach
Our basic cost model kernels are parametric cost models. We use the Boeing Parametric Cost
Model and the RCA Price models to estimate development and unit cost. The determination
of hardware to be costed comes from what architectural elements are needed and from
element commonality of the architecture. Program schedules determine requirements and
timing for major facilities and for the element development and buy schedules. All of these
inputs are used to estimate annual funding for each component of the program, using cost
spread functions. The costs are integrated into a spread sheet life cycle cost model to obtain
annual funding for complete programs.
The ground rules used in this analysis are indicated on the chart.
The ground rule for use of closed ecological life support (CELSS) and lunar oxygen comes
from economics trade studies conducted several years ago through last year.
Life Cycle Cost Model Approach
Architectural Cost Drivers
Our investigations of architectures, while preliminary, indicate the importance of cost
drivers, in the order listed on the chart. The number of development projects should be
minimized through commonality and phased by evolution so that development costs are
reduced and are spread over the life cycle of the program, rather than lumped early in the
program.
Space hardware for SEI missions is expensive and should be reused if possible. As an
example, our unit cost estimate for the Mars transfer crew module is more than a billion
dollars. Reuse of this equipment motivates investment in the advanced transportation
technology needed to make it reusable.
The third point is that Earth launch mass drives Earth launch cost. Even if Earth launch cost
is reduced by ALS-class vehicles, the Earth launch cost is the largest single part of program
cost.
The final point is that design and development of systems with mission and operation
flexibility enhances commonality and minimizes the risk that changes in mission
requirements force new developments or major changes.

Architecture Cost Drivers

D615-10026-5

/STCAEM/grw/4Jan' 1
Minimum Program Life Cycle Cost Spread

[^3]COEINE

Minimum (Baseline

\& Int)
 ps
 W/Op

SWGISIS GOVdS HMDIGONVIAV

7000.0
6000.0
5000.0
4000.0
Life Cycle Cost Spread

/STCAEM/grw/9]an91
By deferring major lunar activities, the median program can be brought within the Augustine guidelines. Permanent human lunar presence is delayed until after the Mars DDT\&E peak lunar program is like the minimum scenario, i.e. man-tended astrophysics observatories. Another way to level the funding profile for the median program is to defer Mars by a few years. The reference median program achieves a Mars landing in 2010 (2009 departure). Deferral to abour 2016 would probably smooth out the funding profile much as did the reduction of the early lunar program.
 DDT\&E is complete.

Industrialization and Settlement Cost Spreads Our maximum scenario involved simultaneous industrialization of the Moon and progress towards
 by the Augustine Commission. Both of the premises of this scenario, however, suggest significant private sector involvement.
What is significant in the result presented here is that investment on the order of $\$ 100$ billions over about 20 years stretches from a plausible public-sector program of science ant This amount of program also involving the private sector forment in Alaska oil pipeline by a factor of a

 understood. We have made some stabs at estimating the costs. We have little or no idea as to the eventual payoffs.
The other results were discussed earlier and are included here for completeness.

Case	$\begin{gathered} \text { Stor } \\ \text { LOR } \\ \text { vs } \\ \text { cryo } \\ \text { direct } \\ \text { exp } \end{gathered}$	Reus. LOR vS cryo direct exp	Reus. MEV vs exp MEV	SEP vs NTR		$\begin{gathered} \text { SEP } \\ \text { vs } \\ \text { NEP } \end{gathered}$	NTR			NTR dash vs NEP	Lunar oxygen	
				$\$ 100 / w \$$	$\$ 500 / w$		$\begin{gathered} \text { vs } \\ \text { cryo all-prop } \end{gathered}$		vs cryo aero brake			
Program	Min	Full science	$\begin{aligned} & \text { Ind/ } \\ & \text { settl } \end{aligned}$	Full science		Any	Min	Full science		Ind/ settl	Full science	Ind/ settl
Result	\cdots	4.9	No	9.6		No	1.7	15.9	13	44	4	10
	-85		ROI		-11	ROI						
Conclusion	Cryo	Reuse case weak	Reus MEV higher ICC	SEP	NTR	SEP better if less cost	CAP	N	R	NTR	$\begin{gathered} \text { No } \\ \mathbf{L I S X} \end{gathered}$	LLOX

Strategy for Architecture Synthesis

$$
\begin{aligned}
& \text { All of this is guided by knowledge of the architecture cost drivers described earlier and by } \\
& \text { the knowledge gained on how systems work together, from the trades conducted within } \\
& \text { individual propulsion systems. }
\end{aligned}
$$

Strategy for Architecture Synthesis

Nothing quite as rigorous can be done in architecture synthesis. However, by bottom up
trades, assembling systems into "good" candidate architectures, and matching with ranges of
program scope, we may come close. The key is knowledge we obtain on what works well
what things are compatible and combine well to satisfy mission requirements.
The last step is to conduct trades and analyses such as life cycle cost to identify preferred architectures, apply criteria derived from national goals program goals, to select among preferred architectures.

[^4]Architecture Trade Flow
\[

$$
\begin{aligned}
& \text { The facing page shows the low level system mission and operations trades that have been } \\
& \text { conducted or are being conducted for our seven architectures to represent the range of } \\
& \text { possible architectures for the SEI mission. Most of the trade areas have been presented in } \\
& \text { this briefing or have been presented in earlier briefings. The knowledge base in this area is } \\
& \text { fairly complete except that only very preliminary analyses have been done for the } \\
& \text { cryogenic direct mode and for cycler orbits. When these two options are completed we will } \\
& \text { be ready to finish up the architecture analysis. }
\end{aligned}
$$
\]

Architecture Trade Flow

[^5]This page intentionally left blank
Architecture Evaluation Approach

STCAEM/ETW/BIMAy90
This page intentionally left Jlank
Mars Summary

- More than $\mathbf{2 0}$ beneficial modes identified.
- Early Mars: Cryo all-propulsive (CAP), ECCV*, conjunction;
Cryo aerobraking opposition, ECCV;
(possibly) Direct with Mars oxygen.
- High performance, late Mars or evolution:
SEP or NEP;
ISRU, moon or Mars or both;
Combintations.
- Efficiency range 10:1 measured as RMLEO (resupply mass LEO).
- Earth Crew Capture Vehicle, an Apollo-like capsule used for Earth entry and landing or aerocapture to LEO. The rest of the vehicle is expended.

STCAEMgIW/3IMay90

PREGEDING PAGE BLANK NOT FILMED
Comparison of Propulsion Options

Conjunction vs. Opposition Mars Profiles

Opposition Adyantages

 - Shorter overall trip time, by at least a year.- Transfer vehicle usually returns in time to be reused on next
opportunity.
- Enables crew rotation/resupply mode witl synodic period stay time.
Conjunction Advantages
- Lower energy; significantly less RMLEO unless very high Isp available.
- Venus swingby complexity not necessary.
- Long stay times at Mars.
- Shorter transfer times.
> - Elliptic parking orbits can be optimized. - Shorter overall trip time, by at least a year.
- Transfer vehicle usually returns in time to be reused on next
opportunity.
- Enables crew rotation/resupply mode with synodic period stay time.
niunction Advantages
- Lower energy; significantly less RMLEO unless very high Isp available.
- Venus swingby complexity not necessary.
- Long stay times at Mars.
- Shorter transfer times. - Shorter overall trip time, by at least a year.
- Transfer vehicle usually returns in time to be reused on next
opportunity.
- Enables crew rotation/resupply mode with synodic period stay time.
niunction Advantages
- Lower energy; significantly less RMLEO unless very high Isp available.
- Venus swingby complexity not necessary.
- Long stay times at Mars.
- Shorter transfer times. - Shorter overall trip time, by at least a year.
- Transfer vehicle usually returns in time to be reused on next
opportunity.
- Enables crew rotation/resupply mode with synodic period stay time.
niunction Advantages
- Lower energy; significantly less RMLEO unless very high Isp available.
- Venus swingby complexity not necessary.
- Long stay times at Mars.
- Shorter transfer times.
This page intentionally left blank
Reusable MEV Sensitivities

This page intentionally left blank

Requirements, Guidelines and Assumptions

Reference and Alternate Missions

PREGEDING PAGE BLAISK NOT FYLMED
This page intentionally left blank

Contained within this section are the following:

- An overview of how the NEP compares with other options
- Propulsion oprion comparison assumptions
- NEP mission profile
- Description of the trajectories
- Mars flyby description
- Optimum mission parameters for various NEP vehicles
- NEP opposition class mission opportunities
- Final report on low thrust mission analysis (Byrd Tucker, SRS)

Our initial objective for NEP mission analysis was to determine an optimum power level for the purpose of vehicle design. Arbitrarily assigned vehicle specific masses (designated as alpha in units of $\mathrm{kg} / \mathrm{kW}$) were assigned to each power level. These alphas were associated with a technology level above current capability, but within the range of projected technology. Once the power levels and associated alphas were assigned, mission analysis was performed by Byrd Tucker of SRS Technologies under subcontract. The outcome of Tucker's analysis was that a power level of 40 MWe (alpha $=4 \mathrm{~kg} / \mathrm{kW}$) at $10,000 \mathrm{sec} \mathrm{I}_{\mathrm{sp}}$ would provide fast trip times without a heavy IMLEO penalty. From this analysis, we chose a 40 MWe NEP vehicle as our reference. After several months of vehicle design, it was determined that the alpha of our vehicle would be $5.4 \mathrm{~kg} / \mathrm{kW}$ for a 40 MWe NEP. Boeing Seattle has peformed our current mission analysis that contains the current vehicle alpha and gravity assists. The current mission analysis results are contained within the "Propulsion Option Comparison for Opposition Missions" chart. Since vehicle alphas play such an important role in vehicle performance, this technology area must be given serious attention early in the development program.

Certain gravity assists offer significant benefits for electric propulsion, without imposing launch window restrictions. The gravity assists that offer benefits are a Lunar fly-by, Mars fly-by, and an Earth fly-by. During Earth escape, the vehicle swings by the moon to gain a velocity boost on the order of $600-1000 \mathrm{~m} / \mathrm{s}$. During a Mars fly-by, the vehicle approaches Mars with excess velocity, drops the MEV off, and continues in heliocentric space in close proximity to Mars. When the vehicle decelerates enough to capture at Mars, the vehicle enters a highly elliptic orbit to allow the MEV multiple attempts to rendezvous with the transfer vehicle. The time frame for vehicle deceleration and Mars caprure is calculated to be the same as the surface stay time. An Earth fly-by is similar to a Mars fly-by in the sense that the vehicle starts the deceleration phase of the mission leg, later than it normally would. As the transfer vehicle approaches the Earth with excess velocity, the crew is dropped off and the vehicle continues in heliocentric space. When an Earth fly-by is employed, the transfer vehicle cannot rendezvous back with the Earth for a considerable length of time (~ 200 days). This length of time may be detrimental to thruster lifetime. Therefore, the recommended gravity assists are Lunar and Mars fly-bys. These fly-bys can offer trip time reductions on the order of 40 days total.
NEP Mission Profile Schematic
The NEP mission profile is very similar to the SEP profile except due to the somewhat
greater power to weight ratio, the NEP trip times are somewhat shorter than those for SEP.
NEP Mission Profile Schematic

/STCAEM/brc/llhungo .
Interplanetary Low Thrust Trajectories

Mars Flyby

View from Mars Reference Frame

Flyby Parameters

This page intentionally left blank

To:	Brad Cothran	M/S JX-23
c:	John Hardtla	
	Dana Andrews	M/S 82-26
	Vince Weldon	M/S 8K-02
		M/S 82-48

Subject: Conjunction-Class Missions to Mars Using Nuclear Elecrric Propulsion

Discussion:

Trade studies were performed for the proposed conjunction class manned Mars mission, in which Mars residence cimes are on the order of several hundred days. Long stay times at Mars allow the vehicle to travel on two relatively low energy legs, in contrast to the opposition ciass missions which (generally) utilize one low energy leg and one high energy leg. As a result, initial masses in Earth orbit are significantly lower than in opposition class missions.

Trades were performed for optimum power levels, optimum specific impulse for a given power level, and oprimum launch and encounter dates for the 2016 opportunity. Using a baseline case of 25 MW , Isp $=10,000$ seconds, the total vehicle alpha (inert weight divided by power delivered to thrusters) was varied to determine sensitivity of initial mass to the design alpha. Trajectories were then generated for each of the opportunities between the years 2009 and 2026, again using the 25 MW vehicle as a benchmark. For the best and worst of the oppornunities (as far as minimum weight and minimum time), the stay time was varied berween four hundred and six hundred days in order to determine an optimal (minimum required total delta V) Mars residence time.

Assumptions for the study were as follows:

- Variables included specific impulse, initial mass in orbit, power level, vehicle specific mass (alpha) and launch date.
- Trip uime was defined as Earch escape to Mars and rerum to Earch. Mars residence was not included.
- The equation used to calculate thruster efficiency was:

where $D D T=22.96$ and $B B=0.835$, constants from CHEBYTOP.
- Outbound payload of 116 MT
- Inbound payload of 43 MT
- Tankage mass equal to 10% of propellant mass
- Earh spiral to escape delta V of 8000 meters/second
- High elliptical Earth capture orbit
- Mars capture orbit of 24.5 hour (one Martian day) period with perigee altiude of 360 km.
- Vehicle alpha was defined as the ratio of the total inert weight to the power delivered to the thrusters.

The following tables $1,2,3$ and 4 show the resulting trajectory masses, specific impulses and trip durations for 600 day Mars residence missions, 2016 opportunity:

Inirial Mass in Low Earch Orbit (MT)	Specific Impulse (sec)	Launch Date (Julian Date-2440000)	Trip Time (davs)
479	10000	17470	300
449	10000	17460	320
435	10000	17450	340
428	10000	17450	360
425	10000	17450	380
421	10000	17440	400

Table 1 Trajectory Summaries for 40 MW NEP
Trip times for the 40 MW NEP vehicle are potentially shorter than any of the lower power levels, although the penalty of increased initial mass in low Earth orbit is substantial. An Isp of 10,000 seconds was used, since a lower Isp further increased the inirial mass.

Initial Mass in Low Earch Orbit-(MT)	Specific Impulse (seconds)	Launch Date (Julian Date-2440000)	Trip Time (days)
370	10000	17465	310
355	10000	17460	320
340	10000	17450	340
333	10000	17450	360
331	10000	17450	380
381	7500	17460	320
365	7500	17450	340
358	7500	17450	360
355	7500	17450	380
450	5000	17460	320
427	5000	17460	340
416	5000	17450	360
412	5000	17450	380

Table 2 Trajectory Summaries for 25 MW NEP
Trades of initial mass versus trip time for three different specific impulses (Isps) are shown in Table 2. The increase in initial mass in orbit for Isps of 7500 and 5000 seconds negate the benefit of the increased thrust that lower Isps provide. At a power level of 25 MW , a high Isp is still the most beneficial. Trip times are nearly as short as the 40 MV vehicle, but the initial mass is reduced.

Initial Mass in Low Earh Orbit (MT)	Specific Impulse (sec)	Launch Date (Julian Date-2440000)	Trip Time (days)
323	10000	17450	330
314	10000	17450	340
308	10000	-	17450
306	10000	17450	350
305	10000	17450	360

Table 3 Trajectory Summaries for 20 MW NEP
At a trip time of 330 days, the 20 MW vehicle is thrusting nearly continuously. As a result, rip times much shorer than this cannot be achieved without lowering the Isp.

Inirial Mass in Low Earch Orbit (MT)	Specific Impulse (sec)	Launch Date (Julian Date-2440000)	Trip Time (davs)
293	7500	17440	350
279	7500	17440	360
274	7500	17440	380
273	7500	17440	400
337	5000	17450	340
316	5000	17440	360
310	5000	17440	380
306	5000	17440	400

Table 4 Trajectory Summaries for 10 MW NEP
The lower power to weight ratio of the 10 MW vehicle necessitates a lower Isp for the required thrust levels to escape Earth and travel to Mars.

Figure 1 Initial Mass vs. Trip Time Trades, 600 day Mars Residence

Figure 1 displays the performance of each of the different power levels for a 600 day residence ime at Mars during the 2016 opportunity. A nominal power level of 25 MW was selected as a good compromise between moderate initial mass and short trip times. Factors that could affect this choice are cost of delivering mass to orbit and human tolerance to extended time in space. If a heavy-lift launch vehicle is capable of injecting 100 MT into low Earth orbit (LEO) per launch, a 10 MW vehicle would be more cost effective from the standpoint that only three launches would be required. If three hundred fifty day trip times (two hundred days outbound) are tolerable, a lower power vehicle may be a better choice. Likewise, if a short trip time is extremely important, a higher power level may be used.

Figure 2 Specific Impulse Trades, 10 and $25 \mathrm{MW}, 600$ day Mars Residence

Figure 2 shows that a higher specific impulse results in a lower inicial mass, while trip times remain competicive. However, there is a practical limit to the maximum Isp. At low power levels, the vehicle is thrust-limited, i. e. it may not be able to produce the required delta V in a given period of time to ever reach Mars. As a result, the duration of a leg must be increased in order to
gain more total delta V , forcing a trajectory that is not as efficient as a shorter parh. For the 10 MW case, a lower specific impulse can result in a shorter trip time.

Power (MW)	Vehicle Alpha $(\mathrm{kg} / \mathrm{kW})$	Initial Mass in LEO (MT)	Trip Time (days)
25	5.00	314	325
25	5.65	338	325
25	6.00	352	325
25	6.50	371	325

Table 5 Variation of Initial Mass with Alpha, 25 MW Vehicle

After the 25 MW vehicle was selected as a baseline, the vehicle alpha was varied to determine the sensitivity to this figure. Table 5 sumarizes the results. Choosing an initial point in the "knee" of the initial mass vs. time curve (Figure 1), the alpha was varied from the nominal $5.65 \mathrm{~kg} / \mathrm{kW}$. The same 325 day uip time was possible in all cases, and initial mass in orbit did not vary drastically, showing only a proportional increase.

Opportuniry (year)	Launch Date	Inirial Mass in LEO (MT)	Trip Time (days)
2010	21 August, 2009	406	420
2012	19 October, 2011	402	400
2014	14 January, 2014	392	340
2016	02 March, 2016	340	340
2018	26 May, 2018	338	325
2020	14 July, 2020	358	340
2022	08 August. 2022	373	385
2024	17 August, 2024	406	410
2026	21 September, 2026	401	420

Table 6 Trajectory Summaries for 25 MW NEP Vehicle, Various Opportunities

Using the same nominal vehicie and rajectory, a trade was performed in which the year of opportuniry was varied through the entire Earth-Mars oppormaniry cycle. Results are summarized in Table 6. When arrival and departure from Mars occurs near the apoapsis of the Martian orbit,

Mars is further away from and Earth and is traveling slower. Both of these factors require a corresponding.increase in necessary total delta V for the same rrajectory geomerry. As a result, longer tuip times and higher initial masses in LEO are required for some of the oppositions than others.

Figure 3 Initial Mass versus Trip Time for Various Earth-Mars Opportunities The initial mass in low Earth orbit (IMLEO) and trip time as a function of opportunity is shown in Figure 3. The 2016 launch oppormaity represented in the previous data is one of the "easier" opportunities in that Mars is near perigee when the NEP vehicle arrives and departs. The total distance traveled is shorer and the required delta V is lower. Correspondingly, both initial mass and tip time are low. For an opportunity that requires significantly more delta V, such as the 2010 opporunity, a higher power level may be beneficial due to thrusting limitations on lower-powered vehicles.

Launch Date -	Stay Time (days)	Initial Mass in LEO (MT)	Trip Time (days)	
26 May, 2018	600	338	325	
31 May, 2018	500	343	390	
20 June, 2018	400	374	440	
21 August, 2009	600	406	420	
09 November, 2009	500	383	410	
14 November. 2009	400	399	480	

Table 7 Effect of Mars Stay Time on Initial Mass and Trip Time, 25 MW Vehicle

The effect of varying residence time at Mars upon the initial mass and trip time is shown for two different opportunities in Table 7. For the efficient opportunities (2018, for example), a slightly longer stay time than 600 days might be beneficial. However, for the 2010 opportunity, a shorter residence time (between 400 and 600 days) will decrease the initial mass and trip time due to improved planetary geometry for the Earth to Mars and Mars to Earth transfers.

Conclusions:

For the more efficient opportunities (e. g. 2016, 2018), a 20 to 25 MW vehicle provides a good compromise between low initial mass in Earth orbit and short travel times to and from Mars. For the opportunities which require substantially more energy, a higher power vehicle may improve the overall performance for the mission. If the reduction of initial mass in low Earth orbit is placed at a premium, a lower power level may be more suitable.

Prepared by:

William G. Vases
M/S 82-24
(206) 773-8424

Reviewed by:

S. W. Paris

M/S 82-24
(206) 773-7023

To:
Brad Cothran
c:
John Harcitla
Dana Andrews
Vince Weldon

M/S JX-23

M/S 82-26
M/S 8K-02
M/S 82-48

Subject: Nuclear Electric Propulsion Trades for 25 MW Vehicle at Higher Specific Mass

Reference: "Conjunction-Class Missions to Mars Using Nuclear Electric Propulsion", 2-5354 WGV90-071.

Discussion:

This memo is an addendum to the previous study (Reference) in which the effects of a broader range of vehicle specific mass (ratio of initial mass to electric power delivered to thrusters, known as alpha) on the trajectory is outlined. The data presented here will encompass the possible specific mass of very advanced production methods through current state of the art.

Table 1 presents the important data:

Power (MW)	Vehicie Alpha $(\mathrm{kg} / \mathrm{kW})$	Initial Mass in LEO (MT)	Trip Time (days)
25	5.00^{*}	314	325
25	5.65^{*}	338	325
25	6.00^{*}	352	325
25	6.50^{*}	371	325
25	7.00	391	325
25	7.50	398	335
25	8.00	398	370

* represents previous dama (Reference)

Table 1 Variation of Initial Mass with Alpha, 25 MW Vehicle

Figure 1 Initial Mass in Low Earth Orbit and Trip Time vs. Alpha

Note that the data in Figure 1 is for the 2018 opportunity, which has the lowest overall energy requirements of all opportunities in the cycle. If a higher energy opportunity is chosen, the rate of increase of initial mass and trip time with increasing vehicle alpha will be much higher.

Prepared by:

William G. Vlases
M/S 82-24
(206) 773-8424

Reviewed by:

S. W. Paris

M/S 82-24
(206) 773-7023

OPTIMUM LOW THRUST ROUND TRIP EARTH-MARS MISSION AND SYSTEM DESIGN PARAMETERS

December 27, 1989

William Byrd Tucker

SRS TECHNOLOGIES
990 Explorer Blvd.
Huntsville, Al 35806
$=$

ACKNOWLEDGMENTS

ie author wishes to acknowledge the contributions of Brad Cothran of the Eompany to this analysis. Brad defined all of the advanced propulsion systems, and their interfaces. He also suggested the possibility of constraining the mass fractions to attempt to solve the CTMODE convergence problem.

1.0 INTRODUCTION

The objective of this task is to determine optimum mission and system design parameters for both Nuclear Electric Propulsion (NEP) and Solar Electric Propulsion (SEP) systems performing round trip Earth-Mars missions in the 2011 to 2028 time frame, subject to a variety of both equality and inequality constraints. The following constraints are enforced throughout the entire study:

- Payload at Mars arrival is 124.300 (kgs).
- Propellant reserves and tankage is 10% of the propellant loading.
- Mass dropped at Mars is 84000 (kgs), plus the propellant reserves and tankage for the Earth-to-Mars leg of the mission (including the Earth escape and Mars capture spirals).
- Payload at Earth return is 40300 (kgs).
- Stay time at Mars is 30 days. It is assumed that the crew will exit the low thrust vehicle and descend to the Mars surface (using a high thrust system) in a relatively short time. The crew will also ascend using a high thrust system, and will rendezvous with the low thrust vehicle for the Mars-to-Earth return leg of the trip. However, the low thrust descent and ascent spiral propellants are included as part of the low thrust system being optimized. At Earth departure, it is also assumed that the crew will use a high thrust system to rendezvous with the low thrust vehicle just before Earth escape. At Earth retum, the crew will leave the low thrust vehicle before spiralling down into Earth orbit. Thus, the Earth escape and capture spiral propellants are charged to the low thrust system mass, but the spiral times are not counted as part of the mission.
- Minimum acceptable distance of the spacecraft from the sun is 0.3 AU , on either the outbound or inbound leg of the mission. This constraint never becomes a factor in this study because the minimum distance on all missions examined is about 0.5 AU.

2.0 SIMULATION AND OPTIMIZATION PROCEDURES

A parameter optimization program, referred to as POP, is used to drive the optimization process. POP is an acronym for "Parameter Optimization Program." It can be interfaced with any system model and, when the parameters are communicated properly between the system model and POP, it will drive the simulation to find the set of parameter values that sarisfies all of the defined constraints and minimizes a cost functional. Both equality and inequality type constraints are acceptable. System parameters may be designated as fixed (in which case POP
ignores them in its optimization search) or variable (in which case POP allows them to vary in its optimization search). The theoretical foundation for POP is given in Reference 1.

It is well known that SIMPLEX only solves linear systems of equations; thus, an obvious question is "How is SIMPLEX used to solve nonlinear problems?" The answer is that all the required partial derivatives are supplied to SIMPLEX as the coefficients in its system of linear equations, and the search is constrained to a "linear neighborhood" of the current system states. In this way, on any one call to SIMPLEX a linear system of equations is solved and the answers are returned to POP, which then reevaluates all relevant relationships, with all their nonlinearities, and sers up to take another step with SIMPLEX. This procedure of sequentially feeding SMMPLEX small linear chunks of a large nonlinear problem ultimately results in a solution of the large nonlinear problem. It is quite surprising how robust POP is in this role. Reference 1 exhibits some results for a difficult and highy nonlinear problem, but over the years since POP was first developed, it has been used to solve a host of difficult nonlinear problems.

One adyantage of using_POP over several other optimization techniques is the ease with which the cost functional, the constraints (both equality and inequality types), and the parameters to be fixed or variable during the optimization can be changed. Any variable in the system model can be used as a parameter by equivalencing it to a member of the parameter set. Any parameter in the set can be fixed by simply setting an input flag properly for that parameter. The cost functional or constraints can be changed by changing the proper equations in the constraint subroutine and recompiling.

Performing system optimization is somewhat like walking through a mine field, "You never know what might happen after the next step!" Optimization with POP is no different. The user must be wary of several potential problem areas.

Estimating the partial deriyatives is one porential problem_area. The partials are estimated empirically, as indicated in the following equation:

$$
\left(\frac{\partial C_{i}}{\partial p_{j}}\right)_{0}=\frac{C_{i}\left(p_{j o}+\delta p_{j}\right)-C_{i}\left(p_{j o}\right)}{\delta p_{j}}
$$

where C_{i} (as $i=1, \ldots, N$) represent the cost functional and all the constraints, and pj (as $\mathrm{j}=$ $1, \ldots, \mathrm{M})$ represent all variable system parameters. The user must inpur values for $\delta \mathrm{pj}$, and the value for each " $\delta \mathrm{pj}^{\mathrm{j}}$ must be chosen such that the resulting matrix of partial derivarives adequately approximates the matrix of true but unknown partial derivatives. This is not a trivial exercise for problems that you are not familiar with. POP allows you to set a DEBUG flag in the input so that you can see the results of $C_{i}\left(p_{j o}+\delta p_{j}\right)$ and $C_{i}\left(p_{j o}\right)$ and interactively change the δp_{j} to find values
that result in credible approximations for the parrials. You should input values for δp_{j} such that the differences in the numerator in the equation for the partials retains 4 or 5 significant digits. Failure to do this properly can result in much wasted manhours and computer time.

Determining a linear neighborhood of the current system states can also be difficult. POP uses input variables called BFAC to control the search region for POP. BFAC is a multiple of δp_{j}, which defines the region within which POP is allowed to vary each P_{j} on one iteration. POP then dynamically adjusts BFAC based upon the linearity of the cost functional during each search. When the cost functional increases with respect to BFAC, POP reduces BFAC by ($0.75 * \mathrm{BFAC}$).

A maximum (BFMAX) valué and a minimum (BFMIN) value are also input. These values restrict the range of values within which BFAC can vary. BFMIN should be 1.0 if the $\delta \mathrm{p}_{\mathrm{j}}$ values have been chosen reasonably. BFMAX is not so easy to specify, and can have a great influence on the optimization process. If BFMAX is too large it is possible for the process to bounce around from one local "valley" to another, and perhaps never really converge. If BFMAX is too small the process may move very slowly toward the minimum of a local valley, which may not be the best valley anyway. POP has no facility for assuring that the local minimum it finds is the global minimum. The user is responsible for analysing the results and the problem to decide whether the results are in fact the desired optimum.

Figure 1 shows a macroflow diagram of the POP optimization procedure. After input and initialization, it calls the system simulation routine with "nominal" values for all of the parameters to determine nominal system performance. It then varies each "free" parameter by a prescribed "delta" amount and uses divided fifferences to empirically estimate the partial derivative of each constraint (i.e. the cost functional, all equality constraints, and all inequality constraints) with respect to each free parameter.

Figure 1. Macroflow Diagram of The Parameter Optimization Program (POP)

The SYSTEM subroutine used in this study is structured using low thrust escape and capture spiral subroutines based on the results of Reference 2, and low thrust Earth-Mars and Mars-Earth trajectory subroutines based on the CHEBYTOP development by The Boeing Company in the late 1960s and early 1970s, as documented in Reference 3.

Figure 2 presents a macroflow diagram of the system subroutine used for this study. Departure is always from a circular Earth orbit, and the spiral is simulated out to
escape ($C 3 \dot{E}=0$). CHEBYTOP routines are then called to simulate the trajectory to Mars capture $(\mathrm{C} 3 \mathrm{M}=0)$. The arrival spiral subroutine simulates the trajectory from $\mathrm{C} 3 \mathrm{M}=0$ to the specified circular Mars orbit. If the departure or arrival orbit is

Figure 2. Macroflow of the Low Thrust Round-Trip Earth-Mars Mission Simulation
elliptical, the spiral subroutine uses the semi-major axis as if it were the radius of a circular orbit. This approximation is made because the spiral subroutines are developed for departure from and arrival at circular orbits.

CHEBYTOP is used in this analysis primarily as a trajectory generator. It optimizes the thrust attitude angles and coast ares when it generates a trajectory, but nothing else. POP is used to optimize all of the other mission and system parameters. A significant problem surfaced during this analysis as POP kept stressing the system to minimize the cost functional. Since CHEBYTOP assumes that the VTMODE trajectory is not greatly different from the CTMODE trajectory, and POP keeps pushing the system to its limits, even for the VTMODE,-it gets to a point where the CTMODE approximation does not converge, and in this analysis we are primarily interested in CTMODE performance results. Thus, the question arose: "How can the optimization search volume be constrained to a region such that the CTMODE always converges?" This was accomplished by constraining both the outbound and inbound CTMODE payload mass fractions to desired values.

To be more specific, suppose that POP is minimizing the total heliocentric travel time, and a particular iteration results in a CTMODE payload mass of 30,000 (kgs). Since the desired payload value of 40,300 (kgs) is different from that achieved on that iteration, the desired payload mass fraction is computed using the desired payload mass with all the mission and trajectory data from the iteration. The difference in the desired mass fraction and the mass fraction achieved on the iteration is entered as an error in the constraint subroutine. This is done on both the ourbound and inbound legs of the mission. It is evident that the desired mass fraction value changes from one iteration to the next because the mission and trajectory data change, but this "floating" of the desired value has caused no discemable difficulty. This "floating end condition" concept was used successfully on an Apollo lunar targetting problem (see Reference 4).

This scheme accomplished the desired results, i.e. it kept the iteration constrained to a region in which the CTMODE was close enough to the VTMODE results to converge. However, the user should be aware that this reduced the search volume to accomodate the CTMODE approximations, and it may be possible to achieve better results with an unconstrained trajectory generator. It is not likely, however, that such improvement would be sufficiently large to change the trends or trades resulting from this analysis.

3.0 EARTH-MARS ROUND TRIP MISSION PARAMETERS

The mission begins with the Earth departure spiral out from an Earth orbit to $C 3 E=0$. The orbit is specified by input of its apogee and perigee radii, RAED and RPED. As was mentioned earlier, the spiral algorithm assumes departure from circular orbit. If apogee radius is different from perigee radius, the algorithm uses the semimajor axis as the radius of the circular orbit. The spiral out time is ignored. but the propellant required is included as a part of the low thrust system mass.

At escape ($C 3 E=0$) CHEBYTOP computes the outbound leg of the heliocentric portion of the flight. Beginning time of this outbound leg is called the "date of Earh departure, DED," and is an input, The "heliocentric travel time. HTT," is input and is the sum of the outbound Earh-to-Mars trip time (from C3E $=0$ to $\mathrm{C} 3 \mathrm{M}=0$) and the inbound Mars-to-Earth trip time (from $\mathrm{C} 3 \mathrm{M}=0$ to $\mathrm{C} 3 \mathrm{E}=0$). Note that HTT does not include stay time at Mars or any of the spiral times.

The "outbound trip time, TOUT," is also input, and the inbound trip time is computed as TIN = HTT \cdot TOUT. The Mars arrival date is DMA $=$ DED + TOUT. The arrival spiral is from $C 3 M=0$ to a Mars orbit specified by its apoapsis and periapsis radii. RAMA and RPMA. If they have different values the algorithm uses the semimajor axis. Again, the spiral down time is ignored, but the spiral down propellant is considered part of the outbound propellant requirement. At Mars, the input value for drop mass [84,000 (kgs)] is dropped, along with the outbound tankage and reserves, which is 10% of the sum of propellants used in the Earth escape spiral, the outbound heliocentric leg, and the Mars capture spiral.

The Mars departure date is DMD = DMA + TSTAY, where TSTAY is input. The Mars departure orbit is specified by input of RPMD and RAMD, periapsis and apoapsis radii of the departure orbit. The Mars departure spiral is out to $\mathrm{C} 3 \mathrm{M}=0$ and the propellant used is a part of the inbound propellant for the system.

Earth arrival date is DEA $=$ DMD + TIN. CHEBYTOP computes the inbound heliocentric leg of the mission from $C 3 M=0$ to $C 3 E=0$ in time TIN. The Earth capture spiral is from C3E $=0$ down to an Earth orbit specified by input of RPEA and RAEA. The spiral down time is ignored, but the propellant used is included in the inbound propellant requirements for the system.

Two versions of POP were used: one minimizes HTT; the other minimizes the initial mass in Earth orbit, IMEO, with HTT fixed at a desired value. Mission parameters that are available for POP to use in its optimization are:

- DED: Date of Earth departure
- TOUT: Heliocenuric outbound travel time (from $\mathrm{C} 3 \mathrm{E}=0$ to $\mathrm{C} 3 \mathrm{M}=0$)
- HTT: Sum of outbound and inbound heliocentric travel time
- TSTAY: Stay time at Mars (from $\mathrm{C} 3 \mathrm{M}=0$ at arrival to $\mathrm{C} 3 \mathrm{M}=0$ at departure)

4.0 LOW THRUST SYSTEM_PARAMETERS

The fundamental relationships for modelling the low thrust system are listed below:

$$
\begin{gathered}
J=\int_{0}^{T} a^{2} d t, \text { (trajectory optimization parameter) } \\
\frac{1}{m_{p}}=\frac{1}{m_{0}}+\frac{J}{2 \eta P_{0}}, \text { (mass related to trajectory parameters) } \\
m_{p s}=\alpha P_{0}, \text { (power system mass; } \alpha=\text { specific mass; } P_{0}=\text { initial power) } \\
c=g_{e} I_{s p}, \text { (exhaust velocity) } \\
\eta=\eta\left(I_{s p}\right), \text { (Thruster efficiency) } \\
a_{0}=\frac{2 \eta P_{0}}{c m_{0}}, \text { (initial acceleration) } \\
m_{p}=m_{0}=m_{p}, \text { (propellant mass) } \\
m_{t r}=k m_{p},(\text { tankage \& reserves) } \\
m_{p l}=m_{0}=(1+k) m_{p}-m_{p s}, \text { (payload mass) }
\end{gathered}
$$

The system design parameters available to POP for use in its optimization are listed below:

- IMEO: Initial mass in Earth orbit
- HISP: Specific impulse of the low thrust system
- PO: Initial power of the low thrust system

Note that the "specific mass, ALPHAW or α," is an input but is never varied in the optimization.

5.0 NUCLEAR ELECTRIC PROPULSION (NEP) RESULTS

Design parameters for the NEP system are its (1) initial power, Po, (2) specific mass. α, and (3) specific impuise, Isp. In some of the following NEP results Isp is optimized, but specific mass and $P o$ are held constant.

Thruster efficiency, η, was specified as a tabulated function of Isp. Thus, when Isp is optimized it is neccessary that the η (Isp) be represented functionally so that the partial derivative can be evaluated. The tabulated data was fit with the following fourh order polynomial for that purpose:
$\eta=-0.082668+2.6251 \mathrm{e}-$ 4 $^{*} \mathrm{Isp}-3.087 \mathrm{e}-8 *$ Isp**2 $+1.8047 \mathrm{e}-12 *$ Isp**3
-4.3169e-17*Isp**4

The tabulated η (Isp) data oniy extends to an Isp value of about 12500 (sec). Thus, any time the NEP Isp value is optimized, it is constrained such that its value is less than or equal to 12500 (sec).

All these NEP results assume Earth departure and retum at a "nuclear safe orbit" of radius $7070(\mathrm{~km})$, i.e. about $700(\mathrm{~km})$ altitude; Mars arrival and departure is at a circular orbit of radius 23000 (km).

5.1 NEP SYSTEM DESIGN PARAMETRICS FOR THE 2016 OPPOSITION

This section presents parametric data for the 3/2016 لalach opportluity for various NEP system design options. Detailed optimization results for this section are presented in the following tables:
For the Po/ $\alpha=120 / 3$ System

HTI	$* 302.042$	325	400	500	600
DED	17470.46	17470.80	17459.48	17428.49	17404.25
TOUT	126.834	129.300	155.195	202.428	245.647
IMEO	997.689	865.390	737.102	676.761	652.971
HISP	10000	10000	10000	10000	10000
ETA	.83	.83	.83	.83	.83

For the $\mathrm{Po}_{0} / \alpha=80 / 4$ System

HTT	$* 342.049$	400	500	600	
DED	17462.80	17459.74	17427.82	17403.00	
TOUT	142.822	156.637	205.568	249.653	
IMEO	854.930	694.094	627.554	602.483	
HISP	10000	10000	10000	10000	
ETA	.83	.83	.83	.83	

For the $\mathrm{Po} / \alpha=40 / 4$ System

HTT	$* 359.262$	400	500	600	700
DED	17458.42	17458.07	17437.6	17401.00	17365.96
TOUT	156.242	161.844	203.7	256.093	302.327
IMEO	548.281	443.885	396.197	379.753	375.463
HISP	10000	10000	10000	10000	10000
ETA	.83	.83	.83	.83	.83

For the $\mathrm{Po} / \alpha=24 / 6$ System

HTT	$* 439.964$	500	600	700	
DED	17456.85	17440.79	17401.42	17354.13	
TOUT	189.924	203.105	261.178	321.480	
IMEO	448.792	384.341	363.858	358.385	
HISP	10000	10000	10000	10000	
ETA	.83	.83	.83	.83	

For the $\mathrm{Po} / \alpha=10 / 12$ System

HTT	$* 610.319$	650	700	800	
DED	17431.76	17404.75	17390.34	17346.97	
TOUT	270.478	272.068	297.456	349.266	
IMEO	377.595	345.701	342.290	342.310	
HISP	10000	10000	10000	10000	
ETA	.83	.83	.83	.83	

The first value in each table (with the asterisk, *) is the minimum HTT value achievable with that NEP system design and launch opportunity. The other HTT values are fixed and the IMEO values are the minima for those HTT values.

Figure 3 shows the minimüm IMEO required for various NEP design options to perform missions of various durations (various HTT values). Keep in mind that all these NEP designs are assumed to have Isp $=10000$ (sec) with an efficiency of about 0.83 . The minimum value of HTT shown in Figure 3 is the minimum HTT value achievable with that NEP design, characterized by its Po, Isp, and ALPHA. Suppose that a mission of HTT $=302$ days is required. Figure 3 shows that the only one of these NEP designs that has that capability is the $P 0=120$ with $\alpha=3$. It is also evident from the figure that the NEP system having the lowest Po value will perform any HTT mission with the minimum IMEO, if it can achieve the desired HTT value. For example, if an HTT of 600 days is required, it is cheaper in terms of IMEO to perform the mission with the (24.6)

Figure 3. Initial Mass Required in Earth Orbit for Various Missions and Nep System Designs
system than with any other system examined. That mission can't be done with the (10,12) system; the figure shows that the minimum HTT achievable with the (10.12) system is about 610 days.

Figures 4 and 5 are companions of Figure 3, showing the optimum Date of Earh Departure (DED), and duration of the outbound leg of the mission (TOUT), for the same set of mission and NEP system design options.

Figure 4. Date of Earth Departure for Various Mission and NEP System Design Options

Figure 5. Duration of the Earth-to-Mars Leg of Various Missions Using Various NEP System Design Options

Figures 4 and 5 show that the HTT value primarily controls the value of DED and TOUT, with the (Po, α) combination of the NEP system having a second order effect.

5.2 OPTIMUM PARAMETERS FOR A (40,4) NEP SYSTEM OVER AN EARTH-MARS SYNODICAL CYCLE

This section of NEP results shows the capability of the (40.4) NEP system design 10 perform various HTT duration missions at every opposition opportunity throughoul an entire Earth-Mars synodical cycle (about 17 years). Another difference in this section is that here POP is required to optimize the Isp value instead of using a fixed input value. A detailed tabulation of the optimization results is presented in the following tables, one for each opportunity in the cycle.

For the 12/2011 Opportunity

HTT	393.284	415	450		
DED	15911.07	15909.21	15917.80		
TOUT	177.700	186.952	191.998		
IMEO	608.13	487.949	424.472		
HISP	9239.51	11845.98	12500.0		
Po/a	$40 / 4$	$40 / 4$	$40 / 4$		

For the $1 / 2014$ Opportunity

HTT	377.693	400	450		
DED	16677.06	16682.42	16662.38		
TOUT	172.036	178.599	195.820		
IMEO	576.664	473.663	408.957		
HISP	9087.88	11755.01	11704.17		
Po/a	$40 / 4$	$40 / 4$	$40 / 4$		

For the $\mathbf{3 / 2 0 1 6}$ Opportunity

HTT	351.920	375	450	500	600
DED	17461.44	17463.78	17445.94	17442.81	17436.37
TOUT	150.521	159.026	192.566	209.839	262.106
IMEO	576.191	479.979	389.350	373.980	365.636
HISP	8712.68	11562.10	12485.21	12500.0	12337.92
Po/a	$40 / 4$	$40 / 4$	$40 / 4$	$40 / 4$	$40 / 4$

For the 5/2018 Opportunity

HTT	337.232	360	450	500	600
DED	18256.64	18256.78	18244.99	18232.53	18219.99
TOUT	132.650	139.945	168.746	183.692	234.245
IMEO	596.977	488.938	383.935	371.391	361.997
HISP	8161.83	10814.83	12481.89	12438.91	12500.0
Po/Q	$40 / 4$	$40 / 4$	$40 / 4$	$40 / 4$	$40 / 4$

For the $7 / 2020$ Opportunity

F.Or the	379.002	400	450		
HTT	379.002	19061.12	19057.82		
DED	19054.95	155.916	152.106	174.737	
TOUT	145.916				
IMEO	542.929	467.359	405.551		
HISP	9992.22	12456.85	12500.0		
Po/a	$40 / 4$	$40 / 4$	$40 / 4$		

For the $9 / 2022$ Opportunity

HTT	394.025	415	450		
DED	19839.79	19837.23	19845.02		
TOUT	162.840	170.467	180.965		
IMEO	641.691	305.436	430.601		
HISP	8519.58	11167.38	12500.0		
Po/a	$40 / 4$	$40 / 4$	$40 / 4$		

For the 10/2024 Opportunity

For the	$10 / 2024$				
HTT	410.990	430	450		
DED	20608.18	20608.66	20603.76		
TOUT	179.339	187.531	200.715		
IMEO	568.192	480.936	440.611		
HISP	10082.04	12424.57	12493.19		
Po/	$40 / 4$	$40 / 4$	$40 / 4$		

For the 12/2026 Opportunity

HTT	397.610	415	450		
DED	21376.39	21374.78	21376.02		
TOUT	178.784	188.840	206.339		
IMEO	615.834	511.763	432.825		
HISP	9045.30	11097.85	12452.05		
Po/	$40 / 4$	$40 / 4$	$40 / 4$		

This database of optimum NEP parameters for an entire Earth-Mars synodical period can be used to generate a multitude of interesting plots. The following plot is just one example of the kind of plots that might be of interest. It is clear from the plot that optimum specific impulse values do not form a consistent pattern with minimum achievable HTT. There is most likely a dependence on Earth-Mars distance that is not shown in the plot. (Earth-Mars distance is not included in the database).

5.3 CONTINGENCY OPTIONS FOR A NEP REACTOR FAILURE AT MARS

The Boeing Company raised the question: "How can a mission be planned so that the mission can still be accomplished if one of the reactors goes out at Mars (assuming a dual reacior NEP system)?"

The first option considered was the possibility of carrying enough extra propellant to allow the return leg to be completed with only half of the outbound power, Po. The second option considered was to change the stay time at Mars from 30 days to a different value that would allow the retum leg to be completed with the nominal propellant loading. It was somewhat surprising that both options handle the problem with minor changes from the nominal. The following table lists the propellant required and the masses to be dropped for the various trajectory segments.

Using IMEO to handle the problem requires that an extra 1777.8 (kgs) of propellant be carried out to Mars. If the reactor does not fail, then the extra propellant would be offloaded and the nominal return trajectory would be flown. If one of the ractors does fail at Mars, then the extra propellant would be utilized as shown in Column 3 of the table to successfully execute the return trajectory.

Using stay time at Mars, TSTAY, to handle the problem results in the values shown in Column 4 of the table. All of the propellant loadings are at their nominal values, but the stay time is reduced to 28.852 days (instead of 30) which
distributes the propellant usage as shown in Column 4. Differences between the two contingency plans and the nominal are shown in Columns 5 and 6 .

	NOMINAL VALUES	REACTOR OUT/IMEO	REACTOR OUT/TSTA	DIFF. FOR IMEO	DIFF. FOR TSTAY
INITIAL MASS IN EARTH ORBIT	479898.5	481676.3	479898.5	1777.8	0
EARTH ESCAPE SPIRAL PROP	28027.669	28134.028	28027.669	106.359	0
OUTBOUND HELIO PROPELLANT	65545.948	66349.384	65545.948	803.436	0
MARS CAPTURE SPIRAL PROP	3245.529	3253.583	3245.529	8.054	0
MASS DROPPED AT MARS	84000	84000	84000	0	0
TOTAL OUTBOUND PROPELLANT	96819.146	97736.995	96819.146	917.849	0
OUTBOUND TANKS AND RESERVES	9681.9146	9773.6995	9681.9146	91.7849	0
MARS ESCAPE SPIRAL PROP	2351.625	2535.767	2528.435	184.142	176.81
INBOUND HELIO PROPELLANT	65981.5	66236.571	65550.059	255.071	-431.441
EARTH CAPTURE SPIRAL PROP	12664.554	12923.688	12919.243	259.134	254.689
TOTAL INBOUND PROPELLANT	80997.679	81696.026	80997.737	698.347	0.058
INBOUND TANKS AND RESERVES	8099.7679	8169.6026	8099.7737	69.8347	0.0058
PAYLOAD AT EARTH RETURN	40299.992	40299.977	40299.929	-0.0156	-0.0638

6.0 SOLAR ELECTRIC PROPULSION (SEP)_RESULTS

The solar electric propulsion (SEP) system in this analysis differs from the NEP system only in the η (Isp) function, and in the power profile as a function of distance from the sun (power is constant for the NEP system). Both of these are specified for the SEP system by the following equations:

$$
\begin{aligned}
& \eta(\mathrm{Isp})=80.193 * \text { Isp }{ }^{* * 2 /(96.04 * I s p * * 2+5.067 e 8)} \\
& \mathrm{P} / \mathrm{Po}=\left(1.763-0.8865 / R+0.0592 / R^{* * 2}\right) /\left[\mathrm{R}^{* * 2}\left(1-0.1171 \mathrm{R}+0.0528 \mathrm{R}^{* * 2}\right)\right]
\end{aligned}
$$

ALPHA, or α, i.e. specific mass, is assumed to be $10(\mathrm{~kg} / \mathrm{kwe})$ for all these SEP results.

For SEP missions Earth departure and return is assumed to be at a geosynchronous orbit of radius $42241(\mathrm{~km})$; Mars arrival and departure is at a circular orbit radius of $23000(\mathrm{~km})$.

6.1 OPTIMUM SEP SYSTEMS FOR 2016 OPPORTUNITY MISSIONS

This section presents optimum SEP system designs for performing various HTT duration missions at the 2016 launch opportunity. Specific mass is always fixed at 10 ($\mathrm{kg} / \mathrm{kwwe)}$ for these SEP systems. Detailed optimization results are presented in the following tables (the value with the asterisk, * , is the minimum achievable HTT with that SEP design):

For the $P_{0} / \alpha=10 / 10$ SEP System

HTT	$* 549.011$	600	650	700	
DED	17429.39	17426.76	17410.93	17391.33	
TOUT	237.493	249.244	272.514	300.179	
IMEO	489.382	354.204	352.331	335.492	
HISP	4569.95	5521.95	5023.71	5527.80	
Po	10000	10000	10000	10000	

For $\alpha=10$, With Optimum Po and Isp SEP System

HTT	520	549	570	600	650
DED	17442.44	17434.35	17430.22	17425.44	17410.72
TOUT	214.211	232.164	240.661	255.401	280.790
IMEO	578.197	492.843	372.044	319.656	297.859
HISP	5597.12	4191.12	5931.11	6328.13	4883.08
Po	18212.79	9919.88	9611.80	7644.50	4424.60

Figures 6 throught 10 are for these SEP systems performing missions for the 2016 launch opportunity. Figure 6 shows the minimum IMEO required for the SEP

Figure 6. Minimum Initial Mass in Earth Orbit for SEP System to Perform Various HTT Missions With Optimum Po and Isp
system to fly various HTT duration missions, with both the initial power level, Po, and Isp values.optimized.

Figures 7 and 8 are companion charts that show optimum Po and Isp values associated with the HTT missions shown in Figure 6.

Figure 7. Optimum Initial Power Values for Missions Having Various Heliocentric Travel Times (HTT)

Figure 8. Optimum Specific Impulse Values for Missions Having Various Heliocentric Travel Times (HTT)

Figure 8 exhibits an optimum isp value for HTT $=549$ days that appears to be inconsistent with all of the other values. This problem has not been analysed further to determine what causes the inconsistency.

Similarly, Figures 9 and 10 are companion charts that show optimum Earth departure date (DED) and optimum outbound heliocentric trip time (TOUT) for the same missions shown in Figures 6, 7, and 8.

Figure 9. Optimum Earth Departure Dates for Missions Having Various Heliocentric Travel Times (HTT)

Figure 10. Optimum Outbound Trip Time for Missions Having Various Heliocentric Travel Times (HTT)

6.2 LOW EARTH ORBIT (LEO) TO GEOCENTRIC EARTH ORBIT (GEO) TRANSEERS

The Boeing Company suggested the possibility of making the LEO to GEO transfer with a disposable solar array. This would allow the array to be discarded at GEO due to expected damage caused by passage through the Van Allen radiation belt. Boeing estimated the mass of the disposable array to be about 28000 (kgs).

Relationships developed in Reference 5 are used to (1) estimate the mass required in LEO to transfer a specified mass to GEO, and (2) the time required to accomplish that transfer. Thus, the IMEO requirements presented earlier in this survey for the SEP system to perform various missions of HTT duration would become the specified mass to be transferred to GEO. The computational procedure for this LEO to GEO transfer estimation is as follows:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{w}}=\mathrm{P}_{\mathrm{o}} \alpha \text { (power plant mass) } \\
& m_{\text {pld }}=m_{g e 0}-m_{w} \text { (payload mass for the transfer) } \\
& \mathrm{m}_{\mathrm{st}}=28000 \text { (kgs) (structural mass for the ...) } \\
& \mathrm{m}_{\mathrm{f}}=\mathrm{m}_{\mathrm{pld}}+\mathrm{m}_{\mathrm{st}} \text { (final mass for the ...) } \\
& R=\frac{m_{v}}{m_{f}} \\
& \gamma=\frac{R}{1+R}=\frac{m_{P}}{m_{e 0}} \text { (ratio of propellant mass to mass in LEO) } \\
& \Delta \mathrm{V}=\mathrm{V}_{\mathrm{o}_{\infty}}-\mathrm{V}_{\mathrm{c}_{m}} \text { (ransfer velocity required) } \\
& \mathrm{V}_{\mathrm{c}}=\frac{\Delta \mathrm{Y}}{\gamma} \text { (characteristic velocity) } \\
& m_{\text {Heo }}=\frac{m_{w}}{\left(\gamma-\gamma^{2}\right)} \text { (mass required in LEO) } \\
& T=\frac{V_{c}^{2} \alpha}{2000(86400)} \text { (time required ..days) }
\end{aligned}
$$

The following tables list detailed results of a parametric survey showing the mass required in LEO to transfer desired quantities of mass to-GEO, and the time (in days) required to accomplish that transfer, using various power levels.

Mass Required			LEO to Transfer Desired				Mass (mgo) to		GEO
Po/mgo	0250	300	350	375	400	425	450	500	550
1	288.37	338.31	388.27	413.25	438.24	463.23	488.21	538.19	588.18
2	299.55	349.30	399.12	424.04	448.98	473.92	498.87	548.79	598.72
3	311.63	361.02	410.59	435.41	460.26	485.13	510.01	559.81	609.64
4	324.72	373.55	422.73	447.41	472.12	496.87	521.65	571.28	620.97
5	338.97	386.99	435.62	460.08	484.61	509.20	533.84	583.23	632.73
6	354.51	401.43	449.32	473.50	497.78	522.16	546.61	595.69	644.95
7	371.56	416.99	463.91	487.71	511.69	535.79	560.01	608.70	657.65
8	390.32	433.81	479.48	502.81	526.39	550.16	574.08	622.29	670.85
9	411.09	452.03	496.13	518.88	541.96	565.31	588.88	636.49	684.60
10	434.18	471.86	513.97	536.00	558.49	581.33	604.45	651.36	698.92

Davs Required to Transfer Desired Mass (mgo) to GEO									
Po/mgo	250	300	350	375	400	425	450	500	550
1	946.78	1318.0	1750.4	1989.6	2244.1	2514.0	2799.1	3415.3	4092.8
2	236.70	329.49	437.61	497.41	561.03	628.49	699.77	853.82	1023.2
3	105.20	146.44	194.49	221.07	249.35	279.33	311.01	379.48	454.75
4	59.17	82.37	109.40	124.35	140.26	157.12	174.94	213.46	255.80
5	37.87	52.72	70.02	79.59	89.77	100.56	111.96	136.61	163.71
6	26.30	36.61	48.62	55.27	62.34	69.83	77.75	94.87	113.69
7	19.32	25.90	35.72	40.61	45.80	51.31	57.12	69.70	83.53
8	14.79	20.59	27.35	31.09	35.06	39.28	43.74	53.36	63.95
9	11.69	16.27	21.61	24.56	27.71	31.04	34.56	42.16	50.53
10	9.47	13.18	17.50	19.90	22.44	25.14	27.99	34.15	40.93

Figures 11 and 12 show plots of the parametric survey tabulated above.
Figure 11 shows the mass required to transfer various desired mass values from a geocentric circular orbit of radius $6770(\mathrm{~km})$ to a geosynchronous orbit of radius $42241(\mathrm{~km})$. using various power levels, and Figure 12 shows the time required to accomplish the same transfers.

Figure 11. Orbit Transfer Mass Requirements for SEP System Using a Disposable Solar Array

Figure 12. Orbit Transfer Time Requirements for SEP System Using a Disposable Solar Array

Figures 11 and 12 provide the user with a means of trading the time required to transfer various mass values from LEO to GEO" with the initial_mass_required in LEO to accomplish the transfer, using various SEP power levels. Reference 5 assumes a constant acceleration in deriving the estimating ralationships.

As a specific example, assume that a total manned trip of 600 days is desired. This implies HTT $=570$ days (HTT $=600$ - TSTAY). Figure 6 shows that the minimum IMEO required at GEO is about $375(\mathrm{mt})$. Figure 7 shows the optimum Isp value is about 5925 (sec), and Figure 8 shows the optimum Po value is about 9.6 (MW). Now, the LEO to GEO transfer is not required to use the same Po value as the interplanetary phase. Thus, we can still trade Po values to get required IMLEO and time to make the transfer. Suppose that it is desired that the IMLEO be no more than about 450 (mt). Figure 11 shows that a Po value of about $4(\mathrm{MW})$ requires about 450 (mt) in LEO to transfer 375 (mt) to GEO, and Figure 12 shows that it takes about 125 (days) to make the transfer.

8.0 REEERENCES

1. Williams, D.F., and W.B. Tucker, "Computarion of Quasi-Optimal Reenrry Trajectories Using The SIMPLEX Algorithm of Linear Programming," M-240-1208, Northrop Services Inc. Huntsville, Alabama, April 1973 (UNCL)
2. Ragsac, R.V., "Study of Trajectories and Upper Stage Propulsion Requirements for Exploration of the Solar System," F-910352-13, Volume II: Technical Repor, Final Reporh, United Aircraft Corp., East Harford, Connecticut, September 1967 (UNCL)
3. "Improvement of the QUICKTOP Digital Computer Program, CHEBYTOP 3," NASA-CR-114595, Final Report, Boeing Aerospace Co., Seattle, Washington (UNCL)
4. Tucker, W.B., "Some Efficient Computational Techniques Including Their Application to Time Optimal Trajectories From Parking Orbit," NASA TN D-2691, George C. Marshall Space Flight Center, Huntsville, Al., March 1965 (UNCL)
5. Keaton, Paul W., "Low-Thrust Rocket Trajectories," LA-10625-MS, Rev., Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (UNCL)

Performance Parametrics

This page intentionally left blank

Chemical/AB
NTR-NERVA

NTR-Advanced - No shield (uses residual propellant as shield) - Tank fraction $=\mathbf{1 4 \%}$ - Reusable

- Varied Power from 10 MW to 120 MW
- Alpha's varied from $8 \mathrm{~kg} / \mathrm{kW}$ to $3 \mathrm{~kg} / \mathrm{kW}$ respectively
- Isp $\sim 10,000 \mathrm{sec}$
- Lunar and Mars flyby employed
- Crew rendezvous via LTV prior to Earth Escape
- AB weight = $\mathbf{1 0} \%$ for comparison
- Expendable - ECCV return
- Isp = 925 sec, Tc=2700 K, Compos
- Engine T/W = $\mathbf{3 . 5}$
- No shield (uses residual propellant
- Tank fraction $=14 \%$
- Expendable - ECCV return
- Isp $=475$ sec
- AB weight $=10 \%$ for comp \qquad - Expendable - ECCV return
- Isp = 1050 sec, $\mathrm{Tc}=\mathbf{3 1 0 0} \mathrm{K}$, Carbide, $\mathrm{Pc}=1000$ psia, nozzle $\mathrm{AR}=\mathbf{5 0 0 : 1}$
- Engine $\mathrm{T} / \mathrm{W}=\mathbf{2 0 : 1}$ (PBR)
- Isp = $1050 \mathrm{sec}, \mathrm{Tc}=\mathbf{3 1 0 0} \mathrm{K}$, Carbide, $\mathrm{Pc}=1000$ psia, nozzle $\mathrm{AR}=\mathbf{5 0 0 : 1}$
- Engine $\mathrm{T} / \mathrm{W}=\mathbf{2 0 : 1}$ (PBR) - Tank fraction = 14\%
- Reusable
- Varied Power from 7 MW to 18 MW
- Reusable
- Varied Power from 7 MW to 18 MW
- Reusable
- Varied Power from 7 MW to 18 MW
- Vehicle Alpha $=8.5 \mathrm{~kg} / \mathrm{kW}$
- I anar and Mars flyliy employed

$$
\text { - Isp } \sim 5,500 \mathrm{sec}
$$

This page intentionally left blank
Optimum Mission Parameters for Various NEP Vehicles

NEP Opposition Class Mission Opportunities

NEIP Conjunction Power 'Trades

[^6]
IMLEO vs Transfer Time

(1) OGTWI
NEP Conjunction Isp 'Trades The following Chart depicts IMIEEO vs Transfer Time for the baseline 25MWe vehicle. The Isp was The formod from the $5,0(0)$) sec to $10,0(0)$ sec with $10,(0) 0$ sec being the practical upper limit. The chart reveals that a higher specific impulse results in a lower lnitial mass, while trip time remains compelitive. However, there is a practical limit to the maximum Isp. At low power levels, the velicle is thrmst limited, i.e. it may not be able to produce the required ΔV in a given period of time to ever reach Mars. As a result; the duration of a leg must le increased in order to gain more ΔV foring trijectory that is not efficient as a shorter parh. For instance, lower specific impulse for the 10MWe velicle cam result in a shorter trip time.

IMIEO vs 'Transfer Time

/STCAEMArc/SJan91/disk(M)
NEP Conjunction Opportunity Variations

NEP Conjunction Vehicle Alpha Trades Vehicle alphat plays an important role in the effects of IMI EO and trip time. Velicle alpha is the specific mass of
the vehicle or the ratio of the total inert mass (payload not included) to the thrustor input power. Projected vehicle the vehicle or the ratio of ine the the are thy in the $4.12 \mathrm{~kg} / \mathrm{kW}$ range. It should be noted that there are no state-of-theart 25 MWe power plants applicable for a NLEP powerplant. Therefore, all vehicle alphas nust be considered as จю!! This alpha was used in the mission analysis $\mathbf{b c} \mathrm{kg} / \mathrm{kW}$ range. The following chart depicts the effect of vehicle alpha
alpha for a 25 MWe vehicle will be in the 018 gportunity. Ilarder opportminies will result in greater deviations.

IMLEO and Transler Time vs Alpha

This page intentionally left blank

Increased NEP Reliability Currently the NEP reactor is a single point failure in the power chain. Analyses may reveal that
the reactor will be considered as primary structure from a reliability standpoint. However two
smaller reactors could be incorporated into a scenario that would ensure safe crew and vehicle
return if a reactor need be shutdown during the mission. The worst case scenario would be to
loose a reactor while spiraled down at Mars. Two options available to ensure safe crew return
are carry more propellant or decrease Mars stay time.

This page intentionally left blank

D615-10026-5

Levied Requirements

This page intentionally left blank

0

Nuclear Electric Propulsion (NEP) - System Requirements

During the course of the Space Transfer Concepts and Analysis for Exploration Missions contract (STCAEM), Boeing's Advanced Civil Space Systems group (ACSS) has conducted regular review meetings in order to define and derive requirements, conditions and assumptions for systems currently being developed.

As system definition and development progresses, technical experts provide documentation and rationale for requirements that have been derived. Thus, real-time "information capture" prevents requirements and their associated rationale from being lost or forgotten. For example, a vehicle configurator may see the need for providing a minimum passage dimension for vehicle egress or ingress. This requirement would then be captured at an early development stage and would provide a history for the decision. This seemingly simple requirement may have large impacts on the design down the road and its traceability is important.
Derived requirements and rationale are later transfered to the Madison Research Corporation (MRC) where they are then entered into the system data base which has been developed for ACSS using ACIUS's 4th Dimension ${ }^{\circledR}$ software. The data base allows for easy access and traceability of requirements.

The charts that are contained within this document represent two collated copies of principal requirements and assumptions for February 2, and May 30, 1990. The systems defined include: (1) the Mars Transfer Vehicle (MTV), (2) Mars Excursion Vehicle (MEV), (3) Trans-Mars Injection Stage (TMIS), and the Earth Crew Capture Vehicle (ECCV). Each system is then broken down into subsystem headings of: (1) design integration, (2) guidance, navigation and control (GN\&C), (3) electrical power, (4) man systems, (5) structure and mechanisms, (6) propulsion, (7) ECLSS, (8) and command and data handling (C\&DH). The initials of each of the technical experts responsible for developing the supporting rationale for each of the requirements is indicated parenthetically next to each entry.
Although the majority of the derived requirements listed are directly applicable to all vehicles such as those powered by Nuclear Electric Propulsion (NEP), Nuclear Thermal Rockets (NTR), Solar Elecric Propulsion (SEP) and reference Cryo, there are some that are not. Those requirements that are only directly applicable to a specific vehicle type are indicated within the entry. The italicized entries indicate a modification to an original requirement prior to the second revision of May 30, 1990.
Definition and re-examination of derived requirements will continue through the current contract.

Derived Requirements

- GN\&C
- Capture trajectory entry interface for aerocapture not to exceed $\mathbf{6}^{\prime} \mathbf{g}$ ' limit and to preclude an uncontrolled skip-out (PB)

- Electrical Power

- Solar power to be used for transfer phase, batteries to be utilized for sun occultation time
while in Mars orbit (BC)

Design Integration
Two (2) communications satellites deployed in Mars orbit with total mass $=\mathbf{3 0 0 0} \mathbf{k g}$ (GW)

- Crew module must accommodate alternative advanced propulsion options (BD)
-

power to be used for transfer phase, batteries to be utilized for sun occultation time
while in Mars orbit (BC)

- Sol

- Man Systems
 - Man Systems
 -

shelter'

- Added protection to crew from Solar Proton Events (SPE) will incorporate use of a "storm shelter". (MA)
- Consumables store
- Consumables stored will suffice for crew residence time from $443-1018$ days (includes abort),
assumes 100% ECLSS closure of water and oxygen, 0% closure on food and .25 kg
- Consumables stored will suffice for crew residence time from 443-1018 days (includes abort),
assumes 100% ECLSS closure of water and oxygen, 0% closure on food and .25 kg leakage per day (PB)
- Two (2) astronauts able to pass through major circulation paths while wearing EVA suits. (SC) - Crew quarters shall provide sufficient volume for casual conversation between at least two (2) crew members (SC) leakage per day (PB)

(4) MTV Derived Requirements
STCAEM/02Feb90/mha
- Man Systems (continued)
- Crew visibility during all maneuvers (docking/rendezvous) (SC)
- There shall be 2 means of egress from each module for emergency escape (SC)
- Crew module to accommodate 0 ' g ' and induced ' g ' environments (SC)
- Structure and Mechanisms
- Airborne support equipment for aerobrake shall be 20% of aerobrake mass (PB)

Design Integration

Wake closure cone behind all aerobrakes is 44° wide (BS)
Equipment design life must account for mission duration plus one year (BS) All components designed for 5 missions with refurbishment (except aerobrake) (BS) Design for range of crew sizes, from 4 to 12 (BS)
L/D range from 0.5 to 1.0 for aerobrake vehicles at Mars (BS)

GN\&C

$-8500 \mathrm{~m} / \mathrm{s}$ maximum entry velocity at Mars (GW) $-100 \mathrm{~m} / \mathrm{s}$ error-correction (post aerocapture) (GW)

- Propulsion

Engine out capabilities in all mission phases (BD)

- Engine must continuously track C.G. of vehicle from beginning to end of all burns (BD) - Maximum gimbal angle of engines TBD (BD)

- Man Systems

- Solar Proton Event (SPE) protection to be provided (MA)
- Allow for direct viewing of all docking, berthing and landing procedures (SC)

C\&DH
 -

nectability between links maintained 90% of the time. A vailability when scheduled - $\mathbf{9 8 \%}$

- Structure and Mechanisms

 aerobrake mass (PB)- All critical function lines and redundant systems shall run non-parallel (PB)
- All systems shall function up to 2 years in a dormant state and having been subjected to the harsh space environment (PB)
- The airborne support equipment mass for launch to Earth orbit shall be assumed to be
- Airborne support equipment mass assumption for the aerobrake shall be 20% of the
brake will be (aum) í
case (PB)
- MTV and MEV aerobrakes have common layout of attach points (BS)
- Vehicle elements will have removable debris shield panel cladding for protection during next mission opportunity. The panels will not add to the LEO debris environment (BS) ssion vehicles wili carry a robotic manipulation capability to inspect and maintain ali
- Structure optimized to minimize weight, operations, complexity and development effort (BS) - Greater than $\mathbf{3 0 c m}$ separation between all major vehicle exterior systems (i.e., tanks, modules) (BS)
connectability (PH)
boeing STCAEM/02Feb90/mha
- GN\&C
- Capture trajectory entry interface for ECCV aerocapture or aeroentry into Earth atmosphere not to exceed $\mathbf{6}^{\prime} \mathrm{g}^{\prime}$ limit on crew and personnel, and to preclude an uncontrolled skip out of Earth atmosphere (PB) $-\mathrm{L} / \mathrm{D}=0.25(\mathrm{MF})$
- Structure and Mechanisms
- Interior materials must conform to NASA standards for outgassing, fire hazards,etc. (SC)
Design Integration
- Assembly to be minimized to extent practical. (KS)
- Propulsion
- Passive thermal control system including zero-'g' thermodynamic vent system coupled to multiple
vapor cooled shields. (JM)
- TMIS insulating system is a continuously purged MLI over foam design optimized for minimum
ground-hold, launch, and orbital boiloff. Includes vapor cooled shield (coupled to TVS)
outside of foam. (JM)
- TMIS tanks launched late in assembly sequence to minimize orbital stay time before TMI bum (, 6
months). (JM)
- MTV tank insulation system is thick (2-4") MLI blankets. Multiple vapor cooled shields placed at
optimum points in the MLI. (JM)
- Structure and Mechanisms
- Thrust structure - tanks - intertanks used as primary structure for cryolaerobrake only (GW)

- Design Integration
Wake closure cone behind all aerobrakes is 44° wide. The total wake closure angle is centered
on the velocity vector. (BS)
- GN\&C - $200 \mathrm{~m} / \mathrm{s}$ error correction (post aerocapture) (GW)
- Propulsion
- Engine out capabilities in all mission phases. NTR engine out capabilities TBD (BD)
- All passive cryogenic thermal control system.
- No. MTV-TMIS fluid transfer before Earth departure. (MEV tanks refrigerated or filled after MOI)

Structure and Mechanisms

- Aerobrake externally mounted to vehicle for launch to Earth orbit ("Ninja Turtle" concept) (PB)
Note: Changes to existing derived re¢pirements dated 02 February 1990 are shown here in italics

Design Integration

- Provide $\mathbf{1 5 \%}$ of active weight for spares (JM) - MAV must be able to abort-to-orbit during descent phase (PB)
- Twenty-five (25) ton down payload on manned vehicles (BS) - Protective covers provided for all mission critical systems (BS)

GN\&C

Deorbit from 1 sol x 250 km periapsis orbit (nominal) (GW) Currently, cross range $= \pm 500 \mathrm{~km}(\mathrm{GW})$ Engine start before aerobrake drop (GW) - Approach path angle $=15^{\circ}(\mathrm{GW})$

- Capture trajectory entry interface for MEV aerocapture at Mars not to excec $16^{\prime} \mathrm{g}^{\prime}$ limit on crew members and equipment and to preclude an uncontrolled skipout of the Mars atmosphere (PB)
- Landing accuracy after aerobrake jettison will be unaided by landing beacons assuming $\mathbf{1 k m}$ cep and with beacon assuming 30 m cep (PB)
- Aerobrake jettisoned in controlled manner during powered descent phase (BS)

STCAEM/mha/30May9
 - GN\&C
- Currently, cross range $= \pm 1000 \mathrm{~km}$ for high LJD aerobrake (GW)
- Landing approach path angle $=15^{\circ}(\mathrm{GW})$
- Landing accuracy after aerobrake jettison will be unaided by landing beacons assuming 1 km CEP and
with beacon assuming 30 m CEP (PB)
- Propulsion
- Engine out capabilities for ascent/descent stages (BD)
- Passive cryogenic storage system: MLI with vapor cooled shields (JM)
- Gravity field environment eliminates need for zero-'g' acquisition and venting. (JM)
- Vacuum jacketed ascent tanks for Mars boiloff reduction. (JM)
- MEV propellant transferred from MTV prior to descent. (JM) - GN\&C
- Currently, cross range $= \pm 1000 \mathrm{~km}$ for high LJD aerobrake (GW)
- Landing approach path angle $=15^{\circ}(\mathrm{GW})$
- Landing accuracy after aerobrake jettison will be unaided by landing beacons assuming 1 km CEP and
with beacon assuming 30 m CEP (PB)
- Propulsion
- Engine out capabilities for ascent/descent stages (BD)
- Passive cryogenic storage system: MLI with vapor cooled shields (JM)
- Gravity field environment eliminates need for zero-'g' acquisition and venting. (JM)
- Vacuum jacketed ascent tanks for Mars boiloff reduction. (JM)
- MEV propellant transferred from MTV prior to descent. (JM) - GN\&C
- Currently, cross range $= \pm 1000 \mathrm{~km}$ for high LJD aerobrake (GW)
- Landing approach path angle $=15^{\circ}(\mathrm{GW})$
- Landing accuracy after aerobrake jettison will be unaided by landing beacons assuming 1 km CEP and
with beacon assuming 30 m CEP (PB)
- Propulsion
- Engine out capabilities for ascent/descent stages (BD)
- Passive cryogenic storage system: MLI with vapor cooled shields (JM)
- Gravity field environment eliminates need for zero-'g' acquisition and venting. (JM)
- Vacuum jacketed ascent tanks for Mars boiloff reduction. (JM)
- MEV propellant transferred from MTV prior to descent. (JM) - Propulsion
- Electrical Power
rays to supply power following separation from MTV for ~ 50 day approach to Mars. Arrays to be
racted TBD hrs. prior to Mars descent (cryolaerobrake). (BC)
s or fuel cells to provide power for ascent and descent phases. (BC)
Note: Changes to existing derived requirements dated 02 February 1990 are shown here in italics

Guidelines and Assumptions

- The vehicles propulsion system will be composed of an electric ion propulsion system.
- The power conversion subsystem will be a rankine type system with at least a 66% redundancy factor.
The power system will be designed for a 10 year lifetime.
- Resupply mass for hardware was amortized over the 10 year lifetime with
a 3 mission/ 10 year assumption.
- For mission analysis purposes, the vehicle was assumed to depart from LEO and return to GEO.
Further operations trades and the nuclear safety panel's recommendations will dictate assembly, departure and refurbishment node locations. The NEP vehicle will perform an unmanned spiral out of the Earth's
gravity well with crew rendezvous prior to Earth escape.
A Lunar and Mars gravity assist are baselined to decrease IMLEO and trip
time requirements.

> Technology assumed for vehicle systems must be at technology readiness level of 6 by year 2005. -

- Mission design/technology influenced by weighting many interdependent Figures Of Merit (FOM) such as IMLEO Trip Time
Safety/Rellability
Operational/Mission Flexibility
Number of Technology Developments
- The NEP will operate only in a nuclear safe position and operation mode that will be declared later in the program by a Nuclear Safety Panel.
The nuclear propulsion project is evolutionary; the program will allow for
system upgrades as technology progresses. will be declared later in the program by a Nuclear Safety Panel.
- The nuclear propulsion project is evolutionary; the program will allow for
system upgrades as technology progresses. will be declared later in the program by a Nuclear Safety Panel.
The nuclear propulsion project is evolutionary; the program will allow for
system upgrades as technology progresses.
IMLEO
Trip Time
Safety/Rellability
Operational/Mission Flexibility

Number of Technology Developments
fle ung .

- Safety will be a major integral process throughout the program.
The nuclear propulsion program will be chaired by a steering committee
that will be a joint effort between NASA/DOE/DOD.

This page intentionally left blank

III. Operating Modes and Options

This page intentionally left blank

NEP Operating Modes and Nuclear Safety Operations

This section contains the following:

- Operation task flow diagram
- History of nuclear sources launched by civil side of United States
- Radiological impacts of NEP launch from SSF orbit
- Radiological impacts of NEP return to SSF orbit

A major operational issue confronting the NEP is departure and refurbishment orbits. Dụe to differential nodal regression, severe debris environments, and Van Allen belt radiation, the NEP is forced to operate from LEO (400 km) or GEO ($35,000 \mathrm{~km}$) and higher. A LEO operational node would offer the greatest advantages for the NEP, if nuclear safety operational issues can be resolved. Preliminary analysis from Bolch et al, Texas A\&M [A Radiological Assessment of Nuclear Power and Propulsion Operations Near Space Station Freedom, NAS3 25808, March 1990], indicates that a muln-megawatt vehicle can operate safely in LEO. Electric propulsion, unlike ballistic trajectories, spirals in and out of Earth Orbit in a circular path. This type of circular spiral eliminates the risk of accidental Earth atmosphere re-entry.

As the vehicle is slowly spiraling towards Earth escape, the crew will rendezvous with the NEP by a LTV class vehicle a few days prior to escape. Just prior to escape, the NEP vehicle will perform a Lunar fly-by to gain a delta V boost. After Earth escape the vehicle will continue thrusting just prior to the "halfway" point. After a short coast time (20-40 days), the vehicle begins the deceleration portion of the interplanetary leg. The deceleration portion is started a little later than normal, since the vehicle will be performing a Mars fly-by. The vehicle does not capture at Mars upon arrival due to an excess delta V, but does drop the MEV containing the crew at Mars. The excess delta V is low and does not impose any significant impacts to the MEV aerobraking scenario. The vehicle continues in heliocentric space, in close proximity to the planet, until it is able to capture into a loose rendezvous orbit. The amount of time the vehicle continues in heliocentric space will be designed to be synonymous with the crew surface stay time. At the end of the surface stay, the crew will return to orbit in the MEV ascent cab. After crew rendezvous, the NEP vehicle will return to Earth. At Earth capture, the crew will depart the NEP and return to Earth by an ECCV or a LTV. A parking orbit for refurbishment requirements has yet To Be Determined (TBD).
Mars Mission Operational Task Flow
Nuclear Electric Propulsion The following charts show the top-level operations that must be performed for the NEP manned Mars missions.
These include the ground, near-Earth, outbound transfer Mars vicinity, inbound transfer, and earth capture operations.
Several options exist : a) the near-Earth buildup node point, may be at SSF orbit or at HEO and depart from either
SSF orbit or HEO (Nuclear Safe Orbit in this case)
b) the use of a lunar swingby which may or may not be available depending on the mission
timing
c) to do a full capture of the NEP transfer vehicle, leaving the MTV in orbit and landing the
MEV from near Mars orbit, the MTV would beam power to the MEV on the surface, or
swingpast Mars, drop off the MEV to aerocapture and land, "formation fly" with Mars and
on the return thirty days latter swing around Mars to allow 4 possibilities to rendezvous
and dock the MTV and MEV, then use the final swing around Mars to gravity assist the
vehicle on the trajectory back to Earth.
d) either an ECCV direct entry to Earth from the MTV with the MTV doing an Earth flyby to
rerendezvous and capture with Earth one year later or the MTV may be captured into LEO
and the crew transferred to SSF then to Earth

The following graph illustrates the 4-hour integrated dose equivalent that an EVA astronaut would receive outside the shadow shield at eller 50,100 , shown on the abscissa. For after that reactor had been prevous and one month natural (BC) conditions are shown. The information

 Without any additional shielding, a reactor before exceeding the short-term dose budged. If to a level equaling a one month natural exposure under worst-case conditions.

Successfully achieved orbit Successfully achieved orbit Successfully achieved orbit Successfully achieved orbit

Mission aborted: burned-reeniry Successfully achieved orbit Mission aborted: source retrieved Sudcessfully achieved orbit

Successfully placed Iunar surface Mission aborted on way to moon,
heat source returned to Ocean.
Successfully placed lunar surface
Successfully placed lunar surface
Successfully operated to Jupiter and beyond

Successfully placed Iunar surface
Successfully achieved orbit
Successfully placed Iunar surface Successfully operated to Jupiter, Saiurn, and beyond

Successfully landed on Mars
Successfully landed on Mars
Successfully achieved orbit Successfully operated to Jupiter and Saturn

I

September 5, 1977

Planetary April 3, 1965 May 18, 1968 April 14, 1969,1969 November 1970 January 31, 1971 July 26, 1971

16,192 2,1972 December 7, 1972 April 5, 1973 August 20, 1975
September 9, 1975
March 14, 1976
August 20,1977

Successfully operated to Jupiter and Saturn

unar

\qquad Planetary

Navigational

Mars
Mars
Communications
Planetary
Planetary
VOYAGER 1 SNAP-3B
SNAP-3B
SNAP-9A
SNAP-9A
SNAP-9A
SNAP-10A
SNAP-19B2
SNAP-19B3
SNAP-27
SNAP-27
SNAP-27

SNAP-27
TRANSIT-
RTC
SNAP-27
SNAP-19
SNAP-19
MIW
MHW
Reactor
This page intentionally left blank
This page intentionally left blank

Altitude of NEP Cargo Vehicle during Launch.

范

NEP-to-SSF Separation Distance during Launch
Bolch, Weskey E, et. al, " \boldsymbol{A} Radiological Assesment of Nuclear Power and Propulton Operations near Space Station Frecdom", March 1990.

Cumulative Doses to SSF Crew Members during NEP Vehicle Launch.

Nodes/brch19A PR90

(^S) נиә!esinbz asod
NEP Return to SSF Orbit

064dV6IPAQ/53PON

O6HAIVGIP.Aq/sopon

Shown on the right are the possible departure and parking nodes that have been considered for nuclear vehicles. Also shown are the conslems associated with a node are listed as well as some for a nuclear vehicle. Some of the prould reduce the number of options. If safety i confronting issues.
A
ADVANCED
SYACE
SYSTEMS
STCAEM/brc/21Mar90
Possible Departure
and Parking Nodes

\% ${ }_{\text {E }}^{\text {E }}$
i¢алеS

Nuclear Safe Orbit Considerations Nuclear safe altitude customarily set at $\mathbf{8 0 0} \mathbf{~ k m}$ for $\mathbf{3 0 0} \mathbf{~ y r}$ life.
The driving factors associated in selecting a node are: Radiation Environt Mass Penalties Associated with Chemical Boost Stage
5. Differential Nodal Regression
Orbit accessibility will be $\boldsymbol{\sim} \mathbf{1 / y e a r}$ for $\mathbf{8 0 0} \mathrm{km}$ and $\mathbf{\sim 2} \mathbf{- 3 / y e a r}$ for $>5000 \mathrm{~km}$
Options:

This page intentionally left blank

IV. System Description of the Vehicle

This page intentionally left blank

Parts Description

D615-10026-5

Nuclear Electric Propulsion (NEP)
 Power System

I. Introduction.

The power system on the nuclear electric propulsion (NEP) vehicle provides elecrrical power to the main propulsion system. The propulsion system consists of an array of ion engines. The NEP power system consists of a cermet fuel nuclear reactor producing 200 MW of thermal power, a primary lithium loop providing a heat source to drive a Rankine power conversion system, a decay heat removal system, and a passive heat rejection system, in the form of heat pipe radiators.

II. Reactors, Shields, and Primary Loop.

The NEP reactors and primary loops provide thermal power through a two phase, split boiler, to the power conversion system. The reactors utilize composite cerment fuel which is in the form of tungsten/rhenium coated uranium nitride microspheres compressed to form the fuel elements. The peak reactor lifetime fuel burnup is 25%, and the reactor outlet temperature is 1550 K . The reactor shield provides radiation protection for the vehicle, to reduce radiation degradation of materials as well as to reduce radiation scattering effects. The shields are constructed of two alternating layers of tungsten and beryllium carbide. The shield half angles are ~ 17.5 degrees. The large boiler provides additional shielding for the vehicle.

The primary loops consist of the working fluid, boiler, electromagnetic (EM) main pumps, jet pump, decay heat removal pumps, and an expansion compensator. The boiler transfers is a shell and tube type heat exchanger, which transfers heat from the primary lithium loop (single phase), to the secondary potassium loop (two phase). The primary EM pump provides primary pumping power for the lithium loop, while the second pump provides redundancy. The decay heat removal system provides a means of reactor cooldown in the event of a system shutdown. It consists of small decay heat removal pumps (compared to the EM pumps), and the jet pump. The decay heat removal pumps operate off thermal power from the auxiliary cooling system, and, on shutdown, provide a steady flow of coolant through the jet pump, which induces a flow in the main loop sufficient to keep reactor temperatures below critical levels. The expansion compensator provides a means of working fluid removal after start-up and thaw, and make-up in the event of partial fluid loss.

III. Rankine Power Conversion System.

The thermal energy provided by the reactors is converted into electrical energy for propulsion system use through a Rankine cycle energy conversion system. The energy conversion system consists of the turboalternators, condenser, rotary fluid management devices (RFMD), turbopumps, and expansion compensator. The power conversion system (PCS) is made up of five separate loops, which split to power ten turboaltemators, and recombine to five loops at the condensers. The turboaltemators are arranged in five sets of two counterrotating units to avoid spinup and spindown vehicle torquing, and are driven by the potassium vapor from the boiler. The turbine consists of separate high and low pressure four stage turbines on a common shaft. The potassium passes from the boiler outlet, through the high pressure turbine, back through a reheat loop in the boiler, and finally through the low pressure turbine stages. After being expanded through the low pressure turboalternator, the potassium vapor is condensed and renumed to the boiler via the RFMDs and turbopumps. The RFMDs are centrifugal devices which provide liquid to the
turbopumps at a pressure high enough to avoid pump cavitation. High pressure potassium vapor is bled off of the boiler outlet lines ($\sim 8 \%$ of total) to provide power to drive the five turbopump units. Finally, the expansion compensator (EP) serves the same purpose as the EC in the primary loop.

IV. Heat Rejection System.

The heat rejection system consists mainly of the four heat pipe passive radiators, which provide in-space heat rejection for the power conversion system, alternators, power conditioning, and auxiliary systems. The power conversion system radiator is the largest and highest temperature radiator on the NEP vehicle. It runs at $\sim 1000 \mathrm{~K}$, and it's primary duty is to carry latent heat away from the PCS condenser (a relatively small amount of sensible heat may also be removed during off-nominal operation). The next largest radiator is the alternator cooling radiator, which provides alternator cooling via a pumped loop of liquid potassium. The coolant loop's driving power is provided by pumps at the end of each turboaltemator shaft. The alternator radiator runs at $\sim 440 \mathrm{~K}$, in order to maintain an alternator temperature below 550K. The next largest heat removal system provides cooling for the power conditioning system. This radiator runs at $\sim 400 \mathrm{~K}$, and consists of large diameter heat pipes transferring heat from a "cold plate", to a C - C heat pipe radiator. The final radiator is the auxiliary radiator, which provides decay heat removal pump drive thermal power and EM pump cooling. Thermoelectric magnetic (TEM) pump drive power for this single phase potassium heat transport system is provided by thermal power derived from the reactor inlet and outlet fluid temperature differential. Relatively high rejection temperatures $(\sim 650 \mathrm{~K})$, coupled with low auxiliary radiator heat loads ($<1 \mathrm{MW}$), result in a small radiator surface area, compared to the other three systems.

V. Performance Issues.

The power conversion system utilized in this study has the potential to provide the greatest efficiency. An overall conversion efficiency of 20.4% was used for this vehicle design, which is slightly conservative for a Rankine conversion system. Efficiencies for a dynamic conversion system should be in the $20-25 \%$ range. The Rankine cycle exhibits both advantages and disadvantages over a Brayton cycle conversion system. Brayton systems are simpler, and have had significantly more space directed development and testing than Rankine conversion systems. The Rankine system, however, operates at much lower temperatures, and is less sensitive to boiler outlet temperature (radiator sizes) than the Brayton conversion system. Although the majority of space directed work has been directed to the Brayton cycle, the Rankine power conversion system has been extensively utilized in terrestrial applications for more than 100 years.
NEP Parts List

Component	Subsystem	Description	Size (m)	Mass (t)	Qty.
Reactor \#1	Power	UN-W/25 Re Cerment, fast spectrum, Lithium.	1 X 2 cyl .	7.4	1
Reactor \#2	Power	Un-W/25 Re Cerment, fast spectrum, Lithium.	1 X 2 cyl.	7.4	1
Shield \#1	Power	Tungsten-Be2C/B4C shadow shield.	. 8 X 2.25 cyl.	15.4	1
Shield \#2	Power	Tungsten-Be2C/B4C shadow shield.	. 8×2.25 cyl.	7.2	1
Primary trans sys. Aux cooling subsys Boiler Turboalternators Turbopumps RFMD Piping and aux	Power Structure Thermal	Power conversion, piping, \& main heat transport section (Potassium Rankine)	12×9 cyl.	71.5	1
Main cycle radiators	Thermal Power	Carbon-Carbon or ceramic fabric heat pipe transport ($\sim 1000 \mathrm{~K}$)	$15 \times 6 \mathrm{cyl}$.	10.7	2
Auxiliary radiators	Thermal Power	Carbon-Carbon or ceramic fabric heat pipe transport ($\sim 650 \mathrm{~K}$)	15×4 cyl.	5.1	2

NEP Parts List

Component	Subsystem	Description	Size (m)	MasS (t)	Qty.
Power Conditioning	Power	PC out of turboalternators, for rectification and dist only	$2 \times 2 \times 1$	1.8	1
Structure	Structure	5 meter erectable box truss, composite materials	$5 \times 5 \times 5$	4.5	1
Communications	Avionics	Two comm dishes for long distance applications	$2 \times 2 \times 1$	1.6	2
Attitude Control	Propulsion	Resistojets	$2 \times 2 \times 2$	5.7	2
Avionics	Avionics	SSF derived command, control \& data, GN\&C platforms	$2 \times 2 \times 2$	2.5	1
Power Dist \& Cont	Power	Distribution and control network from reactor end to thrusters, includes thruster PPU	$5 \times 2 \times 2$	36	4
Thruster Pod	Propulsion	Ion thrusters, composed of 40, 1 X 5 meter thrusters	$22 \times 11 \times 2$	55.5	2
Propellant \& Tanks	Propulsion	Argon propellant, 10 \% tankage fraction	4.1 sphere	167.5	4

NEP Parts List
NEP Node Resupply Requirements
STCAEM/brc/25Apr90

Component	Design Life	\# of Missions	Replace	Refurb.	Comments
Reactor	10 yrs	3	X		Disposal
Shielding	10 yrs	3	X		Refurb or replace
Power Conversion Loop	10 yrs	3	X		Designed for 10 yrs
Thermal Dissipation	10 yrs	3		X	Repair heat pipes as needed
Structure	10 yrs	3		X	Repair as needed
Ion Thrusters	1 Mission	1	X		ORU or refurb
Propellant Tanks	10 yrs	3		X	Refurb as needed
Propellant	1 Mission	1	X		
Power Subsystem	10 yrs	3		X	Refurb necessary components
Payload					
Habitat					.
Consumables	NA	1	X		
ECLSS	10 yrs	3		X	Refurb necessary components
Struclure	10 yrs	3		X	Refurb necessary components
Avionics	10 yrs	3		X	Refurb necessary components
Power Subsystem	10 yrs	3		X	Refurb necessary components
Radiators	10 yrs	3		X	Refurb necessary components
Aerobrake					
Structure	10 yrs	3		X	Refurb necessary components
TPS	1 Mission	1	X		Replace per mission
MEV	1 Mission	1	X		

Data based on NASA Contract: NAS3 25808, "Ultra-High Power Space Nuclear Power System Design and Development", Rockwell International, Nov. 1989.

This page intentionally left blank

Weights Statement

$$
\begin{array}{lr}
\text { Payload } & \text { Mass in metric tonnes } \\
\hline \text { Descent Aerobrake } & 7.0 \\
\text { MEV Descent Stage } & 18.7 \\
\text { MEV Ascent Stage } & 22.5 \\
\text { Surface Equipment } & 25.0 \\
\text { Transit Hab Module } & \underline{44.3} \\
& 117.5
\end{array}
$$

$$
\begin{array}{lr}
\hline \text { Reactor 1 } & 7.4 \\
\text { Reactor } 2 & 7.4 \\
\text { Shield } & 8.6 \\
\text { Primary Heat Transport System } & 20.1 \\
\text { Auxiliary Cooling Subsystem } & 2.2 \\
\text { Boiler } & 21.6 \\
\text { Turboalternators } & 16.3 \\
\text { Alternator Radiator } & 2.6 \\
\text { Turbopumps } & .4 \\
\text { Rotary Fluid Management Device } & 3.1 \\
\text { Main Cycle Radiator } & 10.6 \\
\text { Main Cycle Condenser } & 1.3 \\
\text { Main Cycle Plumbing } & 5.0 \\
\text { Auxiliary Cycle Radiator } & .5 \\
\text { Auxiliary Cycle Condenser } & 1.3 \\
\text { Auxiliary Cycle Plumbing } & 6.0 \\
\text { Power Conditioning Radiator } & 1.1 \\
\text { Plumbing Insulation } & 4.1 \\
\text { Engine Assembly } & 23.5 \\
\text { Power Management \& Distribution } & 68.0 \\
& 211.1
\end{array}
$$

[^7]-/STCAEM/bs/100ct90

\section*{| Asc stage - Reference MEV for 2015 Chem/Aerobrake Velnicle |
| :---: |
| Crew of 4,30 day stay, 2 advanced space engines; Isp=475 sec Revision $25 / 22190$ |}

Ascent Cab - Ref MEV for 2015 Chem/Aerolirake Velicle
Crew of 4, 3 day occupancy time

Element	mass (kg)) Rationale
Almospheric Revitization Sys/ Trace contaminant control assembly		CO2 adsorpion unit, expendable LIOH cartrid
	123	Pre \& postsorbent beds, catalytic oxidizer for particulate \& contaminant control
Atmosphere Control System	62	Total \& partial press control; valves,lines \& resupply/
Atmos. Composition \& Monitor Assem.	55	
		monitor for ARS
Thermal Control Sys	40	Temp control: sensible liq. heat exchanger, ext radiator wt included in 'secondary structure' mass
Temp. \& Humidity Control	240	Condensing hent exchanger, fans, ducting
Water Recovery and Management	45	Stored Potable water only
Fire Detection \& Suppression Sys. Waste Management Sys and Storage	113	Automatic sys w manual extinquishers as backup
Waste Management Sys and Storage	-	Considered part of 'Man Systems'
Asc cab ECLSS mass	678	Apollo style open ECLSS system
Primary/Secondary Structure		
Berthing ring/mechanism (1)	139	Suffening rings added at cylinder/endeap interface for
Berthing interface plate (1)	90	added strength. Skylab derived triangular grid floor with
Windows	90	beam supports on $6^{\prime \prime}$ centers. Support ring interface on
Couches	80	pressure vessel to carry loads imposed by the floor and
Hatches (2)	80	equiprnent during launch to aerocapture.
Asc cab Structure mass	998	

This page intentionally left blank

Artificial Gravity Option

This page intentionally left blank

Nuclear Electric Propulsion Vehicle Artificial Gravity Configuration

The nuclear electric vehicle (NEP) artificial gravity (ga_{a}) concept presents complications not present in the NTR and CAB/CAP concepts. For full-fledged ga conditions, EP vehicles pose the problem of spinning while thrusting. [An alternative, operational solution may be to fly $\mu \mathrm{g}$ for most of the trajectory, spinning only during the midflight coast intervals (25 to 60 days) and upon arrival at Mars. For STCAEM purposes, however, it is essential to pursue the outcome of a vehicle required to provide artificial gravity for the entire flight.] Because the thrust vector must average tangential to the flight path, the fundamental configuration trade-off is between rotating, high-power transfer assemblies (for the spin vector normal to the ecliptic) and spin-vector precession (for any other orientation).

Of the many possible configuration options identified by STCAEM, the one was chosen that is similar both to the $\mu \mathrm{g}$ NEP and to the SEP ga_{a} concept. This configuration concept, called an eccentric rotator, avoids tethers, complex extendible booms or deployable trusses. All components are rigid and the design is simple.

The fundamental concept is that the spine of the $\mu \mathrm{g}$ NEP configuration is intersected orthogonally by a lightweight, symmerrical engine outrigger. The ion engine assembly is split between the two ends of this outrigger, and these are despun from the rest of the vehicle so as to remain properly oriented for thrusting throughout the flight. No deployment mechanism is required to change the habitat system separation when the MEV mass is lost. Instead, the rotation rate is adjusted to provide 1 g in the center of the longduration habitat, according to the habitar's actual separation from the current vehicle mass center, which shifts after MEV operations. Thus the mass center is not necessarily axially aligned with the engine outrigger, although it always remains at the zenith relative to the habitat floors. When the mass center is not along the outrigger axis, the outrigger also orbits the mass center. The engine assemblies therefore trace out circles as they thrust, although the thrust vector orientation remains fixed. For low-thrust systems in particular, this is expected to cause no problems. The reactor/power assembly along with the primary radiators are used as the countermass to the crew systems and the secondary radiators.
Artificial Gravity ($\mathbf{g}_{\mathbf{a}}$) Assessment
A 1 g gravity level was assumed for this study over partial g because the minimum gravity level required to
offset physiological deterioration is not known. The rotation rate was set to be no more than 4 rpm, which is
based on experimental data in the Pensacola Slow Rotation Room (1960 's) on human adaptation. The crew
compartments are contiguously pressurized during all mission phases, and the crew modules are to be oriented
with the long axis parallel to the spin vector to offset the Coriolis effect along major circulation paths.
Connections between habitation and the countermass are either tethers or a truss rather than a pressurized
tunnel because, since all crew compartments are contiguous, the is no need for an IVA transfer.

Assumptions	Rationale
1 g gravity level	- Earth-normal conditioning for exploration in surface EMU
Rotation rate $\leq 4 \mathrm{rpm}(56 \mathrm{~m})$	- Generally accepted range for vestibular disturbance tolerance
易 Contiguous crew compartments	- Maximize available volume - In-flight simulation and training - Contingency operations
Truss and tether connections - Tethers are "ribbon" shaped	- Avoids mass penalty - Not needed for contiguous volumes - Facilitates conductors
Module orientation parallel to spin vector	- g level consistency; minimizing vestibular disturbance - Mass properties quasi-isotropic to first order

The NEP is

Configuration Trades Performed | - $\begin{array}{l}\text { Ecliptic-normal spin vector vs. } \\ \text { cross-product engine }\end{array}$ |
| :--- |
| - Shield size vs. reactor separation (50° |
| half-angle) |
| - Straight vs. swept-back engine |
| $\begin{array}{l}\text { outriggers }\end{array}$ |
| - Structure deployment mechanisms |
| (telescoping truss) |
| - Structure deployment vs. eccentric |
| rotator |
| - Roll-ring vs. slip-ring vs. liquid-metal |
| bearing |

ga NEP Concept Development Details
Shown are a few of the configuration detail analyses performed to resolve integration issues for the ga
NEP vehicle concept, as well as the result of a fundamental trade done to determine the best combination
of vehicle length and shielding angle for both the $\mu \mathrm{g}$ and ga_{a} configurations.

$\frac{p_{2}^{2}}{2}$

/STCAEM/crf/19Scpi90

Front Elevation
Top Elevation

Propulsion

Reactor 1	7.4
Reactor 2	7.4
Shield	8.6
Primary Heat Transport System	20.1
Auxiliary Cooling Subsystem	2.2
Boiler	21.6
Turboalternators	16.3
Alternator Radiator	2.6
Turbopumps	.4
Rotary Fluid Management Device	3.1
Main Cycle Radiator	10.6
Main Cycle Condenser	1.3
Main Cycle Plumbing	5.0
Auxiliary Cycle Radiator	3.3
Auxiliary Cycle Condenser	1.3
Auxiliary Cycle Plumbing	6.0
Power Conditioning Radiator	1.1
Plumbing Insulation	4.1
Engine Assembly	23.5
Power Management \& Distribution	68.0

Trip Time $=520$ days, \quad alpha $=7.4 \mathrm{~kg} / \mathrm{kW}$

D615-10026-5

V. Support Systems

D615-10026-5

Space

This page intentionally left blank

Support Systems for the Mars Nuclear Electric Propulsion Vehicle.

The support systems necessary for the Mars Nuclear Electric Propulsion Vehicle are very similar in nature to those of the Mars Cryo/Aerobrake Transfer Vehicle. The discussion provided for the latter vehicle also applies generally for the NEP; however, detailed analysis for the specific systems needed to support the NEP have not been completed. It is currently assumed that this study will mainly consist of only deltas from the Cryo/Aerobrake Vehicle. Some manifesting work has been done for the major components of the NEP (as given on the following pages) using two different HLLV scenarios (each assumes the integrated aerobrake "Ninja Turte" launch concept):

1) 10 meter $\times 30$ meter shroud, 140 metric ton payload capacity
2) Mixed fleet consisting of:
a) 7.6 meter $\times 30$ meter shroud, 120 merric ton payload capacity; and,
b) 10 meter $\times 30$ meter shroud, 84 metric ton payload capacity

The total number of assembly missions for Scenario One is 5 , while Scenario Two requires 7 flights. For the mixed fleet option, only the first and last assembly mission utilizes the 120 mt payload carrier. This is due to NEP launch packages being limited as much by volume as by mass. Scenario One and Two also differ in that the first assumed that the MTV Hab should come up early (to assist in man-tended assembly operations) and the second brought up the MTV Hab late (for use in ground test and verification).

The manifests given within have not yet been based on detailed ground processing and onorbit assembly analyses. The philosophies and facilities chosen for ground operations (test and verification plans, payload processing, integrated assembly \& checkout facilities, etc.) and assembly operations (Assembly Node location and capabilities, robotic and man-tended provisions, etc.) will obviously mature this manifesting.

Both the NEP and the Nuclear Thermal Rocket (NTR) have the added constraint of nuclear safe orbit considerations. Of course, even the Earth-to-Orbit launch of nuclear systems will require a great deal of political as well as technical effort; however, the choice of what altitude to actually "fire" a nuclear reactor as well as to "cool" the returning reactor holds equal challenges. The nuclear safe orbit (NSO) has been customarily set at 800 km for 300 year life. The trade of whether to assemble the NEP at NSO or to build it at a lower orbit has not been completed; however, access to SSF, minimal assembly ΔV requirements, and natural radiation protection afforded by Low Earth Orbit assembly indicate this to be a favorable choice.

This page intentionally left blank

| Generic Assumptions and Ground Rules |
| :--- | :--- |
| - Based on Mars Vehicle (NEP, SEP, and NTR) configurations as of 3rd Quarterly Briefing with updates through
 $8 / 15 / 90$
 - Baseline Earth-to-Orbit (ETO) Vehicle (HLLV) has $10 \mathrm{~m} \times 30 \mathrm{~m}$ shroud with 140 mt payload capability
 - HLLV nosecone has some additional TBD volume for launch element packaging
 - Nominal 85% payload packaging and mass factors used for HLLV manifesting (propellant tanks may be excepted)
 - HLLV has a nominal 3 to 7 day station-keeping ability
 - HLLV unloaded piece by piece by Cargo Transfer Vehicle (CTV)
 - Crew transported to Assembly Location from SSF via ACRV
 - CTV will be designed to support all identified manned/unmanned operations (on-orbit refueling may be available via
 on-orbit depot, HLLV provisioning, the Mars Vehicle itself, or SSF)
 - HLLV launched on 90 day centers = time constraint for on-orbit assembly operations
 - All Mars Vehicles are assumed to be launched February 2016
 - Any localized debris shielding is removed from Mars Vehicle prior to departure from Earth (micrometeoroid
 shielding is assumed to be needed for the mission duration |

y.ln

13-propulsive
Cryo

[^8]- I-beam platform is carried up in first HLLV flight along with vehicle truss, both of which are SYSTEMS
- I-beam

- Eliminates need for any additional platform
Two robot arms similar to the current shuttle RMS, that can move lineraly on HLLV payload bay tracks HLLV provides partial debris shielding; supplemental local shielding will be required Telescopic mooring struts to attach vehicle to HLLV
Reboost is provided by HLLV; refueling can be supported by CTV
Vehicle's transit hab is used by crew during assembly operations
All power for communication, avionics, robotics, RCS, etc., will
All power for communication, avionics, robotics, RCS, etc., will be provided by vehicle systems
- "Pre"-assembly mission will be need to set truss interfaces, power, cables, wires, conduits, etc. Vehicle assembly
proceeds after truss is readied for assembly operations
- Robot arms are transferred to vehicle from HLLV after a particular phase of assembly
- HLLV flies gravity gradient stable
- Only first assembly mission involves a "smart" HLLV; all others are cargo structures only

ETENNE

[^9]

Platform Assembly Own

- First Element Launch (FEL) delivers compact, fully integrated spacecraft: - Sized to be launched within $10 \mathrm{~m} \times 30 \mathrm{~m}$ shroud
- Contains self-sustaining and assembly support equipment necessary until the next element launch

asir Sui suoplouny əsəul
 te control and reboost systems
fly missions are initially based from this element and expand with the vehicle
ould be localized, integrated at launch, and removed prior to Earth departure
Undeployed Solar Arrays
 - FEL is integral part of the vehicle itself - On-board batteries deploy necessary power, radiator, and communication systems - Includes appropriate control and reboost systems - Succeeding assemb

- Self-contained Assembly Flyer:

- Performs assembly operations in any of three modes:

- If needed, CTV aids with reboost and control until supplemental systems arrive - Debris shielding may be localized
- MEV is assembled prior to Aerobrake/Aeroshell assembly
- Temporary scaffolding may be used as needed

> First Element of Mars Vehicle is assembled at SSF
> - Reboost and Attitude Control Systems
> - Remote Manipulator System
> - Utilities
> - Thermal Control System
> - Communications
> - Avionics
> - Primary Truss - Power Systems

- Once First Element is complete, the vehicle itself or a CTV docked to the vehicle

SSF-Based Assembly of First Element Concept
1
transports it to an off-SSF location where remainder of vehicle is assembled: - Vehicle is enabled to assemble remainder itself

Assembly Node Concepts Pros and Cons

Node Concents	Key Features/Advantages	Key Disadvantares
Dedicated Assembly Node	- Abundant storage - Totally self-contained - Vehicle systems unused - Multiple robot arms - Sections of vehicle may be assembled simultaneously	- Larger than SSF - Will take long time to construct - Excessive reboost requirements - Mechanically complex - Local debris shielding required - Must be in place prior to vehicle assembly
I-Beam Platform	- Can be carried up in first HILCVflight - Can easily reach most parts of vehicle with two robot arms - Uses vehicle for comm., data, RCS, power after initial deployment - Can serve as base for experiments	- Fuel cells, batteries required for initial deployment - Limited storage area - Precursor mişion required for deployment
"Smart" IILLV Platform	- No additional platform required - HLLV shroud provides limited debris shielding - IILLV provides for communication, data, RCS, GNC, etc. - Robot arms transferable to NTR	- Increased HITLV complexity - Reboost fuel has to be replenished - Limited storage - Velicle must be detached from HLLV prior to assembly complete - Local debris shiekding required
Hinged Truss Platform	- Uses vehicle truss as assembly platform; no other platform needed - Reach to remote engine section of vehicle provided by flexing truss at hinges - Vehicle subsystems used; no additional systems necessary	- Requires a precursor mission to deploy truss - Batteries, fuel cells necessary for initial deployment - Reboost, comm., data, power, must be in place prior to assembly start - Limited storage - Local debris shielding required
Vehicle as its own Platform	- Reduces needed on-orbit infrasiructure - Delctes additional facilities and resources needer for designing, builiding, launching, and maintaining separate assembly platform	- Requires dedicated IILLV flighı for non-optimized packaged first element - Requires vehicle to have additional control, reboost - No additional storage - Requires batteries or fuel cells for initial deploymen - Requires localized debris shielding

This page intentionally left blank

Node Concents	Key Features/Advantages	Key Disadyantages
Assembly Flyer Platform	- Performs HLLV unloading, payload/crew transport, and assembly with one vehicle - Compatible with SSF - Capable of manned/robotic operations - Uses CTV for main P/A - Can serve as free flying platform between assemblies	- No additional storage - Requires vehicle to have additional control and reboost systems - Requires development and production of sophisticated man-rated space vehicle - Requires localized debris shielding
SSF Based Assembly of First Element	- Uses planned SSF growth concept - Provides quick and easy crew logistics access to initial assembly operations - Allows verification and checkout of critical systems prior to independent vehicle operations - Does not disrupt SSF operations beyond first assembly mission (remainder of assembly based from vehicle itself)	- Impact to SSF (resources, microgravity, drag, etc.) - Eventually requires vehicle to have additional control and reboost systems - Requires localized debris shielding - No additional storage beyond first element
Tethered off-SSF Assembly Platform	- Compatible with current SSF design - Provides quick and easy crew and logistics access to entire assembly and propellant transfer operations - Microgravity and dynamic loads impacts to SSF minimized by tether - Removes hazardous operations and materials to SSF standoff distance	- Impact to SSF resources - Requires localized debris shielding - No additional storage - Requires additional reboost and control systems on SSF

Ground Rules and Assumptions - Heavy Lift Launch Vehicle (HLLV) mixed fleet consists of: - HLLV \#1: 84 metric ton payload capability with $10 \mathrm{~m} \times 30 \mathrm{~m}$ shroud - HLLV \#2: 120 metric ton payload capability with $7.6 \mathrm{~m} \times 30 \mathrm{~m}$ shroud
> - Sequencing based on External Tank-derived Assembly Platform concept
> - Some TBD volume is available in nosecone of HLLV

> NEP configuration (volume and mass) current as of 3rd Quarterly Briefing
MEV Aeroshell is assumed to be integrated at launch ("Ninja Turtle" conce
payload packaged in shroud

This page intentionally left blank

(1w) SSEW PEOLAEd

- NEP configuration and component list current as of 8/30/90

acily

- Cargo Transfer Vehicle (CTV) capable of maneuvering maximum possible payloads for unloading HLLV, transporting
vehicle elements to assembly area, and propulsive assists
- Assembly accomplished mainly through use of ground-based and autonomous robotics; crew presence for monitoring,
contingency, and crew systems checkout only
- Crew assumed to be based at Space Station Freedom and are transported to assembly area by ACRV (crew presence
is represented in flows from start of assembly mission until end; however, crew support may not be necessary for the duration of the mission). ACRV serves as both pressurized and unpressurized operations base until crew modules
- Assumes Space Shuttle Program External Tanks (ET) based assembly platform concept available and functional to support initial assembly missions (later assembly utilizes this platform mainly for storage while vehicle systems are used to complete construction)
- Robotic systems as defined for 2nd and 3rd Quarter Cryo/Aerobrake Vehicle assembly (PRMS, RAMS, ASF) will
addition of the NEP-based Remote Truss Manipulator System (RTMS) which is used for both assembly and mission ops
- Mars transfer launch on February 2016 (final assembly mission ends two months prior to this to allow spiral out of liarth orbit)
- MEV Aeroshell divided into 10 pieces and assembled in orbit (two dedicated flights assumed necessary to
- MTV Hab System launched after MEV complete (remaining on-ground non-mechanical interface verification utilize

4.75 mt

D615-10026-5

NEP ASSEMBLY MISSION TWO

1
—— $\quad \cdots-$

NEP MEY DESCENT SYSTEM ASSEMBLY

NEP MEY ASCENT SYSTEM ASSEMBLX

NEP MTY:TOMLY AIRLOCK AND TUNNEL ASSEMBLY

NEP MTY HAB MODULE ASSEMBLY

NEP MCRY ASSEMBLY

NEP INITIAL MAIN TRUSS ASSEMBLY

$\xrightarrow{\square}$

$\xrightarrow{\square}$

This page intentionally left blank

-

NLL INHLAL MAIN CYCLE RADIATOR ELLEMENIS ASSEMBLY

\sim

NEP FINAL, MAIN CYCLE RADIATOK CONDENSER ANID PLUMBING ASSEMBIY

NER INIUIAL AUXILIARY_RADIATOK ELEMEN'S ASSEMULY

Ground
 - First mission - First mission of NTR assembly will require truss to be deployed and secured to dedicated assembly plat form to lend additional stabicaled assembly - The two TMI and two MOC tanks of NTR The two 1 Mi and two MOC tanks of NTR vehicle are brought up in staggered configuration starting with TMI tank \# 1 in the fifth ILLLV flight. The reason for this is that the off-loaded propellant tankers that come up with the MOC tanks, (flights 6 and 8) will not have to be stored for a prolonged period of time - The NTR in-line tank (or EOC tank) is integrated with the shield and engine along with associated structures; further the engine nozzle is mounted in reverse to improve packaging . reverse-mounted nozzle protrudes into HLLV nosecone space. Engine ascembing efficiency. Portion of will first require properly assembling the nozzle to the engine.

- Assembly of NEP Heat Transport and Rejection Systems (Missions 5, 7, and 8) requires nearly the full 90 days between Assembly Flights:
- Due mainly to number of pieces and connections
- Increasing number of assembly robots and multi-ta
this is a serial task, it must be done in steps Ithis is a serial task, it must be done in steps
- It is expected that welding pipes, instead of
- It is expected that welding pipes, instead of fastening with clamps, may reduce required time (including necessary verification procedures) - NEP configuration should include robotic access to aft
- NEP configuration should include robotic access to aft end of vehicle (later configurations include truss
for the length of the NEP)
- If ACRV can not accommodate crew assembly operations, some type of control station must exist at
assembly site until MTV Ilab arrives:
- E'T-based platform devised f
- ET-based platform devised for Cryo/Aerobrake Vehicle included SSF Node and airlock
- MTV Hab could come up first (using ground simulators for remainder of interface verifi - Integrated Aeroshell launch would reduce flights and on-orbit assembly time - IILLV payload may need to be unloaded in groups rather than individually to HLLV on-orbit stay time

VIL
- A

Rules and Assumptions for Ground Processing
 Ground

 - Component interfaces are those which are internal to a subsystem.- Component interfaces are verified by the manufacturer during
- Interfaces verified prior to a system level integration will be accepted with no repetition of tests.
- Flight hardware will be used to verify system interfaces.

Process of verifying the interfaces of the Mars Mission Velicles elements without complete assembly.
- Elements are received and inspected at the assembly area.
- Internal test performed and cerifified by the contractor will not be repeated.
- Elements will be assembled to the level required to verify the interfaces from one element to another.
- Interfaces will be verified by flight hardware when feasible or by match mate devices/prototypes when necessary.
- Elements will be disassembled to payload configurations and processed for launch.

This page intentionally left blank

processing flows are very interdependent upon the launch vehicle and assembly
pon the launch vehicle and assembly concept assumed are interface verification may require simulators to better schedule hardware deliveries - Assembly flights are mainly volume, not mass, dependent

> Most flights underutilize relative mass capability

> A mixed fleet may improve launch packaging efficiency for NEP and SEP' Integrated aerobrake launch provides advantage in terms of number of flight and orbital assembly Capabilities, requirements of first element launch (FEL) of Mars vehicles drives on-orbit assembly infrastructure

- Two of the NEP assembly stages require nearly the full 90 days allotted between flights
Radiators and heat transport system require a large number of operations
90 day limit
Assumed deployable truss for NEP, SEP, and NTR reduces on-orbit times .
Assumed extensive assembly robotics tends to decrease crew time and needed infrastructure

D615-10026-5

VI. Implementation Plan

This page intentionally left blank

Technology Needs and Advanced Plans

Technology Issues - NEP

I. Introduction

Technology issues relating to the NEP vehicle are presented in this section. Some of the charts are also included in the Cryo, NTR, and SEP IP\&ED documents. The focus of this section will be to bring out those issues important to the NEP from these charts, and to present a series of technology level requirements necessary for the reference NEP vehicle. The most important technology development needs for NEP are in the areas of high power nuclear energy production and conversion, multi-MW in-space power conditioning, and electric propulsion.

II. Technology commonality Issues

The following nine charts lay out the important technology commonality issues between the major propulsion options as well as across the seven major mission architectures identified in this study. The NEP vehicle exhibits commonality to the other vehicles in several important areas. The transfer crew module is substantially the same as for all the other options, especially those flying conjunction missions. The MEV is identical across all vehicle options, except for the cryogenic propellant management and storage system, which must provide storage for the outbound trip, instead of rransferring it from larger tanks prior to landing. The argon propellant storage system will be similar to the oxygen storage system employed on the cryogenic vehicles (Lunar \& Mars). The ion propulsion system will employ the same thrusters as the SEP vehicle, which increases the amount of parallel development which can take place before a full scale development decision must be made.

The seven identified Lunar/Mars mission architectures verses the required component technologies, enabling and enhancing, are shown on the next set of charts and facing page text. Many of these component technology issues are common across the listed architectures. These issues are for the entire integrated architectures, and do not necessarily refer specifically to the NEP vehicle. The areas of multi-MW nuclear energy production and conversion, multi-MW power conditioning, high temperature materials, and long-term system reliability are the primary areas of technology development concern for the NEP option. Commonality to the initial cryogenic vehicles will enhance the viability of the NEP as a Mars growth option, albeit to a lesser degree than the SEP vehicle.

III. Technology Development Concerns

As noted before, many of the identified critical and high leverage technology development issues are common across all four major vehicle options. Common critical technology issues include low-g human factors, autonomous system health monitoring, long term cryogenic storage and management (argon and lander $\mathrm{H}_{2} \& \mathrm{O}_{2}$), long duration .ECLSS, radiation shelter material and configuration, and in-space assembly. Unique NEP technology issues include high power space-based nuclear energy production and conversion systems (Rankine, Brayton, etc.), low specific mass liquid metal heat pipe radiators, high temperature materials development, and low mass/efficient power conversion equipment. Enhancing technologies include cryogenic refrigeration (lander tanks), $\mathrm{O} 2-\mathrm{H} 2 \mathrm{RCS}$, advanced in-space assembly techniques, and advanced materials development.

IV. NEP Vehicle Technology Requirements

Technology performance levels required for the NEP reference vehicle are oudined in the next eight charts. These are not intended to be the levels needed for a minimum NEP vehicle, but serve mainly to document the levels required to accomplish the identified reference mission profile with the vehicle model as configured. Changes to these specifications would not necessarily affect the feasibility of a NEP mission, but would change the reference vehicle configuration. The list also includes operational requirements which could drive technology development or advanced development. An example of this would be requirements for in-space assembly and testing which could drive in-space assembly facility design and capability.

V. NEP Technology Development Schedule

The final chart in this section is a proposed technology development schedule for the nuclear electric propulsion option. The schedule shows that, given a FY '91 start, the NEP vehicle could be ready for a Mars mission in the 2014 timeframe. A full scale decision point is also highlighted during year 8 . This is the point where a commitment should be made for full scale funding and development of the program.

Required Technologles vs. Alternative Mlssion A set of required technologies for the seven identified alternative mission architectures outlined in
the evolotionary concepts section is presented. The purpose of this matrix is to provide a
preliminary comparison of technology development needs for the alternative architectures. The
matrix also serves to better define the architectures. From this top level matrix, a more detailed set
of technology requirements can be derived. A set of accommodating technologies can be compiled
for needs areas where options exist. Finally, the technology areas can be prioritized as enabling
and enhancing, and a retum on investment performed for identified high leverage technologies.
This portion of the matrix includes most of the cryogenic management issues. Enabling
technologies are represented by the filled circle, and enhancing technologies by the open circle.
Bxtensive low - g cryogenic propellant launch, acquisition and transfer refers to the Mars
conjunction case, and the mass driver option, where propellant will be used for the transfer
vehicles, which will be parked in a low -g envinonment (Lunar or Mars orbit, or libration staging
point). The Mars cycler orbit case includes a question mark for the long term cryogenic storage
system, because the necessary thrust levels and type of propulsion system are undetermined at this
time.

	-		-			${ }^{\underline{T}}$	-
	-	\bullet	-	-	\bigcirc	-	\bullet
	-	-	-	-	-	\bullet	-
	-	-	\bullet	-	-	-	-
				-		\bullet	
	-	-	-	-	\bullet	-	\bullet
	-	-	\cdots	\bigcirc	-	\bullet	-
	\bigcirc	-	\bigcirc	\bigcirc	©.	-	\bigcirc
		空总		$\begin{aligned} & \text { L.2 Node / Mass Driver } \\ & \text { Alternative Architecture } \end{aligned}$		Mars Conjunction/Direct Alternative Architecture	

Required Technologies vs. Alternative Mission
This matrix section represents the major aerobraking concerns. The aerobraking energy columns
for Mars and Earth capture digresses from the format in order to illustrate the energy levels, and
therefore, the level of technology development needed for the various architectures. Aeroleating
predictions, reusable aerobrake TPS, advanced GN\&C, and TT\&C follow along with the high and
medium energy missions. Again, a question mark is shown for the Mars cycler orbit case.
Reusable TPS for Earth return cannot be determined as a technology development concent until
the aeroheating load at Mars can be determined for the cycler orbits. Further mission design efforts
must be carried out before an estimate on this can be made.

	$\begin{gathered} \text { Earth retum } \\ \begin{array}{c} \text { nerobratce } \\ \text { energy } \end{array} \\ \hline \end{gathered}$	Mars caplure nerobrate encregy	Mara lander aenobrate	$\underset{\text { performance }}{\text { High }}$ serobrake зtrucure	Aerobrake assembly m leat	$\left\lvert\, \begin{gathered} \text { Aeroheating } \\ \text { prediction } \\ \text { (Earth andor or } \\ \text { Mars) } \end{gathered}\right.$	Reusable actobrate TPS for Earth retum	GN\&Cto protec TPS	Advanced high accuracy and tale TT \& C	In space AR\&D/ assembly
Mars NEP Alternative Architecture	Low	Low	-	-	-					-
Lunar/Mars NTR Alternative Architecture			-	\bigcirc	-			,		-
Mars SEP Alternative Architecture	Low	Low	-	-	-					-
L2 Node / Mass Driver Alternative Architecture	High	High	-	-	-	-	-	\bullet	-	-
Mars Cycler Orbits Alternative Architecture	High	High	-	\bullet	-	-	$?$	-	-	-
Mars Conjúnction/Direct Alternative Architecture	Medium	Medium	-	-	-	-	-	-	-	-
Lunar / Mars NEP Alternative Architecture	Low	Low	-	-	\bullet					-

This matrix area represents the major propulsion issues, with the exception of the radiation protection system, for the baseline and alternative mission architectures. The system to inert and
 for all mission architectures. Again, due to the undefined Mars cycler orbi4 trajectories, it is

 Lunar orbital momentum storage and transfer device such as a bolo can be enhancing for all missions, after an initial launch and assembly penalty for the massive ($\sim \mathbf{1 0 0 0} \mathbf{~ M t}$) device.

	$\left\|\begin{array}{c} \text { Larga (150-1 } \\ 2000 \mathrm{idb}) \\ \text { cryogenic } \\ \text { aivinced } \\ \text { rpace engine } \end{array}\right\|$	$\begin{gathered} \text { Small (15- } \\ \text { 30 kllo) } \\ \text { cryogenic } \\ \text { advemced } \\ \text { apace engine } \end{gathered}$	$\begin{gathered} \mathrm{H}-\mathrm{OL} \\ \text { ACS/RCS } \end{gathered}$	Muld - MW space based nucleary electric power	Muld - MW apace based nuclent thermal power	Surface nuclear electric power	Muld MW solar power system (arrays and handling equip.)	Radiation protection (syatem lo incert \& can waste)	Mass driver/ rail gun technology	Lunar orbital momentum transier device (Bolo)
Mars NEP Alternative Architecture		-	\bigcirc	-		-		-		0
Lunar/Mars NTR Alternatlve Architecture		\bullet	\bigcirc		\bigcirc	-		-		\bigcirc
Mars SEP Alternative Architecture		\bigcirc	\bigcirc				-	-		\bigcirc
L2 Node / Mass Driver Alternative Archiltecture		-	\bigcirc			\bigcirc		-	-	\bigcirc
Mars Cycler Orbits Alternative Architecture	$?$	-	\bigcirc			-	-	\cdots		\bigcirc
Mars Conjunction/Direct Alternative Architecture	-	-	\bigcirc			-		-		\bigcirc
Lunar / Mars NEP Alternative Architecture		-	\bigcirc	-		-		-		\bigcirc

[^10]Required Technologles vs. Alternative Mission
Architecture (Cont.)
1

Required Technologies vs. Alternative Mission
Architecture (Cont.)

I. TMIS/MTV

II. MEV

B. Propulsion

B. Propulsion (cont.)
 B. Propulsion (cont.)
6. Gimbal angle (nominal) $=10^{\circ}$.
7. No restart capability necessary for nominal case.
8. Space storage time between burns : NA.
9. Engine out capability (crossfeed propellant lines).
10. Expander cycle.
11. In-space changeout capability.
12. Off vehicle preflight checks.
13. Retraction / extension capability. B. Propulsion (cont.)
6. Gimbal angle (nominal) $=10^{\circ}$.
7. No restart capability necessary for nominal case.
8. Space storage time between burns : NA.
9. Engine out capability (crossfeed propellant lines).
10. Expander cycle.
11. In-space changeout capability.
12. Off vehicle preflight checks.
13. Retraction / extension capability. B. Propulsion (cont.)
6. Gimbal angle (nominal) $=10^{\circ}$.
7. No restart capability necessary for nominal case.
8. Space storage time between burns : NA.
9. Engine out capability (crossfeed propellant lines).
10. Expander cycle.
11. In-space changeout capability.
12. Off vehicle preflight checks.
13. Retraction / extension capability. B. Propulsion (cont.)
6. Gimbal angle (nominal) $=10^{\circ}$.
7. No restart capability necessary for nominal case.
8. Space storage time between burns : NA.
9. Engine out capability (crossfeed propellant lines).
10. Expander cycle.
11. In-space changeout capability.
12. Off vehicle preflight checks.
13. Retraction / extension capability.
Mars NEP Vehicle Technology
 2. Aerobrake
a. $L / D=0.5$ to 1.0
b. Crossrange: 1000 km .
c. Vhp $=7.07 \mathrm{~km} / \mathrm{sec}$.
d. Maximum g loading: 6 .
e. Maximum temp: TBD (estimated 3100° F).
f. Structure material: Carbon Magnesium ribs ($\sigma u \mathrm{l}=200 \mathrm{ksi}$) bonded to titanium honeycomb shell.
g. TPS material: Advanced reradiative tiles.
h. Relative wind angle (reference) $=20^{\circ}$.

> Avionics

1. Error without beacon $=1 \mathrm{~km}$.
2. Touchdown error $=1 \mathrm{~m} / \mathrm{s}$.
3. Obstacle avoidance capability.

Crilical Lunar/Mars Reference Technology
Development Concerns
A preliminary set of critical technology development concems was constructed for the Lunar/Mars reference missions. Its purpose is to show a top level representation of the areas which could prove enabling for the reference Lunar and/or Mars missions, without further concentrated research and development, flight testing; and/or precursor missions. Aerobraking may proverenabling for most Lunar and Mars missions, and significantly enhancing for the rest, primarily due to reduced demands on limited Earth to orbit launch capability and lower launch costs. Aeroheating prediction codes cannot be validated without further experimental data (flight or ground simulation data). The degree of development needed for aerobrake TPS materials will be determined by these predictions. Low gravity human factors, to be evaluated on SSF, may affect vehicle design
 can be determined from space station based research. Finally, precise mission design, incorperating
 automated rendezvous \& docking requirements.

	ar/Mars Reference Technology evelopment Concerns
Technology	Comments
High Energy Aerobraking - Thermal protection - High performance structure - Theoretical code validation - Deep space tracking, telemetry, and communication	- Heating rates greater than seen by AFE for Mars cap. and Mars/Earth return. - High temp reradiative or lightweight ablative materials needed - Precursor missions needed for existing aeroheating/GN\&C codes - 17 minute Mars/Earth comm delay will dictate internal GN\&C system.
Advanced Space Engine Development - Large engine ($150-200 \mathrm{klb}$ thrust) - Small engine ($\mathbf{1 5 - 3 0} \mathbf{~ k l b}$ thrust; throttleable)	- High thrust, high Isp cryogenic engine for TMI stage. - Low thrust, high Isp, throttleable engine for Lunar/Mars descent and ascent.
Low - g Human Factors	- Vehicle designs should accommodate artificial-g configuration until SSF based life sciences research can be carried out.
Autonomous System Health Monitoring	- Reliable autonomous systems with self monitoring, diagnostic, and correcting capability.
Long Term Cryogenic Storage and Management	- Advances in long term low - g cryo fluid storage and management required for Lunar/Mars initiatives. - low - g propellant acquisition and gaging enabling for all cryo missions.
Long Duration, High Degree of Closure ECLSS	- Reliable SSF validated ECLSS equipment critical for early long term missions.
Efficient Radiation Storm Shelter Material \& Configuration	Improved solar flare prediction/detection, with storm shelter designs incorporating effective lightweight materials Reliable radiation dosimetry techniques also important
In - Space Assembly; AR \& D	- Large aerobraked vehicles will require large degree of in - space assembly. - AR\&D critical for both Lunar/Mars orbital operations.

Preliminary Identifled Lunar/Mars Reference
A preliminary set of high leverage technologies was assembled for the Lunar/Mars reference missions. These technologies are enhancing for most, and in some cases, all identified mission architectures. Aerobraking will be significantly enhancing for all Lunar and Mars missions where
 lightweight reradiative or ablative TPS material, and ECCV vs. aerocapture of MTV at Earth. Low
 where it is not enabling. Advanced propulsion options such as NTR, GCR, SEP, and NEP may prove to be high leverage technology options to baseline cryogenic propulsion systems. Finally, developments in advanced materials can be significantly enhancing in a variety of areas.

Technology	Comments
Aerobraking - Mars Capture (vs. propulsive cap.)	- Aerocapture at Mars can reduce IMLEO $>50 \%$ over propulsive capture
Aerobraking - Earth Capture (vs. ECCV)	- ECCV reduces IMLEO and thermal protection system (TPS) requirements. - Reusable MTV can reduce life cycle cost.
Aeroshell TPS (reradiative vs. ablative)	- Reusable aeroshell requires rerad. TPS at Mars (or thick lightweight ablator), and ablative at Earth. - Further materials and processes advances or low energy mission may allow Earth/Mars reradiative TPS.
Advanced Long Term Cryogenic Storage Technology	- Cryogenic boiloff reduction technologies such as advanced MLI design and application, VCS, para to ortho H2 conv., and thermal disconnect struts, can reduce IMLEO significantly with low R \& D effort - Longer missions offer greater IMLEO savings potential
Low - g Propellant Transfer	- Low - g propellant transfer technology enhancing for all Lunar/Mars mission arch., and enabling for some Lunar missions.
Efficient Cryogenic Refrigeration System	- Cryogenic refrig system can reduce vehicle mass and enhance system reliability at the expense of an increased power level.
O2-H2 ACS / RCS	- O2-H2 ACS/RCS (Isp = 400 s) reduces system mass over lower Isp storables
High Isp Advanced Space Engine	- High Isp advanced space engine ($\operatorname{Isp}=485$ s) enhances all mission phases for all mission arch.
NTR Propulsion System	- NTR propulsion system for the TMI, Lunar transfer, and Mars transfer stages
Advanced In r Space Assembly Techniques	- Launch vehicle capability drives on - orbit assembly level. - Degree of on - orbit assembly capability affects vehicle configuration, ground assembly/processing, and launch manifesting.
Advanced Materials Development	- Advanced materials such as metal and organic matrix composites reduce system inert mass, strength, and/or manufacturing costs. - Some advanced M\&P may prove enabling for some mission arch. (ex:Mars/ Earth capture aerobrake)

 $=$

Schedules

D615-10026-5

Technology Development Concerns and Schedules - Nuclear Electric Propulsion (NEP)

Critical technology development issues relating to the reference NEP vehicle are presented in this section. Where applicable, the same charts are also included in the CAB, CAP, NTR, and SEP PPEED documents. The focus of this section will be to bring out the most important issues relating to the reference NEP vehicle, and to present preliminary technology development schedules for these issues. The issues are presented here in outline form, beginning with the most important, with accompanying schedules wherever possible.

Nuclear Power System and Shielding Technology Development

One of the two most important areas of technology and advanced development for this vehicle option is the development of an integrated nuclear electric power system. A preliminary schedule for the development of a NEP propulsion system for a Mars vehicle is presented, which includes an integrated timeline for both of these technology development concerns. The schedule highlights both the point where a full scale development decision can be made (year 6), and when the first flight article will be available to the vehicle program (year 17). The most important area of development for the NEP option is the design, integration, and life testing of a space qualified multi-megawatt nuclear power system, capable of a 10 year lifetime. Major challenges to be overcome in the achievement of a long life efficient system lie in high temperature materials, liquid metal power conversion system development, and reactor design. In order to increase the efficiency of the power system, higher system temperatures are required. Materials capable of continuous operation above 1600 K will be needed inside the reactor, and above 1500 K in the conversion system components. Reactor design studies will focus on such technology concerns as high temperature fuel development, reactor and fuel designs with high burnup capability, high reliability control systems, and safing issues for flight operations. Long term life testing must be carried out for the power system (including reactor), to verify long term system reliability. A related technology development challenge for the program will probably be test facility design and development. Past space program nuclear tests were carried out in a testbed facility open to the atmosphere. Future test facilities must be closed in order to contain any fission products escaping from the system, as well as contain any perceived accident. This facility may prove to be very costly to build and operate. Nuclear electric propulsion offers a potential performance superior to the chemical and NTR vehicles, at the expense of a more costly and lengthy technology and advanced development program.

Electric Propulsion PPU/Thruster Technology Development

The second major area of technology development for the NEP is in large scale electric power processing unit (PPU), and thruster design and development. The development of long life PPU/thruster systems on a larger scale than currently available (MW level thrusters needed) is the major area of concern relating to the NEP concept. Thruster lifetimes on the order of a year or more (continuous) will be required for thrusters on the MW level in scale. Test facilities must be developed which are capable of supporting the long term life tests for these high power level thrusters. Finally, high temperature power processing equipment must be developed to increase system efficiency and reliability.

Life Support

A reliable, redundant long term life support system will be enabling for future exploration missions. The degree of closure of, and the reliability of the system are the
major technology development concerns. Low-g human factors determination will also be an important technology consideration which will drive vehicle design. An integrated schedule of the major areas of the life support technology development task are presented. It includes radiation shielding and materials, regenerative life support, and EVA systems development. As before, the points where Lunar and Mars full scale development decisions can logically be made in the technology program are highlighted.

Aerobraking (low energy)

Low energy aerobraking will offer mission benefits in the areas of decreased demands on the descent propulsion system, and improved crossrange capability. This area presents a variety of issues for technology development including high strength to mass ratio structural materials, high temperature thermal protection systems (although not as high as for high energy aerobraking), avionics, assembly and operations, hypersonic test facilities and computer codes, and Mars atmosphere prediction. High strength structural material options include metal matrix-composite, organic matrix composite, and advanced carbon-carbon elements. Other structural considerations include load distribution and attachment of payload for aerocapture, and ETO launch and assembly of large structures. Thermal protection systems issues include low mass ablative and reradiating materials, and structure/TPS integration issues. The aerobrake maneuver will place considerable demands on the vehicle avionics system with the need for real time trajectory analysis, and vehicle guidance and control. The launch and assembly of the large aerobrake structure will present ground and space assembly and ops problems which will require technology and advanced development in both the areas of design and operations. Finally, computational analysis and atmosphere prediction capability will be critical in the development of a man-rated aerobrake for Mars use. A preliminary development schedule for Lunar and Mars aerobrake technology development is presented. It includes the major milestones for both ground and flight testing. The points where a Lunar and Mars full scale development decision can be made are also highlighted on the schedule. It should be noted that this schedule was built with high energy aerobraking in mind, and will possibly be compressed to some degree if only low energy aerobraking is developed.

Vehicle Avionics and Software

Although the technology readiness level of vehicle avionics and software is ahead of many of the other technology areas listed in some respects, the demands on the system in the areas of processing rate, accuracy, autonomous operation, and status/health monitoring will drive technology and advanced development in areas not fully defined at this point. Software requirements cannot be fully determined until the vehicle design is at a more finished stage than the current levels. A preliminary schedule for autonomous systems development is presented. The decision points for full scale development The communications system options can be more fully defined before a final vehicle design is produced, however. A technology development schedule for advanced communications is presented. The NEP vehicle may not place the same level of demand on the avionics system in the area of trajectory analysis, but will likely place more demands on the system in the areas of status/health monitoring, and autonomous operation, fault diagnosis, and correction.

In-Space Assembly and Processing

The in-space assembly and processing of large space transfer vehicles will present a variety of technology advanced development challenges, particularly for the large LTV and MEV aerobrakes, and NEP vehicle. The large radiator structure, along with the many liquid metal pipe high pressure joints which must be made in orbit will present a variety of challenges in technology development (e.g. in-space welding), and assembly operations (e.g. robotics). As shown on the accompanying schedule, extensive ground tests must
occur before any orbital work can be initiated. The vehicle designs will be driven to a large degree by the assembly facilities and technologies seen as being available during the vehicle buildup sequence. It should be noted that the schedule was not developed specifically for an NEP vehicle. Advances derived from this development process along with flight experience in earlier missions leading up to this evolutionary scenario could possibly accelerate the development plan considerably.

Cryogenic Fluid Management

The level of concern for technology development in the areas of cryogenic fluid management and storage will not be as for electric propulsion vehicles as for the high thrust systems, although many of the areas still remain important for the NEP vehicle. The Argon (or Zenon) propellant utilized for the electric propulsion system will be in a cryogenic liquid state, and will require long term storage and management technology levels similar to those for liquid oxygen storage for the chemical vehicles. Cryogenic storage issues relating to ECLSS fluids and lander/ascent vehicle propellants will remain as well. A preliminary technology schedule is presented for cryogenic fluid system development for Mars mission applications. The cryogenic fluid systems schedule includes Earth-based thermal control and selected component fluid management (tank pressure control, liquid acquisition device effectiveness, etc.) tests, as well as planned flight experiments to carry out system and subsystem development (selected components) and verification/validation tests. Many of the technology issues will be answered during the technology/advanced development work to be carried out for a Lunar program. The major technology obstacles to be overcome by an NEP storage system are in the areas of high reliability long term thermal control systems (particularily for the lander/ascent tanks), and orbital/flight operations (fluid transfer, acquisition, etc.).

Summary

As noted before, some of the identified critical and high leverage technology development issues are common across all of the major vehicle options. Common critical technology issues include low-g human factors, autonomous system health monitoring, long term cryogenic storage and management (H 2 , and possibly O 2 for ECLSS), long duration ECLSS, radiation shelter material and configuration, and in-space assembly. Unique NEP technology issues center around nuclear power systems and electric thruster/PPU development. Common enhancing technologies include cryogenic refrigeration (lander tanks), $\mathrm{O} 2-\mathrm{H} 2 \mathrm{RCS}$, advanced in-space assembly techniques, higher Isp cryogenic engines, and advanced structural materiais development. significantly longer. The sehed . strialization / setilement scenario (large scale)
 Also included in the schedule is a proposed development schedule for the tests are also included in the DTHE effort. These schedule, which coninue past the s!ч! u! әк
 lime period could

/STCAEM/jrm/4oct90

SEI Technology Development Schedules (Cont.)
 Preliminary

Lunar \& Mars computer flow codes complete $\boldsymbol{\nabla}$ CFD code development \& analysis
\square Hypersonic wind tunnel testing
\square TPS materials \& concepls completed
\longrightarrow AFE design \& materials
High Rate Communications
Model complete
\square Deep space optical comm. experiment model development
${ }^{a} \nabla^{b}$
\longrightarrow Component tech. development
$\nabla^{\text {Critical design review }} \nabla^{\text {Flight test }}$
\square Deep space optical comm. experiment (optional)
a - Key component tech. for Ka band, TWT, and Ka band MMIC amps formulated
b - Automated high rate comm ops for Lunar outpost \& Mars robotic demo.

Mars FSD
0
\uparrow Lunar FSD

In-Space Assembly \& Processing

\square Design \& analysis methodologies for AETB engine

Breadboard assy. \& constr. $\nabla \nabla^{\text {Complete testbed-proven technology for LTV appl. }}$
\checkmark Lunar FSD Mars FSD \downarrow High thrust cryo engine design (for MTV)
Cryogenic Fluid Systems
\square Definition Studies
$\square 1-\mathrm{g}$ validation
SOFTE $\nabla \quad \nabla^{\text {LIRE,LACE }}$
integrated subsys. breadboard demonstr. ∇
Small scale pressure ctrl, and liquid reorient. \& acq. fight tests
\square Advanced cryo tank design for LTV
COLD-SAT Alter. fl. $\nabla \quad \nabla^{\text {Flight }} \quad \nabla^{\text {Analysis complete }}$
\longrightarrow Advanced development \& flight test (program level)
\forall Lunar FSD $\quad \bullet$ Mars FSD

This page intentionally left blank

Facilities

This page intentionally left blank

Facilities

The facility needs have only been identified in this study; the extent of the impact is yet to be determined. A "bona fide" facility development plan has not been done as some of the requirements are only at a top-level needs evaluation. Therefore, the exact nature of the subsystems and their support facilities are undetermined. When these determinations have been made for the final NASA selected vehicle, the results must be integrated with the vehicle development schedule.

In addition to the information here, additional facility and equipment detail is shown in Ground subsection of the Support Systems section of this text. A current listing of the additional required facilities and equipment is shown in the "Special Ground and On-Orbit Processing Facility and Equipment Requirements" chart for processing the advanced vehicles. These requirements will impact the volumes shown for assembly, storage, and launch processing in the "Facilities Requirements" chart as well as the processing time shown in the "Assembly Time per Mission" chart. The information there is for the baseline Cryo/Aerobrake vehicle. All impacts will be to increase the processing time and working volumes required. Any facility requirements must be viewed in the light of and incorporated into the National Launch Facility Plan.
$\left.\begin{array}{|l|l|l|l|}\hline \text { Facilities/Equipment } & \text { NTR } & \text { NEP } & \text { SEP } \\ \hline \begin{array}{l}\text { Ground } \\ \text { - Reactor/engine mating and processing } \\ \text { facility }\end{array} & \mathbf{X} & & \\ \text { - Nuclear fuel loading facility } \\ \text { - Contaminated materials storage and } \\ \text { disposal facility }\end{array}\right)$ X

Facility Requirements

This page intentionally left blank

Tesk 5 Assembly Tima - 1
This page intentionally left blank

Costs

This page intentionally left blank

Nuclear Electric Propulsion

Programmatics

The objectives of the Programmatics task during the current phase of the study were: (1) realistic initial schedules that include initial critical path program elements; (2) initial descriptions of new or unique facilities requirements; (3) development of a stable, clear, responsive work breakdown structure (WBS) and WBS dictionary; (4) initial realistic estimates of vehicle, mission and program costs, cost uncertaincies, and funding profile requirements; (5) initial risk analysis, and (6) early and continuing infusion of programmatics data into other study tasks to drive requirements/design/trade decisions.

The issues addressed during the study to date included: (1) capturing all potential long-lead program items such as precursor missions, technology advancement and advanced development, related infrastructure development, support systems and new or modified facility construction, since these are as important as cost and funding in assessing goal achievability; (2)incorporating sufficient operating margin in schedules to obtain high probability of making the relatively brief Mars launch windows; (3) the work breakdown structure must support key study goals such as commonality and (4) cost estimating accuracy and uncertainty are recurring issues in concept definition studies.

Introduction

The study flow, as required by MSFC's statement of work, began with a set of strawman concepts, introduced others as appropriate, conducted "neckdowns", and concluded with a resulting set of concepts and associated recommendations.

As the study progressed, much discussion among the SEI community centered on "architecrures". In this study, architectures were more or less synonymous with concepts, since the statement of work required that each concept be fully developed including operations, support, technology, and so forth.

We started with ten concepts as shown in the "Overall Study Flow" chart. . After the "neckdown" was completed, significant effort was put into programmatics.

As was indicated earlier, we established three levels of activity to evaluate in-space transportation options. The minimum was just enough to meet the President's objectives; in fact "return to the Moon to stay" was interpreted as permanent facilities but not permanent human presence. The minimum program had only three missions to Mars. The median (full science) program aimed at satisfying most of the published science objectives for Lunar and Mars exploration. The maximum program aimed for industrializarion of the Moon, for return of practical benefits to Earth, and for the beginnings of colonization of Mars. The range of activity levels, as measured by people and materiel delivered to planetary surfaces, was about a factor of 10 . The range of Earth-to-orbit launch rates was less, since we adopted results of preliminary trade studies, selecting more advanced in space transportation technologies as baselines for greater activity levels. The high level schedules developed for these three levels of activity are shown in the "Minimum Program", "Full Science Program" and "Industrialization and Settlement Program" charts and a comparison of them for both Lunar and Mars is shown in the "Lunar Program Comparison" and "Mars Program Comparison" charts.

Schedule/Network Development Methodology

A PC system called Open Plan by WST Corporation was used, which allows direct control and lower cost over a larger (mainframe) system. The network was purposely kept simple. Summary activities were used in development of the networks. When detailed to a lower level, some activities will require a different calendar than we used. One calendar with a five day work week - no holiday was used. Utilizing multicalendars on a summary network could confuse the development. The Preliminary WBS Structure Level 7 was followed for selection of work to be detailed. An example of Level 7 is: MEV Ascent Vehicle Structure/Mechanisms. We then developed a generic logic string of activities with standard durations for like activities. This logic was then applied against each WBS Level 7 element. To establish interface ties between logic strings and determination of major events, we used the Upper Level Summary Schedule and Summary Level Technology Schedule.

Goals/Purpose

There were two goals for the schedule/network development. These were:
a. Guidelines for Furure Development. The schedules are a preliminary road map to follow in the development program.
b. Layout Basis Framework for Network. The networks can be used for future detail nerwork development. This development can be in phases retaining unattended logic for areas which can be be detailed.

Status

Six preliminary networks have been developed. They are:

- Lunar minimum
- Lunar full science
- Lunar industrialization
- Mars missions
- Mars full science
- Mars setlement

These networks will be further developed as information becomes available The technology development plan schedules are shown in the Schedules section of this text; an example of the standard 6 year program phase C / D schedule is shown in the " Reference 6yr. FullScale Development Schedule" chart. The network schedules developed during the study are available in the Final Report Costs Data Book.

Facilities

The facility requirements and approaches are discussed in the Facilities section of this text.

Development Implementation

The integrated technology advancement and full-scale development schedules for the NEP is shown in the "NEP Development Program". The MEV is developed according to the above mentioned standard 6-year FSD schedule. The Man-rating schedules for critical systems, that must be accomplished before first flight, are given in the next several manrating charts. The long-duration Mars Tansit Habitat, and its critical subsystems, will require operational testing in space to qualify for the Mars mission. How all development and testing is actually done depends on program interrelationships between lunar and Mars missions.

Work Breakdown Structure

The approach to developing a WBS tree and dictionary was to use the Space Station Freedom Work Package One WBS as a point of departure to capture commonality, modularity and evolution potentials. We worked with MSFC to evolve the WBS illustrated in the six WBS charts shown in this text. The network schedules developed during the study are available in the Final Report Costs Data Book and the WBS.

Cost Data

Overall Approach

Space transfer concept cost estimates were developed through parametric and detail estimating techniques using program/scenario plans and hardware and software descriptions combined with NASA and subcontractor data. Our estimating approach simulates the aerospace development and production environment. It also reflects program options not typical of aerospace programs. This flexibility allows assessment of innovative program planning concepts.

Several tools were employed in this analysis. For developing estimates the Boeing Parametric Cost Model (PCM) designed specifically for advanced system estimating was used. It utilizes a company-wide, uniform computerized data base containing historical data compiled since 1969. The second major tool is a Boeing developed Life Cycle Cost Model. The third tool is the Boeing developed Return on Investment (ROI) Analyses.

The approach to cost estimating_was to use the PCM to establish DDT\&E and manufacturing cost of major hardware components or to use other estimates, (e.g. Nuclear Working Group estimator) if they were considered superior and then feed them to the LCC model. Variations on equipment hardware or mission alternatives can be run through the LCC and then compared for a return on invesment. This flow is illustrated in the "Costing Methodology Flow " chart. We were able to investigate alternative concepts quickly, giving system designers more data for evolving scenario/mission responsive concepts. Transportation concepts, trade studies, and "neckdown" efforts were supported by this approach.

Parametric Cost Model

PCM develops cost from the subsystem level and builds upward to obtain total program cost. Costs are estimated from physical hardware descriptions (e.g., weights and complexities) and program parameters (e.g., quantities, learning curves, and integration levels). Known costs are input directly into the estimate when available; the model assesses the necessary system engineering and system test efforts needed for integration into the program. The PCM working unit is man-hours, which allows relationships that ie physical hardware descriptions first to design engineering or basic factory labor, and then through the organizational structure to pick up functional areas such as systems engineering, test, and development shop. Using man-hours instead of dollars for estimating relationships enables more reliable estimates. The PCM features, main inputs, and results are shown in the "Boeing Parametric Cost Model (PCM)" chart. The applicable PCM results, in constant 1990 dollars, are then put into the Life Cycle Cost Model to obrain cost spreads for the various missions/programs. The various hardware components costed for the three different missions/programs are shown in the "LCCM Hardware Assignment " chart.

The development of space hardware and components needed to accomplish the three different Lunar/Mars missions were identified. These components are grouped into three different caregories defined below.

HLLV(Heavy Lift Launch Vehicle) is the booster required to lift personnel, cargo and fuels into LEO and support the LEO node operations.

Propulsion Includes the space propulsion system required to transfer people, cargo and equipment out of LEO and into space. Space means Lunar, Mars and Earth destinations. Propulsion Systems also include an all-propulsive cryogenic Trans Mars Injection System (TMIS) for the Minimum Mission, the Nuclear Electric Propulsion Stage for the Settlement/Industrial Missions.

Modules Include the space systems that are required to transfer people, cargo and equipment from LEO to Lunar and Mars orbit; to de-orbit and sustain life and operations on the Lunar and Mars Surface; and, finally, to return personnel and equipment to LEO.

Cost Buildups

The PCM cost Model can be used directly to obtain complete DDT\&E cost, including production of major test articles, by entering into the manufacturing section the equivalent numbers of units for each item, including the first flight article. However, when operated in this way, PCM does not give the first unit cost. To save time, we operated PCM so as to give first unit cost, which we needed for life cycle cost analyses, and used the first unit cost to manually estimate the test hardware content of the DDT\&E program. The "wrap factors" shown in the cost buildup sheets were derived from the PCM runs as the factor that is applied to design engineering cost to obtain complete design and development costs, e.g. including non-recurring items such as systems engineering and tooling development.

Life Cycle Cost ModeI

The LCCM cost data is a composite of HLLV costs, launch base facilities cost estimate based on $\$ / \mathrm{sq}$. ft. and parametric estimates derived from the Parametric Cost Model. The principal source of information is from the PCM. All hardware cost estimates, with the exception of HLLV, have been developed with this model.
The LCCM consists of three individual models. One model is for the Minimum Program Scale; the second is for the Full Science Program Scale; while the third model is for the

Settlement/Industrialization Program Scale. The Minimum Program meets the President's Space Exploration Initiative (SEI) objectives. These capabilities include permanent Lunar facilities but not permanent human presence and three missions to Mars. The Full Science program not only meets the President's SEI objectives but also provides for long term bases for far-ranging surface exploration. The Settlement/Industrialization program accomplishes the objectives of the Minimum and Full Science program scales and additionally returns practical benefits to Earth. These models were developed using the three architecture levels described in the Boeing manifest worksheets. Total cost for each system are tabulated by year and each year's totals feed into a summary sheet that calculates the total program cost for each level.-Since the LCCM results are mission related, not just vehicle related, they are not provided here but are available in the Final Report Cost Data Book. The LCCM was developed using Microsoft Excel version 2.2 for the Macintosh computer. Any Macintosh equipped with Excel 2.2 can be used to execute the model.

Return On Investment

One of the principal uses of the LCCM is to develop trades and return on investment for technology options. As shown in the "Costing Methodology Flow" chart, two separate life cycle cost models (which include DDT\&E and production cost data derived from the parametric cost models) must be developed for each ROI case; a reference, and a case utilizing a technology option. The two life cycle cost streams are separately entered, and the ROI model is executed. The flow also illustrates that not all of the data entered into the life cycle cost model is derived from available costing software. Technical analysis must accompany this data. For example, the number of units which must be produced for the DDT\&E program must be determined. This is done at the subsystem level based on knowledge of past programs, and proposed system/subsystem tests. Since the ROI analysis is mission related, not just vehicle related, the data is not presented here but is available in the Final Report Cost Data Book.

Results

A summary of the cost data produced by the PCM for the NEP vehicle are given in the "Mars NEP Preliminary PCM Summary " and "Mars NEP Preliminary PCM Summary continued" charts. The PCM program was used to produce DDT\&E and production cost estimates for each of our reference Mars and lunar vehicles to the subsystem level. The DDT\&E costs generated by the PCM do not include all of the necessary hardware for the
first mission vehicle. Hence all necessary additional units (protorypes, test units, lab units, etc.) were added into the vehicle cost buildups as shown in the "NEP Cost Buildup" chart. The total DDT\&E includes additional costs (e.g.. additional units in the DDT\&E program), contractor fees and the engineering wrap factor. The total DDT\&E from the cost buildup and the unit cost from the PCM are the primary vehicle cost inputs to the LCC model

Risk Analyses

Risk analyses were conducred to develop an initial risk assessment for the various architectures. This presentation of risk analysis results considers development risk, manrating requirements, and several aspects of mission and operations risk.

Development Risk

All of the architectures and technologies investigated in this study incur some degree of development risk; none are comprised entirely of fully developed technology. Development risks are correlated directly with technological uncertainties. We identified the following principal risks:

Cryogenics - High-performance insulation systems involve a great many layers of multilayer insulation (MLI), and one or more vapor-cooled shields. Analyses and experiments have indicated the efficacy of these, but demonstration that such insulation systems can be fabricated at light weight, capable of surviving launch g and acoustics loads, remains to be accomplished. In addition, there are issues associated with propellant transfer and zero-g gauging. These, however, can be avoided for early lunar systems by proper choice of configuration and operations, e.g. the tandem-direct system recommended elsewhere in this report. This presents the opportunity to evolve these technologies with operations of initial flight systems.

Engines - There is little risk of being able to provide some sort of cryogenic engine for lunar and Mars missions. The RL- 10 could be modified to serve with little risk; deep throttling of this engine has already been demonstrated on the test stand. The risk of developing more advanced engines is also minimal. An advanced development program in this area serves mainly to reduce development cost by pioneering the critical features prior to full-scale development.

Aerocapture and aerobraking - There are six potential functions, given here in approximate ascending order of development risk: aero descent and landing of crew capsules returning from the Moon, aerocapture to low Earth orbit of retuming reusable lunar vehicles, landing of Mars excursion vehicles from Mars orbit, aero descent and landing of crew capsules returning from Mars, aerocapture to low Earth orbit of returning Mars vehicles, and
aerocapture to Mars orbit of Mars excursion and Mars ransfer vehicles. The "Development Risk Assessment for Aerobrakeing by Function" chart provides a qualitative development risk comparison for these six functions.

Aerocapture of vehicles requires large aerobrakes. For these to be efficient, low mass per unit area is required, demanding efficient structures made from very high performance materials as well as efficient, low mass thermal protection materials. By comparison, the crew capsules benefit much less from high performance structures and TPS.

Launch packaging and on-orbit assembly of large aerobrakes presents a significant development risk that has not yet been solved even in a conceptual design sense. Exisring concepts package poorly or are difficult to assemble or both. While the design challenge can probably be met, aerobrake assembly is a difficult design and development challenge, representing an important area of risk.

Nuclear thermal rockets - The basic technology of nuclear thermal rockets was developed and demonstrated during the 1960s and early 1970s. The development risk to reproduce this technology is minimal, except in testing as described below. Current studies are recommending advances in engine performance, both in specific impulse (higher reactor temperature) and in thrust-to-weight ratio (higher reactor power density). The risks in achieving these are modest inasmuch as performance targets can be adjusted to technology performance.

Reactor and engine tests during the 1960s jetted hot, slightly radioactive hydrogen directly into the atmosphere. Stricter environmental controls since that time prohibit discharge of nuclear engine effluent into the atmosphere. Design and development of full containment test facilities presents a greater development risk than obtaining the needed performance from nuclear reactors and engines. Full- containment facilities will be required to contain all the hydrogen effluent, presumably oxidize it to water, and remove the radioactivity.

- Electric Propulsion Power Management and Thrusters - Power management and thrusters are common to any electric propulsion power source (nuclear, solar, or beamed power). Unique power management development needs for electric propulsion are (1) minimum mass and long life, (2) high power compared to space experience, i.e. megawatts instead of kilowatts, (3) fast arc suppression for protection of thrusters. Minimizing mass of power distribution leads to high distribution voltage and potential problems with plasma losses,
arcing, and EMI. Thus while power management is a mature technology, the unique requirements of electric propulsion introduce a number of development risks beyond those usually experienced in space power systems.

Electric thruster technology has been under development since the beginning of the space program. Small thrusters are now operational, such as the resistance-heat-augmented hydrazine thrusters on certain communications spacecraft. Small arc and ion thrusters are nearing operational use for satellite stationkeeping.

Space transfer demands on electric propulsion performance place a premium on high power in the jet per unit mass of electric propulsion system. This in turn places a premium on thruster efficiency; power in the jet, not electrical power, propels spaceships. Space transfer electric propulsion also requires specific impulse in the range 5000 to 10,000 seconds. Only ion thrusters and magnetoplasmadynamic (MPD) arc thrusters can deliver this performance. Ion thrusters have acceptable efficiency but relatively low power per unit of ion beam emitting area. MPD thruster technology can deliver the needed Isp with high power per thruster, but has not yet reached efficiencies of interest. Circular ion thrusters have been built up to 50 cm diameter, with spherical segment ion beam grids. These can absorb on the order of 50 kWe each. A 10 MWe system would need 200 operating thrusters. The development alternatives all have significant risk: (1) Advance the state of the art of MPD thrusters to achieve high efficiency; (2) Develop propulsion systems with large numbers of thrusters and control systems; or (3) Advance the state of the art of ion thrusters to much larger size per thruster.

Nuclear power for electric propulsion - Space power reactor technology now under development (SP-100) may be adequate; needed advances are modest. Advanced power conversion systems are required to obtain power-to-mass ratios of interest. The SP-100 baseline is thermoelectric, which has no hope of meeting propulsion system performance needs. The most likely candidates are the closed Brayton (gas) cycle and the potassium Rankine (liquid/vapor) cycle. (Potassium provides the best match of liquid/vapor fluid properties to desired cycle temperatures.) Stirling cycle, thermionics, and a hightemperature thermally-driven fuel cell are possibilities. The basic technology for Brayton and Rankine cycles are mature; both are in widespread industrial use. Prototype space power Brayton and Rankine turbines have run successfully for thousands of hours in laboratories. The development risk here is that these are very complex systems; there is no experience base for coupling a space power reactor to a dynamic power conversion cycle;
there is no space power experience base at the power levels needed; and these systems, at power levels of interest for SEI space transfer application, are large enough to require inspace assembly and checkout. Space welding will be required for fluid systems assembly.

Solar power for space transfer propulsion - Solar power systems for space propulsion must attain much higher power-to-mass ratios than heretofore achieved. This implies a combination of advanced solar cells, probably multi-band-gap, and lightweight structural support systems. Required array areas are very large. Low-cost arrays, e.g. \$100/watt, are necessary for affordable system costs, and automated construction of the large area structures, arrays, and power distribution systems appears also necessary. Where the nuclear electric systems are high development risk because of complexity and the lack of experience base at relevant power levels and with the space power conversion technologies, most of the solar power risk appears as technology advancement risk. If the technology advancements can be demonstrated, development risk appears moderate.

Avionics and software - Avionics and software requirements for space transfer systems are generally within the state of the arr. New capability needs are mainly in the area of vehicle and subsystem health monitoring. This is in part an integration problem, but new techniques such as expert and neural systems are likely to play an important role.

An important factor in avionics and software development is that several vehicle elements having similar requirements will be developed, some concurrently. A major reduction in cost and integration risk for avionics can be achieved by advanced development of a "standard" avionics and software suite, from which all vehicle elements would depart.

Further significant cost savings are expected from advancements in software development methods and environments.

Environmental Control and Life Support (ECLS) - The main development risk in ECLS is for the Mars transfer habitat system. Other SEI space transfer systems have short enough operating durations that shuttle and Space Station Freedom ECLS system derivatives will be adequate. The Mars mansfer requirement is for a highly closed physio-chemical system capable of 3 years' safe and dependable operation without resupply from Earth. The development risk arises from the necessity to demonstrate long life operation with high confidence; this may be expensive in cost and development schedule.

Man-Rating Approach

Man-rating includes three elements: (1) Design of systems to manned flight failure tolerance standards, (2) Qualification of subsystems according to normal man-rating requirements, and (3) Flight demonstration of critical performance capabilities and functions prior to placing crews at risk. Several briefing charts follow: the first summarizes a recommended approach and lists the subsystems and elements for which man-rating is needed; subsequent charts present recommended man-rating plans.

Mission and Operations Risk

These risk categories include Earth launch, space assembly and orbital launch, launch windows, mission risk, and mitigation of ionizing radiation and zero-g risks.

Earth launch - The Earth launch risk to in-space transportation is the risk of losing a payload because of a launch failure. Assembly sequences are arranged to minimize the impact of a loss, and schedules include allowances for one make-up launch each mission opportunity.

Assembly and Orbital Launch Operations - Four sub-areas are covered: assembly, test and on-orbit checkout, debris, and inadvertent re-entry.

Assembly operations risk is reduced by verifying interfaces on the ground prior to launch of elements. Assembly operations equipment such as robot arms and manipulators will undergo space testing at the node to qualify critical capabilities and performance prior to initiating assembly operations on an actual vehicle.

Assembly risk varies widely with space transfer technology. Nuclear thermal rocket vehicles appear to pose minimum assembly risk; cryo/aerobraking are intermediate, and nuclear and solar electric systems pose the highest risk.

Test and on-orbit checkout must deal with consequences of test failures and equipment failures. This risk is difficult to quantify with the present state of knowledge. Indications are: (1) large space transfer systems will experience several failures or anomalies per day. Dealing with failures and anomalies must be a routine, not exceprional, part of the operations or the operations will not be able to launch space transfer systems from orbit; (2)
vehicles must have highly capable self-test systems and must be designed for repair, remove and replace by robotics where possible and for ease of repair by people where robotics cannot do the job; (3) test and on-orbit checkout will run concurrently with propellant loading and launch countdowns. These cannot take place on Space Station Freedorn. Since the most difficult part of the assembly, test and checkout job must take place off Space Station Freedom the rest of the job probably should also.

Orbital debris presents risk to on-orbit operations. Probabilities of collision are large for SEI-class space ransfer systems in low Earth orbit for typical durations of a year or more. Shielding is mandatory. The shielding should be designed to be removed before orbital launch and used again on the next assembly project.

Creation of debris must also be dealt with. This means that (1) debris shielding should be designed to minimize creation of additional debris, especially particles of dangerous size, and (2) operations need to be rigorously controlled to prevent an inadvertent loss of tools and equipment that will become a debris hazard.

Inadvertent re-entry is a low but possible risk. Some of the systems, especially electric propulsion systems, can have very low ballistic coefficient and therefore rapid orbital decay rate. Any of the SEI space transfer systems will have moderately low ballistic coefficient when not loaded with propellant. While design details are not far enough along to make a quantitative assessment, parts of these vehicles would probably survive reentry to become ground impact hazards in case of inadvertent reentry. For nuclear systems, it will be necessary to provide special support systems and infrastructure to drive the probability of inadvertent reentry to extremely low levels.

Launch Windows - Launch windows for single-burn high-thrust departures from low Earth orbit are no more than a few days because regression of the parking orbit line of nodes causes relatively rapid misalignment of the orbit plane and departure vector. For lunar missions, windows recur at about 9-day intervals.

For Mars, the recurrence is less frequent, and the interplanetary window only lasts 30 to 60 days. It is important to enable Mars launch from orbit during the entire interplanetary window. Three-impulse Mars departures make this possible; a plane change at apogee of the intermediate parking orbit provides alignment with the departure vector. Further
analysis of the three-burn scheme is needed to assess penalties and identify circumstances where it does not work.

Launch window problems are generally minimal for low-thrust (electric propulsion) systems.

Mission Risk - Comparative mission risk was analyzed by building risk trees and performing semi-quantitative analysis. The next chart presents a comparison of several mission modes; after that are the risk trees for these modes.

Ionizing Radiations and Zero G - The threat from ionizing radiations is presented elsewhere in this document. Presented here are the mitigating strategies for ionizing radiations and zero g.

Nuclear systems operations present little risk to flight crews. Studies by University of Texas at Austin showed that radiation dose to a space station crew from departing nuclear vehicles is very small provided that sensible launch and flight strategies are used. Onboard crews are protected by suitable shielding and by arrangement of the vehicle, i.e. hardware and propellant between reactors and the crew and adequate separation distances. After nuclear engines are shut off, radiation levels drop rapidly so that maneuvers such as departure or return of a Mars excursion vehicle are not a problem. On-orbit operations around a returned nuclear vehicle are deferred until a month or two after shutdown, by which time radioactivity of the engine is greatly reduced.

Reactor disposal has not been completely sudied. Options include solar system escape and parking in stable heliocentric orbits between Earth and Venus.

Crew radiation dose abatement employs "storm shelters" for solar flares, and either added shielding of the entire vehicle or fast transfers (or both) to reduce galactic cosmic ray exposure. Assessments are in progress; tradeoffs of shielding versus fast trips have yet to be completed. Expected impact for lunar missions is negligible and for Mars missions, modest.

SICAI:M/n:rw/llay

[^11]

91 92 93 94	96 97 98 99 00	01 02 03 04	06 07 08 09 10	11 12 13 14 15	16 17 18 19 20	21 22 23 24	5

91 92 93 94 95	96 97 98 99 00	01 02 03 04 05	06 07 08 09 10	11 12 13 14 15	16 17 18 19 20	21 22 23 24	25
Begin Solar	uel form tests rray technology t facility require round demo of \$ Thruster technol Reactor an Thruster Solar a SEP/N	performance de ments and desig EP in-space con logy demonstra d power conver r life capability ray manufactur EP choice ectric furnace ft Begin	monstrated n approach struction tech ed \& selected ion design \& te demonstrated ng technology el tests complet reactor and pow Reactor tes Powerp	chnology level s emonstrated erplant tests s complete; fue ant developmen System qual a Mars cargo or lunar mi using electri	elected 1 \& core design tests complete nd life test prog nission ssion propulsion ned Mars missi g electric propu	pualified am complete on sion	

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLIORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANAI.YSIS FOR EXPIORATION MISSIONS

/STCALEM/jrun/I6Ian9I

Components		LunariMars		
		Minimum	Full Sedence	Sctule/Ind
HILIV	Cargo Carrier \& Cure	X	X	X
	STME	X	X	X
	Recov PA Mod	X	X	X
Propuision	Std Avionics Sulte	X	X	X
	Adv Space Encine	X	X	X
	NTR Tanks		X	
	MOC Tank	X		X
	MOC Core	X		X
	NTR Stage		X	
	NTR Engine		X	
	NEP Stage			X
	NEP Enpine			X
	TMIS Encine	X		X
	TMIS Tank	X		X
	TMIS Core	X		X
Modules	LEO Tanker	X	X	X
	LTV Hab	X	X	X
	LTV	X	X	X
	LEV	X	X	X
	LEV Crew Module	X	X	X
	MTV	X		X
	MTV Crew Module	X	X	X
	MEV	X	X	X
	RMEV			X
	mini-MEY		X	
	MEV Crew Module	X	X	X
	Lunar Aerobrake	X		
	MTVV Aerobrake			
	MEY deroshell	X	X	X
	MCRV	X	X	X

 BEENNE

continued
 PCM Summary -
 Mars NEP Preliminary

NEP Cost . Idup

Page 1

D615-10026-5

[^0]: /STCAEM/Grw/4Jan91

[^1]: рие әоиә! human presence on the Moon with adequate supplies and equipment for extensiveugh the lunar exploration. Lunar oxygen for lunar transportation is introduced stay on Mars for more than a program. Six Mars missions are accomplished, wars many as four late in the program.

[^2]: Fast-transfer conjunction missions may require orbit basing. A surface rendezvous mission may not be able to achieve the fast return transfer direct from Mars' surface with reasonable vehicle mass, beca rather than a lightweight, short-duration because the payload launched from Mars' surface is the entire tearh ret missions. At one year, the only sensible options are crew cab. A vailable propulsion options become very limited for a low-energy profile, or the use of a nuclear gas-core rocket. Below one year, the gas-core rocket quickly becomes the only option.

[^3]: The minimum program life cycle cost spread peaks between five and six billions per year. The deep program. The minimum program involves relatively modest investments in surface systems well below the SEI funding wedge implied by the Augustine Committee recommendaio

[^4]: The dotted line indicates that one could then enter the traditional analysis flow with
 preferred architectures and their associated requirements and mission profiles, to further
 refine systems through systems engineering.

[^5]: STCAEM/grw/31May90

[^6]: The following chart depicts IMLEO ve Transfer Time for a 10,20 and 40 MWe vehicles. A o weight the 10 sec , shicle necessitites a lower Isp for the required thrust levels to escape Earth ratio of the 10 MWe vehicle necessor level of 25 MWe was selected as a good compromise between and travel (OM. Mrs. A nominal power
 moderate IMI I: $)$ and short trip time.

[^7]: Trip Time $=490$ days, alpha $=6.8 \mathrm{~kg} / \mathrm{kW}$

[^8]: - Debris shielding will have to be locally supplied to needed areas; minimum vehicle cross
 section facing debris
 - "Pre"-assembly mission will be needed to set up vehicle and I-beam trusses (interfaces, cables,
 wires, conduits, communication, data, reboost, etc.) prior to main vehicle assembly I-beam platform attaches to one plane of vehicle truss
 - Two robot arms that can move linearly on a base on side beams of i-beam platform
 - Reboost, communication, avionics capabilities will be provided by vehicle being assembled
 - Flies gravity gradient stable - I-beam platform attaches to one plane of vehicle truss
 - Two robot arms that can move linearly on a base on side bearms of i-beam platform
 - Reboost, communication, avionics capabilities will be provided by vehicle being assembled
 - Flies gravity gradient stable
 - Debris shielding will have to be locally supplied to needed areas; minimum vehicle cross I-beam platform attaches to one plane of vehicle truss
 - Two robot arms that can move linearly on a base on side beams of i-beam platform
 - Reboost, communication, avionics capabilities will be provided by vehicle being assembled
 - Flies gravity gradient stable self deploying
 I-beam platform attaches to one plane of vehicle truss
 - Two robot arms that can move linearly on a base on side bearns of i-beam platform
 - Flies gravity gradient stable
 - Debris shielding will have to be locally supplied to needed areas; minimum vehicle cross - I-beam platform attaches to one plane of vehicle truss
 - Two robot arms that can move linearly on a base on side bearms of i-beam platform
 - Reboost, communication, avionics capabilities will be provided by vehicle being assembled
 - Flies gravity gradient stable
 - Debris shielding will have to be locally supplied to needed areas; minimum vehicle cross

[^9]: - NTR or NEP truss truss itself seves as assembly platform; truss can however flex at hinge points to provide reach behind
 the vehicle
 - Minimum of two hinges to allow angular motion in one plane
 - Eliminates need for any additional platform
 - Two robot arms can be affixed to longest sections of hinged truss; robot arm can move along truss
 - Hinges are modular and locking. Upon assembly completion, hinges lock and provide structural rigidity
 - Local debris shielding required; vehicle is oriented such that minimum cross section faces debris
 - Reboost is provided by vehicle's own reboost system with refuel support provided by CTV
 in - Vehicle's transit hab is used during assembly operations by crew
 - All power for communication, avionics, robotics, RCS, etc., will be provided by vehicle's own systems
 - "Pre"-assembly mission will be need to set up flex-truss, interfaces, power, cables, wires, conduits,
 hinge operation, communications data, reboost, etc.

[^10]: - Enabling

[^11]: |ri"'II/m:I/LN:Ivals/

