52-51

HORIZON AEROSPACE

• 18333 EGRET BAY BOULEVARD, SUITE 300 • HOUSTON, TEXAS, USA 77058 • (713) 333-5944 • TELEFAX (713) 333-3743 N93-2307741

SPACE BIOLOGY INITIATIVE PROGRAM DEFINITION REVIEW

TRADE STUDY 4

DESIGN MODULARITY AND COMMONALITY

FINAL REPORT Prepared by:

HORIZON AEROSPACE

L. Neal Jackson, President John Crenshaw, Sr. Engineer

and

EAGLE ENGINEERING, INC.

W.L. Davidson F.J. Herbert J.W. Bilodeau J.M. Stoval

EAGLE TECHNICAL SERVICES

T. Sutton

Prepared for:

GE GOVERNMENT SERVICES Houston, Texas Contract No. G966016-J45

June 1, 1989

Table of Contents

-

~

-

Emmord	
Table of Contents	
List of Figures v	
List of Tables	
LIST OF THE CES THE THE VIE	
List of Abbreviations and Acronyms	
Glossary and Definitions	•
1.0 Introduction 1 1.1 Background 1 1.2 Task Statement 1 1.3 Application of Trade Study Results 1 1.4 Scope 1	L L 2
 1.5 Methodology 1.5.1 Data And Documentation Survey 1.5.2 Database Development 1.5.3 Costing Techniques Summary 1.5.4 Survey Data Integration 1.5.5 Cost Analysis 1.6 Definitions 1.6.1 Modularity 1.6.2 Commonality 	2 2 2 2 3 3 3 3 3
 2.0 Executive Summary 2.1 Assumptions And Groundrules 2.2 SBI Functional Element Candidates for Modularization/Commonality 2.3 Modularity/Commonality Cost Impacts 2.4 Future Work 2.5 Conclusion Summary 	6 6 7 7 7
3.0 Trade Study Database	16 16 16 16
 4.0 Documentation Survey 4.1 Documentation Sources 4.1.1 Common SBI Trade Study Bibliography 4.1.2 Trade Study Bibliography for Modularity & Commonality 4.2 Documentation Data 	17 17 17 17 17

5.0 Modularity/Commonality Trade Study 24 5.1 Guidelines for Modularity/Commonality Functional Elements 24 5.2 SBI Hardware Sample Selection 24 5.2.1 Modularity Candidate Sample Set 24 5.2.2 Commonality Candidate Sample Set 25 5.3 Relative SBI Modularization and Commonality Cost Impact Analysis 26	1 1 5 5 5
5.3.1 Modularization Cost Impact Analysis 26 5.3.2 Commonality Cost Impact Analysis 26 5.3.2.1 Empirical Cost Relationships 26 5.3.2.2 Lot Certification 27	5 5 5 7
5.3.2.3 Design Cost Reduction 27 6.0 Conclusions 40	7
6.1 Discussion 40 6.2 Implementation Guidelines 40 6.3 Other Considerations 40	0
Appendix A - Space Biology Hardware Baseline A-	1
Appendix B - Complete SBI Trade Study Bibliography B-	1
Appendix C - Cost Assessment Techniques Summary C-	1
Appendix D - Database Definition D-	1
Appendix E - Detailed Hardware Descriptions E-	1

List of Figures

Figure 1.5	Space Biology	Initiative Defi	nition Review	Trade Study	Logic Flow		5
------------	---------------	-----------------	---------------	-------------	------------	--	---

v

List of Tables

	4
Table 1.4 SBI Hardware Categories and Functions and Groundryles	9
Table 2.1-1 Common SBI Trade Study Assumptions and Groundines	10
Table 2.1-2 Modularity and Commonality Trade Study Assumptions and Groundrules	10
Table 2.2-1 List of SBI Hardware Vital to Program Cost Impact Analysis	11
Table 2.2.2.1 End of Out Assessment Review for Sample Selection	12
Table 2.2-2 Modularity Automit Condidate Sample Set	13
Table 2.2-3 Modularity Candidate Sample Set	14
Table 2.2-4 SBI Hardware Items for Commonality	15
Table 2.3 Commonality List of Functions/Assemblies	10
Table 4.1-2 Bibliography for Modularity and Commonality	18
Table 5.2.1 Detabase Listing of SBI Hardware Vital to Program Cost Impact Analysis	28
Table 5.2-1 Database Listing of Obring the Sample Selection Assessment	29
Table 5.2-2 Database Listing for Modularity Sample Selection Assessment	30
Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assessment	20
Table 5.2.1 Database Listing of Modularity Candidate Sample Set	38
Table 5.3.2 Commonality List of Functions/Assemblies	39

List of Abbreviations and Acronyms

.

-

~

AI	Artificial Intelligence
ARC	Ames Research Center
BmRP	Biomedical Research Project (Human/Crew Members)
BRP	Biological Research Project (Non Human/Rodents, primates or plants)
BSHF	Biological Specimen Holding Facility
CAD	Computer Aided Design
CDR	Critical Design Review
CELSS	Closed Ecological Life Support System
CHeC	Crew Health Care
COTS	Commercial Off-The-Shelf
CR	Change Request
DDT&E	Design, Development, Test and Evaluation
DMS	Data Management System
ECF	Exercise Countermeasure Facility
ECLSS	Environmental Control and Life Support System
EDCO	Extended Duration Crew Operations
EHS	Environmental Health System
EPDS	Electrical Power Distribution System
FSU	Functional Support Unit
GGS	Gas Grain Simulator
HMF	Health Maintenance Facility
HPLC	High Performance Liquid Chromatograph
HOUL	Hardware Quantity and Usage List
HRF	Human Research Facility
JSC	Johnson Space Center
LAN	Local Area Network
LSE	Laboratory Support Equipment
LSLE	Life Sciences Laboratory Equipment
LSRF	Life Science Research Facility
MDE	Mission Dependent Equipment
MDU	Medical Development Unit
MLI	Multi-Layer Insulation
MRDB	Mission Requirements Data Base
MSK	Major Subcontractor
NASA	National Aeronautics and Space Administration
NSTS	NASA Space Transportation System
OTS	Off-The-Shelf
PI	Principal Investigator
PMC	Permanent Manned Capability
POCC	Payload Operations Control Center
RMOAD	Reference Mission Operational Analysis Document
SAIS	Science & Applications Information System
SBHB	Space Biology Hardware Baseline
SBI	Space Biology Initiative
SSF	Space Station Freedom

ence
ogram
Systems
tem
Satellite System

Glossary and Definitions

Assembly

An accumulation of subassemblies and/or components that perform specific functions within a system. Assemblies can consist of subassemblies, components, or both.

Certification

The process of assuring that experiment hardware can operate under adverse Space Station Freedom environmental conditions. Certification can be performed by analysis and/or test. The complete SSFP definition follows. Tests and analysis that demonstrate and formally document that all applicable standards and procedures were adhered to in the production of the product to be certified. Certification also includes demonstration of product acceptability for its operational use. Certification usually takes place in an environment similar to actual operating conditions.

Certification Test Plan

The organized approach to the certification test program which defines the testing required to demonstrate the capability of a flight item to meet established design and performance criteria. This plan is reviewed and approved by cognizant reliability engineering personnel. A quality engineering review is required and comments are furnished to Reliability.

Component

An assembly of parts, devices, and structures usually self-contained, which perform a distinctive function in the operation of the overall equipment.

Experiment

An investigation conducted on the Space Station Freedom using experiment unique equipment, common operational equipment of facility.

Experiment Developer

Government agency, company, university, or individual responsible for the development of an experiment/payload.

Experiment unique hardware

Hardware that is developed and utilized to support the unique requirements of an experiment/payload.

Facility

Hardware/software on Space Station Freedom used to conduct multiple experiments by various investigators.

Flight Increment

The interval of time between shuttle visits to the Space Station Freedom. Station operations are planned in units of flight increments.

Flight increment planning

The last step in the planning process. Includes development of detailed resource schedules, activity templates, procedures and operations supporting data in advance of the final processing, launch and integration of payloads and transfer of crew.

Ground operations

Includes all components of the Program which provide the planning, engineering, and operational management for the conduct of integrated logistics support, up to and including the interfaces with users. Logistics, sustaining engineering, pre/post-flight processing, and transportation services operations are included here.

Increment

The period of time between two nominal NSTS visits.

Interface simulator

Simulator developed to support a particular Space Station Freedom or NSTS system/subsystem interface to be used for interface verification and testing in the S&TC and/or SSPF.

Integrated logistics support

Includes an information system for user coordination, planning, reviews, and analysis. Provides fluid management, maintenance planning, supply support, equipment, training, facilities, technical data, packaging, handling, storage and transportation. Supports the ground and flight user requirements. The user is responsible for defining specific logistics requirements. This may include, but not be limited to resupply return in term of frequency, weight, volume, maintenance, servicing, storage, transportation, packaging, handling, crew requirements, and late and early access for launch site, on-orbit, and postmission activities.

Integrated rack

A completely assembled rack which includes the individual rack unique subsystem components. Verification at this level ensures as installed component integrity, intrarack mechanical and electrical hookup interface compatibility and mechanisms operability (drawer slides, rack latches, etc.).

Integration

All the necessary functions and activities required to combine, verify, and certify all elements of a payload to ensure that it can be launched, implemented, operated, and returned to earth successfully.

Orbit replaceable unit (ORU)

The lowest replaceable unit of the design that is fault detectable by automatic means, is accessible and removable (preferably without special tools and test equipment or highly skilled/trained personnel), and can have failures fault-isolated and repairs verified. The ORU is sized to permit movement through the Space Station Freedom Ports.

Payload integration activities

Space Station Freedom payload integration activities will include the following:

Pre-integration activities shall include receiving inspection, kitting, GSE preps and installation, servicing preps and servicing, post deliver verification, assembly and staging (off-line labs), rack and APAE assembly and staging, alignment and post assembly verification.

Experiment integration activities shall include experiment package installation into racks, deck carriers, platforms, etc., and payload to Space station interface verification testing. When the Freedom element is available on the ground, Space Station Freedom integration activities (final interface testing) shall include rack or attached payload installation into Freedom element (e.g., pressurized element, truss structure, platform) and shall include payload-to-element, interface verification, followed by module, truss, or platform off-loading of experiments, as required, for launch mass for follow-on increments, Space Station Freedom integration activities shall include rack or attached payload installation into the logistics element and verification of the payload-to-logistics element interface.

Integration activities (final interface testing) shall include: rack or attached payload installation into Space Station Freedom element (e.g., lab module, truss structure, platform) on the ground, when available, and shall include payload to element interface verification, configure and test for station to station interface verification, followed by module, truss or platform off-loading of experiments, as required, for launch mass.

Launch package configuration activities shall include configuring for launch and testing station to NSTS interfaces, (if required), stowage and closeout, hazardous servicing, (if required), and transport to the NSTS Orbiter.

NSTS Orbiter integrated operations activities shall include insertion of the launch package into the orbiter, interface verification (if required), pad operations, servicing, closeout, launch operations, and flight to Space Station Freedom.

On-orbit integration activities shall include payload installation and interface verification with Space Station Freedom.

Hardware removal that includes rack-from-module and experiment-from-rack removal activities.

Payload life cycle

The time which encompasses all payload activities from definition, to development through operation and disbursement.

Permanent manned capability (PMC)

The period of time where a minimum of capabilities are provided, including required margins, at the Space Station Freedom to allow crews of up to eight on various tour durations to comfortably and safely work in pressurized volumes indefinitely. Also includes provisions for crew escape and EVA.

Physical integration

The process of hands-on assembly of the experiment complement; that is, building the integrated payload and installing it into a standard rack, and testing and checkout of the staged payload racks.

Principal Investigator

The individual scientist/engineer responsible for the definition, development and operation of an experiment/payload.

Rack staging

The process of preparing a rack for experiment/payload hardware physical integration: encompasses all pre-integration activities.

Space Station Freedom

The name for the first Unites States permanently manned space station. It should always be interpreted as global in nature, encompassing all of the component parts of the Program, manned and unmanned, both in space and on the ground.

Subassembly

Two or more components joined together as a unit package which is capable of disassembly and component replacement.

Subsystem

A group of hardware assemblies and/or software components combined to perform a single function and normally comprised of two or more components, including the supporting structure to which they are mounted and any interconnecting cables or tubing. A subsystem is composed of functionally related components that perform one or more prescribed functions.

Verification

The process of confirming the physical integration and interfaces of an experiment/payload with systems/subsystems and structures of the Space Station Freedom. The complete SSFP definition follows. A process that determines that products conform to the design specification and are free from manufacturing and workmanship defects. Design consideration includes performance, safety, reaction to design limits, fault tolerance, and error recovery. Verification includes analysis, testing, inspection, demonstration, or a combination thereof.

1.0 Introduction

1.1 Background

The JSC Life Sciences Project Division has been directly supporting NASA Headquarters, Life Sciences Division, in the preparation of data from JSC and ARC to assist in defining the Space Biology Initiative (SBI). GE Government Services and Horizon Aerospace have provided contract support for the development and integration of review data, reports, presentations, and detailed supporting data. SBI Definition (Non-Advocate) Review at NASA Headquarters, Code B, has been scheduled for the June-July 1989 time period. In a previous NASA Headquarters review, NASA determined that additional supporting data would be beneficial in clarifying the cost factors and impact in the SBI of modularizing appropriate SBI hardware items. In order to meet the demands of program implementation planning with the definition review in late spring of 1989, the definition (Non-Advocate) Review.

1.2 Task Statement

The objective of this study is to define the relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, this study will define the relative cost impacts of implementing commonality of hardware for all Space Biology hardware. Cost analysis and supporting recommendations for levels of modularity and commonality will be presented. The study will provide a mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis.

1.3 Application of Trade Study Results

The SBI cost definition is a critical element of the JSC submission to the SBI Definition (Non-Advocate) Review and the results of this trade study are intended to benefit the development of the SBI costs. It is anticipated that the GE PRICE cost estimating model will be used to assist in the formulation of the SBI cost definition. The trade study results are planned to be produced in the form of factors, guidelines, rules of thumb, and technical discussions which provide insight on the effect of modularity/commonality on the relative cost of the SBI hardware. The SBI cost estimators are required to define input parameters to the PRICE model which control the cost estimating algorithms. These trade study results can be used as a handbook of cost effects by the SBI cost estimators in developing and defining the required PRICE input parameters.

1.4 Scope

The space biology hardware to be investigated has been defined and baselined in Appendix A Space Biology Hardware Baseline (SBHB). By study contract direction, no other space biology hardware has been considered. The complexity and importance of the subject could warrant an extensive study if unlimited time and resources were available. However, due to the practical needs of the real program schedule and budget, the depth of study has been adjusted to satisfy

the available resources and time. In particular, cost analyses have emphasized the determination of influential factors and parametric relationships rather than developing detailed, numerical cost figures. While program objectives and mission definitions may be stable in the early program phases, hardware item specifications are often elusive and change many times before final design. For this reason, the trade study analyses have focused on the category and function of each hardware item (Table 1.4) rather than the particular, current definition of the item. In the process of acquiring trade study data, certain information could be considered a snapshot of the data at the time it was recorded for this study. The data have been analyzed as defined at the time of recording; no attempt has been made to maintain the currency of acquired trade study data.

1.5 Methodology

The methodology used in performing the Modularization/Commonality Trade Study, shown in Figure 1.5, consists of the initial, important phase of search and acquisition of related data; followed by a period of data integration and analysis; and, finally, the payoff phase where candidate items and implementation factors, including design modularity and commonality impacts to parametric cost analysis are identified.

1.5.1 Data And Documentation Survey

A literature review and database search were conducted immediately upon study initiation. Information pertaining to the modularization of commercial and space flight research hardware was considered for applicability to the study task.

1.5.2 Database Development

An analysis of the trade study data needs was performed to provide an understanding of the logical database design requirements. Based on the knowledge gained in the database analysis, the trade study data structures were developed and implemented on a computer system. The pertinent information collected from the data and documentation survey was input to the trade study database.

1.5.3 Costing Techniques Summary

Costing techniques used in previous projects were surveyed and historical cost factors were collected for review of applicability to this trade study. The applicable data were identified for use in cost analysis to demonstrate relative cost impacts of modularization/commonality for space biology technology hardware.

1.5.4 Survey Data Integration

The Space Biology Hardware Baseline was reviewed and the facilities, assemblies, subassemblies, components, and functions of this hardware that have the potential for design modularity and commonality were identified as candidates for design modularity and commonality. The technical data collected from the survey were integrated with the Space

Biology Hardware Baseline database and a matrix of candidate functions, specifications, cost Analysis, design modularity and commonality applications will be developed.

The initial survey data analysis was performed to select a sample of the SBHB items which could be potential candidates for modularization. With limited study time and a SBHB of 93 referenced hardware items, Appendix A, a method was needed to separate the items which could have the most cost impact and were worthy of study resource application. The "initial few and trivial many" method (SBI #96) was used. This method applies the principal that in any population which contributes to a common effort (cost). A relative few of the contributors account for the bulk of the effort (cost). All SBHB items were listed in descending order of probable acquisition cost. Weight was used as an indication of probable acquisition cost based on historical experience in previous space programs. It was found that 34 percent of the items (32 items) accounted for 93 percent of the mass or probable cost (Table 5.3). Therefore, consideration was immediately limited to these 32 items. The modularization candidate sample set was chosen from Table 5.4-1 based on amenability to modularization and commonality. This list of 32 items does not mean the remaining 61 (93-32) items are of lesser importance in obtaining space biology information.

The sample set was then subjected to a more detailed analysis to determine important factors relative to commonality and to select the most representative functions/assemblies for final analysis. By this process, a reasonable effort could be devoted to analyze the impact more thoroughly.

1.5.5 Cost Analysis

Analyses were performed to demonstrate the relative cost impact for modularity and commonality within the candidate hardware items. Additional study was dedicated to the final selected item. Based on this cost assessment and historical data, the relative relationship of modularization/commonality to space biology hardware cost was assessed.

1.6 Definitions

1.6.1 Modularity

Modularization is the packaging of the instrument equipment in units which correspond to system functional elements in such a way that the units can be easily removed, replaced, and reconfigured.

1.6.2 Commonality

Commonality refers to the commonness of an individual (item) "COMMON" from latin "communis" is defined as "belonging to or shared by two or more individuals or by all members of a group. It can broadly be defined as the use of identical, interchangeable, functionally compatible or similar items to satisfy different sets of functionally similar requirements.

Table 1.4 SBI Hardware Categories and Functions

-

,

-

SBI HARDWARE CATEGORIES	FUNCTIONS (Applicable to each Category)
Cardiovascular	Analysis
Cytology	Calibration
Environmental Monitoring	CELSS
Exobiology	Collection
Hematology	Health Maintenance
Histology	Measurement
Logistics	Preparation
Miscellaneous	Stowage
Neurophysiology	
Plant Sciences	
Pulmonary	
Surgical Science	
Urology	

Figure 1.5 Space Biology Initiative Definition Review Trade Study Logic Flow

2.0 Executive Summary

2.1 Assumptions And Groundrules

In the process of performing the subject trade study, certain data or study definition was not available or specified. Assumptions and groundrules have been established to document, for the purposes of this trade study, the definition of important information which is not definite fact or is not available in the study time period. Major assumptions and groundrules which affect the four EEI trade studies are provided in a list common to all of the studies (Table 2.1-1). The assumptions which primarily affect the design modularity and commonality study are documented in a separate list (Table 2.1-2).

2.2 SBI Functional Element Candidates for Modularization/Commonality

The baseline candidate list of 93 SBI hardware items is shown in Appendix A with an "S" by each item. Space flight history has established that project costs are mostly significantly affected by space equipment weight. To determine which SBI hardware warranted the most study resources, the SBI hardware list was prioritized by mass (Table 2.2-1 repeated from Table 5.2-1) showing the top 32 items which represent 93% by mass, 87% by volume and 87% by power (watts) of the total 93 items.

The 32 hardware items in Table 2.2-1 were reviewed and selective judgements were recorded on the potential for modularization (Table 2.2-2 repeated from Table 5.2-2). Each SBI hardware item was analyzed to determine if the entire item can be modularized or at least a portion of the components could be modularized. The confidence level is an indication of the knowledge and understanding of the individual items at the time of this study. There are five (5) items in this list where there was insufficient data to make an estimation for modularity/commonality (marked NO on Table 2.2-2). There are four (4) items on this list that are marked with a "P" for Pulmonary Group and four (4) marked "PL" for Plant Monitoring Group. The Pulmonary Group has a total of eleven (11) hardware items (#56 thru 66 listed in Appendix A) with interrelated use of hardware for the planned functions and experiments. The group will be treated as one item for this trade study. It is assumed that most of the Pulmonary Group can be packaged or modularized together. The heaviest items in the group is the mass spectrometer which can possibly be used for other SBI functions. The details and practicality of adapting the mass spectrometer to the different applications (Pulmonary functions, Plant Gas Chromatograph, etc.) is not known at this time. The CELSS hardware item is presently planned as a separate experiment, however the function of this hardware item is plant monitoring which is why it has been grouped into this category.

The modularity candidate sample set (Table 2.2-3 is a repeat of Table 5.2.1) was derived by removing those items that have insufficient data and little or no modularization potential. The item in the two groups Pulmonary (P) and Plant Monitoring (PL) were left in this sample set with a high confidence level that the group or a portion of the group could be packaged (modularized) together.

The candidate hardware items were analyzed for common functions/assemblies by sorting the vital database listing (Table 5.2-3 and summarized in Table 2.2-4). The level of commonality

was the lowest level possible with the available information. The Pulmonary Function Equipment Storage Assembly hardware items show an amplifier as being common. This particular hardware item would not use an amplifier; however, the Pulmonary Group would more than likely use this function/assembly. This type of analysis was used throughout the study for commonality. The number of common functions/assemblies will be subjective; however, the methodology does show a large potential cost savings through commonality. The level of commonality (i.e. assembly, sub assembly, component) has a direct effect on the implementation of the common solution which in turn has a direct effect on the overall cost of the program (SBI #89).

2.3 Modularity/Commonality Cost Impacts

The 15 candidates for modularity of the SBI hardware items are shown in Table 2.2-3. The cost impact of modularizing these items would require a redesign for the existing hardware, (i.e., Pulmonary and Plant Monitoring Group) and a new design for other items. Redesign costs would be much higher than new design of hardware in the conception phase. No cost analysis data is presented in this trade study for modularity.

The commonality list of functions/assemblies is shown in Tables 2.2-4 and summarized in Table 2.3. Table 2.2-4 shows some of the functions/assemblies for the 32 SBI hardware items. The number of potential SBI hardware items using each function/assembly is shown in Table 2.3 with the possible cost reduction for each function. To estimate the potential cost reduction for each SBI hardware item will require additional, more detailed information on the individual functions, assemblies, subassemblies and components, (lowest level possible). As seen from Table 2.3 the potential cost reduction is quite large for the first few units. After 10 items, however, the cost reduction is essentially a flat curve. The details of developing the cost impact analysis is in section 5.3.2.1.

2.4 Future Work

Future studies should include more details on all of the functions/assemblies (lowest level possible) of the individual SBI hardware items. This information would then allow for a cost impact analysis of the individual SBI hardware items versus just the functions/assemblies. There is a high degree of confidence that with further, more detailed, trade studies there can be a large cost savings of modules/common items within the SBI group as well as with in other Space Station Freedom related activities. There may also be further cost savings with an analysis between the different trade studies. Other SSF activities (i.e. CHeC, EDCO, and HMF will have common hardware items and many of these will be flown on SLS-1 which could greatly reduce development cost.

2.5 Conclusion Summary

The analysis of this modularity/commonality trade study indicates that there can be considerable cost saving within these groups by modularizing the various assemblies and components for long duration missions. The analysis of the functions/assemblies for commonality, regardless of the factors that influence cost, shows that very large potential savings are available. Size (weight), complexity, development cost, fabrication cost and learning factors can vary over any foreseeable range of values, but common use of elements or assemblies will still produce large savings. The analysis in section 5.3.2.1, which relates development cost, first unit cost and learning factors, vividly demonstrates this important finding.

As can be seen from Table 7-1 in Appendix C, modularity has a favorable affect on life cycle costs in almost every step of a development, test, integration and operational life cycle. Therefore, a small cost in weight to make a design modular will yield large programmatic return over the whole Space Station life cycle. Modularity also can be implemented such that improved commonality results. Select the correct items for commonality development (Table 2.2-4) and major cost savings become achievable.

Table 2.1-1 Common SBI Trade Study Assumptions and Groundrules

- 1) Where project, hardware, and operations definition has been insufficient, detailed quantitative analysis has been supplemented with assessments based on experienced judgement of analysts with space flight experience from the Mercury Project through the current time.
- 2) Space flight hardware cost is primarily a function of weight based on historical evidence.
- 3) The effects of interrelationships with space biology and life science hardware and functions other than the SBI baseline hardware are not considered in the trade study analyses.
- 4) Trade study information, once defined during the analysis for the purpose of establishing a known and stable baseline, shall not be changed for the duration of the trade study.
- 5) Hardware life cycle costs cannot be studied with quantitative analyses due to the unavailability of definition data on hardware use cycles, maintenance plans, logistics concepts, and other factors of importance to the subject.
- 6) The SBI hardware as identified is assumed to be designed currently without any special emphasis or application of miniaturization, modularity, commonality, or modified commercial off-the-shelf adaptations.
- 7) It is assumed that the required hardware performance is defined in the original equipment specifications and must be satisfied without regard to implementation of miniaturization, modularization, commonality, or modified commercial off-the-shelf adaptations.

Table 2.1-2 Modularity and Commonality Trade Study Assumptions and Groundrules

- 1) Many of the SBI hardware items are interrelated, i.e., pulmonary group, plant monitoring, etc., and were not treated as separate entities.
- 2) Any current SBI equipment hardware concept is subject to being redesigned to meet the benefits of design modularity and commonality.

1	1		W	53	Po	wer	Xc	lume
]	Hardware kem name	Kg	Accumul.	(Watts)	Accumul.	Ĩ	Accumul.
			1000	1000	1300	1300	1.92	1.92
- (168	CELSS	800	1800	1500	2800	1.92	3.84
2	169			2100	800	3600	96.	4.80
m	84		136	2236	300	3900	.29	5.09
4	7	Hard Lissue Imaging System	38	2326	200	4400	24	5.33
S	126	Scintillation Counter		2206	ŝ	4500	40	5.73
9	74	Force Resistance System	2 6	0663		4610	00	5.93
7	145	Automated Microbic System	22	2400	250	4860	i S	6.13
80	155	Total Hydrocarbon Analyzer		0007		5360	2	6.33
6	161	Inventory Control System	28	2000	3	5960	ic	6.53
10	162	Lab Materials Pack & Hand. Equip.	2 6	0/07	ŝ	5860		6.73
1	163	Test/Ckout/Calibration Instrumentation	5	2/40		2000	į÷	6.96
: 2	106	Neck Baro-Cuff	45	2791	140	C020	2.5	0.00
1 7	113	Blood Gas Analyzer	45	2836	250	6455	.13	0.43
2 -		Mass Snartromeller	41	2897	200	6655	60.	2.00 2
* L			40	2917	200	6855	.12	7.2
2			32	2949	0	6855	.12	7.32
2	14/	Place Cost Pride Accom		2979	0	6855	60.	7.41
23	50	Pullionary das Cymruer Assent.	25	3004	100	6955	.20	7.61
18	011	Fidili Gas Cili Ullalogi any mass opeca	Ì	1 1				
			23	7005	100	7055	.08	7.69
61	115	Chemistry System	38	2060	200	7255	07	7.76
50	138	Hematology	S S	0000	5	7406	2	2 03
5	34	Sample Preparation Device	3	2/06	001			00.7
8	165	Experiment Control Computer System	20	3092	4 <u>00</u>	CU8/	5.0	00.7
2	62	Pulmonary Function Equip Stor. Assem.	50	3112	0	COR/	<u>s</u> :	0.03
90	6	Motion Analysis System	50	3132	100	2062	c0.	8.08
1 4	19	Animal Rintelemetry System	20	3152	<u>8</u>	8005	.05	8.13
3 4		Diand Draceura & Flow Instrumentation	20	3172	200	8205	9 8.	8.19
98	3	Voncine Drocenice Transdiment/Display	20	3192	100 100	8305	.05	8.24
25	60 F		00	3212	50	8355	.05	8.29
88	<u>5</u>		61	3231	0	8355	.15	8.44
2 	10		10	3250	-	8355	60	8.53
8		Plant Gas Cylinder Assein.	29	3269	202	8405	60	8.62
3	611	Gas Cylinder Assemuly	29	0000	5	8455	90	8.68
33	130	Cell Harvester	בת	9200	8	2010	3	2000
		torne 00 thome have 3535 km mass 10 0M² of volume	10.359 wa	tts of power 4	items are	TBD (all are	small)	

Table 2.2-1 List of SBI Hardware Vital to Program Cost Impact Analysis

					Asse	asment
ten \$		International Participation	Sufficient	Modularity	Cont Leve	idence.
PriorNized by Mass	Herdware Nem #	hardware item value	Date Available	Potential	Low	Hgh
				X-PL		×
- ~	00	Gee Grain Simulator Facility		×		×
	14	Soft Tissue Imaging System	Q			
		Hard Tissue Imaging System	Ŷ			
	126	Scintillation Counter		×		×
2 4	74	Force Resistance System		Q	×	-
-	145	Automated Microbic System		×		×
. 8	155	Total Hydrocarbon Analyzer	Q Y			-
6	161	inventory Control System		×		×
10	162	Lab Materials Pack & Hand. Equip.		×	×	
	163	Test/Ckout/Calibration Instrumentation		×		×
-	106	Neck Baro-Cuff		×		×
6	113	Blood Gas Analyzer		×	×	
	51	Mass Spectrometer		Υ-Ρ	×	
15	112	Plant HPLC lon Chromatograph		X-PL		×
16	147	Head Torso Phantom		Q		х
17	63	Pulmonary Gas Cylinder Assem.		Ч- Х	×	
8	110	Plant Gas Chromatograph/Mass Spec		X-PL	×	
19	115	Chemistry System		×	×	
20	138	Hematology		×	×	
21	34	Sample Preparation Device		×	×	
00	165	Experiment Control Computer System		×		×
23	62	Pulmonary Function Equip Stor. Assem.		A-P	×	
	82	Motion Analysis System		ç		
25	66	Animal Biotelemetry System		Ŷ		
90	100	Blood Pressure & Flow Instrumentation	ON			
27	109	Venous Pressure Transducer/Display	Ŷ			
98	129	Cell Handling Accessories		×	×	
00	57	Bag-in-Box		q-X	×	
	111	Plant Gas Cvilinder Assem.		X-PL	×	
31	119	Gas Cylinder Assembly		×	×	
32	130	Cell Harvester		×	×	
				P - Pulmo	nary Group	
				PL - Plant	t Monkoring C	Proup

Table 2.2-2 Modularity Assessment Review for Sample Selection

				Ass	Inema
Hem #	Hardhuar	Hardware Item Name	Moduler Hy	Con Leve	lidence I
Prioritized by Mass	tem #		Potential	Low	High
-	68	CELSS	X-PL		×
2	69	Gas Grain Simulator Facility	×		×
5	26	Scintillation Counter	×		×
7 1	45	Automated Microbic System	×		×
9	61	Inventory Control System	×		×
11	63	Test/Ckout/Calibration Instrumentation	×		×
12 1	06	Neck Baro-Cuff	×		×
14 6	-	Mass Spectrometer	Ч,Х	×	
15 1	12	Plant HPLC ion Chromatograph	X-PL		×
17 6	13	Pulmonary Gas Cylinder Assem.	A-P	X	
18	10	Plant Gas Chromatograph/Mass Spec	X-PL	×	
22 1	65	Experiment Control Computer System	×		×
23 6	2	Pulmonary Function Equip Stor. Assem.	X-P	X	
29	7	Bag-in-Box	A-≻	×	
30 1	11	Plant Gas Cylinder Assem.	X-PL	×	

-

~

...

P - Pulmonery Group PL - Plent Monttoring Group

Table 2.2-3 Modularity Candidate Sample Set

Commonality
0
<u> </u>
tems
lardware
(and the local data
SBI
2.2-4
able

.

	Thermal/Shock leolation	×	×							×		X				X			ĺ_			_			×	-+-	_	_	-+-	_			9
	rotinoM.muH.aser9.qmeT	×	×							×		×	×	×		×	×								×			:	<u>× </u>		_		Ξ
	Storage Locker		×																				×					\rightarrow	_	쐰	<u>×</u>		4
	Scintiliation Counter				-	×				×		×														\perp		_	\downarrow		_	<u>× </u>	4
	maig geng eigmaß	×	×							×	×	Ī				×		×			×			_	_	\downarrow	_			<u><</u>	\downarrow	+	8
	namuh den9 ekomaa					•		X												×	×	_		_	_		_	×	-		4	<u>×</u>	2
ŝ	IsminA qer9 eiqme8									×	×										×				×	\downarrow		_	_	_	_		4
plie	Recorders	×	×				×	×				×	×			_	*		\downarrow			\rightarrow	-	×	*	_	_	-	×	-			Ξ
me	onibraH noimbaA	×	×								×	×			$ \bot$		×					\rightarrow	-	╋		_	\downarrow	_	_	\dashv	-+	<u>×</u>	9
SSI	Pumpe	X	×										<u>×</u>	_	_	×	_	_	+	+			_		-+	\rightarrow	-	-+	+		-		4
₹	Power Supply	×	×									×	×	<u>×</u>		쐭				_		\square	_	-+-	*		_	\rightarrow	-+	-+			-
Ö	stotoM	×	×										×		_	×			_				_	+	_	_		_	-+	_	-		4
<u>i</u>	Microbial Monitoring	×						×									_		_	\downarrow			4	-+	_	-		+	-	_	_		5
F	Mass Spectrometer		×									×			×			;		\perp	-			_	_	\downarrow	-+	_	_				4
5	Gas Handling	×	×	:							×			×	$ \downarrow$	×	_	×	\downarrow	_	ļ	\square		_	_	+	_	-+	×	×	×		5
ist	\$J0200J_j	×																		< ×				_	_						_		9
ы В	Fluid Handling							×								×	T		>	<×	×							×					9
IIV		×	×	4	1	1	×	×				×		×			×		Τ	Τ	Γ		Τ	Τ	×	Ī	Τ						8
Sen	Displays-Transducer			+	┝			+				X		-		×	×	╈	T	-	1	Ħ			×		×						S
See			+-	┼╴	┢─	┢		┢	H	×				×		×	×	+	-						×								5
Per	Detectors		-	+		\vdash	-	\vdash				¥	 	-		J			┿		+	+	+	-+	┙		-				_		2
	Converters		1	1-		-	ļ		Ļ			_	2	$\hat{}$		2	+	+	+	+	+	$\left \cdot \right $	-+	-+	7	-+	-	-	_	_			0
	Computers&Accessories	×	×	4			×	×	1	×		×				×	_		-			×	_	×	<u>×</u>				_		_		
	Centrifuge								ļ	L				×		×		_	- ''	< ×	-	\square			_	-							
	Cameras/Video	×	×	<			×													_	ļ			×	×		_						4)
	Automethon/Robotics	×							ļ		×	×				×	×				×												9
	sneiftigmA		t	+	T		Γ			1		×	×				×					×	×		×								9
	Aerosol Generator	-	1,	4	+	1	+	\uparrow	+-	1	1	-			П						T	Π											-
	Hardware ttem Name			Gas Grain Simulator Facility	2011 115548 Juneding System	Scientifation Counter	Force Resistance Svetem	Automated Microbic System	Total Hvdrocarbon Analyzer	toventory Control System	ish Materials Pack & Hand, Equip.	Teet/Ckout/Calibration Instrumentation	Nack Baro-Cuff	Blood Gas Analyzer	Mass Spectrometer	Plant HPLC Ion Chromatograph	Head Torso Phantom	Pulmonary Gas Cylinder Assem.	Plant Gas Chromatograph/Mass Spec	Chemistry System	Rematology Semole Preparation Device	Experiment Control Computer System	Pulmonary Function Equip Stor. Assem.	Motion Analysis System	Animal Biotelemetry System	Blood Pressure & Flow Instrumentation	Venous Pressure Transducer/Display	Cell Handling Accessories	Bag-In-Box	Plant Gas Cylinder Assem.	Gas Culinder Assembly	Cell Harvester	Total Functions/Assemblies
	ed Hardwar	1 2 2	00	169		100	271	145		181	101	163	106	113	61	112	147	63	110	115	138	165	62	82	88	100	109	129	57	111		130	
	ttern # Priortiti⊭ by Masri	.		~	-	• •	0 4	0	- a		р Р					2		11	18	19	2		0.0	24	25	26	27	2 8	0		2	32	

••

Table 2.3 Commonality List of Functions/Assemblies

F L	Function/Assembly H/W List from Table 5.4.2	Possible Number of SBI H/W Items with Common Functions/Assemblies	Percent Cost Decrease
1	Aerosol Generator	1	
2	Amplifiers	6	0
3	Automation/Robotics	6	51-59
4	Cameras/Video	G	51-59
5	Centrifuce	4	4/-55
6	Computers & Accessories	10	43-51
7	Converters	7	59-66
8	Detectors	5	54-61
9	Displays-Transducer	<u> </u>	47-55
10	Environmental Control	9	47-55
11	Fluid Handling	6	
12	Freezers		51-59
13	Gas Handling	3	<u>3/-43</u>
14	Mass Spectrometer	9	57-65
15	Microbial Monitoring	4	43-51
16	Motors	<u> </u>	25-31
17	Power Supply		43-51
18	Pumps		54-61
19	Radiation Handling		43-51
20	Recorders	<u>6</u>	51-59
21	Sample Pren Animal		59-66
22	Sample Pren Human	4	43-51
23	Sample Pren Plant	5	47-55
24	Scintillation Counter	8	55-63
25	Storage Locker	4	43-51
26	Temp Press Hum Manitas	4	43-51
27	Thermal/Shock legistics	10	59-66
	Inormal Onour isolation		51-59

3.0 Trade Study Database

The trade study database has been implemented on the dBase IV program by Ashton-Tate. The database definition including a database dictionary is provided in Appendix D.

3.1 Database Files

Four types of dBASE IV files were created for the Space Biology Initiative (SBI) Trade Studies database. These files are database files, index files, report files and view files. Database files have the file name extension dbf. A database file is composed of records and records comprise fields which contain the data. Index files have the file name extension ndx. Index files are used to maintain sort orders and to expedite searches for specific data. Report files have the file name extension frm. Report files contain information used to generate formatted reports. View files contain information used to relate different database (dbf) files. View files link different database files into a single view file.

3.2 Database Management

The development of the SBI Trade Studies database consist of two major steps, logical database development and physical database development. Defining attributes and relationships of data was the major emphasis of the logical database development. The attributes and relationships of the data were determined after analysis of available data and consultation with other SBI team members. Based on the knowledge from the logical database development, the physical structure of the database was developed and implemented on a computer. Setting up the database on a computer was the second major development process. The first step of this process was to determine how to store the data. dBASE IV allows data to be stored as character, numeric, date or logical data types. The second step was to create the database files. After the database files were created, the actual data was entered. For a complete listing of the database structures see Appendix D.

3.3 Database Use

To the maximum extent possible, data generated in performance of this trade study was stored in the database. This approach not only facilitated analysis and comparison of trade data, but also enabled the efficient publication and editing of tables and figures in the study report. In addition, the data are available in the database for future evaluation using different screening logic and report organization.

4.0 Documentation Survey

An extensive survey was made to collect all the latest information pertaining to Modularity & Commonality and associated cost experience. Library searches were made using titles, authors, key words, acronyms, phrases, synonyms, time periods and any possible related activities to modularization and commonality. Interviews with personnel in the various scientific disciplines were made throughout the initial portion of the study.

4.1 Documentation Sources

There were many personal & telephone interviews with knowledgeable personnel in the various scientific fields. These interviews are summarized in Appendix B.

The following documentation sources were checked during the initial portion of the study.

4.1.1 Common SBI Trade Study Bibliography

The complete list of all references used in the four Eagle Engineering, Inc. trade studies is provided in Appendix B. A unique SBI reference index number has been assigned to each information source.

4.1.2 Trade Study Bibliography for Modularity & Commonality

Particular reference information from Appendix B that is of special importance to modularity/commonality is repeated in Table 4.1.2.

4.2 Documentation Data

Cost effective reuse and checkout of hardware prior to launch will require an emphasis on standard tests, long design history of components, and modularity in components with a readily available set of spares. The program should emphasize maintainability, which must be made a priority at the beginning of the program during conceptual design. Although the belief is widespread that modularity and accessibility for maintenance and checkout will increase cost and weight, the experiences of Solar Max and the prelaunch history of the Hubble Space Telescope have refuted this thinking. The actual weight penalty for modularization of the Hubble was less than 400 lbs. on a 25,000 lb system. Had the modularization been initiated at conceptual design, Hubble Telescope engineers maintain there would not have been any weight penalty. Both Solar Max and Hubble system engineers have stated that modularity (ref the Space Assembly Maintenance and Servicing Study Report, USAF Space Division, 1988).

The Skylab program used a common amplifier for many of the Physiological Monitoring System (PMS) sensors. This amplifier was microminiaturized and became the standard amplifier throughout the program. The miniaturization was accomplished by reduction in size and weight of the electronic sensors which also reduced the cost of the various modules in the different hardware items. This same basic common microminiaturized amplifier is scheduled for use by the SBI Bioinstrumentation & Physiological Monitoring Group. (Appendix A lists this group 3)

Je NO. 1 05/25/89	Table 4.1-2 Bibl	iography for Modularity and Com	monality		
ID # AUTHOR	111LE	VOL. FUBLISHER NO.	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
SBIOI Kozarsky, D.	MUS Inputs	Lockheed Life Sciences Frogram Office	Lockheed Memo	Washington, DC	01/19/89
SB102 Kozarsky, D.	Latest Space Station Kack Studies	NASA MSFC		Huntsville, AL.	02/02/89
SBI03 Halt, A.	PNWG-SS Freedom Assly. Seq. Irial Pyl. Manifest	Payload Manifest Working Group (PMWG)		Keston, VA.	12/09/88
SBI04 Shannon, J.	Business Fractice Low Cost System Activity	NASA JSC		Houșton, TX.	11/12/75
SBIII NASA	Reference Mission Operational Analysis Document (RMOAD) For The Life Sciences Research Facilities.	NASA JSC	NASA TH 89604	Houston, TX.	02/01/87
SBI12 Breiling, R.	Cost Risk Analysis Using Price Models	RCA Price Systems		Maareston, NJ.	09/01/87
SB113 Fogleman, G.Schwart, D.Fonda, M.	Gas Grain Simulation Facility: Fundamental Studies of Particle Formation And Interactions	1 NASA Ames Kesearch Center	NASA ARC/SSS 88-01	Maffet Field, CA.	08/31/87
SBI14 JPL	Flight Projects Office Payload Classification Product Assurance Provisions	JFL	JPL D-1489 Kev. A	Pasadena, CA.	04/30/87
SB115 PRC Systems	Cost Estimate For The Search for Extraterrestrial Intelligence (SETI) Kevised	PRC Systems Services		Huntsville, AL.	06/15/87
SBI16 NASA SSPO	Space Station Commonality Process Requirements Rev.B	NASA SSPO	SSP 30285 Rev. B	Ƙeston, Virgina	09/15/88

Je No. 2 05/25/89	Tahle 4.1~7 Kihlindr	aohv for Modularity and Com	monality		
ID # AUTHOR	TITLE VOL. NO.	FUBL ISHER	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
SB117 Wabb, D.	Technology Forecasting Using Price - H	Kockwell International		Anaheim, CA.	04/17/86
SBI18 NASA	Classification Of NASA Office Of Space Science And Applications (OSSA) Space Station Payloads	NASA JSC		Hauston, TX.	~ ~
SBI19 NASA	Life Science Research Objectives And Representative Experiments For The Space Station (Green Book)	NASA Ames Life Science Division		Moffet. Field, CA.	01/01/86
SBI20 NASA	Medical Requirements Of An In-Flight Medical System For Space Station	NASA JSC	JSC 31013	Houston, TX.	11/30/87
SBI21 TKW	A Study Of Low Cost Approaches To Scientific Experiment Implementa- tion For Shuttle Launched And Serviced Automated Spacecraft	TRW Systems Group	Contract NASW - 2717	. Redando Beach, CA.	03/19/89
SBI22 LMSC	Low-Cost Frogram Practices For Future NASA Space Programs	LMSC	LMSC-D387518	Sunnyvale, CA.	05/30/74
SB123 Steward, GMiller, L	Biomedical Equipment Technology Assesment For The Science Laboratory Nodule	Management and Technical Services Company		Houston, TX.	08/01/86
SB124 General Electric	WP-3 Commonality Plan	General Electric	NAS5-32000	Philadelphia , PA	04/22/88
SBI25 NASA	Microbiology Support Plan For Space Station	NASA JSC	JSC-32015	Hauston, TX.	09/01/86

-

10/27/00	Table 4.1-2 Biblio	graphy for Modularity and Co	amonality		
ID # AUTHOR	TITLE VO	L. PUBLISHER	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
SB126 NASA	Concepts And Kequirements For Space Station Life Sciences Ground Support And Operations	NASA JSC	LS-70034	Hauston, TX.	04/11/88
SB127 NASA	Spacelab Mission 4 Integrated Payload Requirements Document	NASA JBC	SM-5E-03	Houston, TX.	06/01/83
SB128 General Dynamics	Life Sciences Fayload IV Definition And Integration Study	General Dynamics	CASD-NAS-74-046	San Diego, CA.	08/01/74
SB129 General Dynamics	Life Sciences Payload 1 Definition and Integration Study - Executive Summary	General Dynamics	CASD-NAS-74-046	San Diego, CA.	08/01/74
SBI30 NASA	SL-3 Ames Research Center Life Sciences Payload Familiarization Manual	Ames Kesearch Center	ADP-81-50-001	Moffet Field, CA.	02/01/81
SBIJI Kockwell Intl.	EMS Data Data Package 2.3A S4200.2 Methodology Definition - Commonality Analysis Trade Study	Kockwell Internation	SSS 85-0168	Downey, Ca.	10/04/85
SBI32 Rockwell Intl.	EMS Data Data Package 2.25 54201.2, Module Commonality Analysis	Rockwell International	555 85 -0137	Downey, CA	09/06/85
69133 General Electric	Space Station Work Package 3 Definition And Preliminary Design Commonality Candidates	General Electric Space Systems Division	DRD - 19	Philadelphia , PA	05/10/85
SBI34 Řockwell Intl.	EMS Data Data Package 2.3A 54203.2, Module Outfitting/System Commonality Analysis	Rockwell International	555 85-0158	Downey, CA	10/28/85

.

Je No. 05/25/89

m

, e No. 4 05/25/89	Table 4.1~2 Bibli	ography for Modularity and Com	monality		
ID # AUTHOR	111LE V	DL. PUBLISHER 0.	REPORT / DOCUMENT NUMBER	PUBL I SHER LOCAT I ON	DATE
SBI35 NASA JSC	Space Station Freedom Human-Oriented Life Sciences Research Baseline Reference Experiment Scenario	JSC- Medical Sciences Space Station Office	Blue Book	Houston, TX.	88/10/01
SBI39 NASA JSC	July 1988 Pogress Report On Experiment Standard User Interfaces Study	JSC - Life Sciences Froject Division		Hauston, TX.	07/01/88
SB140 Kockwell Intl.	EMS Data Data Package 2.3A 54207.2, GSE Commonality Analysis	Kockwell International	SSS 85-0099	Dawney, CA	10/04/85
SB141 NASA DSSA	Life Sciences Space Station Flanning Document: A Reference Payload For The Life Sciences Research Facility	Office of Space Science and Applications	NASA TN 89188	Washington, D.C.	01/01/86
SB144 Huffstetler, W.	Skylab Biomedical Hardware Development	AIAA 20th Annual Meeting		Los Angeles, CA	08/22/74
SB146 Anderson, A.	Progressive Autonomy - For Space Station Systems Operation	AIAA		New York, NY	06/05/84
SB147 NASA JSC	Life Sciences Research Laboratory (LSKL) Human Research Facility forSpace Station Initial Operating Configuration (IOC) Science Reqts.	NASA JSC	JSC 20799	Houston, TX	10/01/85
SB148 NDAC	Crew Health Care System (CHec) Development Plan	Mcdonnell Douglas Space Station Co.		Hauston, TX	01/28/89
58149 Minsky, M.	Engines of Creation	Anchor Fress		New York, N	Y 01/10/86
SBIS0 MDAC	Crew Health Care	1 MDAC	MDC H3924	Houston, Texas	11/01/88

-

je Na. 5	-				
05/25/89	Table 4.1-2 Bibliog	raphy for Modularity and Co	amonality		
ID # AUTHOR	TITLE VDL NO.	. FUBLISHER	REPORT/DOCUMENT NUMBER	PUBLISHER DAT	щ
SBI54 NASA JSC	Mission Integration Plan	NASA JSC	SSP 30000 Appendix D	Houston, TX. 04/	30786
SBISS Pacheo	Analyzing Commonality in a System	Boeing	NASA STI Facility	Baltimore, 03/ MD.	88/10,
GBI56 NASA MSFC	Spacelab Configurations				
SblóB Hamaker, Joe	Telephone interview relating to MSFC history and techniques for cost estimating.	Cost Analysis Branch Chief MSFC		Huntsville, 04/ Al.	/27/89
SB169 Booker, Clef	Personal Interview	Man-Systems Division JSC		Hauston, TX. 04/	(04/89
SBI70 Evans, Jim	Personal Interview	Life Science Froject Division JSC		Hauston, TX. 04/	19/89
SB176 Trowbridg e, Jahn	Fersonal interview relating CHeC experience to miniaturization, modularity and make-or-buy	McDonnell Douglas		Houston, TX. 03/	/29/89
SBI78 McFadyen, Gary	Fersonal Interview relating to life science hardware background at JSC	Southwest Research Institute		Houston, TX. 04/	/10/89
SBIBO McFadyen	Bioengineering on SBI hardware	Southwest Research Institute		San Antonio, 04/ TX.	/06/89
Sbibi Allen, Joe	Fersonal interview – S.S. Life Science AIAA Meeting	Space Industries		Hauston, TX. 04,	/07/89
SBIB2 Averner, Maurice	Fersonal interview on CELSS	NASA HQ. CELSS Coordinator		Washington, (14, DC.	/07/89
SBIB3 Fogleman, G. FhD	Fersonal interview relating to Gas Grain Simulation Facility	NASA AMES		Moffet 04. Field, CA.	/06/89

Je Na.

ge No. 6 U5/25/89	Table 4.1-2 Bib	liography for Modularity and Co	ommonality		
ID # AUTHOR	TITLE	VOL. FUBLISHER NO.	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
SØ184 White. Bob	Personal Interview relating to modularity and commonality	NASA JPL		Pasadena, CA.	04/10/89
SBIBS Grumm, Richard	Fersonal interview relating to SBI hardware	NASA JPL		Fasadena, CA.	04/11/89
SBIB6 Baeing	U.S. Lab Review Workshop				• •
GB187 McGillroγ,B.	Personal Interview on CELSS	NASA AMES		Maffet. Field, CA	05/05/89
SBIB9 Boeing	Space Station Program Commonality Plan Draft 3	Boeing	D683-10112-1		10/31/88

5.0 Modularity/Commonality Trade Study

5.1 Guidelines for Modularity/Commonality Functional Elements

Modular functional elements are readily replaceable Modules should be plug-in with blindmating connectors, guides, and hold-down hardware that facilitates installation and removal.

Modular functional elements are readily maintainable Individual elements should have welldefined functional characteristics to facilitate trouble shooting and allow the use of automatic test sets - module design should enhance accessibility for servicing.

Modular functional elements facilitate system modification and expansion Individual elements should have well-defined interface characteristics of individual functions should be reasonably general to allow application flexibility.

Modular functional elements may not be adaptable to incorporation of technological advances. The chosen functional level might not readily accommodate a new approach to component usage.

Common items should perform the same function as another item, which does not harm or degrate the system performance of that individual hardware item.

5.2 SBI Hardware Sample Selection

The Space Biology Hardware Baseline list is shown in Appendix A. This list has 169 hardware items, however, only 93 of these items are categorized for SBI functions. This list was based-lined December 1988 and then updated 23 March 1989. Many of these items are in the conceptional phase; however, some are existing hardware items that are in existence today. There will more than likely be future additions and deletions to this baseline list.

The initial survey data analysis was performed to select a sample of the SBHB items which could be potential candidates for implementation of modularity and commonality. With limited study time and a SBHB of 93 items, a method was needed to separate items which could have large cost impact and were worthy of study resource application. The following method was used. All SBHB items were listed in descending order of probable acquisition cost. Weight was used as an indication of probable acquisition cost based on historical experience in previous space programs. It was found that 34 percent of the items (32 items) accounted for 93 percent of the mass or probable cost (Table 5.2-1). The accumulated volume (8.68 M³) of the 32 items represents 87% of the total volume. The accumulated power (8455 watts) represents 82% of total power requirements

The prioritized list of "vital" hardware items was considered for modularization and commonality. This list was further examined for those items that can be considered as a sample set of candidates for possible modularization (Table 5.2-2) and for commonality (Table 5.2-3). This list showing the possible level of modularity and commonality was developed using all available resources within the constraints of this trade study. This assessment of possible candidates is based upon the best knowledge of the SBI hardware items at the time of this study.

There will be additions and deletions from this list as new developments and techniques become known.

5.2.1 Modularity Candidate Sample Set

All of the items in Table 5.2-2 were analyzed to determine if the entire item could be modularized or at least a portion of the components within the item could be modularized. The items that did not meet this category are marked with a No in the "Modularity Potential Column" on Table 5.2-2. The confidence level is an indication of the knowledge and understanding of the individual item at the time of this study. There are 5 items out of the 32 that had insufficient data due to the fact that they are new developments still under the conception phase. There were two areas where the items which have modularization potential were grouped together due to the interrelationship of the individual items (function checks and experiments requires more than one item to complete) These two groups are labeled (P) for Pulmonary and (PL) for Plant Monitoring. There are other areas which may be grouped together but were not considered in the study. The Pulmonary Group has a total of (11) eleven hardware items (#56 thru 66 Appendix A Group 3A) Most of these items are interrelated which is why these items should be packaged (modularized) together. A portion of this group is already packaged together and will be flown on SLS-1 as Astronaut Lung Function Equipment (ALFE). The mass spectrometer is the heaviest item in this group and special handling will be required when dealing with gas analysis (molecular fragments according to their atomic mass). There can be a tremendous cost and weight savings if the mass spectrometer can be used for other SBI functions (Plant Monitoring etc.). Some of the components in the mass spectrometer may be common; however, the details and practicality of adapting the unit to different applications is not known at this time. The CELSS hardware item is presently being planned as a separate experiment for plant monitoring ("crop growth research facility for seed-to-seed crop studies"). This appears to be the same function as the other items for plant monitoring and was therefore placed in this group.

The modularity candidate sample set was derived by filtering the "vital" list in Table 5.2-2 to remove SBI hardware items which did not appear to warrant analysis at this time. The sample set (Table 5.2.1) resulted from removing hardware items from the "vital" list that have:

- A. Insufficient data to preform assessments.
- B. No modularization potential and assessment confidence level is high.
- C. Modularity potential, but the assessment level is low (unless part of a group).

5.2.2 Commonality Candidate Sample Set

The candidate hardware items were defined for commonality by sorting the modularity/commonality data base on the basis of having a common function/assemblies. The "vital" hardware items were evaluated for the potential of containing functions/assemblies in a representative list that was considered for this SBI trade study. A subjective analysis was performed as to which hardware items might use each given function/assembly. The amplifier has six areas where it might be used. The Pulmonary Function Equipment Storage Assembly
hardware item would not use an amplifier; however, the Pulmonary Group will more than likely use this function. This type of analysis was used throughout the study for commonality. The numbers for common items will be subjective; however, this methodology was used to make a selection of those hardware items that may have possible potential cost savings through commonality. The level of commonality was analyzed to the lowest level possible with the available information. In most cases this was the assembly level or in a few cases subassembly. The level of commonality has a direct effect on the implementation of the common solution and the degree of commonality, which also has a direct affect on the overall cost of the program. (Ref. SBI #88)

All 28 (32-4 with insufficient data) of the vital hardware items had some areas of commonality (Table 5.2-3). The maximum number of common functions/assemblies shown on Table 5.2-3 is ten (10) and the smallest number is one (1).

5.3 Relative SBI Modularization and Commonality Cost Impact Analysis

Since modularity and commonality have multielements related design aspects (i.e. it is difficult to have successful modularity/commonality in a single equipment element), no example hardware item candidate was selected for individual cost analysis. The subjects were addressed in the multielement context or as related to the function that is modular or common.

5.3.1 Modularization Cost Impact Analysis

The redesign of the items listed for modularity will in most cases add additional cost. However, this redesign cost if incorporated into the initial conception phase may not add cost to the item. This initial increase in cost will in most cases be make up when life cycle analysis is incorporated into the overall cost. (Appendix C Table 7-1) The grouping of the hardware items may reduce an overlap in development cost if controlled by one organization.

5.3.2 Commonality Cost Impact Analysis

The candidate list of 32 hardware items was analyzed for commonality using the representative list of 27 functions/assemblies. The number of "Vital" SBI hardware items having potential application for each type of function/assembly has been compiled in Table 5.3.2. A lower level of commonality (i.e. subassembly/component) would increase the number of potential functions that would be common to the individual hardware items. This lower level of commonality may also allow for modularity of various subassemblies that would be common to more items. The number of common items would have a direct effect upon other areas such as the number of spares required, maintainability, transportation, packaging, storage, power requirements, crew training, crew time lines, and other potential cost drivers.

5.3.2.1 Empirical Cost Relationships

Analysis of the relative cost impact resulting the use of various numbers of common functions/assemblies in Table 5.3.2 must be based on empirical cost relationships since hardware definitions are not available. Appendix C contains a detailed definition of cost assessment techniques which can be applied to commonality. The techniques relate theoretical first unit

(TFU) cost to design and development (DD) cost and then applies learning factors to demonstrate the cost reduction potential for common application of hardware in SBI.

To further demonstrate how this assessment was applied to this trade study the formula used for calculations will be repeated from Appendix C Section 3.2.

 $CP_1 = D + Dcost (.35 \text{ or } .15 D \& D x L.F.) N$

CP.	= Cost of a single program or one (1) item
D&D	= Design and Development Cost
TFU	= Theoretical First Unit Cost
L.F.	= Learning Factor
N	= Number of Common Functions/Assemblies

For calculations used in this study

.15 and .35 D&D	= TFU
.80	= L.F.
Range of 0 to (10) Ten	= N

The Design and Development (D&D) cost factors of .15 and .35 were both used to give the range for the Theoretical First Unit (TFU) cost. The learning factor (L.F.) has a wide range based upon the type of hardware, type of fabrication, and type of manufacturing (automation). Table 3-5 in Appendix C displays the range of learning factors. This trade study used 80% (0.80) as an average learning factor (L.F.). The number (N) of common functions/assemblies for the SBI hardware items is from Table 5.2-3 (Data base print out). These numbers were generated from the information available at the time of this study. This same information on Table 5.2-3 is repeated in Table 2.2-3 Executive Summary.

The Figures 3-2 and 3-3 in appendix C were generated using (.35 D&D and .80 L.F. for Figure 3-2) and (.15 D&D and .80 L.F. for Figure 3-3) However, these figures only show (5) five items (N) and are shown primarily to dramatize the tremendous cost reduction for the first few units.

5.3.2.2 Lot Certification

The certification of various lots within the SBI Program is not feasible at this time.

5.3.2.3 Design Cost Reduction

The design cost reductions of the SBI items can be seen in Table 5.3.2-1 which shows the best possible candidates and the potential cost percentage reduction for these functions. This cost reduction is for applications within the SBI hardware list. There may be considerable more reduction if the trade study were to include other areas within Space Station Freedom. Many of the SBI commonality functions are common to the functions of Crew Health Care (CHeC) System, Extended Crew Operations (EDCO), and other Life Science activities. SBI #48 & 76.

c.f

ITEM \$ PRIORITIZED BY MASS	HH ITEM ‡	HARDWARE ITEM NAME	ACCUM 7. OF ITEMS	MASS (kg)	ACCUM MASS	ACCUM MASS PERCENT	ACCUH POWER PERCENT	ACCUM VOLUME PERCENT
					1000	20	13	19
1	168	CELSS Test Facility	1	1000.0	1000	20 51	27	38
2	169	Gas Grain Simulator	2	800.0	1800	50	35	48
	84	Soft Tissue leaging System	3	300.0	2100	53 53	28	51
4	77	Hard Tissue Imaging System	4	135.0	2226	65	42	53
5	125	Scintillation Counter	5	90.0	2226	68	45	57
5	74	Force Resistance System	6	70.0	2320	70	46	59
7	145	Automated Microbal System	8	70.0	2400	17	48	61
8	155	Total Hyrdocarbon Analyzer	9	70.0	2000	74	53	63
9	161	Inventory Control System	10	70.0	2000	76	58	65
10	162	Lab Naterials Packaging & Handling Equipment	11	70.0	20/0	79	60	67
11	163	Test/Checkout/Calibration Instrumentation	12	/0.0	2/40	79	61	63
12	106	Neck Baro-Cuff	13	93.Z	2/31	80	63	70
13	113	Blood Gas Analyzer	14	45.0	2030	91	65	71
14	61	Mass Spectrometer	15	40.7	2011	87. 31	57	72
15	112	Plant HLPC Ion Chromatograph	16	40.0	1157 5+ ac	63	67	73
16	147	Head/Torso Phantom	17	32.0	2343	23 94	67	74
17	63	Pulaonary Gas Cylinder Assembly	18	30.0	2004	85	68	76
18	110	Plant Gas Chromatograph/Mass Spectrometer	19	25.0	2007	86	69	77
19	115	Chemistry System	20	23.0	3027	26	. 71	78
20	128	Hematology System	22	23.0	2020		73	73
21	34	Sample Preparation Device	23	22.0	2022	. 07	77	80
27	165	Experiment Control Computer System	24	20.1	2000 مەرە		, , 77 I	60
23	52	Pulmonary Function Equipment Stowage Assest	ly 25	20.0	2122	, UC) g(7	7 91
25	82	Notion Analysis System	26	20.0	0104		75	8 81
25	99	Anigal Biotelegetry System	27	20.0	3134	; u. > 46	,) 82
25	100	Blood Pressure and Flow Instrumentation	28	20.0	31/4	2 J) 8'	82
20	109	Venous Pressure Transducer/Display	29	20.0	2124	<u> </u>	, D. 1 A.	2 83
27	129	Cell Handling Accessories	30	20.0	321	<u> </u>	1 3	2 84
20	57	Bag-in-Box	31	19.0	323.	0 J.	2 8	2 85
30	111	Plant Gas Cylinder Assembly	32	19.0	323	0 0. 1 1	2 B	2 86
31	119	Gas Cylinder Assembly	33	19.0	325	נ ב ני ה	2 9	2 87
32	130	Call Harvestor	34	13.0	320	נינ		

NOTES:

.

1. Total number of SBI hardware items = 93.

2. 89 items have 3535 kg mass, 10,359 Watts power, and 10 cubic meters volume.

3. 4 items are not currently defined, but all are small.

Fage No. 05/30/89

Table 5.2-2 Database Li. .ing for Modularity Sample Selection Assesment

4

		Selection H			
			Sufficient	Modularity	Modularity
Item #	ME	Hardware Item Name	Data		Confidence
Prioritized	lten #		Available		Level
by nass	R				
			Zas Ves	7	High
Ţ	168	CELSS Test Facility		Item	High
• •	149	Gas Grain Simulator			ı
4 1	94	Soft Tissue Imaging System	QN		
	, r , r	und Tissue Imading System	Q		
*			Yes	Item	11611
U N	126	SCINTILECTON CONTEN	Yes	No	MO
9	74	Force Resistance aystem		Item	High
7	145	Automated Microbal bystem			
. a	155	Total Hyrdocarbon Analyzer		l t ea	High
1 0	161	Inventory Control System	165		MO
	162	Lab Materials Fackaging &	Yes		-
2		Handling Equipment	:		Hiah
	163	Test/Checkout/Calibration	Yes		P
11		Instrumentation		1 4	Hinh
t	101	Nark Baro-Cuff	Yes		
12		THE PART OF AND VIET	QN	Item	
13	113		7 e e	æ	LOW
14	61	Mass Spectrometer		Ĩ	High
	112	Plant HLPC Ion Chromatograph			High
	147	Head/Torso Phantom	Yes	2 0	MO I
		Pulmonary Gas Cylinder	Yes	L	
1/	2	Qerent V		i	-
	č.	Dist Ose Chromatorraph/Mass	Yes	7	LOW
18	110				
		Spectrometer	202	ltem	Low
6	115	Chemistry System		I ten	Low
	138	Hematology System	165		MO
	4 Y	Sample Preparation Device	Yes		Hinh
17	145	Experiment Control Computer	Yes		
77		Sveten			
	64	Pulmonary Function Equipment	Yes	2	
67	5	Stowage Assembly			10
	60	Mution Analvais System	Yes		
	100	Animal Bintelemetry System	Yes	ON	
22		Flood Pressure and Flow	ND		
26	221	lostrimentation			
	000		No		
27	101	Terradianar / Disolary			
		ranguater verseenties	Yes	ltem	LOW
28	129	Cell Handling Accessor ics	202	ع	Low
29	57	Bag-1n-Box		1	Low
30	111	Plant Gas Cylinder Assemuty	ล เ ย - >	I tem	LOW
) F	119	Gas Cylinder Assembly	169		Low
32	130	Cell Harvestor	1 E B	•	

Fage No. 05/30/89

-

Table 5.2-3 "Vital" Database Listing for Commonality Sample

	Selection As	sesment		
REPRESENTATIVE LIST OF FUNCTIONS AND ASSEMBLIES	FRIGRITY # OF SBI HW. ITEM	MH 1 #	SBI HARDWARE NAME	COUNT
** AERSOL GENERATOR AERSOL GENERATOR ** Subtotal **	64	169	Gas Grain Simulator	
** AMPLIFIERS AMPLIFIERS	11	163	Test/Checkout/Calibration Instrumentation	
AMPL IFIEKS AMPL IFIEKS AMPL IFIEKS	12 16 22	106 147 165	Neck Baro-Cuff Head/Torso Fhantom Experiment Control Computer System	.
AMPLIFIERS AMPLIFIERS ** Subtotal **	23 25	62 99	Fulmonary Function Equipment Stowage Assembly Animal Biotelemetry System	9
** AUTOMATION/KOBOTICS AUTOMATION/KOBOTICS AUTOMATION/KOBOTICS	1 10	168 162	CELSS Test Facility Lab Materials Packaging & Handling Equipment	
ALITOMATION/ROBOTICS	11	163	Test/Checkout/Calibration Instrumentation	
AUTOMATION/KOBOTICS AUTOMATION/KOBOTICS AUTOMATION/KOBOTICS ** Subtotal **	15 16 21	112 147 34	Flant HLPC Ion Chromatograph Head/Iorso Fhantom Sample Freparation Device	4
** CAMERAS/VIDEO CAMERAS/VIDEO CAMERAS/VIDEO CAMERAS/VIDEO CAMERAS/VIDEO CAMERAS/VIDEO CAMERAS/VIDEO	- CI -0 CI -0	168 169 74 82 82	CELSS Test Facility Gas Grain Simulator Force Resistance System Motion Analysis System Animal Biotelemetry System	
** Subtotal **				2

30

ŝ

.

, je No. 05/30/89

¢+

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

-

-

-

-

~

-

•

KEFRESENTATIVE LIST OF FUNCTIONS AND ASSEMBLIES	FRIOKITY # OF SBI HW. ITEN	30 H 1 #	SBI HARDWARE NAME	COUNT
** CENTRIFUGE CENTRIFUGE CENTRIFUGE CENTRIFUGE CENTRIFUGE CENTRIFUGE	15 19 20	113 115 115	Blood Gas Analyzer Plant HLFC Ion Chromatograph Chemistry System Hematology System	4
** COMFUTERS & ACCESSORIES COMPUTERS & ACCESSORIES COMPUTERS & ACCESSORIES COMPUTERS & ACCESSORIES COMPUTERS & ACCESSORIES COMPUTERS & ACCESSORIES COMPUTERS & ACCESSORIES	-09251	168 169 145 145 161	CELSS Test Facility Gas Grain Simulator Force Resistance System Automated Microbal System Inventory Control System Test/Checkout/Calibration	
COMFUTEKS & ACCESSORIES COMFUTEKS & ACCESSORIES COMFUTEKS & ACCESSORIES COMFUTEKS & ACCESSORIES & Subtotal **	10 24 25 24	112 165 82 99	Flant HLFC Ion Chromatograph Experiment Control Computer System Motion Analysis System Animal Biotelemetry System	<u>e</u>
** CONVERTERS CONVERTERS CONVERTERS CONVERTERS	- 4	168 169 163	CELSS Test Facility Gas Grain Simulator Test/Checkout/Calibration Instrumentation	
CONVERTERS CONVERTERS CONVERTERS CONVERTERS ** Subtotal **	ត្តត្តម្	106 113 112 99	Neck Baro-Cuff Blood Gas Analyzer Flant HLFC Ion Chromatograph Animal Blotelemetry System	N
** DETECTORS DETECTORS DETECTORS DETECTORS	و 13 13	191 113 113	Inventory Control System Elood Gas Analyzer Flant HLFC Ion Chromatograph	

-

•

Fage No.	05/30/89

M

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

-

-

~

-

~

-

	Selection Ass	Juausa		
REPRESENTATIVE LIST OF FUNCTIONS AND ASSEMBLIES	FRIORITY # OF SBI HW. ITEM	30 H H #	SBI HARDWARE NAME	COUNT
DETECTORS DETECTORS ++ Subtotal ++	25	147 99	Head/Torso Phantom Animal Biotelemetry System	
** DISPLAYS-TKANSDUCERS DISPLAYS-TKANSDUCERS DISPLAYS-TRANSDUCERS DISPLAYS-TRANSDUCERS DISPLAYS-TRANSDUCERS DISPLAYS-TRANSDUCERS	11 15 25 25	163 117 99 109	Test/Checkout/Calibration Instrumentation Flant HLPC Ion Chromatograph Head/Torso Fhantom Animal Biotelemetry System Venous Pressure Transducer/Display	0
** Subtotal **				4
** ENVIRONMENTAL CONTROL ENVIRONMENTAL CONTROL	- 12 - 12 - 13 - 13 - 13 - 13 - 13 - 13	168 169 174 145 163 147 147	CELSS Test Facility Gas Grain Simulator Force Resistance System Automated Microbal System Test/Checkout/Calibration Instrumentation Blood Gas Analyzer Head/Torso Fhantom Animal Biotelemetry System	0
** FLUID HANDLING FLUID HANDLING FLUID HANDLING FLUID HANDLING FLUID HANDLING FLUID HANDLING FLUID HANDLING FLUID HANDLING ** Subtotal **	20 21 21 28	145 113 138 138 138 138 138	Automated Microbal System Blood Gas Analyzer Chemistry System Hematology System Sample Freparation Device Cell Handling Accessories	0

32.

Page No. 05/30/89

-

4

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

-

KEPRESENTATIVE LIST OF FUNCTIONS AND ASSEMBLIES	FRIORITY # OF SBI HW. ITEM	M 1 #	SBI HARDWARE NAME	COUNT
** FREEZERS FREEZERS FREEZERS FREEZERS ** Subtotal **	1 19 20	168 115 138	CELSS Test Facility Chemistry System Hematology System	M
** GAS HANDLING GAS HANDLING GAS HANDLING GAS HANDLING GAS HANDLING	- 4 9	168 169 162	CELSS Test Facility Gas Grain Simulator Lab Materials Packaging & Handling Equipment	
GAS HANDLING GAS HANDLING GAS HANDLING GAS HANDLING GAS HANDLING GAS HANDLING GAS HANDLING ** Subtotal **	11 15 30 31 31 31	113 63 57 111 111	Blood Gas Analyzer Flant HLPC Ion Chromatograph Fulmonary Gas Cylinder Assembly Bag-in-Box Flant Gas Cylinder Assembly Gas Cylinder Assembly	D
** MASS SPECTROMETERS MASS SPECTROMETERS MASS SPECTROMETERS MASS SPECTROMETERS MASS SPECTROMETERS MASS SPECTROMETERS	1 1 2	169 163 61	Gas Grain Simulator Test/Checkout/Calibration Instrumentation Mass Spectrometer Plant Gas Chromatograph/Mass Spectrometer	
<pre>** Subtotal ** ** MICROBIAL MONITORING MICROBIAL MONITORING MICROBIAL MONITORING ** Subtotal **</pre>		168 145	CELSS Test Facility Automated Microbal System	er → ~ ()
** MOTORS MOTORS	1	168	CELSS Test Facility	-

33

.

.

Page No. 05/30/89

ល

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

KEPRESENTATIVE LIST DF FUNCTIONS AND ASSEMBLIES	FRIORITY # OF SBI HW. ITEM	01 ₩	SBI HARDWARE NAME	COUNT
MOTOKS MOTOKS MOTOKS ** Subtotal **	12 2	169 106 112	Gas Grain Simulator Neck Baro-Cuff Plant HLPC Ion Chromatograph	4
** POWER SUPPLY POWER SUPPLY POWER SUPPLY POWER SUPPLY POWER SUPPLY POWER SUPPLY POWER SUPPLY	28532 I 2 2	168 169 163 165 105 113 112 99	CELSS Test Facility Gas Grain Simulator Test/Checkout/Calibration Instrumentation Neck Baro-Cuff Blood Gas Analyzer Flant HLFC Ion Chromatograph Animal Blotelemetry System	N
** FUMPS PUMPS FUMPS FUMPS FUMPS ** Subtota] **	- 2 2 5	168 169 106 112	CELSS Test Facility Gas Grain Simulator Neck Baro-Cuff Plant HLPC Ion Chromatograph	***** *
** RADIATION HANDLING RADIATION HANDLING RADIATION HANDLING RADIATION HANDLING RADIATION HANDLING	10 2	168 169 162	CELSS Test Facility Gas Grain Simulator Lab Materials Fackaging &	
RADIATION HANDLING RADIATION HANDLING RADIATION HANDLING ** Subtotal **	11 16 32	163 147 130	Test/Checkout/Calibration Instrumentation Head/Torso Phantom Cell Harvestor	0 0
** RECORDERS RECORDERS	1	168	CELSS Test Facility	1

Table 5.2-	3 "Vital" Natab ase Lis Selection As	ting fa sesment	r Commonality Sample	
KEFRESENTATIVE LIST OF FUNCTIONS AND ASSEMELIES	FRIORITY # OF SBI HW. ITEM	ма Н #	SBI HARDWARE NAME	COUNT
RECORDERS	0	169	Gas Brain Simulator	
RECORDERS	- 0 -	74 1 45	Force Kesistance Vystem Automated Mirrobal System	
KELURDEKS BELDEDERS	11	163	Test/Checkout/Calibration	•
	a 9		Instrumentation	
RECORDERS	12	106	Neck Baro-Cuff	-
RECORDERS	16	147	Head/Torso Phantom	-
RECORDERS	24	82	Motion Analysis System	
RECORDERS	25	66	Animal Blotelemetry System	- ⁻ -
RECORDERS ** Subtotal **	67	à	bag-1n-box	- 0
				•
** SANPLE PREF. ANIMAL	ţ			-
SAMPLE PREF. ANIMAL	4	161	Inventory Control System	
SAMPLE FREP. ANIMAL	10	162	Lab Materials Packaging &	-
		1	Handling Equipment	•
SAMPLE FREP. ANIMAL	21	4 Y	Sample Preparation Device	-
SAMPLE PREP. ANIMAL	25	66	Animal Biotelemetry System	-
** Subtotal **				. 4
AR ONGILLE FACT, OUTING COMELE DECED HIMON	7	145	Automated Microbal System	1
	00	138	Hematoloov Sväten	-
CAMBIE DEED HIMAN	20	46	Sample Frenaration Device	-
SAMPLE PREP. HUMAN	28 28	129	Cell Handling Accessories	-
SAMPLE PREP. HUMAN	32	130	Cell Harvestor	-
** Subtotal **				נע
** SANPLE PREF. FLANT				
SAMPLE PREF. PLANT	-	168	CELSS Test Facility	-
SAMPLE PREP. PLANT	ы	169	Gas Grain Simulator	-
SAMPLE PREP. FLANT	6	161	Inventary Control System	-
SAMPLE PREP. PLANT	10	162	Lab Materials Packaging &	-
	u •		Handling Equipment Start ULPC Inc. Chromatorrach	-
SAMPLE FKEP. PLANI			Plant Gas Chromatooranh/Mass	•
SAMPLE PREP. PLANI	D		Soctrometer	•

35

.

-0

Fage No. 05/30/89

~

-

-

-

1

~

-

~.

-

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

REFRESENTATIVE LIST	FRIORITY # OF SBI HW, ITFM	MH	SBI HAKDWAKE NAME	COUNT
UF FUNCTIONS HAW ASSEMBLIES		*		
CC COURDO	2	169	Gas Grain Simulator	7
RELUNDENS	I -C	74	Force Resistance System	-
KELUKUEKS) -	145	Automated Microbal System	1
KELUKUEKS		163	Test/Checkout/Calibration	-
KECURDERS			Instrumentation	
	12	106	Neck Baro-Cuff	-
KELUKUEKS		147	Head/Torso Phantom	-
KECUKDEKS		5	Motion Analysis System	-
RECORDERS	24 7 C	10	Actional Richalametry System	-
RECORDERS	6 7		Filther Bluck there is a second	
RECORDERS	29	10	Hag-1n-Box	-
** Subtatal **				10
** SAMPLE PREP. ANIMAL				-
SAMPLE PREP. ANIMAL	с	161	Inventory Lontrol Lineare	4
SAMPLE PREP. ANIMAL	10	162	Lab Materials Packaging & usodiino Eminaent	-
		1		-
SAMPLE PREP. ANIMAL	21	4 0 4	Sample Freparation Device Animal Biotelemetry System	
SAMPLE FREP. ANIMAL	P7	•		
** Subtotal **				4
** SAMPLE FREF. HUTHN Same f Dref Himan	7	145	Automated Microbal System	-
CONFLETENCE FULMON	30	138	Hematology System	-
CAMPIFICE FACT. HUMAN	21	34	Sample Freparation Device	
CAMPIFIC FALLS THOMAS	28	129	Cell Handling Accessories	-
SMITLE FREE HUMAN	32	130	Cell Harvestor	1
** Subtotal **				Ω
TING 12 CONCLE COLOR				
THUS STORE STORE STORES	-	168	CELSS Test Facility	-
SAMPLE FRET. TLAN	• •	169	Gas Grain Simulator	-
SAMPLE TAGT. TLANI	10	161	Inventory Control System	-
	. 4	147	iah Materials Packaping &	-
SAMPLE PREF. PLANI	2		Handling Equipment	
CAMPLE DEEP. PLANT	15	112	Plant HLPC Ion Chromatograph	-
	18	011.	Plant Gas Chromatograph/Mass	-
	1		Spectrometer	

Fage No. 05/30/89

5

Natahase Listing for Commonality Sample -ł C

~

~

Table 5.2-5 alda	selection Ass	esment	•	
REPRESENTATIVE LIST OF FUNCTIONS AND ASSEMBLIES	FRIORITY # OF SBI HW. ITEM	3G #	SBI HARDWARE NAME	COUNT
SAMPLE PREP. PLANT SAMPLE PREP. PLANT ** Subtotal **	20 30	34	Sample Freparation Device Flant Gas Cylinder Assembly	
** SCINTILLATION COUNTER SCINTILLATION COUNTER SCINTILLATION COUNTER SCINTILLATION COUNTER SCINTILLATION COUNTER SCINTILLATION COUNTER ** Subtotal **	32 11 9 S	126 163 150	Scintillation Counter Inventory Control System Test/Checkout/Calibration Instrumentation Cell Harvestor	
** STORAGE LOCKER STORAGE LOCKER STORAGE LOCKER STORAGE LOCKER STORAGE LOCKER STORAGE LOCKER ** Subtotal **	23 30 31	169 62 111 119	Gas Grain Bimulator Fulmonary Function Equipment Stowage Assembly Flant Gas Cylinder Assembly Gas Cylinder Assembly	
** TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING	-06-1	168 169 161 161	CELSS Test Facility Gas Grain Simulator Inventory Control System Test/Checkout/Calibration Instrumentation	
TEMP. PRESS. HUMIDITY MONITORING TEMP. PRESS. HUMIDITY MONITORING	12 16 29 29 29 29	106 113 147 99 57	Neck Baro-Cuff Blood Gas Analyzer Flant HLPC Ion Chromatograph Head/Torso Phantom Animal Biotelemetry System Bag-in-Box	

** THERMAL/SHOCK ISOLATION THERMAL/SHOCK ISOLATION

0-

10

-

Inventory Control System

161

8

Page No. 05/30/89

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

KEFKESENTATIVE LIST OF FUNCTIONS AND ASSEMBLIES	FRIORITY # OF SB1 HW. ITEM	м П Н Т	SBI HARDWARE NAME	COUNT
THERMAL/SHOCK ISOLATION	15	112	Flant HLPC Ion Chromatograph	-
THERMAL/SHOCK ISOLATION	1	168	CELSS Test Facility	1
THERMAL/SHOCK ISOLATION	ы	169	Gas Grain Simulator	1
THERMAL/SHOCK ISOLATION	11	163	Test/Checkout/Calibration Instrumentation	-
THERMAL/SHOCK ISOLATION ** Subtotal **	25	66	Animal Biotelemetry System	.

*** Total ***

Page No. 05/30/89

Modularity Candidate Table 5.2.1 Database Listing of

		Sample	Set		
Item # Prioritized by Mass	HW Item #	Hardware Item Name	Sufficient Data Available	Modularity	Modularity Confidence Level
- 0	168 148	CELSS Test Facility	Yes	Р. Г. Т. +	High
4 10	126	set of all simulator Scintillation Counter	са. Үев	l ten	High .
~ ~	145	Automated Microbal System	Yes	Item	High
11	161 163	Inventory control System Test/Checkout/Calibration	Yes Yes	ltem Item	High High
		Instrumentation			i
1.2	106	Neck Baro-Cuff	Yes	Item	High
14	61	Mass Spectrometer	Yes	£	LOW
15	112	Plant HLFC Ion Chromatograph	Yes	ΡL	High
17	63	Fulmonary Gas Cylinder	Yes	a.	Low
		Assembly			
18	110	Flant Gas Chromatograph/Mass	Yes	ЪГ Н	Low
		Spectrometer			
	165	Experiment Control Computer Svstem	Үев	Item	High
р СМ	59	Pulmonary Function Equipment	Yes	ů	Law
		Stowage Assembly			
29	57	Hag-in-Box	Yes	<u>.</u>	Low
30	111	Flant Gas Cylinder Assembly	Yes	Ŀ.	Low

. 38

Fu	nction/Assembly H/W st from Table 5.4.2	Possible Number of SBI H/W items with Common Functions/Assemblies	Percent Cost Decrease
1	Aerosol Generator	11	0
2	Amplifiers	6	51-59
3	Automation/Robotics	6	51-59
4	Cameras/Video	5	47-55
5	Centrifuge	4	43-51
6	Computers & Accessories	10	59-66
7	Converters	7	54-61
8	Detectors	5	47-55
9	Displays-Transducer	55	47-55
10	Environmental Control	88	55-63
11	Fluid Handling	6	51-59
12	Freezers	3	37-43
13	Gas Handling	9	57-65
14	Mass Spectrometer	4	43-51
15	Microbial Monitoring	2	25-31
16	Motors	4	43-51
17	Power Supply	7	54-61
18	Pumps	4	43-51
19	Radiation Handling	6	51-59
20	Recorders	10	59-66
21	Sample Prep Animal	4	43-51
22	Sample Prep Human	5	47-55
23	Sample Prep Plant	8	55-63
24	Scintillation Counter	4	43-51
25	Storage Locker	4	43-51
26	Temp.Press.Hum. Monitor	10	59-66
27	Thermal/Shock Isolation	6	51-59

Table 5.3.2Commonality List of Functions/Assemblies

6.0 Conclusions

6.1 Discussion

There appears to be a potential cost savings for packaging (modularity) the various hardware items into groups of related activities and then have these supervised by one organization. The optimum case is where identical items can serve multiple purposes and be controlled and standardized by a single specification. The utilization of common components will enhance modularity and standardization across all systems and result in design and operational cost savings. Modularization/commonality should only be considered after assurance that all candidate hardware items will provide the performance, reliability, safety, energy efficiency, and can be worked within the program milestones as if they were developed as unique.

During the early phase of a conceptual design there may be little cost savings (may even add cost) resulting from commonality. However, in the later phases these costs would more than balance out by the elimination of duplicate design activity. These cost saving from commonality could possibly be increased substantially when other programs (i.e. CHeC etc) are considered.

6.2 Implementation Guidelines

- Use commonality as extensively as possible, but use it on only two applications if only two are available. The savings is substantial.
- To assess savings, use realistic learning factors. All SBI elements will be subject to some degree of learning factor.
- Consider minor weight penalties as acceptable for purposes of implementing common modules in design.
- Look outside SBI at CHeCs, etc., to broaden the opportunity to save cost.

6.3 Other Considerations

This trade study was limited to only SBI hardware for modularity and commonality. Future studies should consider Crew Health Care System (CHeC), Extended Crew Operations (EDCO) and other Life Science activities. The potential cost savings from having common modules/components throughout all of these systems is substantial. The cost reduction for spares, maintainability, transportation, packaging, storage, power requirements, crew training, and other potential cost drivers should be considered in all future studies.

.

		UNIT HARD	WARF PA	RAMETERS
H/W ITEM HARDWARE ITEM NAME *	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
1.8 METER CENTRIFUGE FACILITY (1)				
SPECIMEN SUPPORT GROUP (1A) 1 1.8 M Centrifuge	υB	2.40 0.96	1100	1500 2500
2 Equipment Washer/Sanitizer 3 Lite Sciences Glove Box (Copy 1 of 2)	3 3 0	0.96	350 200	800 500
4 Modular Habitat Holding System 5 Plant Growth Module	00	0.10	50 50	550 220
6 Primate Module 7 Rodent Module	J U	0.07	40	230
BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2)				
BIOWASTE COLLECTION & MONITORING GROUP (2A) 8 Fecal Monitoring System (24 Hr) 9 Urine Monitoring System (24 Hr)	ш ш	0.12 0.20	.25 60	50 50
BIOLOGICAL SAMPLE STORAGE GROUP (2B)	M	70.0	19	140
10 Freeze Dryer	8 3	0.01	120	300
11 Freezer (-20 deg. C)	\$ 3		120	300
12 Freezer (-70 deg. C)	: 3	60.0	20	0
13 Freezer Cryogenic (-130 ueg. c) w comp 14 Radiation Shielded Locker (Copy 1 of 2)	33	0.20 0.48	80 120	0 300
				•
				Page 1 of 1

The Andrew C=1 & CFP_S=SBI, E=EDCO, W=WP-UI

LIFE SCIENC	SES HARDWARE LIST FOR THE SPACE STATION	FREEDON	A ERA	Decem	1988
			UNIT HARDWI	ARE PARAN	AETERS
H/W ITEM HAR	DWARE ITEM NAME	SOURCE	VOLUME	MASS P	OWER Wattel
#		CODE	(cu. m)	1 1 /6x)	
BIOLOGICA	L SAMPLE MANAGEMENT FACILITY (2), (con'l)	~			
	COLLECTION AND PROCESSING GROUP (2C)				(
SAMPLE	COLLECTION AND TROCEDONIC AND TROCEDONICONIC AND TROCEDONICA AND TROCEDONIC AND TROCEDONIC	S	0.03	8	0
16 Anim	lal lissue blopsy Equipment	S	0.02	•	0
17 Bloo		3	0.15	40	450
18 Cen	irifuge Retrigerated	ш	0.09	26	200
19 Cen	trifuge Standard Lab	3	0.01	0	34
20 Digi	tal Thermometer	; ц	0.01		0
21 Drug	g Administration Equipment	ט נ	0.06	TBD	180
22 Elec	trofusion Device	v a	0.02	4	0
23 Fixe	tion Unit ·	53	0.48	80	100
24 Flui	d Handling Tools/System	: 3	0.96	300	700
25 Lab	oratory Sciences Workbench	: 3	0.96	350	800
26 Life	Sciences Glove Box (Copy 2 01 2)	: >	0.25	80	200
27 Mic	roscope System (Stereo Macroscope Subset, Cop)	: در ا	0.01		0
28 Mu:	scle Biopsy Equipment	ი ი	0.01	5	0
29 Per	fusion & Fixation Unit	ی ر <u>م</u>	0.05	10	50
30 Pla	nt Care Unit	<u>م</u> ا	0.01	4	20
31 Pla	nt Harvest/Dissection Unit	, LL.	0.01	2	0
32 Rad	Jioimmunoassay Prep Device	l v	-0-0-0-	t i2	0
33 Sal	iva Collection Unit	ی د	0.17	22	150
34 Sai	mple Preparation Device	, ц	0.02	22	0
35 Shi	elded Isotope Container	3	0.01	4	20
36 Sp	ecimen Labeling 1001S/Uevice	3	0.06	20	0
37 Su	rgery/Dissection 1001s	S	01,005	100 S 081	0 - 15
38 50	ear Collection Device as: C=1 8 CFP, S=SBI, E=EDCO, W=WP-01				age 2 of 10

-

.

~

			UNIT HARD	WARE PA	RAMETER
× ۳ ۳ *	HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
	GICAL SAMPLE MANAGEMENT FACILITY (2), (con	().			
ROI	ENT SUPPORT GROUP (2D)	ď	0.01	e	0
39	CO2 Administration Device	o 0.	0.03	10	50
40	Rodent Blood Collection System	ى م	0.01	2	50
41	Rodent Caudal Vertebrae Therma Device (VVVV)	s S	0.01	4	0
42		Ś	0.01	e	0
43	Rodent Hestraint	S S	0.01	e	0
44	Hodent Surgery Plationin	S	0.01	ო	0
4 5 0		S	0.03	10	50
46	Hodent Urine Collection Ander A	U	0.03	10	0
47	Rodent Veterinary Unit	o	5) -	
РВ	MATE SUPPORT GROUP (2E)	Ċ	0.05	~	140
48	Primate Blood Collection System	n c		•	
49	Primate Handling Equipment	n u	0.05	- ๙	140
50	Primate LBNP Device	n c		, ע	C
51	Primate Surgery Platform	n c		י ע	
52	Primate Surgery/Dissection Unit	0 0			14
53	Primate Urine Collection System	n c	0.0		
54	Primate Veterinary Unit	n	0.00	2	
5		ر. م	0.05	2	Ο

-

source codes: C=1.8 CFP_S=SRI_F=FDCO_W#WP-01

Page 3 of 10

	LIFE SCIE	NCES HAHUWAHE LISI FON THE SFACE STATE				
	M/H			UNIT HARDWA	ARE PARA	METERS
,	ITEM HA	ARDWARE ITEM NAME	SOURCE CODE	VOLUME N (cu. m)	(kg)	(watts)
	BIOINSTR	NUMENTATION & PHYSIOLOGICAL MONITORING	FACILITY	(3)		
	PULMC	DNARY ANALYSIS GROUP (3A)	•		-	c
	56 Ba	ag Assembly	S	0.01	-	5 0
			ა	0.15	19	0
	37 De	ag-III-uov	ш	0.01		0
	08 20 20	uppier necoraei 	ပ	0.08	13	100
	нц 66.		ŝ	0.01	с Э	30
	60 Mi) <i>(</i> .	-0-02.087	40405	100 200
	61 Mi	ass Spectrometer) (0 30 751	00	C
	62 Pu	ulmonary Function Equipment Stowage Assembly	n		20	
	63 PL	ulmonary Gas Cylinder Assembly	ŝ	0.03	00	.
		abraathing Assembly	ഗ	0.02	-	0
		otromotry Accombly	S	0.01		0
			S	0.01	2	0
	66 S)	yringe (3 Liter Calibration))		•	
	ISTHY	ICAL MUNITURING GROOT (34)	c,	0.04	16	35
	67 A) (ľ.	0.02	1 00 /	0
	68 A	UIDIODOMBILIC MARANIAIIAINA JANANA	> 3	0.15	50	150
	69 0		: v:	0-06 015	780-76	180 /30
	2 C	compliance Volumometer	ۍ د <u>.</u>	0.06	TBD 2	180
) LL	0.01	2	20
	/2 E		1 11	0.01	-	10
	/3		1 0.	0.40	70	100-220
	1 L L		ی ر <u>ر</u>	0.03,003	TBD 2	TBD Bat. (
	1 C / 7 C /	-undus vaimera Soniomotor And Berorder	ш	0.01	2	25
					ι.	ann 4 nf 10
		LITTIN A DIVED C.CRI F.ENCO W.W.11			•	

LIFE S	CIENCES HARDWARE LIST FOR THE SPACE STATION	FREEDOI	M ERA	Dece	mber 1988	
			UNIT HARDW	ARE PAR	AMETERS	
H/W ITEM	HARDWARE ITEM NAME	SOURCE		MASS (ka)	POWER (watts)	
# BIOIN	STRUMENTATION & PHYSIOLOGICAL MONITORING F		(con't)	78.1		
Hd	YSICAL MONITORING GROUP (3B) (con't)	(
77	Hard Tissue Imaging System	s o	0.29	001		
7.8	Mass Calibration Unit	s S	0.01	N C		
<u>р</u> ,	Mass Measurement Device-Body	ш	0.65	5 1 1	0 u	
	Mase Massurament Device-Micro	3	0.08	11		
) ,	Mass Messurement Device-Small	3	0.08	17	15	
α - α	Mass Measurement Correction	S	0.05	20	100	
82	Motion Analysis System	S	0.01	3	30	
83	Plethysmograph Measuring System	s S	0.96	300	800	
84	Soft Tissue Imaging System	ი ი	0.01.0002	180- <i>.</i> 06	O Bat NP	~
85 86	Lonometer . Video Svstem	ш	0.10	30	300	
5						
NE	UROPHYSIOLOGICAL ANALYSIS GROUP (3C)	(c	c	
87	EEG Cao	S -	0.01			
. 8 8 8 8	FFG Signal Conditioner	S	0.01	2	20	
	ctodrode Impedance Meter	ш	0.01	-	0	
0 0	Electrone Impedance more	ш	0.01	2	20	
ייכ		ш	0.09	11	120	
- (Neurovesituurar ECON Martinessituurar Economic Interface Rox	ш	0.01	2	20	
2.6	Nourovestibular netitiet intertace box	ш	0.04	13	110	
5.0	Neurovestibular neitillet Assertaint	ш	0.01	2	20	
4 U 0	Neurovesuoular neuros nosuam Marriantina Catalinetia Stimulus	ш	0.01	2	20	
6 0 0	Neurovestibular Optoning of Jaminus	ш	0.12	38	220	
0 r 0	Neurovesubular notating ontan Cubicat Doctroint System	ш	0.05	18	0	
7 E 8 D	Visual Tracking System	S	0.01	2	20	
>					Page 5 of 10	

		IINIT HARDY	NARE PAF	AMETERS
H/W Item Hardwarf Item Namf	SOURCE	VOLUME	MASS	POWER
	CODE	(cu. m)	(kg)	(watts)
BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING	FACILITY	(con't)		
CARDIOVASCULAR GROUP (3D)				
99 Animal Biotelemetry System	S	0.05	20.	100
100 Blood Pressure And Flow Instrumentation	S	0.06	20	200
101 Cardiodynamic Monitor	S	0.02	4	150
100 Electrocardinoranh (FCG)	S	0.01	2	20
102 Electrocardingtin (200) 103 Halter Berorder	S	0.01	2	0
104 Human Rintelemetry System	ш	0.05	17	140
	ULATOR E	0.16	20	55
106 Nack Barn-Cuth ·	S	0-10-132	-1BD 4/5.	2 TBD- 145
107 Physiological Hemodynamic Assess Device	ш	0.05	18	100
108 Illtraconic Imagina System	3	0.20	70	600
109 Venous Pressure Transducer/Display	S	0.05	20	100
DI ANT MONITORING GROUP (3E)			•	
110 Plant Gas Chromatonraph/Mass Spectrometer	S	0.20	25	100
111 Plant Gas Cvlinder Assembly	S	0.09	19	0
112 Plant HPLC Ion Chromatograph	S	0.12	40	200

.

-

-

-

-

-

3

source codes: C=1.8 CFP, S=SRF F=FDCO, W=WP-01

Page 6 of 10

M/M		UNIT HAR	WARE PA	RAMETERS
ITEM HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
ANALYTICAL INSTRUMENTS FACILITY (4)				
BIOLOGICAL SAMPLE ANALYSIS GROUP (4A)			×	
113 Blond Gas Analyzer	S	0.13	45.	250
114 Chemistry Analysis System	ш	0.10	30	200
115 Chemistry System	S	0.08	23	100
116 Continuous Flow Floctrophoresis Device	S	0.06	TBD	TBD
117 FLISA Reader	ш	0.02	9	100
118 Gas Chromatouraph/Mass Spectrometer	3	0.20	25	100
119 Gas Cvlinder Assembly	S	0.09	19	0
120 Hinh Performance Liquid Chromatograph	3	0.12	40	100
121 Inclubator (35-65 deg C Coov 1 of 2)	3	0.16	50	400
122 Osmometer	ш	0.02	2	20
123 nH Meter/Ion Specific Analyzer	3	0.02	7	5
124 Qualitative Reagent Strip And Reader	S	0.03	•10	100
125 Badioimmunoassav	ш	0.05	20	0
126 Scintillation Counter	S	0.24	06	500
127 Spectrophotometer (UV/VIS/NIR)	3	0.11	40	300
128 Urine Analysis System	ш	0.16	55	400
CELL ANALYSIS GROUP (4B)				ļ
129 Cell Handling Accessories	S	0.05	20	50
130 Cell Harvestor	S	0.06	19	50
131 Cell Perfusion Annaratus	S	0.06	180	TBD
132 Centrifunal Incubator (5% CO2 @37 deg C Copy 1 of 2)	ш	0.16	40	300
133 Centrifugal Incubator (5% CO2 @37 deg C Copy 2 of 2)	ш	0.16	40	300
				Pana 7 of

)

LIFE SCIENCES HARDWARE LIST FOR THE SPACE S	STATION FREEDOM	I ERA	Dec	em. J 1988
		INIT HARD	WARE PAR	AMETERS
H/W	SOURCE	VOLUME	MASS	POWER
ITEM HARDWARE ITEM NAME	CODE	(cu. m)	(kg)	(watts)
ANALYTICAL INSTRUMENTS FACILITY (4) (con't)				
CELL ANALISIS UNCUT (44) (2011)	S	0.01	5	20
134 Centrifuge Hematocrit	n cr	0.01	0	20
135 Chromosomal Slide Preparation Device	5 V	0.05	TBD	TBD
136 Fluoromeasure Probe	уμ	0.24	36	500
137 Flow Cytometer	ר איז ר	0.07	23	200
138 Hematology System	ט כ	0.25.03	70-11-4	500
139 Image Digitizing System	03	0.40	100	400
140 Microscope System (Optical & Stereo	~	0 7.0	•	
Macroscope Subsets)	ц	0.01	2	20
141 Mitogen Culture Device	U U	10.0		0
142 Skin Window Device	ŋ Ľ	0.01		20
143 Slide Preparation Device	L	- 0 .0	ı	
			•	

-

-

~

L

J

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

Page 8 of 10

H/W		UNIT HARDV	VARE PAR	AMETERS
ITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER
*	CODE	(cu. m)	(kg)	(walls)
LAB SUPPORT EQUIPMENT FACILITY (5)				
ENVIRONMENTAL MONITORING & CONTROL GROUP (5A)				
4.4 Accelerometer Subsystem	3	0.10	30	200
144 Accelerations of Sustem	S	0.20	70.	5 00 / /0
14.3 Automater Passive	3	0.09	35	0
	S	0.12	TBD 32	0
14/ HEAU/ 10130 FIRMING.	3	0.16	50	400
146 Illeubator (33-03 deg o Oop) = 0 =/	S	0.01	2	0110 3
149 MICIOUAL FIEDALANCE OJSCOM 1 ro Dodining Chielded Locker (Conv. 2 of 2)	3	0.20	80	0
130 Radiation Stitetee Looker (Oop) + 0 +/	S	0-01 00S	54.14	0
151 Houle: Microbiology All Campion	i v.	0.01	Ω.	0
152 Solid Sorbert All Saturped) <i>(</i> ,	0.03	10	20
153 Spectrometer (Frotonizmeavy ton)	ی ا	0-01.00/	180 <i>Z</i>	0
155 Total Hydrocarbon Analyzer	S	0.20	70	250
(FB) (FB)			•	
HAHDWAHE MAIN LENANCE UNOUT (JU)	M	20.0	10	100
156 Battery Charger	\$ 3	0.30	100	0
157 Camera Locker	: 3	0.20	70	500
158 Cleaning Equipment	: 3	0.06	20	50
159 Digital Multifieter	: 3	0.10	30	0
LOGISTICS CONTROL GROUP (5C)	ن ا		7.0	500
161 Inventory Control System	n v.	0.20	70	500
162 Lab Materials Fackaging & Handing Equipment 163 Test/Checkout/Calibration Instrumentation	N (0.20	70	200
source codes C=1 & CFP_S=SBL E=EDCO, W=WP-01				Page 9 of 1

}

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION	FREEDON	A ERA	Decer	r. ,r 1988
		UNIT HARDW	IARE PARA	METERS
H/W ITEM HARDWARE ITEM NAME #	SOURCĘ CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
CENTRALIZED LIFE SCIENCES COMPUTER FACILITY (6)				
LIFE SCIENCES DATA GROUP (6A) 164 Digital Recording Oscilloscope 165 Experiment Control Computer System 166 Multichannel Data Recorder 167 Voice Recorder	м м м м м м	0.03 0.05 0.09 0.01 -003	10 20 30 4-26	100 400 150 -0- Bat. OP
CLOSED ECOLOGICAL LIFE SUPPORT FACILITY (7)				
FEAST GROUP (7A) 168 CELSS Test Facility	S	1.92	1000	1300
EXOBIOLOGY FACILITY (8)			•	
GAS/GRAIN GROUP (8A) 169 Gas Grain Simulator	လ	1.92	800	1500
				age 10 of 10

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

From Neal Jockson 5-13

Baselined: December 1988

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

1

						UNIT HARDY	VARE PI	ARAMETERS	œ
MIN			UNIT HARD	WARE PA	RAMETERS	UPDATED:	J-Mer	BY:DRP	ш Ш
ITEM	HARDWARE ITEM NAME	OURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	Ś
-		CODE	(cu. m)	(kg)	(walls)	(cr. m)	(FA)	(walls)	•
16	Animal Tissue Blopsy Equipment	S	0.03	80	0				< ·
17	Blood Collection System	S	0.02	-	0				- ·
22	Electrolusion Device	S	0.06	8	081 081				-
23	Fixation Unit	s	0.02	4	0				~
28	Muscle Blopsy Equipment	S	0.01	-	0				4
28	Pertusion & Fixation Unit	S	0.01	2	0				< ·
06	Plant Care Unit	S	0.05	10	50				<
10	Plant Harvest/Dissection Unit	S	0.01	4	20				< ·
93	Saliva Collection Unit	s	0.01	-	0	0.001	0.2	0	-
946	Sample Preparation Device	S	0.17	22	150		;		< .
	Sweat Collection Device	Ø	0.01	1 80	0	0.005	5.05	15	-
	CO2 Administration Device	s	0.01	e,	•				< ·
	Rodent Blood Collection System	S	0.03	10	50	ļ			< •
	Rodant Caudal Vertebrae Thermal Device (CVTD)	S	0.01	2	50				<
	Rodant Guillothe	S	0.01	4	0				< ·
7 V 7 7	Rodon Bestraloj	S	0.01	••	0				< ·
, , ,	Dodon Surrery Plance	S	0.01	e	0				<
	Dodant Surgery Dissection Unit	S	0.01	e	0				< ·
	noden Judae Collection System	s	0.03	10	50				< ·
0 F		s	0.03	10	0				<
	Roden Versinary Juni	S	0.05	2	140				<
4.8	Primale Blood Collection System	ທ	0.01	-	0				<
6) +	Primale Handling Equipriment		0.05	C	140				<
50	Primate LBNP Device	, (0.04	S	•				<
51	Primate Surgery Platform	י נ	0.02	- 40	0				<
52	Primate Surgery/Dissection Unit	טכ	0.01	10	14				<
53	Primate Urine Collection System	ი ს	0.0		Ö				<
54	Primate Veterinary Unit	n u	0.05	2 0	0				<
55	Small Primate Restraint	ט מ	100		0				-
56	Bag Assembly	ט מ	0.15	19	0				-
57	Bag-in-Box	, , ,	0 UB	13	100				-
59	Electronics Control Assembly	, , ,	10.0		30				-
60	Mask/Regulator System	n u	0.02	10	100	0.087	40.7	200	-
61	Mass Spectrometer	, ,	0.10	00	0	0.051	20	0	ر
62	Pulmonary Function Equipment Stowage Assembly	0 0							7
63	Pulmonary Gas Cylinder Assembly	n (0.09	. .					7
64	Rebreathing Assembly	s i	0.02	- •					
65	Spirometry Assembly	s i	0.01	- ‹					
66	i Syringe (3 Liter Calibration)	s ·	0.01	v ,	2 4		16 06	9	
67	Accelerometer And Recorder	S	0.04	-	2				1

rage 1

A.ARC, J=JSC, '=Prime

Photo 1/22/AG

Baselined: December 1986

~

~

~

-

-

~

LIFE SCIENCES MARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

t

.

						UNIT HARDY	IARE PI	AMETERS	
			UNIT HABD	WARE PAP	AMETERS	UPDATED:	J-Mar	BY:DRP	
N H		SOURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	S
ITEM	HARDWARE LIEM NAME	CODE		(ka)	(walls)	(G. J.)	(6x)	(walls)	•
		2000	0.02	Gal	0		1		-
68	Anthropometric Measurement System	0 0	0.05 0 00		Car	0.0152	16	130	٦
70	Compliance Volumometer	n (2		٦
11	Electroencephalomagnalogram (EEMG)	n (0.0	07	100			220	ſ
74	Force Resistance System	<i>ი</i> (CIELL	E E	0.003	2	Battery Op	-
75	Fundus Camera	מ	0.00	96.				-	ר .
11	Hard Tissue knaging System	S	0.29	051))))				-
7.8	Mass Calibration Unit	S	0.01	2				-	- -
	Mation Analysis System	S	0.05	20	001			-	·[-
7 G	plathvemooraph Messuring System	Ø	0.01	0	30				, -
	Soft Tierrie Imaging System	ഗ	0.96	300	800				, -
• u	Toomalar	S	0.01	180	0	0.000226	<u>s</u>		- -
		S	0.01	~	0				· -
20	rro staat fooditioner	S	0.01	2	20				- -
		S	0.01	2	20				- -
86	Visual Fracking System		0.05	20	100				<
66	Animal Biotelemetry System	. 03	0.06	20	200				
100	Blood Pressure And Flow Instrumentation	v (0.02	4	150				-
101	Cardiodynamic Monitor	ט כ	0.01	2	20				-
102	Electrocardiograph (ECG)	, ,	0.01	0	0				-
103	Holter Recorder	n u	0.0	1BO	180	0.132	45.2	145	-
106	Neck Baro-Cuff	n u	0.05	20	100				-
109	Venous Pressure Transducer/Display	0 0	0.00	25	100				<
110	Plant Gas Chromatograph/Mass Spectrometer	<i>n</i> (0.00	61	0				<
111	Plant Gas Cylinder Assembly	ο (60.0 C F C	01	200				<
112	Plant HPLC Ion Chromatograph	in o	0.12	2 T	250				-
113	I Blood Gas Analyzer	n d			100				-
115	chemistry System	n a	0.00 90	C ET	1BO				-
116	i Continuous Flow Electrophoresis Device	ט מ	00.0	19	0				- -
116) Gas Cylinder Assembly	0 0	0.03	10	100				- -
124	I Qualitative Reagent Strip And Reader	, ,	0.0 V 0	06	500		_		┑┥
126	5 Scintillation Counter	, ,	0.05	20	50				<
126	B Cell Handling Accessories	5 U	0.06	19	50				<
13(0 Cell Harvestor	0 U	0.06	TBO	180				- V
13	1 Cell Perlusion Apparatus	"	0.0	~	20				
13.	4 Centrifuge Hematocrit	<i>ი</i> 0			20				-
13	5 Chromosomal Slide Preparation Device	<i>ი</i>	10.0	TRD	081				
13	6 Fluoromeasure Probe	n u	0.0	5.5	200				- -+
13	8 Hemalology System	n u	10.0 3C 0	202	500	0.03	11.		-
13	9 tmage Digitizing System	n u	100		0				
14	2 Skin Window Device	n	•		-				

Page 2

A ANC I ICC ' Pulma

Baselined: December 1988

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

:

						UNIT HARDY	WARE PI	AMETERS	E
			UNIT HARD	WARE PAI	RAMETERS	UPDATED:	3-Mer	BY:DRP	ш
M/H		SOURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	s
I E M	HARUWARE HEM NAME	CODE		(ka)	(walls)	(cu, m)	(64)	(walls)	٩
			0.20	70	500	0.2	70	110	-
145	Automated Microbic System	י פ	0.12	TBO	0		32		-
147	Head/I orso Phanlom	, ,	100	2	20	0.01	2	110	٦
148	Microbial Preparation System	, a	0.01		0	0.005	1.45		.۲۲
151	Reuter Microbiology Air Samprer	ט כ	0.0	- un	0			•	J
152	Solid Sorbent Air Sampler	טכ		10	20			-	7
153	Spectrometer (Proton/Heavy Ion)	טכ	0.0	CIEL	0	0.001	2	0	-
154	Tissue Equivalent Proportional Counter	, , , , , , , , , , , , , , , , , , ,	. 0.0	2.0	250			-	-7
155	Total Hydrocarbon Analyzer	שימ	0.20	0.2	500				.۲۷
161	Inventory Control System	, a	0.20	10	500				L.A
162	Lab Materials Packaging & Handling Equipment	, ,	0.20	70	200				۲
163	Test/Checkout/Calibration Instrumentation	0 U	0.05	20	400				۲ . ר
165	Experiment Control Computer System	, u	0.0	-	0	0.003	0.26	Banery Op	-
167	Volce Recorder	<i>.</i> .	1 0.0	1000	1300				<
168	CELSS Test Facility	, ,	1 02	BOO	1500				<
169	Gas Grain Simulator	n	70.1	2					

Page 3

Appendix B - Complete SBI Trade Study Bibliography

.

°age No. 1)5/30/89	Annendix B - Campi	lete SBI Trade Studies Bibli	ogr aphy		
LD N AUTHOK	TITLE VOL. NOL.	. PUBLISHER	REPORT/DOCUMENT NUMBER	FUBL ISHER LOCATION	DATE
Still Kozarsky, D.	MUS Inputs	Lockheed Life Sciences Program Office	Lockheed Nemo	Washington, DC	01/19/89
SB102 Kozarsky, D.	Latest Space Station Rack	NASA MSFC		Huntsville. AL.	02/02/89
SBI03 Halt, A.	stuoles PhWG-SS Freedom Assly. Seo. Trial Fyl. Manifest	Fayload Manifest Working Group (PMWG)		Reston, VA.	12/09/88
SBI04 Shanon, J.	Business Fractice Low Cost System Activity	NASA JSC		Houston, TX.	E//71/11
SBIUS NASA	0ff-the-Shelf Hardware Frocurement	NASA JSC	NASA MEMO HB/73-M286	Houston, 1%.	
SB106 NASA	015 Technology Use For Space Shuttle Program	NASA JSC	NASA MEMO	Houston, IA	
SBIU7 NASA	Froposed Space Shuttle Directive On OTS HW.	NASA JSC	NASA MEMD NB/74-L149	Houston, 1X	. 00/20/14
SB108 NASA	Cancellation Of Space Shuttle Directive On DTS	NASA JSC		Houston, IA	
SBIU9 NASA	Agency Balloon Pyl. Util. of Avail. Equip. & Exper	NASA JSC	NASA FLAN 323-50-XX-71	Houston, TX	a//02/20 .
SB110 NASA	Space Shuttle Program DTO/DSO Noncritical Kanuirements Document	Flight Support Equipment Dffice - JBC	NSTS 21096	Houston, TX	. 08/01/88
SB111 NASA	Reference Nission Operational Analysis Document (RMOAD) For The Life Sciences Research	NASA JSC	NASA TM B9604	Houston, T)	(, 02/01/B/
SB112 Breiling, I	Facilities. 3. Cost Kisk Analysis Using Price Nodels	RCA Price Systems		Mooreston, NJ.	09/101/87
SB113 Foyleman, G.Schwart, D.Fonda, M	Gas Grain Simulation Facility: Fundamental Studies of Particle Formation And Interactions	NASA Ames Kesearch Cente	r NASA AKC/555 88-01	maffet Field, CA.	18/10/80

.

Appendix B - Complete SBI Trade Studies Bibliography	TITLE VOL. PUBLISHER REPORT/DOCUMENT PUBLISHER DATE. NO. NUMBER LOCATION	Flight Projects Office JPL JPL D-1489 Kev. Pasadena, 04/30/87 Payload Classification Product Assurance Provisions	Cost Estimate For The PRC Systems Services Huntsville, 06/15/87 Search for AL. Extraterrestrial Intelligence (SETI) Kevised	Space Station Commonality NASA SSPO BSP 30285 Kev. Reston, 09/15/88 Process Requirements Kev.B	Technology Forecasting Rockwell International Anaheim, CA. 04/17/86 Using Frice - H	Classification Of NASA NASA JSC Classification Of NASA NASA JSC Mouston, TX. / / 0ffice Of Space Science And Applications (OSSA) Space Station Fayloads	Life Science Research NASA Ames Life Science Moffet 01/01/86 Objectives And Division Field, CA. Representative Experiments For The Space Station (Green Book)	Medical Requirements Of NASA JSC JSC JSC J013 Houston, TX. 11/30/87 An In-Flight Medical System For Space Station	A Study Of Low Cost TRW Systems Group Contract NASW - Redondo (3/19/89 Approaches To Scientific Experiment Implementa- tion For Shuttle Launched
Appendix	ТІТЬЕ	Flight Projects Offi Payload Classificati Product Assurance Provisions	Cost Estimate For Th Search for Extraterrestrial Intelligence (9 Kevised	Space Station Commun Process Requirement Kev.B	Technology Forecast Using Price - H	Classification Of N Office Of Space Sci And Applications (OSSA) Space Statio Payloads	Life Science Resear Objectives And Representative Experiments For The Station (Green Book	Medical Requirement An In-Flight Medica System For Space Station	A Study Of Low Cost Approaches To Scien Experiment Implemen tion For Shuttle Le And Serviced Automa
Fage No. 2 05/30/89	ID # AUTHOR	SB114 JFL	Skil5 PRC Bystems	SB116 NASA SGPO	SBI17 Webb, D.	SPIIB NASA	SB119 NASA	SB120 NASA	SB121 TKW

•

•-

~

•

•

Fage N 05/30/1	а. 3 89	Appendix B -	Comple	te SBI Trade Studies Bibl	i ography		
# 01	AUTHOR	TITLE	VOL.	PUBL 1SHER	REPORT / DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
59122	LNSC	Low-Cost Frogram Fractices For Future NASA Space Frograms		LNSC	LMSC-D387518	Sunnyvale, CA.	05/30/74
58123	Steward, GMiller, L	Biomedical Equipment Technology Assesment For The Science Laboratory Module		Management and Technical Gervices Company		Houston, TX.	08/01/86
58124	General Electric	WF-3 Commonality Plan		General Electric	NAS5-32000	Fhil ⁷ adelphia , FA	04/22/88
58125	NASA	Microbiology Support Plar For Space Station	-	NASA JSC	JSC-32015	Haustan, 1X.	00/10/40
5B126	NASA	Concepts And Requirement For Space Station Life Sciences Ground Support And Operations	a	NASA JSC	LS-70034	Houston, TX.	04/11/68
59127	NASA	Spacelab Mission 4 Integrated Payload Requirements Document		NASA JSC	SM-SE-03	Hauston, TX.	. 06/01/83
SB128	General Dynamics	Life Sciences Payload Definition And Integration Study	21	General Dynamics	CASD-NAS-74-040	, San Diego, CA.	08/01/74
5 B129	General Dynamics	Life Sciences Payload Definition and Integration Study - Executive Summary	1	General Dynamics	CASD-NAS-74-04	s San Diego, CA.	08/01/74
5B130	NASA	SL-3 Ames Research Cente Life Sciences Payload Familiarization Manual	<u>.</u>	Ames Research Center	ADP-81-50-001	Moffet Field, CA.	02/01/81
SB131	l Koctwell Intl.	EMS Data Data Package 2.3A 54200.2 Methodolog Definition - Commonalit Analysis Trade Study	~ ~	Ruckwell Internation	555 85-0168	Downey, Ca.	10/04/85

e No

05/30/89	Appendix B - Cor	nplete SBI Trade Studies Hibl	i ography		
ID # AUTHOR	TITLE VG	DL. PUBLISHER D.	REPORT/DOCUMENT NUMBER	PUBL ISHER LOCATION	DATE
SBI32 Rockwell Intl.	ENS Data Data Package 2.2B 54201.2, Module Commonality Analysis	Rockwell International	SSS 85-0137	Downey, CA	09/06/85
SB133 General Electric	Space Station Work Package 3 Definition And Preliminary Design Commonality Candidates	General Electric Space Systems Division	DRD - 19	Fhiladelphia , PA	05/10/85
SBI34 Rockwell Intl.	EMS Data Data Package 2.3A 54203.2, Module Outfiting/System Commonality Analysis	Rockwell International	555 85-0158	Dawney, CA	10/28/85
SBIJ5 NASA JSC	Space Station Freedom Human-Oriented Life Sciences Research Baseline Reference Experiment Scenario	JSC- Medical Sciences Space Station Office	Blue Book	Houston, TX.	10/01/88
SBI36 NASA S9PD	Space Station Approved Electrical Electronic, And Electromechanical Parts List	Space Station Frogram Office	SSP 30423 Kev. A	Keston, Virgína	11/15/88
SBIJ7 NASA SSPO	Space Station Program Design Criteria and Practices	Space Station Frogram Office	SSP 30213 Rev. B	Keston, Virgina	07/30/88
SBIJB MDAC	Manufacturing Management Plan	McDonnel Douglas	DR MU-01	Hauston, TX	
SBI39 NASA JSC	July 1988 Fogress Keport On Experiment Standard User Interfaces Study	JSC – Life Sciences Project Division		Houston, TX.	88/10/20
SBI40 Rockwell Intl.	EMS Data D ata Package 2.3A 54207.2, GSE Commonality Analysis	Rockwell International	SSS 85-0099	Dawney, CA	10/04/85
SB141 NASA DSSA	Life Sciences Space Station Flanning Document: A Reference Fayload for The Life Sciences Research Facility	Office of Space Science and Applications	NASA TN 89188	Washington, D.C.	01/01/B6

Fage No.

Page No. 5 05/30/89	Appendix B - Com	plete SBI Trade Studies Bibli	i ogr aphy	
ID # AUTHOR	TITLE VD	L. PUBLISHER	REPORT/DOCUMENT NUMBER	FUBLISHER DATE LOCATION
SBI42 Buroni, A.Pascucci, B	The OBDM test equipment and its goals	ESA		Milan, Italy 10/01/78
SB143 Shiokari, A.	Standarization and 11 Frogram Effect Analysis - Final Report	l Aerospace Corporation		El Segundo, 01/01/75 CA
56144 Huffstetler, W.	6kylab Biomedical Hardware Development	AIAA 20th Annual Meeting		Los Angeles, 08/22/74 CA
68145 Fowell, A.	Commonality Analysis For The NASA Space Station Common Module - 36 IAF Meeting, October 7-12 1985	Fergamon Fress		New York, NY 10/07/85
58146 Anderson, A.	Progressive Autonomy - For Space Station Systems Operation	AIAA		New Yark, NY 06/05/84
SB147 NASA JSC	Life Sciences Remearch Laboratory (LSRL) Human Remearch Facility forSpace Station Initial Operating Configuration (10C) Science Reqts.	NASA JSC	JSC 20799	Hauston, TX 10/01/85
SB148 MDAC	Crew Health Care System (CHec) Development Plan	Mcdonnell Douglas Space Station Co.		Haustan, TX. 01/28/89
SBI49 Minsky, M.	Engines of Creation	Anchor Fress		New York, NY 01/10/86
SBI50 NDAC	Crew Health Care	MDAC	MDC H3924	Houston, 11/01/88 Texas
SBI51 NASA JSC	Columbus Keference Configuration Report	NASA JSC	RP 1213800000	Hauston, TX. 05/31/88
SBI52 NASA HQ	Shuttle/Fayload I/F Definition Ducument for Middeck Accomodations	NASA HC	00012 S1000	Washington, 03/01/88 DC

_

-
Page No. 6 05/30/89	Appendix B - C	omplete SBI Trade (Studies Bibliography		
10 🛊 Author	TITLE	VOL. PUBLISHER 40.	KEPORT/DOCUMENT NUMBER	PUBLISHER DATE LOCATION	
58153	Rack Accomodations Users Manual				~
SBI54 NASA JSC	Mission Integration Plan	NASA JSC	SSP 30000 Appendix D	Hauston, TX. 04/3	0/B6
SB155 Pacheo	Analyzing Commonality in a Syntem	Boei ng	NASA STI Facility	Baltimore, 03/0 MD.	88/10
SBI56 NASA MSFC	Spacelab Configurations				~
SBI57 Rockwell Intl.	Space Shuttle Management Proposal	II Rockwell Intl	. SD 72-SH-50-2	05/1	12/72
6B158 LMSC	Space Shuttle Management Proposal	II LMSC	LMSC-D157364	05/1	12/72
SB159 MDAC	Space Shuttle Frogram Nanagement Froposal	MDAC	EOGOO	05/1	12/72
BBI60 MSFC	MSFC Space Station CER's Report	MSFC	PRC D-2185-H	12/0	01/82
SB161 NASA JSC	CERV larget Costs for Benchmark and Reference Configurations	JSC CERV Dffi	4 U	Houston, TX. 06/1	15/88
SB162 CB0	Cost Eatimating For Air Missles	Congressional Office	l Budget	Washington, 01/0 D.C.	01/83
SBI63 Evans, Jim	Meeting with Jim Evans Technical Assistant, NASA Space and Life Sciences	Eagle Engr.		Houston, TX. 04/	19/89
SB164 Whitlock, R.	JSC Cost Analysis Office	Eagle Engr.		Houston, TX. 04/	11/89
SB165 PRICE	PRICE Users Newsletter	12		10/	01/88
SB166 General Electric	PRICE H Reference Manual				191/10
SB167 NASA JSC	Satellite Services Workshop	14.2 NASA JSC	JSC 20677	Houston, TX. 11/	CB/90,

.

Page No.

÷

Page No. 7 05/30/89	Appendix B - Co	mplete SBI Trade Studies Bibli	Lography		
LD # AUTHOR	TITLE V	OL. FUBLISHER O.	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCAT I ON	DATE
Sbló8 Hamaker, Joe	Telephone interview relating to MSFC history and techniques for cost estimating.	Cost Analysis Branch Chief NSFC		Huntsville, Al.	04/27/89
SB169 Booker, Clef	Fersonal Interview	Man-Systems Division JSC		Houston, TX.	04/04/89
SBI70 Evans, Jim	Fersonal Interview	Life Science Project Division JSC		Hauston, TX.	04/19/89
58171 Heberlig,Jac k	Telephone interview relating to make-or-buy lessons learned from Apollo	International Business Machines (IEM)		Hauston, TX.	03/10/89
68172 Loftus, Joe	Telephone interview relating to make-or-buy history	Assistant Director (Plans) JSC		Houston, TX.	03/14/89
SBI73 Christy, Neil	Telephone interview relating to hardware development student experiments, and make-or-buy			Houston, TX.	03/15/89
68174 McAllister,f red	· Telephone Interview	Man-System Division, JSC		Hauston, TX	03/14/89
60175 Trawbrid ge, Jahn	Interview relating to CHeC make-or-buy	McDonnell Douglas		Houston, TX.	03/17/89
58176 Trowbridg e, Jahn	Personal interview relating CHeC experience to miniaturization, modularity and make-or-buy	McDonnell Douglas		Houstan, TX	. 03/29/89
SBI77 Nagel, John	Personal Interview relating to LSLE make-or-buy experience	Eagle Technical Services		Hauston, TX	03/27/89
SBI78 McFadyen, Gary	Fersonal Interview relating to life science hardware background at JSC	Southwest Kesearch Institute		Houston, TX	, 04/10/89

-

Fage No. B 05/30/89	Appendix B - Co	mplete SBI Trade Studies Bibl:	í ogr aphy		
ID # AUTHOR	TITLE V	OL. PUBLISHER D.	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCAT I ON	DATE
SB179 Booker, Cle	Fersonal Interview - Minaturization on amplifiers, computers and modularity	NASA JSC/SP 341 Man-System Division		Houston, TX.	04/04/89
GB180 McFadyen	Bioengineering on SBI hardware	Southwest Research Institute		San Antonio, TX.	04/06/89
SBIBI Allen, Joe	Fersonal interview - S.S. Life Science AIAA Meeting	Space Industries		Houston, TX.	04/07/89
SBI82 Averner, Maurice	Personal interview on CELSS	NASA HQ. CELSS Coordinator		Washington, DC.	04707789
5B183 Fogleman, G PhD	. Personal interview relating to Gas Grain Simulation Facility	NAGA AMES		Maffet Field, CA.	04/06/89
SBI84 White. Bob	Personal Interview relating to modularity and commonality	NASA JPL		Pasadena, CA.	04/10/89
SB185 Grumm, Rich a rd	Personal interview relating to SBI hardware	NASA JPL		Fasadena, CA.	04/11/89
SBI86 Boeing	U.S. Lab Keview Workshop				• •
SB107 McGillroy,E	. Fersonal Interview on CELSS	NASA AMES		Moffet Field, CA	05/05/89
SRIBB NASA JSC	Life Science Flight Experiments Program Life Sciences Laboratory Equipment (LSLE) Descriptions	NASA JSC	JSC-16254-I	Houston, TX.	09/01/86
SBIB9 Boeing	Space Station Frogram Commonality Plan Draft 3	Boeing	D683-10112-1		10/31/88
SB190 GE Gavt.Servio s	Life Sciences Hardware ce List for the Space Station Freedom Era - Baselined December 1988 Updated 3/22/89	GE Government Services		Houston, TX.	03/22/89

12/30/89	Appendix B - Cc	mplete SBI Trade Studies Bibli	ogr aphy		
ID # AUTHOR		OL. PUBLISHER JO.	REPORT/DOCUMENT NUMBER	FUBL I SHER LOCATION	DATE
66191	NASDA Standard Rack Envelone Study Status	NASDA			•
58192	Spacelab Fayloads Accomodations Handbook	NASA MSFC	SLP/2104	Huntsvillle, Al.	08/16/85
	Station Interface Accomodations for Pressurized and Attached Payloads	NASA		_	62/01/89
56194	Life Sciences Study for the Space Station	Management and Technical Services Co.		Houston, TX	. 08/01/84
58195 Crenshaw, John	Personal Interview with John Crenshaw - Discussion of standarized avoins (mounted on racks) in airlines.			Haustan, TX	. 05/16/89
SB196 Juran, J.M.	The Non-Pareto Principl e Mea Culpa				
SB197 Arabian, D.	Beware Off-the-Shelf Hardware	NASA JSC		Houston, T)	. 10/17//5
SB198 SB198NASA JSC	Experimenting with Baroceptor Reflexes	12 NASA Tech Briefs	No. 11	New York, h	IY 12/01/88

......

. -

~

Appendix C - Cost Assessment Techniques Summary

_

• ...

1.0 Introduction

1.1 Relative Cost Impact Analysis Task

JSC and GE Government Services are developing the SBI hardware cost estimate to be presented to NASA Headquarters. The cost related task in these trade studies is to develop and present factors which assist the cost estimators in using tools to develop the effect of the trade study specialty area (miniaturization, modularity and commonality, and Modified COTS) on SBI cost estimates. The life cycle costs are most important in judging the long term benefits of a new project. However, consideration of life cycle costs requires knowledge of the probable project life, operational use time lines, maintenance concepts, and logistics relationships. These data are not available at the time of these initial trade studies. Therefore, the trade studies address primarily the relative cost impact analysis of the design and development phase of the SBI. Life cycle costs are dealt with on a comparative, subjective basis in order to illustrate the influence of life cycle cost factors on the various trade study subjects.

1.2 Documentation Approach

The application of cost methods as applied to SBI trade studies involves some methods common to all of the studies and others that apply uniquely to a specific trade subject. Therefore, the selected approach to the problem is to deal with cost methods and cost trends in this appendix that is to be a part of each study report. In the cost appendix, subsequent sections of Section 1.0 deal with various methods examined for the trade studies, Section 2.0 defines the cost estimating relationship (CER's) and their factors and sensitivities, and Section 3.0 deals with specific variations and parameters of interest with respect to each trade study. Sections 4, 5 and 6 provide brief discussions of testing, SE&I and project management costs, Section 7.0 life cycle effects, and Section 8.0 summarizes the conclusions.

1.3 Cost Method Overview

Cost methods considered and evaluated in the course of this effort include the basic types listed below:

- a. Detailed cost build-up method. The detailed cost estimate is compiled using estimates from specialists in the various design disciplines and is constructed from a spread of hours required in design, labor rates, overhead and other factors affecting the cost of DDT&E.
- b. General Electric PRICE. The PRICE H model is a sophisticated cost modeling program requiring a variety of inputs including weight, manufacturing complexities, and design complexity plus secondary factors.
- c. Cost estimating relationship (CER's). The simplest cost estimating tools are empirical relationships based primarily on system weight and derived to match past experience on previous programs.
- d. Cost impact analysis methods. Parametric studies to establish and/or to quantify cost drivers and cost trend effects.

The choice between the foregoing alternatives was narrowed to options c and d which are used in combination as described in the balance of this report. Initial SBI cost estimates will be developed in a separate effort using PRICE H. Therefore, the task in the trade studies is to provide data and/or factors which will be helpful in assisting cost estimators in the use of the tools from which the actual estimates will be formulated. A secondary purpose is to develop parametric trend data that will help the reader understand the potential impact of the various trade study subjects on cost, i.e. miniaturization, commonality, and the use of commercial products (COTS) in lieu of new design.

Empirical cost relationships use system weight as the primary factor in deriving development and theoretical first unit (TFU) costs. A series of such relationships can be used to reflect the inherent complexity of different types of space-borne systems, i.e., one relationship for structural or mechanical systems, a second for packaged electronics, and a third for complex distributed hybrid systems. This approach has its roots in past program experience in that the end results are usually compared with past program actual costs and the relationships adjusted to match what has happened on similar system development during their life cycle. References SBI No. 60 and SBI No. 61 were used as a data source for CER's. Also, a discussion was held with the cost analysis specialist at JSC and MSFC (ref. SBI No. 64 and No. 68) as part of the effort to determine whether or not other cost work has been accomplished on the SBI trade study subjects.

As will be seen in the ensuing sections and in the trade studies proper, the results and trends also employ second order effects such as the amount of new design required, the impact of sophisticated technology and alternate materials.

Regardless of how one approaches the subject of cost development or cost trends there are three fundamental principles are involved in evaluating costs, cost drivers and cost trends (ref. SBI No. 65). These are as follows:

- 1. Estimates require reasoned judgments made by people and cannot be automated.
- 2. Estimates require a reasonably detailed definition of the project hardware that must be acquired or developed before estimates can be made.
- 3. All estimates are based upon comparisons. When we estimate, we evaluate how something is like or how it is unlike things we have seen before.

The SBI Program estimates are particularly challenging because the definition of the hardware items and the data that will permit comparisons is not detailed and complete. We are dealing with some items in their earliest conceptual phase of definition.

A couple of study principles should also be mentioned because they may help us understand the validity of the results we obtain. These are:

1. The sensitivity that study results show to variations in assumption provides an indication as to the fundamental nature of the assumption. If results are highly sensitive to variations in assumption then the assumption should be used with caution. Extrapolations are particularly hazardous in such instances. On the other

hand if results are not highly sensitive, then scaling over a wide range may be feasible, although extrapolations of cost values can yield misleading results in any event and should always be applied carefully.

2. Parametric approaches may be necessary in order to understand trends due to the absence of specific data for use in the study. Parametric in the sense used here means the arbitrary variation of a given parameter over a range of expected values, while holding other values constant.

The costing relationships used in SBI trade studies are applicable to space systems and are founded on past programs as described in references SBI No. 60 and No. 61. The only questions, therefore, are whether or not they can be used on SBI hardware (which does use subsystems similar in nature to other manned space systems) and how accurately they can be scaled to fit the range of SBI sizes. Insofar as practical, these questions have been circumvented by means of reporting cost trends in lieu of cost values.

2.0 General Development Cost Methods

2.1 Empirical Methods

As stated in Section 1.3 CER's are empirical cost estimating relationships that express expected costs on the basis of past program experience. Empirical cost estimating requires some sort of systems definition plus good judgement in the selection of the constants, and exponents. The nature of a system element or assembly, and the size/weight of the item are primary cost drivers. The most predominant variable is the exponent of the weight term in the following generalized equation:

 $Cost = df * (C_1 (Wt)^n) + C_2 (Wt)^n$

Where

- wt = weight of the system, module or assembly
 - n = an exponent selected on the basis of system complexity
 - df = a factor reflecting the amount of new design required (design factor)
- $C_1 = constant$ selected to establish the cost trend origin
- C_2 = a constant to reflect special requirements such as tooling can be zero

Adjustments to the weight exponent and the constants yields values which show dramatic cost increases as a function of weight but decreasing cost per pound as the weight is increased. Cost relationships always show these trends when applied to launch vehicles, spacecraft, or payloads. Therefore, it is assumed that they apply to biology equipment (for space) as well. Economies of scale are present in all such systems. The larger the system, assembly, or component, the lower its cost per pound. There is, however, a limitation to the applicability of CER's to SBI hardware

due to size limitations. All CER's have a range of applicability and produce consistent results in terms of cost per pound over that range. The limitation comes into play when extrapolating outside the range of applicability, particularly where the size is small. Unfortunately, this limitation may be a factor in SBI hardware elements and assemblies due to their size being relatively small compared to manned spacecraft systems. Therefore, when a CER yields costs in a very high range, on the order of \$100,000/lb. or \$220,000/Kg, or higher, caution and judgement are necessary to avoid the use of misleading results.

2.2 System Complexity Exponents (n)

Past experience in estimating costs with empirical methods suggests that the exponent, n, increases with increasing system complexity and as a function of the degree to which a system is distributed. For example, relatively simple, structure or packaged power modules may be represented by n = 0.2. The cost of more complex mechanical systems and structures which are comprised of a variety of components and assemblies can be represented by an exponent, n = 0.4 and the most complex distributed electronics call for an exponent on the order of 0.5 to 0.6. Inasmuch as the SBI systems involve all the foregoing elements plus sophisticated sensors, it may be necessary to use exponents that are as high as 0.8 or 1.0 to represent cost trends of parts of the SBI systems. Reference No. 60 uses an exponent, n, equal to .5 for development when historical data are not available. This value has been used in SBI Reference No. 60 for displays and controls, instrumentation and communications, all of which are comprised of distributed electronics and is consistent with the range recommended here (.5 to .6).

The dramatic effect of the system complexity exponent is illustrated by Figure 2-1. Figure 2-1 is a plot of cost per pound vs. complexity exponent, n, for a range of values of n between 0.1 and 1.0. As can be seen from the figure, 1000 units of weight costs 0.2% per unit weight as much at n = 0.1 compared to the cost at n = 1.0. The point is that care must be exercised in making a proper selection of exponent in order to achieve reasonable accuracy in estimating actual costs.

The historical use of lower exponents for simple, packaged systems, and the use of higher values for complex distributed systems matches common sense expectations. To express it another way, one can safely assume that the cost of a system will be influenced dramatically by the number of different groups involved in the design, by the number of interfaces in the system, and by the complexity of the design integration effort required. Distributed power and data systems invariably cost more (per pound) to develop than do packaged elements. However, the degree to which this applies to SBI is not clear due to the fact that biological systems tend to be more packaged and less distributed than do other space systems.

2.3 Design Factors (df)

Figure 2-2 defines the design factors that represent the degree of new design required in a development. On the low side is the factor representing the use of existing designs that require very little modification, integration or testing. For all new current state-of-the-art designs which involve no new technology, the design factor is 0.9 to 1.0. The factor for new design requiring advancement in technology is expressed as greater than unity and can be as high as 2 or 3 for efforts that dictate a multiple design path approach to achieve the desired goals. Price H refers to this type of factor as the engineering complexity factor and uses design values similar to those

in Figure 2-2. However, Price H varies the experience of the design team as well as the complexity and the difficulty of the design.

2.4 Method Summary

The SBI trade studies will all require a definition of system element size, complexity and degree of new design. These factors may have to be varied over a range of probable values to evaluate trends, but they will all come into play in costing comparisons. FIGURE 2-1 Effect of Exponent "n" on Cost

C-6

Figure 2-2 Design Factors	Design Factor	.1 to .2 Off-The-Shelf. Minor design modifications and little or no qualification testing required	.3 to .4 Design Exists. Some new design drawings required	.5 to .6 Design exists but requires significant modification. On the order of 40% to 50% to existing drawings.	.7 to .8 Similar designs exist but mostly new drawings required No new technology involved in electronics, structure etc.	.9 to 1.0 New design with all new drawings. Little or no new technology required	1.0 to 3.0 All new design, new technology required. May require	C-7	- Design Factor - 1 to .2 - 1 to .2 - 3 to .4 - 3 to .4 - 3 to .4 - 3 to .6 - 5 to .6 - 7 to .8 - 9 to 1.0 - 9 to 1.0 - 1.0 to 3.0	Figure 2-2 Design Factors Description of the Design Task Description of the Design Task Off-The-Shelf. Minor design modifications and little or no qualification testing required Design Exists. Some new design drawings required Minimum integration costs involved Design exists but requires significant modification. On the order of 40% to 50% to existing drawings. Similar designs exist but mostly new drawings. Similar designs exist but mostly new drawings. New design with all new drawings. Little or no new technology required All new design, new technology required. May require multiple attack on new technology problems
DesignDescription of the Design TaskFactor0ff-The-Shelf. Minor design modifications and little.1 to .2Off-The-Shelf. Minor design modifications and little.3 to .4Design Exists. Some new design drawings required.3 to .4Design Exists. Some new design drawings required.7 to .8Design exists but requires significant modification. On the order of 40% to 50% to existing drawings7 to .8Similar designs exist but mostly new drawings9 to 1.0New design with all new drawings. Little or no new technology required1.0 to 3.0All new design, new technology required. May require multiple attack on new technology required. May required	.1 to .2 Off-The-Shelf. Minor design modifications and little or no qualification testing required .3 to .4 Design Exists. Some new design drawings required Minimum integration costs involved .5 to .6 Design exists but requires significant modification. On the order of 40% to 50% to existing drawings. .7 to .8 Similar designs exist but mostly new drawings. .9 to 1.0 No new technology involved in electronics, structure etc. technology required 1.0 to 3.0 All new design, new technology required 1.0 to 3.0 All new design, new technology required	 ¹² 3 to .4 Design Exists. Some new design drawings required Minimum integration costs involved .5 to .6 Design exists but requires significant modification. On the order of 40% to 50% to existing drawings. .7 to .8 Design exist but mostly new drawings. .9 to 1.0 New design with all new drawings. Little or no new technology required 1.0 to 3.0 All new design, new technology required. May require at the other of the other other of the ot	 .5 to .6 Design exists but requires significant modification. On the order of 40% to 50% to existing drawings. .7 to .8 Similar designs exist but mostly new drawings required No new technology involved in electronics, structure etc. .9 to 1.0 New design with all new drawings. Little or no new technology required 1.0 to 3.0 All new design, new technology required. May required multiple attack on new technology required. May required 	.7 to .8 Similar designs exist but mostly new drawings required No new technology involved in electronics, structure etc. .9 to 1.0 New design with all new drawings. Little or no new technology required 1.0 to 3.0 All new design, new technology required multiple attack on new technology required.	.9 to 1.0 New design with all new drawings. Little or no new technology required 1.0 to 3.0 All new design, new technology required. May require multiple attack on new technology problems	1.0 to 3.0 All new design, new technology required. May require				

3.0 Cost Methods Applicable to Specific Trade Studies

Three of the four studies are discussed separately in this section although there are common elements associated with them that were not covered in Section 2.0. The intent is to examine the prime cost drivers that come into play with the subjects of miniaturization, modularity and commonality, use of COTS, and compatibility between spacecraft. Rack compatibility is covered in Section 7.4 under life cycle costs.

3.1 Hardware Miniaturization Cost Drivers

Fundamentally the variables of system (or component) weight, system complexity, and difficulty of design all influence miniaturization cost trends. For the purposes of this section weight and design difficulty will be varied, while system complexity will be treated as a series of constants, each being evaluated separately. Materials changes will not be dealt with even though it is valid to assume that the use of titanium, graphite, steel or composites will adversely affect cost. In fact, the dense materials (titanium and steel) will adversely affect cost due to weight and cost due to manufacturing complexity as well.

Given the foregoing exclusions, the miniaturization cost trends have been dealt with by parametric variation of the system size, and the degree of new design needed to achieve a given degree of miniaturization. The selected values of miniaturization vary between 10% and 90% in increments of 10%. In other words, if an unminiaturized system size is treated as 100%, Tables 3-1 through 3-4 show the effect on cost of weight reduction between zero and 90% on the first line. In order to include the effect of system complexity, Tables 3-1 through 3-4 are provided for values of n = 0.2, 0.4, 0.6, and 0.8.

The columns in the tables vary the design difficulty between a minimum change (.1 to .2 on Figure 2-2) and an all new design (0.9 to 1.0 on Figure 2-2). However, Tables 3-2 through 3-4 show the minimum design change as unity for reasons of simplifying the numbers. Thus the minimum design change number becomes 1.0 in lieu of 0.15 and the all new design becomes 6.0 which represents a relative value, compared to the minimum change value, i.e. 0.90 /0.15 = 6.0.

The use of Tables 3-1 through 3-4 is simple. Numbers less than 1.0 indicate a cost reduction and the degree of same, while numbers above 1.0 represent cost increases and the relative size of the increase. For example, using a 50% size reduction, and miniaturization requiring an all new design (df = 6) for n = 0.4, table 3-2 shows that the cost will be on the order of 4 1/2 times the cost for an unmodified item that is not miniaturized. In like manner, one can deduce that the cost of an all new design that achieves a 90% reduction in size (was 20 lbs., is 2.0 lbs.) will cost approximately 2 1/2 (2.4 from Table 3-2) the amount of an unmodified design.

Figure 3-1 is included to illustrate the cost trends for various systems complexity factors between n = .2 and n = .8. The curves all use a design factor df = 1.0 and all have been normalized so that the unminiaturized weight is unity. The purpose of Figure 3-1 is to show the effect of complexity factors on cost as weight is reduced. No design modification effects are included in Figure 3-1 so the curves indicate complexity trends only. To generate an estimate of the relative cost of miniaturization including redesign effects, one must multiply the cost factor (Figure 3-1) by a design factor as is done in Tables 3-1 through 3-4.

Table 3-1 Miniaturization Guide Chart n=.2

-

~

~

-

-

% Mintat	0	10	20	30	40	50	60	70	80	06
Design Integration Only	1.00	98.	96.	66.	06.	.87	.83	67.	.73	.63
Significant Modification Req'd (30%)	2.00	1.96	1.92	1.86	1.80	1.74	1.66	1.58	1.46	1.26
Major Modification Req'd (50%)	3.00	2.94	2.88	2.79	2.70	2.61	2.49	2.37	2.19	1.89
All New Design	6.00	5.88	5.76	5.58	5.40	5.22	4.98	4.74	4.38	3.78

Table 3-2

Miniaturization Guide Chart n=.4

cł % Miniat.	0	10	20	30	40	50	60	70	80	66
Design Integration Only	1.00	96.	.92	.87	.82	.76	69.	.62	.53	.40
Significant Modification Req'd (30%)	2.00	1.92	1.84	1.74	1.64	1.52	1.38	1.24	1.06	.80
Major Modification Req'd (50%)	3.00	2.88	2.76	2.61	2.46	2.28	2.07	1.86	1.59	1.20
All New Design	6.00	5.76	5.52	5.22	4.92	4.56	4.14	3.72	3.18	2.40

C-9

Table 3-3 Miniaturization Guide Chart n≕.6

~

% Minlat. d	0	10	20	30	40	50	60	70	80	06
Design Integration Only	1.00	.94	.86	.81	.74	.66	.58	.49	.38	.25
Significant Modification Req'd (30%)	2.00	1.88	1.72	1.62	1.48	1.32	1.16	86.	.76	.50
Major Modification Req'd (50%)	3.00	2.82	2.58	2.43	2.22	1.98	1.74	1.47	1.14	.75
All New Design	6.00	5.64	5.16	4.86	4.44	3.96	3.48	2.94	2.28	1.50

Table 3-4 Miniaturization Guide Chart n=.8

% Miniat. G	0	10	20	30	40	50	60	70	80	90
Design Inlegration Only	1.00	.92	.84	.75	.67	.57	.48	.38	.28	.16
Significant Modification Req'd (30%)	2.00	1.84	1.68	1.50	1.34	1.14	96.	.76	.56	.32
Major Modification Req'd (50%)	3.00	2.76	2.52	2.25	2.01	1.71	1.44	1.14	.84	.48
All New Design	6.00	5.52	5.04	4.50	4.02	3.42	2.88	2.28	1.68	96.

Figure 3 -1

Variation of Cost as a Function of Weight

Cost Factor from Tables 3-1 thru 3-4 cost(wt.xwt.ywt.zwt)=df*(wt)^∩n/wt

C-11

The examples are not meant to suggest that certain combinations of miniaturization and design difficulty are more rational than others, but were selected simply to demonstrate table usage. It is conceivable that a modest degree of miniaturization is achievable with modest design (df = 2).

Caution is advised! for several reasons:

- 1. Some items <u>cannot</u> be reduced in size.
- 2. Some items <u>should not</u> be reduced in size.
- 3. Significant size reductions may require technology breakthroughs in materials, electronics, displays, etc. that could complicate the SBI development task.
- 4. Substitute materials will often negate weight reductions and raise costs even higher than estimated by the tables.

Notwithstanding all the adverse possibilities, one could conceivably reduce size and cost by miniaturizing an item or an assembly.

3.2 Modularity and Commonality

Common system modules, assemblies or components can have a profound impact upon development cost because of the potential savings associated with the use of a common module in more than one SBI hardware item. The following examples serve to illustrate this fact.

Table 3-5 shows the impact of using learning to reduce costs. For example, consider the case where sixteen units are to be constructed for a given SBI application of a system rack or drawer, but the item in question can be used in four applications rather than in only a single place. If the system is to be produced in small quantities, exotic tools and automation are not cost effective and the item is normally assembled using piece parts. Such systems usually have learning factors of 80%, i.e., each time the number of units is doubled (SBI Ref. No. 68), the cost of the nth unit is 80% of the previous cycle's end product cost. To be specific, the 2nd unit costs .8 times the first unit, the 4th unit .8 times the second, etc. See Table 3-5. In the case of a built-up drawer or rack which is used in four places, 16 units for prototypes, test, flight hardware, etc., becomes 64. As can be seen from Table 3-5, the cost of the 64th unit is 26.2% of the 1st unit and 64% of the 16th unit. The average cost for 64 items is reduced to 37.4% of the first unit cost compared to 55.8% of the first unit cost for 16 items. The lower the learning, the less dramatic the unit cost reduction, but for any item that is fabricated by other than completely automated processes, there is a cost reduction to be realized by common use in more than one application.

If one considers the programmatic input of multiple applications, there also exists the opportunity to avoid duplicate design and development efforts. For the sake of simplicity, we will confine this discussion to D&D plus fabrication and assume that four separate developments each require a test program. This being the case, we can treat a single, dual, triple and quadruple application in terms of the D&D effort and include the effect of reduced costs due to learning as well.

D&D = Design and Development Cost TFU = Theoretical First Unit Cost L.F. = .80 Number of articles required per application = 16

Then:

Let CP ₁ Let 35% D&I	=)=	Cost of a single program, TFU Cost
C.P _t	=	1.0 D&D _{cost} + [.35 D&D * L.F.] 16
	=	1.0 D&D + [.35 D&D * .558] 16
C.P ₁	=	1.0 D&D + 3.1248 D&D = 4.1248 D&D
Norm	alized o	cost = C.P./4.1248 D&D

In a similar manner, the cost of 2, 3 and 4 applications can be calculated which yields the data in Table 3-6.

C-13

TABLE 3-5Learning Factor TableAll First Articles are 100%

• •••		2	4	8	16	24	32	64
Quanti								
Factor	ng N ^u	95.0%	90.3%	85.7%	81.5%	79.0%	77.4%	73.5%
0.95	Aver.	97.5%	94.4%	90.8%	87.0%	84.65	83.0%	79.1%
	N th	90.0%	81.0%	72.9%	65.6%	61.7%	59.0%	53.1%
0.90	Aver	95.0%	88.9%	82.2%	75.2%	71.3%	68.5%	62.0%
	N th	85.0%	72.3%	61.4%	52.2%	47.5%	44.4%	37.7%
0.85	Aver	92.5%	83.6%	74.2%	64.9%	59.7%	56.2%	48.3%
	NT th	80.0%	64.0%	51.2%	41.0%	35.9%	32.8%	26.2%
0.80	IN A war	00.0%	78.6%	69.3%	55.8%	49.8%	45.9%	37.4%

N 25:

1. Nth refers to the 2nd, 4th etc article in the fabrication of identical articles by the same process

2."Aver.", refers to the average cost of the 1" through the Nth article under the same conditions

3. The External Tank learning factor has been estimated at 80% (0.80) due to the relatively large amount of manual labor that goes into the fabrication process. In general the more manual the process, the greater the learning and the smaller is the number from the table that applies.

4. As the learning factors approach unity the reduction in cost for each succeeding cycle is reduced and 1.0 represents a fully automated process wherein the first article and the Nth article cost is the same.

5. For the purposes of the SBI trade studies we can use the guidelines that the manual fabrication and assembly processes of sheet metal have learning factors of 80% to 90% while the more automated and repetitive processes range between 90% and 95% or even as high as 97%. There probably won't be any automated processes where the costs of a number of articles remains the same as the first article cost.

Table 3-6Cost of Multiple Applications

Applications	D&D Cost	Production Cost	Normalized Total Cost Per Application
1	1.0 (D&D)	3.1248 (D&D)	1.00
2	.50 (D&D)	5.1408 (D&D)	.744
3	.33 (D&D)	6.7704 (D&D)	.628
4	.25 (D&D)	8.3776 (D&D)	.568
5	.20 (D&D)	9.785 (D&D)	.523

Figure 3-2 is a linear plot of the foregoing information based upon a theoretical first unit (TFU) cost of 35% * (DD), Figure 3-3 is based on a TFU of 15% * (DD). Figures 3-2 and 3-3 illustrate two facts. The first is that a significant cost reduction result from the use of hardware in more than a single application. The second is that the point of diminishing cost return occurs rapidly beyond the third application.

Modularity, although similar to commonality in some respects, offers other advantages as well. However, one must acknowledge that modular designs may cost more initially than non-modular designs due to the tendency for them to require added weight for packaging and more design integration due to an increase in the number of interfaces present in the system. Nevertheless, such systems have lower life cycle costs because of simplicity in assembly, repair, replacement, problem diagnosis and upkeep in general. Also there are the advantages of being able to upgrade individual modules with new technology and/or design improvements without impacting the rest of the system and without complicated disassembly and assembly to affect a module changeout.

Thus, if modules can be made common, the system possesses the attributes of modularization and offers potential cost savings from the multiple use of various system modules. The long and short of it is that the system cost can be reduced and the system flexibility and life cycle attributes improved. Common elements in modular designs should be a major, high priority goal in all SBI systems.

3.3 Modification of Existing Hardware (COTS) vs. New Hardware Build

Commercial off-the-shelf (COTS) hardware has been used for space applications sporadically since the early days of manned space flight and it poses the same cost-related challenges today as it did 25 years ago. The variables involved are the cost of the item, the cost of modification to meet space flight requirements, and the cost of demonstrating the hardware's reliability in qualification testing.

Past experience indicates that the cost of hardware modification is normally the primary cost factor of the cost elements listed. In an effort to assign an order of magnitude to modification costs, the weight of the COTS, the degree of modification (design factor, df), and the nature of the system (weight and system complexity, n) are used as prime cost drivers. Table 3-6 and 3-7 show the cost of modification against size (wt), and for systems with complexity factors (n) of .2 and .4. The higher order complexity factors are assumed to be not applicable on the basis that COTS is usually procured as modules or assemblies and then integrated into a larger system as necessary.

The costs shown in Tables 3-7 and 3-8 are based upon the assumption that COTS modifications are approximately the same cost as are redesigns to existing systems. The degree of modification (or redesign) is reflected in the design factor, df. The degree of system complexity is reflected by the system complexity factor, n. The range of weights over which these parameters are varied was selected on the basis that few items to be modified would be heavier than 50 Kg and that the small items less tnan 5 Kg would be procured as components or small assemblies which would be used in the design of a new system. The assumed size limit can be modified if necessary but were made to keep the number of weight variables in a reasonable size range with modest increments between each one. Here, again, caution is needed when applying CER type relationships to small items and to items where the portion of a hardware element being modified is small. See paragraph 2.1 for a discussion of scaling limitations.

C-16

Specific modifications to COTS may be simple enough to invalidate the assumption that modifications and redesign costs are similar. If so, alternate COTS modification cost methods will be required and will reflect greater savings. Thus, the foregoing assumption degrades gracefully because it is conservative from a cost point of view.

A popular viewpoint today is that modified COTS is always less costly than is a new design. This belief is reflected in the emphasis on "make or buy" in recent NASA RFP's and also in recent cost seminars held by major aerospace companies. Nonetheless, some cost specialists express the opinion that modifications to COTS greater than 30-35% probably makes a new design preferable. The COTS vs. new design trade study deals with these subjects so this part of the report will be confined to cost trends only. From the viewpoint of modification costs alone it appears straightforward that COTS has great cost reduction potential and should be seriously considered whenever a commercially available system element exists that can be utilized in SBI.

In order to illustrate the cost trends for modification costs and modification cost per pound, Figure 3-4 and 3-5 are included. Figure 3.4 represents minor modifications (df = .15) and n = .2, and, therefore, shows the lowest cost per pound of any of the cases in Tables 3-7 and 3-8. Figure 3-5 is for the case of substantial modifications and n = .4, df = .55 and thus represents a high side cost case. The figures both show the trends that are typical for the values presented in the tables. Figure 3-2 Effect on Cost of Hultiple Applications of Hardware

Number of Hardware Uses

First Unit Cost (TFU) = .35*(Dev. Cost)

Learning Factor = 80%

Number of Hardware Uses

First Unit Cost (TFU) = .15%(Dev.Cost)

Learning Factor = 00%

C-19

Table 3-7 Cost of Modifying Commercial Off-the Shelf Hardware

System Complexity Factor (n) =.2

Design Factor	Minor Mi	Mods 5 -	Modest df=.35	Mods	Substantia df=.5	al Mods 5	Major M df=.7	lods 75
Veight of Part Modified	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg
Weight =5 kgs	242.3	48.46	565.4	113.1	888.5	177.7	1212	242.3
Weight = 10 kgs.	278.3	27.83	649.5	64.95	1021	102.1	1392	139.2
Weight = 20 kgs.	319.7	15.99	746.0	37.3	1172	58.62	1599	79.93
Weight = 30kgs.	346.7	11.56	809.1	26.97	1271	42.38	1734	57.79
Weight = 40 kgs.	376.0	9.182	857.0	21.42	1347	33.67	1836	45.91
Weight = 50 kgs.	384.0	7.681	896.1	17.92	1408	28.16	1920	38.40

Notes: 1) All costs are in thousands of dollars

Table 3-8 Cost of Modifying Commercial Off-the Shelf Hardware

System Complexity Factor (n) =.4

Design Weight Factor	Minor Minor M	vods 5	Modest df=.35	Mods ;	Substantia df=.5	al Mods 5	Major M df=.7	lods '5
of Part Modified	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg
Weight =5 kgs.	391.4	78.28	913.3	182.7	1435	287.0	1957	391.4
Weight = 10 kgs.	516.5	51.65	1205	120.5	1894	189.4	2582	258.2
Weight = 20 kgs.	681.5	34.08	1590	79.51	2499	148.5	3408	170.4
Weight = 30 kgs.	801.5	26.72	1870	62.34	2939	97.96	4008	133.6
Weight = 40 kgs.	899.3	22.48	2098	52.46	3297	82.43	4496	112.4
Weight = 50 kgs.	983.2	19.66	2294	45.88	3605	72.10	4916	98.32

Notes: 1) All costs are in thousands of dollars

Variation of Cost & Cost/kg for COTS Node n= .2 4 -M e i gure df=.15

•

Figure 3 - 5 Variation of Cost & Cost/kg for COTS Nods df=.55 n=.4

4.0 Testing Costs

A cursory treatment of testing costs is presented so as to make the cost picture as complete as possible. However, the applicability of test costs to SBI has not been validated and the guidelines presented should be applied with care only where a similarity exists between SBI elements and/or subsystems, and other manned spacecraft systems.

4.1 Test Hardware

Test hardware costs in past manned programs have included the cost of labor and materials for major test articles used to verify design concepts. However, test hardware cost relationships exclude element tests, component tests, qualification and certification tests. The cost of labor and material for the design, procurement, installation, checkout and operation of the instrumentation system on major test articles is included and as one might expect, these factors drive the cost of test hardware up to a value greater than the first unit cost.

The CER's examined put the cost of test hardware at 30% more than the theoretical first unit (TFU) cost, i.e. 1.3 * TFU. It should be noted that this cost is to demonstrate and to verify the operation of the designed hardware and should not be construed to include experimentation and testing to acquire biological information of an experimental or research character.

4.2 Integration Assembly and Checkout (IACO)

This factor is most commonly estimated as a function of TFU costs or test hardware costs. It will generally run on the order of 10 - 20% of test hardware costs for manned systems, but care must be exercised in applying such a rough rule of thumb to SBI. Therefore, a simple CER is suggested in cases where PRICE H estimates have not yet been formulated. The CER is as listed below:

 $LACO = .3 (1.3 \text{ TFU})^{0.7}$

The resulting estimate can only be generated when all other hardware costs are available.

4.3 Test Operations

Test operations CER's indicate that costs generally run on the order of 20% to 30% of the cost of test hardware plus integration, assembly and checkout costs. However, as is the case with other test related items of cost, the applicability to SBI hardware has not been validated. Nonetheless, the order of magnitude could be used for SBI estimates pending specific definition of test requirements for the various experiments.

Examination of the SBI hardware list (Ref.SBI No. 87) and the Life Science Laboratory Equipment description (Ref. SBI No.88) suggests that test operations could vary from little or nothing all the way up to the level indicated in CER's and approximated above.

5.0 SE&I Costs

SE&I cost for the design and development phase are generally expressed as a function of the DDT&E + Systems Test Hardware + IACO + Test Operations + GSE costs. However, the lower end of the validity range is almost \$1.0 billion of DDT&E costs and the applicability to SBI is extremely doubtful. For that reason, it is recommended that the preliminary SBI SE&I cost be taken as 10% to 15% of the SBI total system development cost until a detailed estimate or a PRICE H value is generated.

6.0 Program Management Costs

Program management costs usually run 5% of the total of all other costs, i.e., 5% of the sum of DDT&E + IACO + Test Hardware + Test Operations + GSE + SE&I (for DDT&E) costs. Inasmuch as there is no basis to assume that SBI program management cost is any more or any less than other types of programs, it seems reasonable to use a very preliminary value of this order of magnitude for budgetary estimating purposes.

7.0 Life Cycle Costs

As noted previously in this appendix, life cycle cost information is not available and therefore only a subjective treatment of the subject is possible. Nonetheless, Table 7-1 provides some worthwhile insights concerning all the SBI trade study subjects being addressed by Eagle. Taken singly, these subjects reveal the following probable life cycle impacts.

7.1 Study No. 3 - Miniaturization

The possible reduction of cost due to the impact of weight reduction is more theoretical than achievable. Indications are fairly clear that most attempts to miniaturize will cost rather than save money. Therefore, one must conclude that the reason for attempting size reductions is other than cost savings. It is beyond the scope of this write-up to postulate or to speculate further.

7.2 Study No. 4 - Modularity and Commonality

If the SBI program-wide support can be mobilized to support modular design and the development of hardware for common application to a number of SBI experiments and/or facilities, the cost benefit should be very significant. All the factors noted in Table 7-1 tend to substantiate this conclusion and only the programmatic direction and support has any identifiable cost or problem related to it.

Modular designs and common equipment should be a top priority requirement, goal and objective of SBI effort.

7.3 Study No. 5 - COTS vs. New Hardware

COTS should be regarded as a slightly trickier subject than commonality due to the potential pitfalls and cost penalties that can be incurred in its application to spaceflight. Nonetheless, the potential cost savings are large enough so that judicious use of COTS where it fits with the SBI program appears to be a cost-wise approach which could yield tremendous cost benefits for only nominal technical risk. Technical risk which can be offset by care in selecting, testing, and screening the procured items.

The use of modified COTS in lieu of a new design appears to pay off until the modification cost approaches the cost of an optimized new piece of hardware. The cut-off point has not been defined but would make an interesting and worthwhile follow-on study. Intuitively one would expect to find a series of cut-off points that are a function of the hardware complexity, and therefore, the cost and complexity of the modification program.

7.4 Study No. 6 - Rack Compatibility

To a greater degree than the other SBI trade studies, this subject seems to defy analysis that could give cost trend indications or life cycle cost indicators. Nevertheless, if one assumes that the inter-program coordination of rack compatibility can be accomplished with a reasonable effort, there exists the possibility to lower cost, to reduce the cost of data normalizing and comparison, and improved scientific data return might possibly be a companion benefit to lower experimentation costs.

The entire spectrum of life cycle costs beyond the design and program management phase that would accrue due to compatibility all appear to be very positive and beneficial. Logistics, ground processing, pre-flight checkout, operations, repair and replacement all would be impacted in a beneficial way by this approach. A comparable achievement that comes to mind is the establishment of standard equipment racks by the International Air Transport Association (IATA). The benefits apply to a large number of items (commercial transports) and of course the impact is greater, but the concept has been a true bonanza to all the world's commercial airlines. Rack compatibility is potentially a smaller sized cousin to IATA's achievement.

Table 7 -1 Life Cycle Cost

Study	Study No. 3	Study No. 4 Addularity and Commonality	Study No. 5 COTS ve. New Hardware	Study No. 6 Rack Compatibility
Phase Design	Design change always required. Cost of redesign may be partially offset by size & weicht reduction.	Requires programmatic support and some allowance for increased weight and cost in design phase.	Dependent upon availability and suitability of commercial modules and/or elements for SBI system application.	Requires inter-program coordination/communication and direction which is very difficult to achieve.
Development	Fabrication may be complicated due to size reduction.	Development, manufacture or procurement is facilitated by modularity. Commonality cost impacts all positive.	Modified COTS appears to have significant potential advantage. Requires sound make or buy anlysis & eval.	Common source would be highly desireable but will be hard to do due to specification differences & organiz. barriers
Test and Evaluation	Test costs may increase due to difficulty in set-up and trouble shooting.	Module testing, integrated testing and test trouble shooting are simplified and cost savings result.	Testing impact appears to be negative due to need for extra qualification tests and periodic retest (screening).	Should have only minor impact which stems from differences in test requirements.
Sustaining Engineering	No significant impact pro or con is apparent.	Individual engineering groups can operate with less sytems integration effort.	Should be automatically supported by vendor's program. Generally positive. Mods could pose problems.	Responsibility may be difficult to establish and to identify. Problem potential is smalt due to type of hardware.
Technology Upgrade	May be less likely due to absence of atternate hardware availability.	Facilitated and made easier by modular design.	Not predictable. Experience indicates that it can vary from easy and to very painful and awkward.	Should be possible within a rack or module. Compatibilit will reduce the overall cost of inserting new tech. upgrades
Maintenance and Operations	Possible adverse impact on maintenance due to small size. Operation should not be affected.	Common module impacts on maintenance, logistics and operations are all positive & highly significant.	Maintenance of unmodified portion could pose problem. Operation not affected if reliability is adequate.	Design for long life should mean small scale preventive maintenance is all that is required.
Replacement	May be less costly due to size and favorable impact on logistics.	Can be accomplished in planned phases and/or steps with minimum disruption to system operation.	COTS use suggests that low cost replacements are available. Advantage can erode with age.	Standard interfaces can only work to reduce the cost of replacement. Fewer spares, standard procedures etc.
Overall Life Cycle Cost Impac	Tends to look negative. The need to miniaturize must be based upon reasons other than cost.	Life cycle cost impacts are all highly favorable except for design phase coordination & possible weight penalties.	Very significant life cycle cost advantage inherent in COTS. However, initial selection and mod program must be prudent.	Whatever the cost of inter- program coordination, ICD s etc., the impact on overall NASA cost is very beneficial

8.0 Recommendations

- 1. Perform a follow-on effort to generate a designer's "John Commonsense" manual for cost avoidance and/or reduction. The manual should be a series of simple groundrules and guidelines to help reduce Space Biology Initiative Program costs. Where possible, a series of tables or curves to help assess the potential cost gain should be included.
- 2. Mount an effort to accumulate an SBI historical cost data base. The objective should be at least two-fold. First, identify the breakpoint for various cost trade-offs. Examples are presented in Figures 3-2 and 3-3 which show that commonality soon reaches a point of diminishing return insofar as it pertains to development and manufacturing. Given such breakpoints, explore the possibility of additional life cycle cost benefits which result from reduced sparing, simplified logistics, reduced maintenance, etc. Second, obtain enough historical cost information to permit the development of CER's that are properly scaled for the range of sizes in question. Existing CER's have limitations that may invalidate their use on SBI. Therefore, actual cost data from ongoing SBI efforts would provide a valuable asset to future work of a similar nature.
- 3. Consider a follow-on program to develop a rule-based or expert system that could be used for quick cost estimates and cost comparisons. Such an effort can only proceed in parallel with item 2, above, but the development time is such that it should begin as soon as practical.
- 4. Generate a comprehensive compendium of cost estimating relationships and apply them to SBI. Subsequently, make comparisons with other cost estimating methods in an attempt to remove the existing programmatic skepticism about the voodoo and black magic of cost predictions.

Bibliography

- A. MSFC Space Station CER's Report PRC D-2185-H, Contract NAS8-33789, December, 1982.
- B. CERV Target Costs for Benchmark and Reference Configurations JSC CERV Office Presentation, June 15, 1988.
- C. PRICE Users Newsletter, Volume 12, Number 3, October, 1988.
- D. Cost Estimating for Air to Air Missiles, Congressional Budget Office, January, 1983.
- E. PRICE Htm Reference Manual, General Electric Company, 1988.
- F. SBI Team Contact Report Joe Hamacke, April 27, 1989.
- G. SBI Contact Report Richard Whitlock, April 11, 1989.
- H. Report No. MSC-01248, ASSCAS Cost Handbook, Contract NAS 9-9018, January, 1970.

Appendix D - Database Definition

~

-

~

.

-

-

-

~

•

.

.
Appendix D - Database Definition

The database files for the SBI trade Studies were developed using dBASE IV. The database files consist of dbf, ndx, and frm files. The dbf files are dBASE IV database files. NDX files are the index files for the dbf (database) files. The frm files are report files for the trade study candidate and bibliography reports. The SBI trade study database consist of 4 database files with 78 fields of information. A complete listing of the database structure and dictionary is included in this database definition.

Sti	uctu	ire for data	base: W:hard	lware.dbf	
Nun	nber	of data rec	ords: 9	93	
Dat	e of:	E last updat	e : 05/30/	/89	
Fie	eld	Field Name	Туре	Width	Dec
	1	HW_ID	Character	3	
	2	HW_NAME	Character	50	
	3	HW_DESCRTN	Character	254	
	4	HW_FACILIT	Character	55	
	5	INFO_SOURC	Character	250	
	6	HW_MASS	Numeric	6	3
	7	HW_VOLUME	Numeric	8	б
	8	HW_POWER	Numeric	4	
	9	HW_VOLTAGE	Numeric	6	
	10	HW_HEIGHT	Numeric	6	
	11	HW_WIDTH	Numeric	6	
	12	HW_DEPTH	Numeric	8	
	13	REMARKS	Character	50	
	14	RECORD_DAT	Date	8	
	15	GROUP	Character	50	
	16	CATEGORY	Character	50	
	17	FUNCTION	Character	60	
	18	FAC ID	Character	4	
	19	GROUP_ID	Character	4	
	20	MIN_LEVEL	Character	5	
	21	CONFIDENCE	Character	5	
	22	SUFFIC_DAT	Character	4	
	23	PRIORITY	Character	2	
	24	MIN_LV_POT	Character	6	
	25	MIN_EST_CF	Character	6	
	26	MOD LV POT	Character	6	
	27	MOD_EST_CF	Character	6	
	28	COM_LV_POT	Character	6	
	29	COM_EST_CF	Character	6	
	30	SYS_COMPLX	Character	6	
	31	DSN_COMPLX	Character	6	
	32	BUY_LV_POT	Numeric	4	
	33	BUY_MOD_LV	Numeric	4	
	34	BUY_EST_CF	Character	4	
	35	BUY_OTS_PT	Numeric	4	
	36	BUY_DAT_AV	Character	4	
	37	MOD_CAN	Logical	1	
**	Tota	al **	-	968	

** Total **

-

D-3

Structure for	database: 1	W:biblo.	dbf	
Number of data	records:	98		
Date of last up	pdate : (05/26/89		
Field Field N	ame Type	Wi	dth	Dec
1 BB_ID	Chara	cter	5	
2 AUTHOR_	NOL Chara	cter	16	
3 AUTHOR_	NO2 Chara	cter	12	
4 AUTHOR_	NO3 Chara	cter	12	
5 ART_TIT	LE Chara	cter	135	
6 BOOK_TI	TLE Chara	cter	100	
7 VOLUME	NO Chara	cter	3	
8 PUBLISH	ER Chara	cter	42	
9 PUBL LO	C Chara	cter	32	
10 DATE	Date		8	
11 PAGE NO	S Chara	cter	4	
12 ABSTRAC	T Chara	cter	100	
13 ACOUTRE	D Chara	cter	20	
	Numer	ic	6	
15 LOANED	Chara	cter	4	
16 PEP DOC	NO Chara	cter	22	
17 MOD	_NO Chara	al		
19 MTN	Logic	al	ī	
	Logic	a1	ī	
	Logic	a_ 9]	1	
20 RACK	LOGIC	ar .	525	
** Total **			520	
Structure for	database: '	W:rack (com.dbf	
Number of data	records:	166		
Date of last u	ndate :	05/26/89	,	
Field Field N		W.	idth	Dec
LIEIO LIEIO N	ame ijpe Chara	cter "	38	200
	Chara	atar	20	
2 UNITS	Chara		1	
3 UNIT_SI	5 Chara		12	
4 ITEM_TI	PE Chara	CLEI	50	
5 VALUE	Chara	Cter	50	
	Chara	cter	125	
** Total **			122	
	J		nad dhe	
Structure for	database:			
Number of data	records:	153	^	
Date of last u	pdate_ :	05/30/8	9	
Field Field N	ame Type	W	ιατη	Dec
1 HW_ID	Chara	cter	2	
2 COMM_MO	D Chara	cter	30	
3 COUNT	Numer	10	1	-
4 COST_DE	CCC Numer			
a	CSC Numer	10	4	2
5 MASS	Numer Numer	ic	4	2

D-4

Appendix D - Database Dictionary for Space Biology Initiative Trade Studies

Hardware.dbf This is the database file for SBI hardware.

-

-

-

-

-

~

		re to a the strength number for each bardware item
Field 1	HW_ID.	Unique identification number for each hardware hem
Field 2	HW_NAME	Hardware name
Field 3	HW_DESCRTN	Hardware description
Field 4	HW_FACILIT	Facility where SDI hardware is used
Field 5	INFO_SOURC	Information source for SBI flaidwate data
Field 6	HW_MASS	Hardware mass
Field 7	HW_VOLUME	Hardware volume
Field 8	HW_POWER	Hardware power requirement
Field 9	HW_VOLTAGE	Hardware voltage requirements
Field 10	HW_HEIGHT	Hardware height
Field 11	HW_WIDTH	Hardware width
Field 12	HW_DEPTH	Hardware depth
Field 13	REMARKS	Remarks concerning SBI hardware equipment
Field 14	RECORD_DAT	Update of last record
Field 15	GROUP	Hardware group
Field 16	CATEGORY	Hardware category
Field 17	FUNCTION	Hardware function
Field 18	FAC_ID	Hardware facility ID number
Field 19	GROUP_ID	Hardware group ID number
Field 20	MIN_LEVEL	Miniaturization level for hardware
Field 21	CONFIDENCE	Confidence level for miniaturization
Field 22	SUFFIC_DAT	Is there sufficient data to make a decision of hardware
	_	miniaturization?
Field 23	PRIORITY	Priority level for hardware item based on mass
Field 24	MIN LV_POT	Miniaturization level potential for the hardware item
Field 25	MIN EST CF	Confidence level for miniaturization
Field 26	MOD LV POT	Modularity potential for hardware item
Field 27	MOD EST_CF	Confidence level for modularity estimate
Field 28	COM LV POT	Commonality potential for hardware item
Field 29	COM EST CF	Confidence level for commonality estimate
Field 30	SYS COMPLX	System complexity for hardware item
Field 31	DSN COMPLX	Design complexity for hardware item
Field 32	BUY LV POT	Percent Buy for Hardware Item
Field 33	BUY MOD LV	Percent modification to Buy Hardware Item
Field 34	BUY EST CF	Confidence Level for Make-or-Buy Estimate
Field 35	BUY OTS PT	Percentage of COTS hardware that does not require
. 1010 00		modification
Field 36	BUY DAT AV	Is sufficient data available for make-or-buy estimate
Field 37	MOD CAN	Logical field can the hardware item be modularized Y or N
		÷

biblo.dbf	biblo.dbf This is the database for bibliography information.		
Field 1	BB ID	Identification number for the reference	
Field 2	AUTHOR NOI	First author	
Field 3	AUTHOR NO2	Second author	
Field 4	AUTHOR NO3	Third author	
Field 5	ART TITLE	Title of article	
Field 6	BOOK TITLE	Title of book	
Field 7	VOLUME NO	Volume number	
Field 8	PUBLISHER	Publisher	
Field 9	PUBL LOC	Publisher's address	
Field 10	DATE	Date of publication	
Field 11	PAGE NOS	Page number of reference	
Field 12	ABSTRACT	Abstract	
Field 13	ACOUIRED	Where the reference was acquired	
Field 14	COST	Cost of reference	
Field 15	LOANED	Where the reference was loaned from	
Field 16	REP DOC NO	Report or document number	
Field 17	MOD	Was this reference used on the modularity trade study? y	
1 1010 17		orn	
Field 18	MIN	Was this reference used on the miniaturization trade study?	
1 1010 10		y or n	
Field 19	CUTS	Was this reference used on the make-or-buy trade study? y	
11010 17		orn	
Field 20	RACK	Was this reference used on the rack compatibility trade	
		study? y or n	

rack_com.dbf

-

-

-

Ļ

-

-

-

-

-

This is the database file for the rack comparison study.

Field 1 IF_1 Field 2 UN	ITEM I/F item being compared, i. Units of comparison, i.e. in	e. power converters
Field 3 UN Field 4 ITE Field 4 VA Field 5 MO	IT_SYS_Unit system, i.e. metricM_TYPEFunctional Grouping of IFLUEValue of the comparisonDULEModule, i.e. U.S. Lab	Item i.e. Data Mgmt.

comm_mod.dbf

This is the design modularity and commonality database

Field 1 Field 2 Field 3	HW_ID COMM_MOD COUNT	Unique identification number for each hardware item Modularity function/assembly Used to total hardware items in COMM_MOD Field
Field 4	COST_DECSC	Cost description
Field 5	MASS	Mass of hardware item

D-6

Appendix E - Detailed Hardware Descriptions

Report Date 4/5/89

	Hardware Status Mod existing
CELSS Controlled Ecological	Revision Date Apr 4, 1989
Life Support System	
	Hardware Description
Title Germination Experiment Kit	Modified Plant Growth Unit.
Element No. 1. Revision A	
Project FEAST	-
Objective 1.) Provide a means for initial screening of plant cultivars in terms of their ability to germinate in μ -g. 2.) Determine root-shoot orientation under μ -g conditions.	
	Desired Features/Functions
	 Lighting : LED @ >180 μmol/sq.m/s Basic nutrient delivery Video recording and/or downlink capability
Hardware Specifications	
Weight (Kg) 27.3 Height (m) .253 Width (m) .440	
Depth (m) .516 Temp Range Ambient	
Peak Power (Kw) .300 Cont Power (Kw) .150	
Power Source	item Specific Support Equipt
STS Mid-deck.	Plant Growth Module
Data Downlink Reqs 1.5 MBPS Video; 1.6 KBPS Voice	
Rack Mounted/Stowed STS Middeck	
Hardware Specifications	
•	Design Status
	Modification to PGU required.
	Development Cost (SK) 5,700
	Development Time (months) 12
	Anticipated Launch Date 1992 & 1996
	Risk Category 1

CELSS/FEAST Hardware Data Sheet Report Date 4/5/89

iermination Experiment Kit cience Justification
cience Justification
tentified Experiments
tentified Experiments
tentified Experiments
· ·
ELSS Germination Studies.
listory
Itilizes existing PGU design with modification for germination studies.
Problem/Issues&Concerns
one
lendor Source List
nterface Requirements
STS Mid-deck.
Special Considerations
one
Safety Issues
lone
Flight Opportunity USML-1 (3/92) a USML-4 (3/90)
1.) Two flights needed : Possible flights are USML-1 and USML-4.
REV A · Revised cost 4/4/89 from \$5250K to \$2700K to reflect changes in Cost Estimates.

CELSS/FEAST Hardware Data Sheet Report Date . 4/5/89

-

~

-

-

-

Controlled Ecological Life Support System Revision Date Apr 4, 1989 Title Gae/Liquid Handling Experiment H/W Hardware Description The generation of the second se			Hardware Status Planned
Life Support System Title Gas/Liquid Handling Experiment H/W An experiment package for KC-135, STS (GAS Project FEAST Objective FEAST Objective FEAST Discourse FEAST Objective FEAST Discourse FEAST Objective FEAST Discourse FEAST Discourse FEAST Discourse FEAST Objective FEAST Discourse FEAST Mardware Specifications Feastures/Functiona Hardware Specifications Weight (Kg) 27.3 Height (m) .253 Width (m) .440 Depth (m) .516 Temp Range Ambient Peak Power (Kw) .3 Cont Power (Kw) .15 Power Source Simple PLC control with control valves. Standard KC-135, Spacelab or NSTS source. Feast Mounted Dest Downlink Rege	Cc	ntrolled Ecological	Revision Date Apr 4, 1989
Title Gas/Liquid Handling Experiment H/W Title Gas/Liquid Handling Experiment H/W An experiment pockage for KC-135, STS (GAS Project FEAST Objective FEAST 1) To evaluate and demonstrate fundamental physical principles of gas and liquid handling, mixing and separation under µ-g conditions. 2) To evaluate and demonstrate fundamental physical principles of gas and liquid bandling, mixing and separation under µ-g conditions. 2) To odemonstrate concept design for gas/liquid handling systems in µ-G. 1 Hardware Specifications Weight (Kg) 27.3 Height (m) .253 Width (m) .440 Destin (m) .516 Temp Range Ambient Peek Power (Kw) .3 Cont Power (Kw) .15 Power Source .5 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Video; 1.6	Li	ife Support System	
Internet Case/Liquid Handling Experiment An experiment package for KC-135, STS (GAS Element No 2 Revision An experiment package for KC-135, STS (GAS Project FEAST Dipactive project project 1.) To evaluate and demonstrate fundamental physical principles of gas and liquid handling, mixing and separation under µ-g conditions. mixing and separation under µ-g conditions. 2.) To demonstrate concept design for gas/liquid handling systems in µ-G. Desired Features/Functions 1. Video recording and/or downlink capability 2. Capable of mixing and separation tests of a variaxing of digadration tests of a variaxing of digadration tests of a variaxing and separation tests of a variaxing of digadration tests of a variaxing and separation tests of			Hardware Description
Literent NO 4 revenue A be indicated and separation of seconding to gas and leguid handling. Project FEAST mixing and separation under µ-g conditions. Objective 1. To evaluate and demonstrate fundamental physical principles of gas and leguid handling. mixing and separation under µ-g conditions. mixing and separation under µ-g conditions. 2.) To demonstrate concept design for gas/liquid handling systems in µ-g. Desired Features/Functions 1. Video recording and/or downlink capability. 2. Gapable of mixing and separation under µ-g conditions. Liquid and gas containment is of a variety of gas/liquid combinations common to CELSS (water/ar, nutrient solution/air, etc). 3. Thermal and shock isolation Hardware Specifications Liquid and gas containment. 5. Uside accountink capability. Weight (Kg) 27.3 Height (m) .253 Width (m) .440 Cont Power (Kw) .3. Cont Power (Kw) .15 Peek Power (Kw) .3 Cont Power (Kw) .15 King and separation chamber Power Source Item Specific Support Equipt none Standard KC-135, Spacelab or NSTS source. Item Specific Support Equipt none Deta Downlink Reqs .65 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Video;	Title Gas/Liquid H	Bewieles	An experiment package for KC-135, STS (GAS
Project PERS1 Objective 1) To evaluate and demonstrate fundamental physical principles of gas and liquid handling, mixing and separation under µ-g conditions. 2) To demonstrate concept design for gas/liquid handling systems in µ-g. Desired Features/Functions 1. Video recording and/or downlink capability. Capable of mixing and separation under µ-g conditions. 1. Video recording and/or downlink capability. Capable of mixing and separation to CELSS technicons and separation to CELSS (water/air, nutrient solution/air, etc) 1. Hardware Specifications Using a containment Weight (Kg) 27.3 Height (m) .253 Width (m) .440 Liquid and separation chamber 5. Various gas and liquid reservoirs Mixing and separation chamber 6. Mixing and separation chamber Simple PLC control with control valves. 9 per Source Standard KC-135, Spacelab or NSTS source. Data Downlink Reqs Go KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Video; 1.6 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Video;	Breiset		principles pertaining to gas and liquid handling.
Dojective 1). To evaluate and demonstrate fundamental physical principles of gas and liquid handling, mixing and separation under µ-g environment as applied to CELSS technology development. 2.) To demonstrate concept design for gas/fiquid handling systems in µ-g. Deterd Features/Functions 1. Video recording and/or downlink capability 2. Capable of mixing and separation tests of a variety of gas/fiquid ombinations common to CELSS (ward-rair, nutrient solution/air.etc) 3. Thermal and shock isolation Hardware Specifications Weight (Kg) 27.3 Height (m) .253 Width (m) .440 Depth (m) .516 Temp Range Ambient Peek Power (Kw) .3 Cont Power (Kw) .15 Power Source Standard KC-135, Spacelab or NSTS source. Data Downlink Reqs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice Rack Mounted/Stowed NSTS:Mid-deck Stowage SL: Rack Mounted Hardware Specifications 1. Mid-deck locker size, may be partial SL rack size. Development Coet (\$K) 1,500 Development Coet (\$K) 1,500 Development Time (montha) 24 Anticipated Launch Date 1993 Risk Category 3	Project	FEASI	mixing and separation under μ -g conditions.
In µ-G: Desired Features/Functions In µ-G: Video recording and/or downlink capability Image: Control with a control with control values of a variety of gas/liquid combinations common to CELSS (water/air, nutrient solution/air, etc) Image: Control with control values Hardware Specifications Weight (Kg) 27.3 Height (m) 253 Width (m) 440 Uiquid and gas containment Depth (m) .516 Temp Range Ambient Visions gas and liquid reservoirs Peak Power (Kw) _3 Cont Power (Kw) .15 Simple PLC control with control valves. Power Source Item Specific Support Equipt none Standard KC-135, Spacelab or NSTS source. Item Specific Support Equipt none Data Downlink Regs St. : Rack Mounted Nardware Specifications . N. Mid-deck locker size, may be partial SL rack size. Design Status New Design New Design Development Cost (3K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Riek Category 3	1.) To evaluate and demonstr gas and liquid handling, mixing environment as applied to CEL 2.) To demonstrate concept d	ate fundamental physical principles and separation under µ-g SS technology development. esign for gas/liquid handling system	of
1. Video recording and/or downlink capability 2. Capable of mixing and separation tests of a variety of gas/liquid combinations common to CELSS (water/ar, nutrient solution/ar, etc) 3. Thermal and shock isolation Herdware Specifications Weight (Kg) 27.3 Height (m) .253 Width (m) .440 Depth (m) .516 Temp Range Ambient Pask Power (Kw) .3 Cont Power (Kw) .15 Power Source Item Specific Support Equipt Standard KC-135, Spacelab or NSTS source. Item Specific Support Equipt Data Downlink Reqs .5 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice NSTS:Mid-deck Stowage SL: Rack Mounted Period Mathematications Hardware Specifications . 1. Mid-deck locker size, may be partial SL rack size. Design Status New Design . Development Cost (3K) 1,500 Development Time (monthe) .24 Anticipated Launch Date .1993 Risk Category .3	in μ-g.		Desired Features/Functions
Hardware Specifications 5. Digital reservoirs Weight (Kg) 27.3 Height (m) .253 Width (m) .440 5. Various gas and liquid reservoirs Depth (m) .516 Temp Range Ambient 6. Mixing and separation chamber Peak Power (Kw) .3 Cont Power (Kw) .15 7. Simple PLC control with control valves. Power Source 1tem Specific Support Equipt none Standard KC-135, Spacelab or NSTS source. 1tem Specific Support Equipt none Data Downlink Regs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice Stard ware Specifications 1. Mid-deck locker size, may be partial SL rack size. 1. Mid-deck locker size, may be partial SL rack size. Design Status Development Cost (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3			 Video recording and/or downlink capability Capable of mixing and separation tests of a variety of gas/liquid combinations common to CELSS (water/air, nutrient solution/air,etc) Thermal and shock isolation
Weight (Kg) 27.3 Height (m) .253 Width (m) .440 6. Mixing and separation chamber Depth (m) .516 Temp Range Ambient Peak Power (Kw) .3 Cont Power (Kw) .15 Power Source Item Specific Support Equipt Standard KC-135, Spacelab or NSTS source. Item Specific Support Equipt Data Downlink Reqs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice St.: Rack Mounted Hardware Specifications Design Status 1. Mid-deck locker size, may be partial SL rack size. Design Status New Design Development Cost (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3	Hardware Specifications		 a. Equip and gas containment 5. Various gas and liquid reservoirs
Depth (m) .516 Temp Range Ambient Pesk Power (Kw) .3 Cont Power (Kw) .15 Power Source Item Specific Support Equipt none Standard KC-135, Spacelab or NSTS source. Item Specific Support Equipt none Data Downlink Rege .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Video; 1.6 KBPS Video; Status New Design Reck Mounted/Stowed NSTS:Mid-deck Stowage SL : Rack Mounted Design Status Hardware Specifications Design Status 1. Mid-deck locker size, may be partial SL rack size. Design Status Development Cost (3K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Riek Category 3	Weight (Kg) 27.3 Height	(m) .253 Width (m) .440	6. Mixing and separation chamber 7. Simple PLC control with control valves.
Peak Power (Kw) _3 Cont Power (Kw) _15 Power Source Item Specific Support Equipt none Standard KC-135, Spacelab or NSTS source. none Data Downlink Reqs .5 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice NSTS:Mid-deck Stowage SL : Rack Mounted Hardware Specifications 1. Mid-deck locker size, may be partial SL rack size. 1. Mid-deck locker size, may be partial SL rack size. Design Status New Design Development Coet (SK) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Riek Category 3	Depth (m) .516	Temp Range Ambient	
Power Source Item Specific Support Equipt Standard KC-135, Spacelab or NSTS source. none Data Downlink Regs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice NSTS:Mid-deck Stowage SL : Rack Mounted/Stowed NSTS:Mid-deck Stowage SL : Rack Mounted Hardware Specifications Design Status New Design Development Cost (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Riek Category 3	Peak Power (Kw) .3	Cont Power (Kw) .15	
Standard KC-135, Spacelab or NSTS source. none Data Downlink Reqs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice Rack Mounted/Stowed NSTS:Mid-deck Stowage SL : Rack Mounted Hardware Specifications	Power Source		Item Specific Support Equipt
Data Downlink Reqs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice Rack Mounted/Stowed NSTS:Mid-deck Stowage SL : Rack Mounted Hardware Specifications 1. Mid-deck locker size, may be partial SL rack size. Design Status New Design Development Cost (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3	Standard KC-135, Spacelab or	NSTS source.	none
.05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice Rack Mounted/Stowed NSTS:Mid-deck Stowage SL : Rack Mounted Hardware Specifications 1. Mid-deck locker size, may be partial SL rack size. Design Status New Design Development Coet (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Riek Category 3	Data Downlink Reqs		-
Rack Mounted/Stowed NSTS:Mid-deck Stowage SL : Rack Mounted Hardware Specifications 1. Mid-deck locker size, may be partial SL rack size. Design Status New Design Development Cost (SK) Development Time (months) 24 Anticipated Launch Date 1993 Riek Category	.05 KBPS Command; 1.5 KBPS Voice	Digital; 1.5 MBPS Video; 1.6 KBPS	
Hardware Specifications 1. Mid-deck locker size, may be partial SL rack size. Design Status New Design New Design Development Cost (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3	Rack Mounted/Stowed NST SL:	S:Mid-deck Stowage Rack Mounted	
1. Mid-deck locker size, may be partial SL rack size. Design Status New Design New Design Development Cost (SK) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3	Hardware Specifications		
New Design Development Cost (SK) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3	1. Mid-deck locker size, may b	pe partial SL rack size.	Design Status
Development Cost (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3			New Design
Development Cost (\$K) 1,500 Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3			
Development Cost (\$K)1,500Development Time (months)24Anticipated Launch Date1993Risk Category3			
Development Time (months) 24 Anticipated Launch Date 1993 Risk Category 3			Development Cost (\$K) 1,500
Anticipated Launch Date 1993 Risk Category 3			Development Time (months) 24
Risk Category 3			Anticipated Launch Date 199
			Risk Category

and inguid Handling Experiment H/W	
icience Justification	
valuation of physical principles for FEAST.	
dentified Experiments	
	•
listory	
Existing liquid/gas transfer, mixing and separation t payloads.	technologies for μ -g from previous space flight vehicles and
Problem/issues&Concerns	
none at present	
none at present	
Interface Requirements	
Standard KC-135, NSTS or SL	
Special Considerations	
Containment of liquids and gases.	
Safety Issues	
none	
Flight Opportunity USML-2 (8/93)	
Notes	
REV A : Revised cost 4/4/89 from \$3000K to \$150	0K. Changed Unit No. from 3 to 2 to reflect Cost Estimate
categorization; added misc data to various catego	ories.

CELSS/FEAST Hardware Data Sheet Report Date 4/5/89

~

~

-

-

_

~

.

	Hardware Status Planned
Controlled Ecological	Revision Date Apr 4, 1989
Life Support System	
	Hardware Description
Title Water Condensation & Re-cycling Exp H/W	Spacelab, NSTS middeck or KC-135 size
Element No 3 Hevision A	studies.
Project FEAST	
Objective 1.) To determine problems associated with water condensation technologies under μ-g. 2.) Demonstrate and prove-out conceptual designs.	
	Desired Features/Functions
	 Video recording and/or downlink capability Water vapor source and water reservoir Condensation chamber with cooling Stream processing capability at various rates Monitoring capability of : relative humidty,
Hardware Specifications	iliquid volume, process rales
Weight (Kg) 27.3 Height (m) .253 Width (m) .440	
Depth (m) .516 Temp Range Ambient	
Peak Power (Kw) .300 Cont Power (Kw) .150	
Power Source	Item Specific Support Equipt
Standard platform source.	none
Data Downlink Reqs	
Rack Mounted/Stowed Rack Mounted or Stowed.	
Hardware Specifications	
	Design Status
	Development Cost (\$K) 2,900
	Development Time (months)
	Anticipated Launch Date 1995
	Risk Category 4

CELSS/FEAST Hardware Data Sheet

Report Date 4/5/89

Water Condensation & Re-cy	ling Exp H/W				
Science Justification					
	•			<u> </u>	
Identified Experiments					
			•		
History					
Problem/Issues&Concerns					
Vendor Source List					
Interface Requirements					
Special Considerations					
Safety Issues	· · · · · · · · · · · · · · · · · · ·				
Flight Opportunity USML-3	1/95)				
Notes					
1.) Two flights may be required.					
2.) May only require KC-135 flig	t to validate.				
DEN A - De des des Alaion Alaion An	\$5800K to \$2000K (Changed Unit No	from 2 to 3 to reflect	Cost Estimate	
HEV A : Hevised cost 4/4/89 from categorization.					
-					

Report Date 4/5/89

-

-

_

-

~

-

-

-

-

	Hardware Status Planned		
Controlled Ecological	Revision Date Apr 4, 1989		
Life Support System			
	Hardware Description Size of two middeck lockers on STS to study basis u.g. sutrient delivery systems.		
Title Nutrient Delivery Test H/W			
Element No 4 Revision A			
Project FEAST			
Objective 1. To evaluate plant nutrient delivery concepts under µ-g conditions for CELSS technology development.			
	Desired Features/Functions		
	 Video recording and/or downlink capability. Capability for testing a number of nutrient delivery concepts Liquid and gas containment 		
Hardware Specifications			
Weight (Kg) 27.3 Height (m) .253 Width (m) .440			
Depth (m) .516 Temp Range Ambient			
Peak Power (Kw) 300 Cont Power (Kw) 150			
Power Source	item Specific Support Equipt		
Standard mid-deck power source or equivalent	none		
Data Downlink Reqs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice			
Rack Mounted/Stowed Stowed			
Hardware Specifications			
•	Design Status		
	New Design		
	Development Cost (\$K) 3,475		
	Development Time (months) 24		
	Anticipated Launch Date 1992 & 1996		
	Risk Category		

Report Date 4/5/89

Nutrient Delivery Test H/W	
Science Justification	
Provides test and demonstration of nutrient delivery systems for CELSS tech	nologies.
Identified Experiments	
	•
History	
None	
Problem/Issuesaconcerne	
Vendor Source List	
None	
Interiaca Reduitementa	
Special Considerations	
Safety Issues	
-	
Flight Opportunity SLS-2 (7/92) & IML-4 (3/96)	
Notos	
NGLUS	
REV A : Revised cost 4/4/89 from \$6850K to \$34/5K.	

CELSS/FEAST Hardware Data Sheet Report Date 4/5/89

~

-

	Hardware Status Planned		
Controlled Ecological	Revision Date Apr 4, 1989		
Life Support System			
	Hardware Description		
Title CELSS Test Facility	Crop growth research facility for seed-to-seed		
Element No 5 Revision A	Freedom implementation.		
Project FEAST	4		
Objective 1.) To provide a facility for conducting plant productivity studies from seed to maturity (in some instances seed to seed) with mixed crops and in mixed maturities under µ-gravity conditions.			
2.) Assess system reliability and maintainability for CELSS	Desired Features/Functions		
technologies.	 Modular subsystem elements to allow for design evolution. LED lighting system Standard double rack size. Complete control of inputs and outputs to Station ambient atm. Implements automation and expert systems. Full complement DAS. Maximized degree of closure 		
Hardware Specifications			
Weight (Kg) 634.7 Height (m) 1.89 Width (m) 1.05			
Depth (m) 0.91 Temp Range S.S. Ambient			
Peak Power (Kw) 2.0 Cont Power (Kw) 1.5			
Power Source	Item Specific Support Equipt		
Standard Rack power	CTF Germination and Storage Chamber.		
Data Downlink Regs .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice			
Rack Mounted/Stowed Rack Mounted			
Hardware Specifications			
 Lighting : 0 - 3000 μmol/sq.m/s Modular nutrient delivery system Sealed enclosure w/ access and windows Fully controllable HVAC Pressure compensation system Water condensation 5, recruing capability 	Design Status New Design		
7. Control of internal gaseous environment (O2, CO2, N2)			
 8. Microbial monitoring capability 9. Monitoring, control and data acquisition systems 	Development Cost (\$K) 42,05		
10. Automated specimen handling 11. Growing Area: 0.71 so.m. max growing height : 0.85 m	Development Time (months) 7		
12. Self-contained with modular subsystems	Anticipated Launch Date 15		
13. Fulli controi of parameters withing specified ranges	Risk Category		
	man outegoly		

CELSS/FEAST Hardware Data Sheet 4/5/89 Report Date

CELSS Test Facility

Science Justification

Hardware is mandatory for developement of future CELSS technologies and advanced life support systems.

Identified Experiments

Hardware to be used in meeting CELSS Project FEAST objectives.

History

Major design elements derived from non-flight Crop Growth Research Chamber (CGRC) requirements.

Problem/Issues&Concerns

Nutrient dlivery system, lighting, & power.

Vendor Source List

None at present.

Interface Requirements

Standard Space Station Freedom rack interfaces.

Special Considerations

None

Safety Issues

None

Flight Opportunity PMC S.S. Freedom

Notes

- 1. Establish reliability baseline for CELSS hardware
- 2. Needs maintenance scenario and possibly S/E for same.
- 3. Current crop candidates are : Potatoes, soybeans, wheat, tomato, lettuce, radish, rice, onion, legume & spinach.

REV A : Revised cost 4/4/89 from \$15,000K to \$42,050K to reflect incorporation of CROP elements into CTF. Revised growing area from 1.5 - 2.0 sq.m to 0.71 sq.m, power from 1.8kW to 2.0 Kw peak and 1.2 - 1.3 kW cont to 1.5kW, mass changed from 1000 kg to 634.7 kg.

CELSS/FEAST Hardware Data Sneet Report Date 4/5/89

	Hardware Status Planned		
Controlled Ecological	Revision Date		
Life Support System			
	Hardware Description		
Title CTF Germination Chamber	Provides germination environment for seed		
Element No 6 Revision NR	Facility, Approx. the size of STS Middeck		
Project FEAST	Locker		
Objective 1. To provide environment for germinating seeds prior to planting in the CTF.			
2. To provide seed storage.	Destrod Features/Functions		
	 Air-tight chamber Humidity controlled Heat, shock and vibration isolated 		
Hardware Specifications Weight (Kg) 6.8 Height (m) .253 Width (m) .440			
Depth (m) .516 Temp Range S.S. Ambient			
Peak Power (Kw) .300 Cont Power (Kw) .150			
Power Source	Item Specific Support Equipt		
none required	none		
Data Downlink Reqs none			
Rack Mounted/Stowed Stowed			
Hardware Specifications			
Approximately the size of a NSTS Middeck Locker.	Design Status New Design		
	Development Cost (SK) 80		
	Development Time (months)		
	Development Time (months) 12 Anticipated Launch Date 199		

Report Date 4/5/89

Salanaa I	
Provides gerr storage.	ustification mination of seeds prior to planting in the CTF. Reduces operational power demand on CTF. Provides see
Identified none	Experiments .
History Plant Growth	Unit.
Problem/Is none	sues&Concerns
Vendor So none	urce List
Interface	Reguirements
Special C	onsiderations
Safety Iss	3Ues
Flight Opp	portunity PMC Space Station Freedom
Notes 1. Provides compartmen 2. Seed cor	for two separate and independent compartments: a.) Seed storage compartment and b.) Germination it. mpartment could also be used for misc. equipment stowage

~

-

-

•••

~

-

22. 11.16 414 s or pression of the second second second and the second second second second second second second second to be a second s

and an a strain of the second strain of the second strain and the second strain and the second strain of the strain of the second strain and the second st

Gas-Grain Simulation Facility: Description

The Gas-Grain Simulation Facility (GGSF), currently under development by the Exobiology Flight Experiments Program at Ames Research Center, is a facility-class payload proposed for the Space Station. The GGSF will be used to simulate and investigate fundamental chemical and physical processes such as the formation, collision and interaction of droplets, grains and other particles.

The Gas-Grain Simulation Facility will occupy a Space Station double rack. It will consist of several subsystems supporting an adaptable 10 liter experiment chamber. Subsystems will provide environmental control (e.g., temperature, pressure, gas mixture and humidity), measurement equipment (e.g., video cameras, optical particle counters, spectrometers, and photometers), and energy sources. Subsystems will also furnish: command and control capability; mechanisms for producing, injecting, and removing particles and clouds of particles; and levitation devices for positioning particles and keeping them in fixed positions away from the chamber walls. GGSF mass and power requirements are estimated to be 700 to 800 Kg and 1500 W peak (750 W average) respectively.

The GGSF will be modular in design; that is, it will have an adaptable configuration allowing subsystem components to be connected in a number of ways. Modularity will also allow the GGSF to evolve. At an early stage, the GGSF would be capable of supporting those experiments which promise high scientific yield and require only a few subsystems. Further, modularity will allow outdated subsystems to be replaced. New experiment chambers will be brought to the Space Station once a year so the GGSF will have a very long, useful lifetime (i.e., 10 years).

The facility's computer will control all operations of the facility during an experiment and have an autonomous decision making capability. Data exchange requirements, estimated at 20 to 40 kilobytes per day, are modest. Data/command uplinks will occur about twice per week. Aside from time needed for the initial set-up and calibration of experiments, crew time requirements will be minimal.

One possible GGSF operational sequence is as follows: A chamber designed for a series of experiments is "plugged in" to the GGSF and subsystems are attached in the configuration necessary for the first experiment. A command is then given to begin the execution of preprogrammed instructions for performing the experiment. After the first experiment is completed, the system may be reconfigured for the second experiment. When the sequence of experiments associated with the first chamber is completed, the chamber is removed and stored for return to Earth and a second chamber is attached for the next sequence of experiments.

Since many of the suggested GGSF experiments require gravitational accelerations of 10^{-4} to 10^{-5} g, it will be necessary to consider the background gravitational gradient when deciding where in the Space Station to place the GGSF. The GGSF will take advantage of some of the user support systems supplied by the Space Station such as the 10^{-3} torr "house" vacuum and data from the accelerometer system. Also, given the delicate physical and chemical properties of some particles generated in the GGSF, some preliminary sample analysis on the Space Station may be desirable. Such analysis will require special sample handling equipment and analytical tools. For example, some GGSF experiments will use a Scanning Electron Microscope, a Gas Chromatograph, a Mass Spectrometer, a (micro) mass measurement system, and/or a High Pressure Liquid Chromatograph if they are available.

Gas-Grain Simulation Facility: Science Rationale/Objectives

In many astrophysical and geological systems (atmospheric clouds, interstellar clouds, planetary rings, Titan's organic aerosols, Martian dust storms, etc.), processes involving small particles significantly contribute to the overall behavior of the system. Grain nucleation and aggregation, low velocity particle collisions, and charge accumulation are a few of the processes that influence such systems. Particles undergoing these processes include interstellar grains, protoplanetary particles, atmospheric aerosols, combustion products, and pre-biotic organic polymers.

The ability to simulate and investigate these types of systems and processes would present an exciting opportunity to answer long-standing scientific questions concerning the life and death of stars, the formation of the Solar System, and the connection between the Solar System's evolution and the appearance of life. These investigations would also increase our understanding of processes of immediate concern such as acid rain formation, ozone depletion, and climatic change on Earth. Furthermore, investigation of particle systems is essential to the achievement of NASA's scientific goal to attain a deep understanding of the Solar System, Earth, and the origin of life.

Many particle systems are not well understood because parameters relevant to these systems are poorly determined or unknown. Examples of such parameters are the coagulation rate of aerosol particles, the size distribution of particles nucleated from a gas, and the dependence of aggregation efficiency on material properties. Due to rapid particle settling in a 1g environment, these parameters are difficult and in many cases impossible to measure in experimental simulations on Earth.

In the study of small particle processes relevant to scientific issues mentioned above, the demands on experiment design are severe. Two common requirements are low relative velocities between particles and long time periods during which the particles must be suspended. Generally, the suspension times required are substantially longer than can be attained in 1g. Furthermore, for many studies, Earth's gravity can interfere directly with the phenomenon under study (e.g., weak inter-particle forces) or preclude the establishment of proper experimental conditions (e.g., a convection-free environment). Consequently, many processes are not amenable to experimentation in 1g.

However, in the Earth-orbital environment, the effects of gravity are reduced by a factor of as much as one million. In this environment, previously impractical or impossible experiments become feasible. Small-particle processes which cannot be studied on Earth can be investigated in Earth-orbit with a general-purpose microgravity particle research facility such as the Gas-Grain Simulation Facility (GGSF).

The GGSF, a facility-class payload proposed for the Space Station, will be used to simulate and investigate fundamental chemical and physical processes such as the formation, collision and interaction of droplets, grains and other particles. Scientific issues that can be addressed with the Gas-Grain Simulation Facility are relevant to the disciplines of exobiology, planetary science, astrophysics, atmospheric science, biology, and physics and chemistry. To date, twenty candidate GGSF experiments have been identified and described in detail. The candidate experiments are as follows:

- 1. Low-Velocity Collisions Between Fragile Aggregates
- 2. Low-Energy Grain Interaction/Solid Surface Tension
- 3. Cloud Forming Experiment

- 4. Planetary Ring Particle Dynamics
- 5. Aggregation of Fine Geological Particulates in Planetary Atmospheres
- 6. Condensation of Water on Carbonaceous Particles
- 7. Optical Properties of Low-Temperature Cloud Crystals
- 8. Ice Scavenging and Aggregation
- 9. Synthesis of Tholin in Microgravity and Measurement of its Optical Properties
- 10. Metallic Behavior of Aggregates
- 11. Investigations of Organic Compound Synthesis on Surfaces of Growing Particles
- 12. Crystallization of Protein Crystal-Growth Inhibitors
- 13. Dipolar Grain Coagulation and Orientation
- 14. Titan Atmospheric Aerosol Simulation
- 15. Surface Condensation and Annealing of Chondritic Dust
- 16. Studies of Fractal Particles
- 17. Emission Properties of Particles and Clusters
- 18. Effect of Convection on Particle Deposition and Coagulation
- 19. Growth and Reproduction of Microorganisms in a Nutrient Aerosol
- 20. Long Term Survival of Human Microbiota in and on Aerosols

The GGSF will be sufficiantly flexible to accommodate the above as well as many other scientifically important investigations without compromising the requirements of any particular investigation. By extending the range of conditions in which experiments can be performed, the GGSF will be a powerful tool for studying the physics of small particles and grains. Important advances in our understanding of the many small-particle phenomena should follow from the new ability to study subtle small-particle effects and interactions.

Gas-Grain Simulation Facility: Hardware

The Gas-Grain Simulation Facility (GGSF) consists of eight subsystems which are complimentary and interdependent. All of the subsystems are necessary for meeting the facility science requirements. The GGSF subsystems and hardware are as follows:

- 1. General Purpose Experiment Chamber/Containment Subsystem (Includes ports, feed-throughs, subsystem interfaces, double- or triplecontainment, vibration isolation, EM shielding, etc.)
- 2. Chamber Environment Regulation/Monitoring Subsystem (For regulation and monitoring of temperature, pressure, and humidity. Includes gas-handling system, filters, etc.)
- 3. Aerosol Generation/Measurement Subsystem (Includes aerosol generators, size spectrum analyzers, CN counter, electrostatic classifier, dryer, charge neutralizer, etc.)
- 4. Chamber Illumination, Optics, and Imaging Subsystem (Includes UV sources, camera with optics, various lamps, photometer, etc.)
- 5. Spectrometry/Optical Scattering Subsystem (Includes spectrometers, lasers, photodetectors and other support equipment for light scattering measurements, etc.)
- Particle Manipulation and Positioning Subsystem

 (Includes acoustic levitator, particle injection mechanisms, particle retrieval mechanisms, etc.)
- 7. Computer Control and Data Acquisition Subsystem (Includes microcomputer and console, data bus, data storage, control electronics, etc.)
- 8. Storage Locker

(For storing special gas mixtures, fluids for aerosol generators, interfaces and adaptors, PI-provided hardware, samples produced in experiment runs, film, etc.)

LIFE SCIENCES FLIGHT PROGRAMS CHANGE REQUEST

Reference Documentation:

Life Sciences Hardware List for the Space Station Freedom Era. R-0006

Description of Change:

Change the Exobiology Facility section to reflect the following:

EXOBIOLOGY FACILITY (8)

		Volume (cu. m)	Weight (kg)	Power (watts)
Gas-Grain Simulation Facility Hardware Group (8A)		2.40	800	1500
1.	General Purpose Experiment Chamber/Containment Subsystem	0.48	200	0
2.	Chamber Environment Regulation/Monitoring Subsystem	0.23	80	200
3.	Aerosol Generation/Measurement Subsystem	0.45	150	300
4.	Chamber Illumination, Optics, and Imaging Subsystem	0.20	80	200
5.	Spectrometry/Optical Scattering Subsystem	0.20	150	300
6.	Particle Manipulation and Positioning Subsystem	0.16	50	200
7.	Computer Control and Data Acquisition Subsystem	0.20	50	300
8.	Storage Locker	0.48	40	0

Justification/Rationale:

This Change Request identifies the component subsystems of the Gas-Grain Simulation Facility (8A) and includes the volume, weight and power estimates for each subsystem. The additional 0.48 cubic meters of volume indicated in this Change Request is required for storage of items such as special gas mixtures, fluids for aerosol generators, experiment-produced samples to be returned to Earth, and film. These changes reflect further refinement of the Gas-Grain Simulation Facility requirements.

Gas-Grain Simulation Facility: Hardware Definitions

General Purpose Experiment Chamber/Containment Subsystem: The Gas-Grain Simulation Facility (GGSF) experiment chamber for studying small-particle processes and interactions in microgravity.

Chamber Environment Regulation/Monitoring Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that establishes, regulates, and removes the gas-mixture in the GGSF chamber as well as monitors and regulates the chamber/gas temperature, pressure, and humidity.

Aerosol Generation/Measurement Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that generates and introduces into the GGSF chamber aerosol clouds of various concentration, particle-size, and dispersion and monitors the cloud size-distribution and total concentration.

Chamber Illumination, Optics, and Imaging Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that provides optical imaging of processes occurring in the GGSF chamber and provides various light/energy sources.

Spectrometry/Optical Scattering Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that measures light-scattering and extinction properties of aerosol/dust clouds and single grains.

Particle Manipulation and Positioning Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that mechanically and/or aerodynamically injects particles into the chamber, manipulates them by acoustic and/or aerodynamic levitation, and retrieves samples from the chamber.

Gas-Grain Simulation Facility Computer Control and Data Acquisition Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem which provides computer and electronic control of experiments, data acquisition and storage.

Gas-Grain Simulation Facility Storage Locker: A locker to store Gas-Grain Simulation Facility (GGSF) support materials such as PI-provided equipment and special dust or aerosol mixtures for a planned suite of experiments and to store samples for return to Earth.

•