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ABSTRACT

This finalreport describes a three-year research effort,supported by the NASA In-

novative Research Program, aimed at developing new types of THz low noise receivers,

based on bulk effect("hot electron")nonlinearitiesin the Two-Dimensional Electron Gas

(2DEG) Medium, and the inclusion of such receiversin focal plane arrays. 2DEG hot

electron mixers have bccn demonstrated at 35 and 94 GHz with three orders of magnitude

wider bandwidth than previous hot electron mixers, which use bulk InSb. The 2DEG

mixers employ a new mode of operation, which was invented during this program. Only

moderate cooling isrequired for thismode, to temperatures in the range 20-77 K. Based

on the resultsof thisresearch,itisnow possibleto design a hot electron mixer focal plane

array for the THz range, which isanticipatedto have a DSB receivernoise temperature of

500-1000K.

The original proposal envisaged the development of a hot electron mixer operating

at liquidhelium temperature, and tuned to cyclotron resonance by a magnetic field.A

miRimctcr wave and THz detector was demonstrated by Smith, Cronin ctal. (1987)

following this approach. In our work on this grant, we have found similar results to

the Cronin group (resident at the University of Bath, UK). Neither group has so far

demonstrated hctcrodyne detection in this mode, however. Wc discovered and explored

some new effectsin the magnetic fieldmode, and these are described in the report. In

particular,detection of 94 GHz and 238 GHz, respectively,by a new effect,"Shubnikov de

Haas detection",was found to be considerably stronger in our materials than the cyclotron

resonance detection.

AU experiments utilized dcvlces with an active 2DI_,G region of size of the order

of 10-40 micrometers long, and 20-200 micrometers wide, formed at the hetcrojunction

between AIGaAs and GaAs. All device fabricationwas performed in-house. The materials

for the devices were also grown in-house, utilizingOMCVD (Organo Metallic Chemical

Vapor Deposition). In the course of thisgrant, we developed new techniques for growing

AIGaAs/GaAs with mobilitiesequalling the highest values published by any laboratory.

Wc believethat the fieldof hot electronmixers and detectors willgrow substantiallyin

importance in the next few years,partlyas a resultofthe opportunity given us through this



grant, which represents the major effort in the US so far. We note, however, that parallel

research on hot electron mixers in thin film superconductors in Russia, and recently in

Sweden, have demonstrated mixing up to 1 THz, with the potential for low-noise receivers

for frequencies up to many THz. The three groups recently assessed the relative advantages

of 2DEG and superconducting fdm mixers in a joint paper (Kollberg et al., 1992; see

Appendix If).

INTRODUCTION

Background- Hot Electron Mizer_

Remote sensing from outside the earth's atmosphere, as well as astronomical ob-

servations from space-based platforms, ideally should involve the entire electromagnetic

spectrum. Recognizing this, NASA has supported development of instruments for what is

now termed the "THz Range", which we may define as the frequency span from 0.3 THz

to 30 THz (wavelengths 1 millimeter to 10 micrometers). This spectral region is especially

important for realizing astronomical objectives, such as studying star formation and the

interstellar medium, while being equally essential for remote sensing investigations of the

earth's atmosphere, which can improve our fundamental climatological models. Recent

reviews of the objectives and requirements of NASA's THz Program are given by Frerking

(1991) and Siegel (1991). The effort on this grant addressed the following technology goals

for the THz program:

(i) Development of low-noise receivers for 400 GHz to 1.2 THz, with later extension to 3

THz for astronomy missions, and development of remote sensing receivers to 640 GHz.

Astronomy receivers are required to reach the lowest noise temperatures possible, and

are consequently anticipated to utilize cooling to liquid helium temperatures (4K or

below). Remote sensing needs are for receivers with excellent reliability and long-term

performance, and are more flexible in terms of noise temperature. These receivers may

therefore operate at anywhere from 20 K to 300 K.

(ii) Focal plane arrays, which allow observations to proceed in parallel over an extended

area of the sky, constituting a number of pixels of an image, thereby increasing the

effective detection speed by a factor which is ideally equal to the number of elements in



the array. Sucharraysareenvisagedfor spectrometerreceivers,as well asfor straight

detectors,and could be usefully employedthroughout the entire THz range.

Detection speedsof Tttz receiver systemscan best be increasedby decreasingthe

receiver noise temperature. The best results for double-sideband(DSB) receiver noise

temperaturesversusfrequencyin 1988,wereasshownin Figure 1 (the fulldrawn lines). A

conspicuousfeature of this diagram is the excellentnoise temperatures achieved by InSb

"hot electron", bulk-effect, mixers in the frequency range from 0.4 to 0.8 THz. The main

disadvantage of the InSb hot electron mixer has always been the narrow bandwidth, about

1 MHz. This makes it particularly impractical for THz use, where spectral coverage of

about 1 GHz may be required. Other known hot electron mixers, for example using bulk

GaAs, suffer from the same limitation. Demonstrating a hot electron mixer with wide

bandwidth was thus a major goal in our work.

A hot electron mixer device is really a bolometer, but one which relies on heating

of only the electrons, rather than the entire crystal lattice (the latter represented by the

phonons). The electron system can often be characterized by an "electron temperature"

(Te). Due the low specific heat of the electrons compared with the phonons, an electron

bolometer can be very sensitive, and it also responds relatively fast. Its response time is

determined by the characteristic time for the interaction between the electron and phonon

systems, the "energy relaxation time", re. The energy relaxation time for InSb has been

found to be from 10 -7 s to 10 -6 s. The bandwidth of the mixer is inversely proportional

to the response time, or more precisely

1
B = (1)

27rre

Hence the bandwidth limitation for the InSb mixer. As will be shown in detail below, the

energy relaxation time of the 2DEG medium has been measured in this work to be about

2 × 10 -l° s for electron temperatures below about 20 K, and 1 × 10-1°s at Te = 85 K.

The corresponding bandwidths are 0.8 GHz and 1.7 GHz. The bandwidth thus has been

increased by three orders of magnitude compared with previous hot electron mixers.

Since the proposal for this IRP was written in 1988, improved noise temperatures for

other types of receivers have been obtained, as also indicated in Figure 1 (dotted lines). So



far, SIS mixers have becomeconsiderably lower in noiseup to about 500 GHz, using Nb

tri-layer junctions. Above about 700 GlzIz, one requires a superconducting material with

a larger bandgap than Nb, such as NbN, but these mixers have so far not demonstrated

very low noise. Note that the receiver noise temperatures in the frequency region above

500 GHz have not changed very much, however. This is the band at which our effort was

aimed. Although no noise measurements were taken during the period of this grant, we

estimate that it will be possible to reach DSB receiver noise temperatures of 500 to 1000

K in the frequency range 500 GHz to 1 THz.

BaclGground- Focal Plane Arra!t_

A recent trend in millimeter and submillimeter wave receiver systems has been toward

integrating receiver elements with antennas (Rutledge et al., 1983, Yngvesson, 1983, Yng_

vesson, 1988, Rebeiz, 1992). This is especially advantageous if an entire array of antenna

elements is placed in the focal plane of a lens or a reflector antenna, restdting in a system

which is capable of imaging. In order to sample the image, and recover all information

contained in it, one should ideally place the antenna elements at a spacing given by the

Nyquist sampling criterion (Rutledge et al., 1983). It can be shown that no antenna

array can be constructed with its elements at this spacing, without losing a considerable

fraction of its optimum coupling efficiency (Johansson, 1988). Efficient arrays have element

spacings of 2 to 3 times the Nyquist spacing, and are said to undersample the image by

the same factor.

Several types of antenna elements have been shown to couple especially efficiently to

the radiated field, see (Rebeiz, 1992). For example, an element of the type used in an

array of tapered slot antennas (TSAs) was shown to have a coupling efficiency within 0.5

dB of that of a pyramidal waveguide horn, by a direct substitution measurement (Kim &

Yngvesson, 1990). This measurement was done at 35 GHz. Another type of efficient array

element is the integrated horn array of (Rebeiz et al., 1987), which consists of pyramidal

horns, etched in silicon substrates, integrated with pick-up antennas on a silicon-oxy-nitride

membrane. Both types of arrays can be used at undersampling factors of about 2 to 3,

whereas arrays of corrugated horns have better coupling efficiency, but undersample by

about a factor of 4.8 (Erickson et al., 1987). Because of the demonstrated performance



of the TSA arrays at frequencies up to 94 GHz, we proposed to develop versions of these

which could be integrated with the 2DEG mixer devices, and fabricated at TI-Iz frequencies.

It was clear that a good approach might involve direct fabrication of the antennas from

silicon or GaAs substrates.

Design Criteria [or a Practical Hot Electron Mizer

By examining the features of existing receivers critically, one can define the following

criteria for a new approach to THz receiver design:

(i) It is desirable to use the bulk effect, due to the low parasitics which axe guaranteed

with this approach.

(ii) Monolithic integration of the device on an integrated transmission line (microstrip,

slot line, etc.) is more advantageous than the waveguide coupling employed in InSb

mixers.

(iii) The monolithic integration technology ought to be combined with integration with a

focal plane antenna array element.

(iv) The approach chosen might take advantage of recent advances in semiconductor

growth and device fabrication technology, including what is often termed "bandstruc-

ture engineering".

(v) Most importantly, the bandwidth must of course be drastically increased, without

compromising the conversion loss and the noise temperature. It was clear that this

was possible, at least in principle, since several semiconductor materials were known

to exhibit much shorter energy relaxation times than the InSb device, see for example

Conwell (1967), (Sakaki et al., 1984), and Shah (1986).

Some of the above criteria had been pointed out by (Smith et al., 1987). This paper

described a detector employing cyclotron resonance of the two-dimensional electron gas

(2DEG), trapped at a hetero-junction formed from AIGaAs and GaAs. We decided to

use the same basic medium, but also to especially emphasize points (ii), and (iii), based

on our own experience in these areas_ while Smith et al. (1987) employed a wavegulde

configuration similar to what had been the typical practise for InSb mixers. We were also

eager to explore the many possible "variations on a theme" available to us by growing
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different hetero-structures, for which we had extensiveexperiencebasedon an in-house

OMCVD (Organo-Metallic Chemical Vapor Deposition) system.

Our plan had another element which we believe was important: the application of

a recently developed technology, hetero-structure engineering, to a new area, THz space

technology. A vast base of information was available about hetero-structures from other

device and basic research (very high speed transistors, etc., also note the Quantum Hall

Effect area).

Overview of Work on the Grant

Most of the first year of this effort was spent ordering and setting up major pieces

of equipment, such as the liquid helium dewar and the superconducting magnet. We also

developed our initial techniques for growth of the hetero-structure material, and fabrication

of the devices. During the second year, we started to test our first devices as detectors

at 94 GHz, using the mode of operation proposed by Smith et al.(1987), i.e. with the

device tuned to cyclotron resonance. We were able to duplicate the results of Smith et

al. at this frequency, with a somewhat lower responsivity. No heterodyne detection was

found, however. Instead, we invented a new mode of operation for the device, in which the

electrons are heated to a considerably higher value of T,, from 80 to 100 K. In this mode,

we demonstrated efficient mixing. In order to organize our report we will distinguish three

different modes of operation of our 2DEG devices:

Mode 1:

In this mode, the device is heated by a DC bias current of several mA's, and LO power

of about 1 roW, whereupon T, reaches values of 80-100 K. No magnetic field is utilized,

and the lattice temperature is typically 20 K, although in some experiments it was 4.2 K,

and in others 77 K. Efficient mixing has been obtained.

Mode II:

In Mode II, the device is cooled to the liquid helium temperature range, and a magnetic

field is applied. The bias current is much smaller (about 10 microamp), and T, is roughly

10 K. No mixing has been demonstrated so far in this mode. There are two different

versions of Mode II:

Mode 1In: The C_.lelotron Re_onanee Detector



This is the mode originally proposed by Smith et al.(1987), i.e. the 2DEG is tuned to

cyclotron resonance. The magnetic field is about 0.2 T for a frequency of 94 Gttz.

Mode IIb: The Shubnikov-DeHaas Detector

This mode occurs at a higher magnetic field than Mode IIa, in the range 1-4 T.

Outline of the Report

All experiments utilized the same basic device structure, the main difference being

that the device length and width were changed. The basic device structure and fabrication

is therefore described first in what follows. After this follow our results for the different

Modes of operation, summary of results for the growth of the materials, and results on

foeal plane arrays. Finally, we give our conclusions, and suggestions for further work.

2DEG DEVICE CONFIGURATION AND TEST SETUP

We developed a two-terminal device structure, as shown in Figure 2. The sequence

of layers grown is the same as is used for A1GaAs/GaAs Hetero-junction Field Effect

Transistors (ttFETs). The device is contained within a mesa, which is surrounded by

semi-insulating GaAs for isolation. A standard sequence of metals is deposited in an E-

beam evaporator for forming Au/Ge ohmic contacts. The device pattern is then defined by

a lift-off process. Gold plating may also be used to build the metalization up to sufficient

thickness. A thin ("cap") layer of heavily doped GaAs facilitates the formation of good

ohmic contacts. This layer is etched off in the active area of the devices, after these have

been defined. The device thus consists of large contact pads, with a small gap (length L,

width W), through which the current flows in the 2DEG. The latter is formed on the GaAs

side of the A1GaAs/GaAs hetero-junction. Wafers are finally thinned to 125 micrometers,

and cut into small chips by scribing. The chips are soldered to a microwave circuit, etched

in the metalization of a substrate (either Duroid or silicon). Figure 3 illustrates a typical

microwave circuit used in a 94 GHz mixer, and the "flip-chip" technique for soldering the

chip to the circuit. Further details regarding device fabrication, etc., can be found in

(Yang, 1992).

The impedance of the device will be essentially resistive, with a value of

L 1

Re = • -- (2)
en°It



Here, no is the density of carriers per cm 2, and p the mobility in cm2/Vs. A great advantage

of the two-dimensional medium is the fact that the device impedance can be adjusted

easily to match the characteristic impedance of typical microwave integrated circuits (50-

100 ohms), by choosing L/W. The value of the second factor in (2) is typically less than

100 ohms, thanks to the fact that both density and mobility can be kept large at the same

time. This is possible by the unique configuration of the hetero-junction which defines the

2DEG channel: the doping is situated in the AIGaAs, separated by an undoped spacer

layer of about 100 A thickness. Ionized impurity scattering is thus essentially eliminated,

allowing the mobility to stay high at low temperatures. Efficient transfer of the electrons

to the 2DEG channel, and a high energy barrier which confines them ther% result in a

high electron concentration, no. This is very different from the homogeneous bulk case,

such as the InSb mixer device, in which the doping must be kept extremely low in order

to maintain a high mobility. The total number of electrons in the device can thus be

made much smaller than in the traditional InSb devices - therefore the power level which

is required to drive the device nonlinear is much lower, for a given energy loss rate per

electron. In other words, the local oscillator power requirements are quite modest. The

discussion in this paragraph relates basic properties of the 2DEG medium which had been

described in the proposal - what remained to invent was the actual mechanism to make

the device nonlinear, which we shall describe in the sections on results.

The microwave circuit substrate is inserted into a split metal block, so that the nar-

rowing slot becomes a finline circuit, which can be connected to a standard waveguide. We

chose this method for the initial testing of the mixers, due to its compatibility with the

geometry of a tapered slot antenna. It also a11owed us to perform accurate measurements

of the conversion loss of the mixers. We intend to eventually integrate the device with a

TSA as shown in Figure 4. If the TSA is fabricated from the GaAs substrate, on which the

device structure has been grown and defined by photo-lithography, then the final result

will be a monolithically integrated antenna/mixer with a minimum of parasitic reactance,

ideal for THz frequencies.

In our measurements so far, we have cooled the mixer by employing one of the following

(i) immersion in liquid helium in a dewar, with built-in superconducting magnet (maximum
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field 5 T), (ii) a closed cycle refrigerator, capable of producing temperatures down to 15

K, or (iii) conductive cooling from liquid nitrogen, contained in a simple dewar.

RESULTS

The results of our investigation will be described quite briefly below, in order to illus-

trate the variety of useful information obtained and applications realized. More extensive

papers have been or will be written on the different sub-topics, as referred to in the text

which follows.

Two-Dimensional Electron Gas Mizers

Mode I 2DEG Hot Electron Mixer

As mentioned earlier, a new mode of operation of a hot electron mixer, employing the

2DEG device, was discovered. An invention disclosure was submitted in 1989, describing

the new device and its operation (Yngvesson, Lau and Yang, 1989).

The Mode I mixer exploits the well-known fact that the electron scattering rate in

most III-V semiconductors becomes dominated by longitudinal optical phonon processes

above a temperature of about 50K. As these processes set in, one finds that the mobility

of the electrons decreases strongly as the temperature is increased. It had been shown in

work such as that of Shah(1986) that the mobility would follow about the same functional

dependence when either the electron temperature or the lattice temperature was varied. In

the first case, similar to what occurs in the InSb mixer, the electrons may be heated to T,,

while the lattice stays at a constant temperature TL. As a result, the mobility will decrease

rather rapidly, and the resistance of the device will increase. Measured I-V-curves for three

of our devices are shown in Figure 5. (We also tested devices made on a wafer grown by

MBE, obtained from the Raytheon Company, Courtesy of Dr. Daniel Masse'. The results

for this and our own OMCVD wafers were comparable). If the initial mobility (for low

electric field) is very high, this curve will display a substantial nonlinearity, and allow

efficient electron bolometric mixing. We have demonstrated such mixers at frequencies of

35 and 94 GHz, so far, with a lowest conversion loss of 18 dB (Yang et al, 1993). The

conversion loss can be predicted from the I-V-curve, by extending the theory of (Arams

et al., 1967). We find very good agreement between theory and experiment, as shown

in Figure 6. We have also projected the performance of future mixers, using I-V-curves



which should be realizableby improving our fabricationof the devices. These calculations

predict that conversion lossof about I0 dB is feasible.At the operating point, Te - 85

K_ and the latticetemperature may be from 20K to 77K. Itisinterestingto note that the

performance of our 2DEG mixer depends quite directlyon the extremely high mobility at

low temperatures for which the 2DEG in AIGaAs/GaAs isfamous. Another device_ the

HFET, which was originallynamed the HEMT, or High Electron Mobility Transistor,uses

the same 2DEG medium, but it has bccn shown that the high mobility (at low electric

fields)isnot essentialto itsoperation.

As anticipated,we measured a very wide bandwidth (1.7 GHz) for the 2DEG mixer,

about three orders-of-magnitude wider than for the InSb device,see Figure 7. From (1),

we find a value for r, of 10-I° s. The bandwidth can potentiallybc increased further since

energy relaxation times as short as 10 -aa s have been measured in this temperature range

(see Shah, 1986). Future THz receivers require a somewhat wider bandwidth, and this

could thus be a new development goal.

We have so far not measured the noise temperature of any of the mixers. A calculated

estimate predicts a value of the DSB receiver noise temperature of 500-1000K, which should

be attainable at about 1 THz.

The successfuloperation and theoreticalmodeling of the Mode I mixer was a major

result in the Ph.D. thesis of J.-X. Yang (Yang, 1992). The 35 GHz measurements were

part of the M.Sc. thesis of Wes Grammer (Grammer, 1992).

Use of the cyclotron resonance in the 2DEG for detection of THz radiation

(Mode IIa).

With the addition of a quantizing magnetic field which is perpendicular to the 2DEG

plane_ electrons may also be heated up by the absorption of microwave power. The mecha-

nism of this type of hot electron effect is quite different from the one that we have discussed

in the previous sections, because the energy of the electrons is now quantized into Landau

levels. The Landau quantlzation can be expressed as

n ----O_l,...;p = O, 1,...
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where En is the bottom of the n-th subband energies of the 2DEG and wc the cyclotron

resonance (CR) frequency, given by ,B (where e is the electron charge, m* the electron

effective mass, and B the flux density of the magnetic field).

When the signal frequency w is equal to the cyclotron frequency we, electrons will

absorb the signal power resonantly. Such a resonant absorption process may result in a

change in the electrical resistivity (or conductivity), either an increase or a decrease. One

may therefore utilize this type of heating effect for the signal detection, as shown by Smith

et al. (1987). In general, the CR-type detection is subject to two fundamental conditions:

(1) w_7-,_ > 1 and (2) tvxc > hBT, where Tm is the electron momentum relaxation time.

At low temperatures these conditions imply that the CR effect can be better resolved at

high frequencies and thus this mode will be suitable for high frequency applications. We

measured the CR response of a 2DEG device in a setup similar to the one described above,

at 94 GHz and 238 GHz, respectively (see Figure 8).

It is seen that the CR photoresponses axe well resolved at these two nearby frequencies,

and that the responsivity is essentially independent of frequency. In our preliminary ex-

periments, the measured detector responsivity is much lower than that obtained by Smith

et al., (1987). We believe that this difference is mainly due to the materials used. To

enhance the CR heating effect, the mobility of the device should be high, and the sheet

electron density (n,) should be low (Yang, 1992). Further experiments on samples with

ultra-high mobillties (> 10 * cm2/V-s) and low n, (in the low 1011 cm -2) are currently

being performed at the University of Massachusetts, on a new NSF grant.

The position of the Fermi energy (El) relative to the adjacent Landau levels is an

important factor which affects the detector responsivity. However, the sheet charge density

no, which is proportional to El, is not easy to accurately determine in the material-growth

cycle. An alternative way to accomplish this by introducing a third Schottky-type contact

(gate) near the center of the 2DEG channel was proposed in (Yang, 1992). This gate

should be short and thin ("semi-transparent") to avoid causing loss to the incident signal.

Changing the voltage between the gate and the source will change the depletion depth

in the heavily doped AlGaAs layer, and will, in turn, change the number of electrons

tunneling to the 2DEG channel from the A1GaAs layer. Unlike the usual operational

11



configuration for traditional three terminal devices such as HEMTs, the gate here is only

for providing a DC voltage to the channel and is not involved in any part of the high

frequency circuit.

The CR.-type mixer was also attempted experimentally in this research. The idea was

originally motivated from the successes of the bulk InSb CR mixers (Brown, 1985) and

the strong CR. detection in the AIGaAs/G,As heterostructures measured by Smith et al.,

(1987). When the bias current in our experiments was as small as a few tens of #A, no C1_

mixing was observed. The responsivity of the corresponding CR detection for these devices

was only about 0.5 V/W. Assuming the Mode I hot electron mixer theory to be still valid,

a high conversion loss (__ 85dB) is then expected in this case. In order to decrease the

mixer conversion loss and still maintain the feature of low bias current, the responsivity

must be increased to of the order of 2500 Y/W, for which Lc = 20 dB is predicted at

Ibia, = 50 _A. Note that Smith et al. (1987) actually measured a responsivity of about

250 V/W which is only an order of magnitude lower than this criterion.

As the current was increased to a few mA, however, a clear and sharp peak in mixer

conversion loss was observed at a magnetic field exactly matched to the CR condition.

Figure 9 shows the experimental result for a 94 GHz mixer. The result was just the opposite

to that desired, i.e., the conversion loss suddenly becomes very high at the cyclotron

resonance magnetic field. Based on the experimental results shown in the previous section,

the electron temperature in this case was about 100 K due to the DC heating. According

to the theory for cyclotron resonance, no CR.-related phenomenon should be observable

because of the high thermal energy (ksTe -- 8.6 meV) compared with the Landau level

spacing (0.39 meV). The result shown in Figure 9 is thus unexpected and represents a very

interesting lead for future research.

An alternative to the cyclotron resonance detector: The Shubnikov DeHaas

device _Mode IIb)

When the magnetic field is sui_ciently high so that w << _c, a strong oscillating signal

was observed in the detector experiments. The phenomenon is similar to the DC Shubnikov

de Haas (SdH) oscillation. The DC SdH effect is evidenced by a periodic variation of the
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resistance (Rz=) of a semiconductor sample, as the magnetic field (B)is varied. The period

of oscillation can be determined by plotting R versus lIB (see e.g. Sakald et al., 1984).

The Sdtt effect is a quantum-mechanical effect, which can be explained by the crossing of

the Landau levels (see (3)) with the Fermi level. Unlike the CR-type detector, the Sdtt-

type detector can always detect a signal at any magnetic field as long as the condition

w << wc still holds. To explore the potential applications of this quantum effect, we have

experimentally investigated the SdH-type detection utilizing the AIGaAa/GaAs 2DEG

devices as detectors at millimeter wave (MMW) and near submillimeter wave (SMMW)

frequencies. We expect that this new type of detector may possibly be used for low-noise

detection in the THz frequency region.

Figure 10 shows typical measurement results of SdH detection at 94 GHz and 238 GHz,

respectively, with approximately the same illumination powers. The device and the circuit

used were the same as were used in the CR-type detector experiments. Strong oscillating

responses occurred, preferentially at high magnetic fields. The oscillations show exactly the

same period at these two frequencies, if plotted versus l/B, and their magnitudes are also

basically the same. This indicates that the SdH detection is independent of (or at least

insensitive to) the input signal frequency, indicating a nonresonant absorption process.

As in the DC SdH effect, the well-developed periodicity of the detected voltage which

results from the electron heating must have a direct relationship with the detailed energy

structure of the electron gas, i.e., the Landau levels. The relationship to the DC SdH

effect has been confirmed by comparing the measured Rz_ for the detector device with the

measured Rzz for a standard Hall bar in which the contact effects were minimized. We

found an exact match of the oscillation periods between these two separate experiments,

and therefore concluded that the detected oscillating signal is due to the SdH effect. Yang

(1992) discusses the interpretation of this new effect in considerable detail.

We have measured the responsivity of the SdH-type detector from W-band to 238 Gttz

(Figure 11). Within experimental error, the measured responsivity is basically constant

over the entire region of the test frequencies, and is about 5V/W on the average. We believe

that the frequency-independent responsivity, a feature of free electron detectors, will prevail

at even higher frequencies. The device in the experiments was severely mismatched to the
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microwave circuit due to its very high background magnetoresistance (-,_ 2 kohm). One

possible solution to improving the impedance matching is to fabricate a set of 2DEG strips

in parallel, so that the total resistance of the array can be matched to the microwave

circuit. With the improvement in impedance matching, we may then estimate that the

responsivity for this type of detector may be increased to at least 50-100 V/W.

Monolithic circuit techniques

In the introduction, we mentioned the desirability of employing monolithic circuit

techniques for new THz range devices. We have developed several such new circuits,

initially for frequencies up to 40 GHz, for which accurate measurement techniques are

available, such as automatic network analyzers and mlcro-probing. During this phase we

employ silicon substrates, which are less expensive and easier to work with than GaAs.

The dielectric constant of both substrates is very similar, however, and the results can be

applied to monolithic circuits on GaAs. The circuit dimensions will be scaled down in order

to realize a THz range circuit. Similar techniques are in use for Schottky and SIS mixers,

but a major advantage of the 2DEG mixer is that it can be fabricated directly on a semi-

insulating GaAs substrate, and that no complicated processes, such as the fabrication

of air bridges, etc., are necessary in order to decrease the device capacitance. Several

circuits are described in detail in the M.Sc. thesis of Wes Grammer (Grammer, 1992),

and in a forthcoming paper (Grammer et al., 1993). As an example of a circuit, we show

in Figure 12 a balun from coplanar waveguide to slot-line, and its very wide bandwidth

response. Such baluns are used to make a transition from coplanar waveguide (CPW), to

the slot-line medium, compatible with the tapered slot antennas which we plan to employ

as antenna elements in focal plane arrays. One of several possible mixer designs based on

the transition is displayed in Figure 13. The circuits have also been used to characterize

the 2DEG device, as discussed below. These circuits often have their correspondence in

lower-frequency versions, employing other transmission line media, but the realization in

monolithic form has required some innovative techniques for design and testing.

Equivalent circuit of the 2DEG device
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The 2DEG device responds to electromagnetic radiation as a bulk device by absorbing

the radiation and changing its resistance in response to the power absorbed. The equiva-

lent circuit of the device is therefore ideally a power-dependent resistor, with a value which

is independent of frequency. The process by which power is absorbed is free-carrier absorp-

tion, and the theory of this process predicts that for extremely high frequencies (close to

1 THz), the carrier response is altered, introducing a phase lag of the current with respect

to the applied RF electric field. Such "carrier inertia" phenomena are bound to require

study for all future THz devices (see for example (Kollberg et al., 1991)), while the theory

for lower frequency devices has been able to ignore these effects. The equivalent circuit

of the 2DEG device is predicted to contain an additional inductance in series with the

resistance, as shown in Figure 14 (Grondin et al., 1984). In measurements with a micro-

probe, and utilizing one of the balun circuits described in the previous section, graduate

student Wes Grammer was able to confirm the presence of this inductance in the equiva-

lent circuit of the 2DEG device (Grammer, 1992). He had to develop special techniques

to perform this microprobe measurement on a device cooled to 77 K. We believe that this

is the first measurement of carrier inertia in a modern integrated circuit environment, and

also the first for the 2DEG medium. Further experiments of this kind will help us design

the THz circuits for the 2DEG mixer, and should also benefit the understanding of other

THz semiconductor devices.

Summary of _DEG growth by OMCVD

During the initial stages of the project, our goal was to utilize fully the nonlinear

characteristics of the 2DEG elements for the Model IIa hot electron mixer operation.

However, we did not know whether the low temperature mobility (p) or the sheet carrier

density (n,) should be maximized for the best mixer performance. For HFETs, it was found

that high rte is more important than maximum mobilities. For other device applications of

the 2DEG, increase of both the sheet carrier density and mobility lead to an increase of the

current handling capability and thus the output power, or improvement of the switching

times. Attempts to increase both n0 and /z have been focused on introduction of new

hetero-structure designs and material systems. They include strained and pseudomorphic

GaAs/GaInAs, AlInAs/GaInAs, and InP/GaInAs systems and various doping schemes
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and buffering materials. Here, we focused our attention on improving the conventional

AIGaAs/GaAs systems by optimizing the epitaxlal growth process to reduce undesirable

impurity incorporation in individual layers, and to obtain defect-free and smooth hetero-

interfaces.

It is well known that the mobility of 2DEG decreases drastically when no increases to

> 1 × 1012/cm 2, because of intersubband scattering and lower doping efficiency of highly

Si-doped (> 1.8 × 101a/cm a) AIGaAs. Increase of the conduction band discontinuity (AEc)

by increasing the Al composition in the AIGaAs layers would result in a higher barrier

for the real space transfer of electrons for a specific doping concentration in the doped

layer, and also produce a larger intersubband separation to minimize ionized impurity and

intersubband scatterings. The maximum AEc in the AIGaAs/GaAs system occurs with

45% Al in the AIGaAs. However, the growth of high Al composition (>25%) AlGaAs is

always associated with increased DX centers in MBE grown layers, as well as carbon and

oxygen incorporation in OMVPE grown layers.

During the early phases of this work, we succeeded in the growth of high quality

AIGaAs/GaAs 2DEG structures with combined high sheet charge densities and mobilities

by low pressure organometallic chemical vapor deposition (LP-OMVPE). We believe the

high no# product was a result of the optimized GaAs buffer and AIGaAs with high Al

composition (38_). Undoped GaAs layers grown with sufficient thickness for Hall mea-

surements have net carrier concentrations < 3 × 1014/cm a and 77K mobility as high as

146,000 cm2/V-s. The quality of the thin AIGaAs layers in the device structures, which

were characterized by photoluminescence, was found to be essential to obtain the high n0g

product. The sheet charge densities and mobilities at 77K are 1.0 × 1012/cm 2 and 95,000

cm2/V-s for high no samples. We believe the combined high values of mobility and sheet

carrier density were a result of large conduction band discontinuity (AEc) and low level of

deep impurities in the AlGaAs. The high AEc was obtained by using a relatively high Al

composition (38_) in the AIGaAs layers, as opposed to the usual 20-30_0. With the in-

creased AEc, higher values of no can be obtained with a lower donor concentration (ha) in

the doped AlGaAs layer. We were able to reduce nd to 5-7 × 1017/cm a while maintaining

n0 above 1012/cm 2. The lower na resulted in a reduction of ionized impurity scattering
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and deep impurity levels associatedwith Si doping in AtGaAs systems. Furthermore,

there was no noticeable change in the Hall measurements as the surface doped layers were

being step-etched, indicating that there was minimal conduction in these layers competing

with the 2DEG.

Later in the program, we focused our effort on growing high-mobility 2-DEG structures

which seem to be the most promising for mixer applications. The growth of extremely high

mobility semiconductors has traditionally been for scientific interest rather than for device

applications. Besides the ultimate goal of achieving the highest mobility, other factors have

not been taken seriously into consideration. Most of the high-mobility 2-DEG samples

axe grown by molecular beam epitaxy (MBE) and include some kind of A1GaAs/GaAs

superlattice buffer layers. In a MBE grown structure, the A1GaAs/GaAs buffer has been

shown to smooth out the interface roughness of the substrate, as well as to getter impurities

(Petroff, 1984). Since aluminum is easily absorbed by a graphite baffle and reactor walls

where aluminum oxides can form, it is very effective in removing impurities from the gas

stream (Keuch, 1987). Both MBE and OMVPE researchers have used this technique to

obtain high-mobility 2DEG structures (Pfeiffer, 1989; Frijlink, 1988). In fact, the sample

with the highest mobility ever reported, 11.7 x 10 e cm2/V-s, involved the growth of 220

layers. As a result of the extensive buffering, the samples are extremely light sensitive and

the total epi-layer thicknesses are large. The dark mobilities of these samples are typically

a fraction of their maximum light values.

Although the maximum mobility we achieved (766,000 cm2/V-s with 4.9 × 1011 elec-

trons/ cm 2 at 2.2K after exposure to light) is still much lower than that obtained by MBE,

to our knowledge, it is the highest by the OMVPE growth technique. Since the 2-DEGs

axe grown for device applications, light sensitiveness and overall thickness of the epi-layers

are important considerations for device fabrication and testing. In addition to the require-

ment of high mobility, 2-DEG structures without the A1GaAs-related buffer are needed

to minimize light sensitivity. To attain this goal, we found that deposition of A1GaAs

in the reaction chamber prior to the growth of the 2-DEG structure provides a sufficient

condition for producing a high mobility device. Samples grown with this type of reac-

tor pre-conditioning have maximum light mobilities similar to those with A1GaAs-related
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buffers. More significantly, these devices are much less light sensitive, specifically, the dark

mobillties are typically near 80% of the light values.

Typical 2-DEG structures include a 1.2/_m GaAs buffer,a 360._ undoped AIGaAs

spacer, a 500_i uniformly doped (mid-1017/cm3) A1GaAs, and a 200_t doped GaAs (1 x

101a/cm a) contact layer. The A1 composition in the A1GaAs layers is about 38_0. Pre-

conditioning of the reactor was essentially performing an A1GaAs-related buffer growth

without the substrate in the reactor. The temperature was set at 750°C and the reactor

was at atmospheric pressure. The sources used were exactly the same as for the device

growth run. Two types of pre-runs were experimented with: thick undoped A1GaAs and

thick undoped A1GaAs with a three period 500._/60._ A1GaAs/GaAs multiple quantum

wells (MQW). After the pre-run and a 30 minute nitrogen purge, the substrate was loaded

and the growth of _he 2-DEG structure was performed. Since the reactor does not have

a load-lock set-up, a positive nitrogen flow was maintained to minimize exposure of the

reactor chamber to air.

To compare the effectiveness of the pre-run with the conventional A1GaAs buffer

technique, experiments were performed with the substrates loaded before the pre-run. 2-

DEG devices with either an undoped thick A1GaAs buffer or an A1GaAs/GaAs multiple

quantum well buffer were grown. The parameters used for the 2-DEG structure were

identical to those grown with the pre-runs.

Characterization of the resulting 2-DEG structures was performed by computerized

Hall effect measurement using the van der Pauw method. 77K dark mobility measurements

were made by cooling the sample in the dark to 77K and measuring the sample in a dark

dewar. 77K light mobility measurements were made by initially exposing the sample to

intense white light while the sample is being immersed in liquid nitrogen and then placed in

a dark chamber for the duration of the measurement. In addition, mobility measurements

were performed at liquid helium temperatures for some samples.

A plot of the Hall mobility versus temperature for the best sample is shown in figure

15. Similar to other high-mobility 2-DEGs, the maximum mobility was measured at the

lowest temperature, 2.2K, the lowest obtained in our dewar. Other results are summarized

in Table 1. Identical growth parameters were used in all the experiments listed except for
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SAMPLE PRE-RUN

_t77
cm 2/V -s

TDEG22 AIGaAs/GaAs 143,000

TDEG 23 none 126,000

TDEG24 none 108,000

TDEG31 AIGaAs/GaAs 155,000

TDEG33 AIGaAs/GaAs 171,000

TDEG34 A1GaAs 162,000

TDEG35 AIGaAs 147,000

TDEG39 A1GaAs buffer 143,000

TDEG40 AIGaAs buffer 142,000

TDEG44 SL buffer 166,000

TDEG45 AIGaAs/GaAs 157,000

TDEG48 AIGaAs/GaAs 154,000

TDEG50 AIGaAs/GaAs 153,000

LIGHT

ns 77
/cm 2

4.3x10 ll

4.8x10 I1

5.6x101]

4.9x10 II

4.7x10 ]1

4.6x1011

4.7x10 ]]

2.4x1011

2.7x10 ]1

2.0x10 II

3.8x10 ]l

3.8x10 ll

3.9xi0 ]l

105,000

105,000

65,000

130,000

148,000

131,000

128,000

94,000

96,000

89,000

113,000

119,000

120,000

DARK

ns77
/cm 2

3.2x10 II

3.5x10 ll

3.6x10 lz

3.5x10 I1

3.7x1011

3.2x10 II

3.3x1011

1.4x1011

1.4x10 ]I

8.3x101°

2.1x1011

2.5x10 ]]

2.6x10 ]1

dark/lighl

J-177

.73

.83

.60

.84

.87

.81

.87

.66

.68

.54

.72

.77

.78

Table 1. Summary of 2DEG experiments
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TDEG22 and TDEG23, in which shghtly higher silane doping were used. Different arsine

sources were used during the course of the study. One surprising result is that variation

of the background impurity level of the arsine did not affect the mobility of the 2-DEGs

grown by this process, while the mobility of a single GaAs layer is extremely sensitive to

this variation (Landini, 1992). Similar high mobility 2-DEGs have been obtained with

arsine sources which resulted in GaAs layers with 77K mobility (IITT) ranging from 94,000

to 64,000 cm2/V-s.

Without the pre-run or A1GaAs-related buffer, the maximum light #77 obtained with

optimized parameters ranges from 100,000 to 120,000 cm2/V-s (TDEG23, 24). Samples

grown with pre-runs or with an A1GaAs-related buffer have increased light _77 in the

140,000 - 170,000 cm2/V-s range. We believe that the pre-runs leave a deposit of Al-rich

compound in the reactor walls and the susceptor which effectively passivates the chamber

and in subsequent experiments, helps to getter the impurities from the gas stream, allowing

the growth of high purity GaAs and A1GaAs. The gettering effect of A1GaAs has been

known for quite some time, and thus incorporation of A1GaAs-related buffers has become a

common practice for high mobility 2DEG growth by both MBE and OMVPE (Abrokwah,

1986; Andre, 1984). Results of our series of experiments indicate that pre-conditioning of

the reactor with an A1GaAs-related run essentially yields the same maximum light mobility

as those with an A1GaAs or A1GaAs/GaAs buffer. In fact, the sample with the highest

mobility (TDEG33) was grown with a pre-run and without an A1GaAs buffer.

The most significant advantage of the samples grown with a pre-run is their reduced

sensitivity to light, as evidenced by the dark to light mobility ratios shown in the table.

The dark /_TT of these samples are typically about 80% of the light values, while the

dark mobilities of samples with an A1GaAs or MQW buffer are only 50-60% of their light

counterparts. In addition to greater sensitivity, we also observed carrier trapping effects

in the samples with A1GaAs or MQW buffers. During the 77K Hall measurements by

the van der Pauw technique, the measured voltages overshot after switching to different

contacts and took a few seconds or tens of seconds to stabilize at a lower value. Shining

white light on the sample during measurement sometimes helped to reach a steady Hall or

resistivity voltage faster. This enhanced carrier trapping and persistent photoconductivity
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effects in A1GaAs/GaAs devices are well known (Fischer, 1984; Nathan, 1986) and they

were related to the DX-centers in the A1GaAs. It is therefore not surprising to see the

significant difference between the two kinds of devices since the ones without the A1GaAs

buffers have less than 1000._l of A1GaAs in the structure.

The new high mobility wafers will be utilized for further exploration of Mode IIa and

IIb mixers. The lower density wafers (n, = 4 x 101 a/cm 2) should be ideal for fabricating the

next generation of devices operating in Mode I. Graduate student Farid Agahl completed

a M.S. thesis on the optimization of 2DEG growth by OMVPE (Agahi, 1992).

Integrated Focal Plane Arrays

Our previous work on TSA arrays had typically employed plastic substrates, such as

Duroid or Kapton, with fairly low dielectric constant. TSAs are sensitive to the thickness

and dielectric constant of the medium along the tapered slot, and we have empirically

found that the optimum substrate thickness is given approximately by:

(o.ol -o.o2) ×
hX '

(4)

where er is the dielectric permittivity of the substrate, and )to is the free space wavelength.

This means that a silicon or GaAs substrate, used for a I THz antenna element, should be

about 1-2/_m thick. In order to ease the fabrication of such antennas, we have investigated

methods for etching the silicon out in the entire region between the metal edges of the

tapered slot. This idea was invented in our group, and also independently by Kotthaus &

Vowinkel, (1989). We have extended this into a two-step etch process, in which we first

etch most of the substrate area from the "back" (un-metallzed) side, using a wet etch, and

then perform a reactive ion etch (RIE) from the front side, with the TSA metal pattern

as the etch mask. These features are illustrated in Figure 15. We have mainly fabricated

single elements while developing these processes, but have recently demonstrated a linear

seven- element array at 94 GHz, for convenience fed from a waveguide block. A photograph

of this array is included as Figure 16. The backside etching in this case left a layer of silicon

of about 25/_m thickness. The radiation patterns of an element in this array show very
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low sidelobes,and low cross-polarized radiation, and could be used to couple an integrated

device efficiently to a lens or reflector.

In order to scale the silicon (or OaAs) TSA to 1 THz, one would need to produce a

substrate thickness of 2-3 #m. This is difficult with our present methods, but could be

done in GaAs by growing an etch-stop layer, such as AIAs or AlGaAs, in the OMCVD

system. Another alternative is to use a silicon-oxynitride membrane, and etch the TSA

in a metalized layer deposited on this membrane. The membrane has originally been

grown on a silicon substrate, and is about 1.3/_m thick. EkstrSm et al., (1992) recently

demonstrated a TSA fabricated in this manner and tested it with excellent results at 800

GHz. Similar membranes can also be deposited with RIE on GaAs, and this technology

appears compatible with fabrication of 2DEG devices. The groundwork for designing

future focal plane arrays, integrated with 2DEG mixers, thus has been laid.

CONCLUSION

We believe that the work on this IRP has shown the feasibility of a new approach to

low-noise THz receivers, based on "bulk" hot electron effects in the 2DEG medium. The

specific mode of operation of this mixer as originally proposed has not been possible to

implement so far, but a new mode was invented, and experimentally demonstrated. We

have increased the bandwidth by three orders-of-magnitude compared with previous hot

electron mixers. A number of other elements required for the design of a THz mixer have

also been demonstrated, such as monolithic integrated circuit techniques, charge-carrier

inertia, improved growth by OMCVD, and an array of TSA elements, etched from a silicon

substrate, which can form the basis of future THz focal plane arrays with integrated 2DEG

mixers. We believe that the general area of THz applications of bulk effects in the 2DEG

medium is a very promising one, as shown by the fact that a new mode of operation was

found, when the proposed one turned out to be difficult to implement. Several new effects,

such as the Shubnikov-deHaas effect detector, and the detection of an extremely strong

and narrow cyclotron resonance llne in the Mode I mixer, were also discovered. As a result

of the IRP, we are now at a point where a THz 2DEG mixer could be developed, and
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integrated with an antenna array. Furthermore, several other effects which we discovered

in the 2DEG medium appear worthy of continued investigation.
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RESEARCH CORPORATION TECHNOLOGIES

Invention Disclosure Form

I. Description

Please provide a title for your invention and a brief description. Inventions include new processes, products, apparatus, compositions of

matter, living organisms--OR improvements to (or new uses for) things that already exist. Use additional sheets and attach descriptive

materials to expand answers to questions. (Sketches, drawings, photos, reports and manuscripts will be helpful.)
Nonlinear two-dimensional electron gas element for cryogenic mixer and

A Invention_tle harmonic _enerator applications at millimeter waves and submil]imeter waves

B. Description See attachment

C. What are the immediate and/or future applications of the invention?

Cryogenic mixers for millimeter waves with high burn-out power. Harmonic generators with

high power handlinR capability. Future versions may be feasible for submilli_mcL¢_!_¢_ .....

D. Why is the invention better--more advantageous-than present technology? What are its novel and unusual features? What problems
does it solve?

It can be fabricated with larger area than present devices, and still wolfk _i_ to hi_ih

frequencies due to much lower parasitic reactances. The high power hand]in£ ,_apability

follows from the large area ....

E, Is work on the invention continuing? Are there limitations to be overcome or other tasks to be done prior to pract=cal apphcation? Are there

any test data?

Yes. Test data will be available in the next few months

F. Have products, apparatus or compositions, etc. actually been made and tested?

Made. but not tested

II. Publications, Public Use and Sale

Note: valid patent protection depends on accurate answers to the following items.

A. Has invention been disclosed in an abstract, paper, talk, news story or a thesis?

Type of disclosure
(Please enclose a copy)

Disclosure Date
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II. (Publications,PublicUseandSale--Continued)

B. Isapublicationorotherdisclosureplannedinthe next six months?

Type of disclosure Conferenc_e paj_er wi]l be written W_!]en test data

(Enclose drafts, abstracts, preprints)

C. Has there been any public use or sale of products embodying the invention?

Describe, giving dates No.

are avai] . Dale

D. Arey_uaware_fre_ateddeve__pmentsby_thers?_f``yes'''p_easegivecitati_ns.C_pies_fanyre_evantpaten_s_rpub_icati_ns would

be appreciated. A related device has been described by Smith et al. (paper enclosed). Their devic

achieves its nonlinear characteristic only at much lower temperatures (4 Kelvin) and due to a

different physical proees_

III. Sponsorship

If the research that led to the invention was sponsored, please fill in the details and attach a copy of the contract or agreement if possible.

A. Government agency NASA contract/grant no. NAGW-1659/5-28908

B. Name of industry, university, foundation or other sponsor:

C. Has the invention been disclosed to industry representatives? If "yes," please provide details, including the names of companies and

their representatives.

No.

IV. For Our Records

B. Contact for more data K. Sigfrid Yngvesson Tel. ( 4]3 )5&5-077]

C. Mailing address for inventor(s)___D__ep_art merit of Electrical & Computer Engineering

University of Massachusetts, Amherst, MA 01003

D. Name and title of institutional representative (please sign where indicated)

_ Signature Date

Department ........ Tel. k )

Mailing address

RESEARCH CORPORATION TECHNOLOGIES

6840 East Broadway Boulevard

Tucson, Arizona 85710-2815

Telephone 602/296-6400
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a large dynamic range is required several long suips can
be connected in parallel

Recently, research in the Electrical lingineering Institute

in St Petersburg has shown that the microwave field m

thin fihn tfTS induces a specific nonlinear state in the

superconductor characterized by zero dc resistance but
with considerable losses related to the microwave current

(Refs 18,19) They also showed (m cooperation with H

Chaloupta in Wuppertal, Germany) that this so called

"potential-less" resistive state can be used efficiently for

low noise microwave mixers Of great importance for

future research is the phenomenological contributions to
the understanding of the non linear behavior of the HTS
films.

A Mode2 t)pe 21)EG mixer has not been demonstrated as

yet and ma_ possibly offer considerably Iov, er noise

temperatures than the Model mixer. Notice also that
other materials may be available for future research on

hot-electron mixers.

6. CO_CLUS_N

The hot electron mixer seems to be a promising

alternative in the race for achieving low noise

temperatures in the submillimeter wave frequency range,

in particular for frequencies above 500 GHz. However, a

lot of work still remains to be done for the final proof of

their efficiency in low noise receivers.

5. HOT-ELECTRON MIXER DESIGN STUDIES

An important basic prerequisite is the recent achieve-

merits to realize efficient planar antenna structures for

frequencies to above 1 Tltz. In Fig. 8 is shown a

suggested outline for a THz electron bolometric mixer.

using either a 2DEG or a supe,-conducting hot electron

device. In Fig. 9 we display measured radiation patterns

of this type of antenna at 800 GHz, employing a bismuth

bolometer (a standard type of bolometer, not an electron

bolometer). The results indicate that the antenna structure

'.,,'ill be useful to at least twice that frequency (Ref. 20).

A= 01 B = 106 C-0.1 [)=14 E =061

F=056 G-0.5- I H=014 1=03.4 J=042

Fig. 8 Slot line antenna structure suggested for an 800
Gttz hot elecmm mixer The dimensions are in mm
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Fig. 9 Measured antenna pattern of an 800 GHz mono-

lithic planar slotline antenna (Ref. 20).

For the 2DEG mixer working in Model a noise

temperature of about 500-1000K DSB is predicted. A

superconducting mixer can hopefully do considerably
better than this number.
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FIGURE CAPTIONS

Figure 1. DSB receiver noise temperatures for different receivers, as a function of

frequency. _ in 1988; ...... in 1992.

Structure of the 2DEG device.

Microwave circuit used in the 94 GHz 2DEG mixer. (Top cover not

shown.)

Integrated TSA and 2DEG mixer.

Measured I-V-curves for three 2DEG devices.

(a) MBE Device, L : 6_um, W : 100#m, TL : 4.2K;

(b) MBE Device, L = 5#m, W = 50_m, TL = 19K;

(c) MOCVD Device, L -- 43_m, W = 20_m, TL = 18K.

Measured and calculated conversion loss of the 94 GHz 2DEG mixer, as

a function of local oscillator power.

Normalized IF response for hot electron mixers.

Measured cyclotron resonance detector responsivity at 94 GHz and 238

GHz, respectively.

Conversion loss versus magnetic field under large bias current (4 mA)

conditions.

Detected voltage for the SdH detector, versus magnetic field. Incident

frequencies were 94 GHz and 238 GHz.

Frequency-dependence of the responsivity of the SdH detector.

(a) A CPW to slotline balun, fabricated on a silicon substrate. (b) The

frequency response of two back-to-back baluns of the type shown in (a).

The sharp dip near 17 GHz is an artifact of the measurement setup, not

due to the balun.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.
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Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

A monolithically compatible mixer circuit, for fabrication on silicon or

GaAs substrates.

Equivalent circuit of the 2DEG device at high frequencies.

Hall mobility of the highest mobility sample (TDEG 33) as a function of

temperature.

A tapered slot antenna, etched from a silicon substrate.

Photograph of a linear TSA array for 94 GHz, etched from a silicon sub-

strate.
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Ohmic contacts

Undoped GaAs Buffer

S.I. GaAs Substrate

Figure 2. Structure of the 2DEG device.
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IF

Figure 3. Microwave circuit used in the 94 GHz 2DEG mixer. (Top cover not

shown.)
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Figure 4. Integrated TSA and 2DEG mixer.
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(b)

(a) A CPW to slotlinebalun, fabricated on a siliconsubstrate. (b) The

fxcqucncy response of two back-to-back baluns of the type shown in (a).

The sharp dip near 17 GHz isan artifactof the measurement setup, not

due to the balun.
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A monolithically compatible mixer circuit, for fabrication on silicon or

GaA8 substrates.
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Figure 17. Photograph of a linear TSA array for 94 GHz, etched from a silicon sub-

strate.
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