"y

@ https://ntrs.nasa.gov/search.jsp?R=19930014243 2020-03-17T06:55:47+00:00Z

_ //\/ é/
/5852
P91

NASA Contractor Report 191416

LARCRIM User’s Guide
Version 1.0

John S. Davis
William J. Heaphy

Computer Sciences Corporation
Hampton, Virginia

Contract NAS1-19038
January 1993

(NASA-CR-191416) LARCRIM USER®S N93-23432
GUIDE, VERSION 1.0 (Computer

Sciences Corp.) 99 p
unclas

G3/61 0158525

NNASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

FOREWORD

LARCRIM is based upon the relational algebra model for data management and has been
used for both engineering and business data. It is accessible as a stand-alone system
and through an application program interface. The stand-alone system may be
executed in either of two modes: menu or command. The menu mode prompts the
user for the input required to create, update, and/or query the database. The command
mode requires the direct input of LARCRIM commands, the requirements for which are
not difficult to learn.

'LARCRIM derives from the Relational Information Management System (RIM) which was

developed for NASA in the late 1970’s. An updated version, RIM-5, released in 1981,
has been available to the public through the Computer Software Information and
Management Center (COSMIC). It remains available from COSMIC, as of 1992, as
program #M92-10429. LARCRIM is based on the VAX version of RIM-5. LARCRIM is
the first version of RIM to run under UNIX. Otherwise, the differences between the two
are mostly transparent code optimization. LARCRIM is particularly suited for the storage
and manipulation of scientific data because it allows arrays and matrices to be stored as
such.

LARCRIM is written in FORTRAN 77. It retains a number of non-ANSI characteristics
such as Hollerith character representation. This will be resolved in a future version.

Versions of LARCRIM have been released to run under UNIX on the following computers:
SUN 3 and SUN 4 (UNIX)
Convex (UNIX)
IRIS (UNIX)
Hewlett-Packard (UNIX)
CRAY 2 and CRAY Y-MP (UNICOS)

The body of this manual will discuss commands and procedures commonly valid on these
computers. From an interactive viewpoint, the computer hardware is generally
irrelevant. Otherwise, host dependent information is contained in Appendix F. This will
generally relate to applications programming and to certain systems considerations.
Future releases of LARCRIM are anticipated for the IBM PC and the Macintosh
computers.

This user's guide is based on the RIM-5 User’s Guide published by COSMIC. It contains
substantial new material, Chapter 1 in particular, and minor to major revisions throughout..

LARCRIM and the present document were produced in support of the High Speed
Airframe Integration Research (HiSAIR) project at Langley Research Center under the
direction of Mr. Kennie H. Jones.

TABLE OF CONTENTS

Section Page
FOREWORD . . .ottt tt ettt e e et e e e e e ee e i
COMMAND INDEX i i et e e ina s Y
1.0 AQUICKLOOK i 1
2.0 GENERAL COMMAND SYNTAXt 15
21 LARCRIMEXeCUtion i i it 18
22 LARCRIMCommands.coiiiiii ittt 19
2.2.1 DefiningaDatabase Schemao it 20
2.2.1.1 DefiningAttributes i 21
2.21.2 DefiningRelations i i 22
2.2.1.3 PasswordDefinition i 22
2.2.1.4 Constraint Rule Definition. oo it 23
222 LloadingaRelation............. i 25
223 QueryingaRelation......... ... i 26
224 QueryingtheSchema. i, .33
2.2.5 ComputationCommand.......... ...t 34
2.2.6 Modification Commands.coiii i e 35
2.2.7 Relational AigebraCommands. i, 37
228 RepotCommands......... ..ottt ...43
229 KeyCommandsttt 44
2.2.10 LARCRIMto LARCRIM Commands. e 44
2211 General Commands. ittt i 45
2.3 Menu Mode Execution Overview e 51
2.3.1 Database CreationOptiont 51
2.3.2 Database Update Option i 51
233 QueryOption e e e e 51
2.4 LARCRIM Menu Mode Interactive Dialogue 52
241 MenuDialoguecoiiiiiii i i e 52
2.42 SchemaDefinitionco0iiiiiir i e 52
243 Databaseloadingt 54

i PREGEDING PAGE BLANK NOT FILMED

’
L

‘8. Y T wid
coprens {7, JRVABIONITLY U
' - P ot el

TABLE OF CONTENTS

(continued)

Section Page
3.0 LARCRIM EXECUTION THROUGH THE APPLICATION PROGRAM

INTERFACE i i i e ieee e eannnn,, DT
3.1 Initiglizingthe Databasec. v e 58
3.2 Statusof Database Activity.ot e 59
3.3 GeneralRoutines.................... e e 61
3.4 AccessingtheSchema............ci i, 62
3.5 AccessingtheDatabase............ .ottt i 65
36 TheDataArmaycoiii it ittt it i 72
APPENDIX A: SUMMARY OF LARCRIMCOMMANDS 77

APPENDIXB: SUMMARY OF THE APPLICATION PROGRAM INTERFACES .81

APPENDIX C: SAMPLE APPLICATIONPROGRAM., 85

APPENDIXD: LIMITATIONS i e e 87

APPENDIX E: ENTERING INPUT WITH THE LARCRIM USER INTERFACE . .89

APPENDIXF: HOSTDEPENDENTINSTRUCTIONS.93

APPENDIX G: DATABASEFILES S a5

T 1= (= L= <4 96
iv

COMMAND INDEX

COMMAND Page

DEFINING A DATABASE SCHEMA

CDEFINE . ..o e ettt e vee.....20
OWNER....... e e e 20
ATTRIBUTES ... it ittt it i et et en e 21
RELATIONS ... i i e ettt et e e nnan e, 22
PASSWORDS . .. i i i et e e 22
L 23
1 | 24

LOADING A RELATION
LOAD . .. e i e 25
END e e et e e e 25
QUERYING A RELATION
TALLY ittt e e e e et i e 32
QUERYING THE SCHEMA
LISTREL ..ttt i e e it st e et 33
PRINT RULES . .. ittt ittt ittt e it e s nninanas s 34
COMPUTATION COMMAND
MODIFICATION COMMANDS
CHANGE (Attribute values)o e 35
CHANGE (Passwords)ciitiiiiiiiiitvinnnrnneesnnonsns 35
CHANGE OWNER. . ..ttt i i e ittt ettt ana e 35
DELETE ROWS. .. ittt i ittt it ettt it e e s a e nanns 35
DELETEDUPLICATES ittt ei ittt v es ee...36
DELETE RULE ... it it ettt et it e s aan e 36
RENAME ATTRIBUTEottt ittt it e i iianannan s 36
RENAME RELATIONttt ittt it ienn e rennieannnannnns 36
Y [37

COMMAND INDEX

COMMAND

RELATIONAL ALGEBRA COMMANDS

INTERSECT ... e
JOIN e
PROJECT .. it i e i e es
SUBTRACT . ittt i it ettt c e

REPORT COMMANDS

NEWPAGEt e it

KEY COMMANDS

BUILDKEY ..ot i i i e ci e
DELETEKEY. . vt i i

LARCRIM TO LARCRIM COMMAND

UNLOAD .. i i i it e i aa s

GENERAL COMMANDS

INPUT . e i e

CHECK ... e i it
NOCHECK. ... i it e e
TOLERANCE. i i i i it
RELOAD .. ittt ittt i e i i et it

Vi

L e

1.0 A QUICK LOOK

The first section of the LARCRIM User's Guide provides a quick look at using the
LARCRIM Database Management System. It is presented as an annotated
example in which a database is created, relations and attributes are defined, data
are loaded into the database, the database is queried, and the database is
exited. Throughout this section, the following typographical conventions are
observed: '

THIS Typetface Routine descriptive text, as above.
INPUT User input to the computer, either commands or data.
OUTPUT Computer output to the screen or to a text file.

ANNOTATION Editorial commentary, usually in blocks of text on
therightsideofapage.

Initiate LARCRIM., This may
cagle$ larcrim differ by host machine .

BEGIN LARCRIM -CONVEX VERSION 1.0 UbDxx 91/10/24 10.32.01

[LARCRIM COMMAND MODE
FNTER “MENU” FOR MENU MODE

R>DEFINE PLANES Create the database (DB)
definition, also called the
SCHEMA.

BEGIN LARCRIM SCHEMA COMPILATION

D>OWNER AGENT 7 You are now in the DEFINE module
7 (D>). Tell it who you are and
begin giving definition commands.

D>ATTRIBUTES

D>WORD TEXT 8 KEY
D>WRDTYPE TEXT 9

D>DESCRIP TEXT VAR A relational database is made
D>MFG TEXT 10 KEY up of RELATIONS, which contain
D>MODEL TEXT 10 ATTRIBUTES. The attributes are
D>TYPE TEXT 10 KEY definedfirst, thenthe relations.
D>NUMENG INT Here, some text attributes
D>ENGTYPE TEXT 10 are defined with a fixed 8,9,
D>CRUSALT REAL 10, or a VARiable number of
D>CRUSSPD REAL characters for each. The
D>CARRIER TEXT 10 KEY default is 8 characters for
D>FLIGHTNO INT text and 1 value for real and
D>STRTCITY TEXT 10 integer. The KEY flags speed up
D>ENDCITY TEXT 10 querying of the finished
D>DAYOFWK TEXT 10 database.

D>PILOT TEXT 20
D>RATING INT

Now define 4 relations from the
attributes above. A plus sign (+)
at the end of a line will continue that
line on the line below.

D>RELATIONS

D>DEFIN WITH WORD WRDTYPE DESCRIP

D>AIRLINES WITH CARRIER FLIGHTNO STRTCITY ENDCITY DAYOFWK +
MODEL

D>AIRPLANS WITH MFG MODEL TYPE NUMENG ENGTYPE CRUSALT CRUSSPD
D>CREW WITH FLIGHTNO PILOT RATING

Passwords are optional.

>>PASSWORDS

D>MODIFY PASSWORD FOR DEFIN IS DBA
N>MPW FOR AIRLINES IS AGENT

D>RPW FOR ALL IS AGENT

Abbreviations:
Modify password = mpw
Read ” = rpw

LA

Rules are also optional, but
D>RULES we'll see how these work later on.
D>DAYOFWK NE SUN
D>RATING GT O AND RATING LT 10

D>END
The “END” takes us out of the define sublevel and back
to the RIM command level (R>). Now, to load the database,
we first need to give the password we specified for the
relation DEFIN. We do so with the “USER” command.
R>USER DBA

R>LOAD DEFIN

BEGIN -LARCRIM- DATA LOADING

We are now in the “load” mode;
notice the “L>" prompts

L>WORD ATTRIBUTE “NAMES USED IN THE PLANES DATA BASE.”

L>WRDTYPE ATTRIBUTE “THE TYPE OF THE NAME: ATTRIBUTE OR RELATION.”
L>DESCRIP * “A TEXTUAL DESCRIPTION OF THE WORDS USED IN THE DATA +
BASE."”

L>MEG * “THE MANUFACTURER OF THE AIRPLANE.”

L>MODEL * “THE AIRPLANE MODEL NUMBER.”

L>TYPE * “THE AIRPLANE TYPE, I.E., PASSENGER, CARGO, ETC.”
L>NUMENG * “THE NUMBER OF ENGINES ON THE AIRPLANE.”

L>ENGTYPE * “THE ENGINE TYPE, I.E., JET, PROP, ETC.”

L>CRUSALT * “THE AIRPLANE’S CRUISE ALTITIUDE.”)

L>CRUSSPD * “THE AIRPLANE'S CRUISE SPEED.” ,

L>CARRIER * “THE AIRLINE CARRIER WHICH USES THE PLANES.”
L>FLIGHTNO * “THE FLIGHT NUMBER OF A CARRIER’S ROUTE.”

L>STRTCITY * “THE START CITY OF THE FLIGHT ROUTE.”

Note that character strings are quoted and that a plus (+) sign

is used to continue long strings (over 80 characters) on the next

line. The asterisk equates to a ditto mark; it repeats the
corresponding field from the line above, i.e.: “ATTRIBUTE”.

(Any LARCRIM command may be continued on the next line, not just
so-called text strings.)

L>ENDCITY * “THE END CITY OF THE FLIGET ROUTE.”

L>DAYOFWK * “DAY OF THE WEEK THAT THE FLIGHT ROUTE RUNS.”
L>PILOT * “THE PILOT’'S NAME. -

L>RATING * “THE PILOT’S SKILL RATING.”

L>AIRPLANS RELATION “RELATION CONTAINING THE AIRPLANE STOCK +
THAT A CARRIER OWNS ALONG WITH ALL PERTINENT DATA ON EACH +
AIRPLANE."”

L>AIRLINES * “RELATION CONTAINING THE AIRLINE’'S FLIGHT +
INFORMATION.”

L>CREW * “THE CREW FLIGHT INFORMATION.”

L>DEFIN * “RELATION CONTAINING THE DEFINITIONS OF ALL THE +
ATTRIBUTES AND THE RELATIONS USED IN THE PLANES DATA BASE.”

We defined the relation AIRPLANS with

L>LOAD AIRPLANS 7 attributes: MFG, MODEL, TYPE,
NUMENG,ENGTYPE, CRUSALT, & CRUSSPD.
Now we must load it in the same order. Note that
this relation doesn’t need a password; we didn’t give
it one. Also note that, having loaded one relation,
we switch to loading another just by entering a new
“load” command. We don't have to leave the LOAD
mode.

L>BOEING B727-100 PASSENGER 3 JET 39000. 560.
>BOEING B727-200 *5

L>BOEING B747-200 PASSENGER 4 JET 43000. 580.
L>BOEING B737-200 PASSENGER 2 JET 35000. 590.
L>BOEING B747-SP PASSENGER 4 JET 45000. 600.
L>BOEING B747-F CARGO 4 JET 50000. 650.
L>DOUGLAS DC-9 PASSENGER 2 JET 39000. 550.
L.>DOUGLAS DC-10 PASSENGER 3 JET 44000. 590.
L>LOCKHEED L-1011 PASSENGER 3 JET 46000. 550.
L>BURNER BLAIR CROPDUSTER 1 PROP 500. 110.

L>LOAD AIRLINES

BEGIN -LARCRIM- DATA LOADING
-ERROR- UNAUTHORIZED ACCESS TO RELATION AIRLINES
END -LARCRIM- DATA LOADING

Airlines requires a password.
We got bumped back to the top
level (R>). No sweat! We'll
try again the right way.

[T T

R>USER AGENT

R>LOAD AIRLINES

L>UNITED 58 PORTLAND SEATTLE MON B727-200
L>UNITED 65 SEATTLE PORTLAND MON B727-100
L>UNITED 120 *2 FRI B727-200

L>UNITED 128 PORTLAND SEATTLE FRI B737-200
L>CONT 234 SEATTLE PORTLAND THU DC-9

L>CONT 235 SEATTLE PORTLAND SUN DC-9

L>CONT 187 *2 WED DC-9

L>AIRWEST 18 *2 TUE BLAIR

L>UNITED 140 SEATTLE CHICAGO FRI DC-8
L>AIRWEST 27 *2 SAT BLAIR

L>WESTERN 290 *2 SAT B707-200

L>TWA 576 SEATTLE CHICAGO MON B747-200

L>TWA 578 *2 WED B747-SP

L>TWA 624 *2 SAT B747-200

L>AMERICAN 295 SEATTLE ROCHESTER SUN B727-200
L>AMERICAN 298 ROCHESTER SEATTLE MON B727-200
L>AMERICAN 140 ROCHESTER CHICAGO TUE B727-100
L>AMERICAN 145 CHICAGO SEATTLE TUE B727-200
L>PANAM 245 SEATTLE TOKYO MON DC-10

L>PANAM 247 SEATTLE TOKYO TUE L-1011

L>PANAM 249 SEATTLE TOKYO THU L-1011

L>PANAM 246 TOKYO SEATTLE TUE DC-10

L>PANAM 248 TOKYO SEATTLE WED DC-10

L>PANAM 250 TOKYO SEATTLE SAT DC-10
L>IPAD-AIR -3 RENTON KENT THU BLAIR
L>IPAD-AIR -5 KENT RENTON FRI BLAIR
L>IPAD~-AIR -6 LANGLEY RENTON MON BLAIR
L>IPAD-AIR -7 RENTON LANGLEY TUE BLAIR

L>LOAD CREW

L>-3 “FEARLESS FRED” 5
L>-6 “DARING DANIEL” 3
L>-5 “ROARING RALPH” 3
1>295 “DIEHARD DENNIS” 6
1558 “BERNHARDT BOMBER” 1

L>18 “SMILING JACK” 0 The rating 0 is against
_ - the rule “rating gt 0,”
- ERROR- UNABLE TO PROCESS RULE 2 so we turn off rule
checking and bravely
press on.

L>NOCHECK

L>18 “SMILING JACK” 0O
L>27 “STEVE CANYON” 0
L>END

R>PRINT RULES We can look at the rules
only from the LARCRIM
main level (R>).

RULE NUMBER 1

DAYOFWK NE SUN

RULE NUMBER 2

RATING ‘ GT 0 AND
RATING LT 10

R>LISTREL
EXISTING RELATIONS AS OF 91/10/24 10.33.43

DEFIN

ATRPLANS

AIRLINES A plain LISTREL shows
CREW us what relations we

have. Adding a relation
name to the command
gives us an outline of
that relation.

R>LISTREL AIRLINES

RELATION : AIRLINES

LAST MOD : 91/10/24 READ PASSWORD : YES
SCHEMA : PLANES MODIFY PASSWORD : YES
NAME TYPE LENGTH KEY
CARRIER TEXT 10 CHARACTERS YES

FLIGHTNO INT 1
STRTCITY TEXT 10 CHARACTERS
ENDCITY TEXT 10 CHARACTERS
DAYOFWK TEXT 10 CHARACTERS
MODEL TEXT 10 CHARACTERS
CURRENT NUMBER OF ROWS = 28

R>SELECT WORD WRDTYPE

WRDTYPF

DESCRIP

MFG

MODEL
TYPE

NUMENG

ENGTYPE

CRUSALT

CRUSSPD
CARRIER

FLTIGHTNO

STRTCITY

ENDCITY

DAYOFWK

PILOT

RATING
AIRPLANS

ATRLINES

CREW
DEFTN

WRDTYPE

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

ATTRIBUTE

ATTRIBUTE
ATTRIBUTFE

ATTRIBUTH

ATTRIBUTE

ATTRTBUTE

ATTRIBUTE

-ATTRIBUTE

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

ATTRIBUTE
RELATION

RELATION

RELATION
RELATION

Display 3 fields from
the relation, but limit
DESCRIP to 30
characters.

DESCRIP=30 FROM DEFIN

DESCRIP

NAMES USED IN THE PLANES DATA
BASE .

THE TYPE OF THE NAME:

ATTRIBUTE OR RELATION.

A TEXTUAL DESCRIPTION OF THE
WORDS USED IN THE DATA BASE.
THE MANUFACTURER OF THE
ATIRPLANE.

The AIRPLANE MODEL NUMBER.

THE ATRPLANE TYPE, I.E.,
PASSENGER, CARGO, ETC.

THE NUMBER OF ENGINES ON THE
AIRPLANE.

THE ENGINE TYPE, I.E., JET,
PROP, ETC.

THE AIRPLANE’S CRUISE
ALTITUDE.

THE AIRPLANE’S CRUISE SPEED.
THE AIRLINE CARRIER WHICH USES
THE PLANES.

THE FLIGHT NUMBER OF A
CARRIER’S ROUTE.

THE START CITY OF THE FLIGHT
ROUTE.

THE END CITY OF THE FLIGHT
ROUTE,

DAY OF THE WEEK THAT THE
FLIGHT ROUTE RUNS.

THE PILOT’S NAME.

THE PILOT'’S SKILL RATING.
RELATION CONTAINING THE
AIRPLANE STOCK THAT A CARRIER
OWNS ALONG WITH ALL PERTINENT
DATA ON EACH AIRPLANE.
RELATION CONTAINING THE
AIRLINE’S FLIGHT INFORMATION.
THE CREW FLIGHT INFORMATION.
RELATION CONTAINING THE
DEFINITIONS OF ALL THE
ATTRIBUTES AND THE RELATIONS
USED IN THE PLANES '‘DATA BASE.

R>SELECT ALL FROM AIRPLANS

ME'G MODEL TYPE NUMENG ENGTYPE CRUSALT CRUSSPD
BOEING B727-100 PASSENGER 3 JET 39000. 560.
BOEING B727-200 PASSENGER 3 JET 39000. 560.
BOEING B747-200 PASSENGER 4 JET 43000. 580.
BOEING B737-200 PASSENGER 2 JET 35000. 590.
BOEING B747-SP PASSENGER 4 JET 45000. 600.
BOEING B747-F CARGO 4 JET 50000. 650.
DOUGLAS DC-9 PASSENGER 2 JET 39000. 550.
DOUGLAS DC-10 PASSENGER 3 JET 44000. 590.
LOCKHEED L-1011 PASSENGER 3 JET 46000. 550.
BURNER BLAiR CROPDUSTER 1 PROP 500. 110.
R>EXIT Let’s stop by entering EXIT,

then reenter the database.

cagle% LARCRIM
BEGIN LARCRIM -CONVEX VERSION 1.0 UD23 91/10/24 10.35.23
(Case insensitive, except for DBname)

LARCRIM COMMAND MODE
ENTER “MENU” FOR MENU MODE

R>INPUT CMDFILE Optional input method:
This would pick up a file of
LARCRIM commands and
execute them immediately. But
we want to see what's going on
so we’ll reset from the input to
come from the keyboard.

R>INPUT TERMINAL

R>OPEN PLANES
The DB already exists, so
we just open it. Since
we defined it with all
caps, we must forever more
refer to it the same way.

R>USER AGENT

R>SELECT ALL FROM AIRPLINES SORTED BY STRTCITY

CARRIER
AMERICAN
UN1ITED
UNITED
AMERICAN
AMERICAN
UNITED
UNITED
CONT
CONT
HUGHES
UNITED
HUGHES
WESTERN
TWA

TWA

TWA
PANAM
PANAM
PANAM
PANAM
PANAM
PANAM

FLIGHTNO

290
576
578
624
245
247
249
246
248
250

STRTCITY

CHICAGO
PORTLAND
PORTLAND

ROCHESTER
ROCHESTER

SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
SEATTLE
TOKYO

TOKYO

TOKYO

ENDCITY
SEATTLE
SEATTLE
SEATTLE
SEATTLE
CHICAGO
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND
CHICAGO
CHICAGO
CHICAGO
CHICAGO
CHICAGO
CHICAGO
TOKYO
TOKYO
TOKYO
SEATTLE
SEATTLE
SEATTLE

DAYOFWK

MODEL
B727-200
B727-200
B737-200
B727-200
B727-100
B727-100
B727-200
DC-9
DC-9
BLAIR
DC-8
BLAIR
B707-200
B747-200
B747-SP
B747-200
DC-10
L-1011
L-1011
DC-10
DC-10
DC-10

R>SELECT ALL FROM AIRPLANS WHERE MFG EQ BOEING AND NUMENG GE 3

BOEING
BOEING
BOEING
BOEING
BOEING

MODEL
B727-100
B727-200
B747-200
B747-SP
B747-F

R>OUTPUT TEMP1

PASSENGER
PASSENGER
PASSENGER
PASSENGER
CARGO

ENGTYPE CRUSALT CRUSSPD

This reroutes the output
from subsequent commands to
the file TEMPL.

R>SELECT CARRIER DAYOFWK FROM AIRLINES WHERE ENDCITY EQ PORTLAND

CARRIER DAYOFWK
UNITED MON
UNITED FRI
CONT THU
CONT WED
- HUGHES "~ TUE
R>OUTPUT TERMINAL Reroute output back to terminal.

R>TALLY STRTCITY FROM AIRLINES Display each city with departing flights
and thenumberof such flights.

STRTCITY NUMBER OF OCCURRENCES

CHICAGO 1
PORTLAND 2
ROCHESTER 2
SEATTLE 14
TOKYO 3

R>TALLY FLIGHTNO=D FROM AIRLINES WHERE FLIGHTNO GT 140

FLIGHTNO NUMBER OF OCCURRENCES

This time, use FLIGHTNO
to sort the list in descending
order,

N
KN
oy
N W R S S N

10

The PROJECT command
allows you to build a
“subset” relation when the
full data set is not required.

R>PROJECT BOEINGPL FROM AIRPLANS USING MODEL TYPE NUMENG +
CRUSALT CRUSSPD WHERE MFG EQ BOEING

SUCCESSFUL PROJECT OPERATION 6 ROWS GENERATED

R>LISTREL BOEINGPL
RELATION : BOEINGPL

LAST MOD : 91/10/24 READ PASSWORD : YES
SCHEMA : PLANES ' MODIFY PASSWORD : NONE
NAME TYPE LENGTH KEY

MODEL TEXT 10 CHARACTERS
TYPE TEXT 10 CHARACTERS

NUMENG INT 1

CRUSALT REAL 1

CRUSSPD REAL 1
CURRENT NUMBER OF ROWS = 6

R>SELECT MODEL CRUSALT CRUSSPD FROM BOEINGPL

MODEL CRUSALT CRUSSPD
B727-100 39000. 560.
B727-200 39000. 560.
B747-200 43000. 580.
B737-200 35000. 590.
B747-SP 45000. 600.
B747-F 50000. 650.

11

R>INTERSECT AIRPLANS WITH AIRLINES FORMING FLIGHTS
SUCCESSFUL INTERSECT OPERATION 24 ROWS GENERATED
The INTERSECT operation
builds a new relation from

selected attributes of others.

R>LISTREL FLIGHTS
RELATION : FLIGHTS

LAST MOD : 91/10/24 READ PASSWORD : YES
SCHEMA : PLANES MODIFY PASSWORD : YES
NAME TYPE LENGTH - KEY
MFG TEXT 10 CHARACTERS
PLANE TEXT 10 CHARACTERS
TYPE TEXT 10 CHARACTERS
NUMENG INT 1
ENGTYPE TEXT 10 CHARACTERS
CRUSALT REAL 1
CRUSSPD REAL 1
CARRIER TEXT 10 CHARACTERS
FLIGHTNO INT 1
STRTCITY TEXT 10 CHARACTERS
‘ENDCITY TEXT 10 CHARACTERS
DAYOFWK TEXT 10 CHARACTERS
CURRENT NUMBER OF ROWS = 24

R>SELECT CRUSALT FROM FLIGHTS WHERE STRTCITY EQ ROCHESTER AND +
ENDCITY EQ SEATTLE

CRUSALT

R>TALLY MFG FROM FLIGHTS

MFG NUMBER OF OCCURRENCES
BOEING 10
BURNER 2
DOUGLAS 6
LOCKHEED 2

12

L]

R>SUBTRACT AIRLINES FROM AIRPLANS FORMING LEFTOVER

SUCCESSFUL SUBTRACT OPERATION 1 ROWS GENERATED

The SUBTRACT command finds rows
in one relation that don't match any
rows in the other relation.

R>SELECT ALL FROM LEFTOVER

MEG MODEL TYPE NUMENG ENGTYPE CRUSALT CRUSSPD

BOEING B747-F CARGO 4 JET 50000. 650.

R>USER AGENT

R>CHANGE CARRIER TO HUGHES IN AIRLINES WHERE CARRIER EQ AIRWEST
R>RENAME ATTRIBUTE DAYOFWK TO DAY IN FLIGHTS

R>RENAME ATTRIBUTE MODEL TO PLANE IN FLIGHTS

R>EXHIBIT DAY

RELATIONS CONTAINING DAY
AIRLINES How many relations use the
FLIGHTS attribute “DAY?”

R>RENAME RELATION DEFIN TO DATADICT
R>LISTREL DATADICT
RELATION : DATADICT

LAST MOD : 91/10/24 READ PASSWORD : YES
SCHEMA : PLANES MODIFY PASSWORD : YES
NAME TYPE LENGTH KEY
WORD TEXT 8 CHARACTERS YES
WRDTYPE TEXT 9 CHARACTERS

DESCRIP TEXT VARIABLE
CURRENT NUMBER OF ROWS = 21

13

R>PROJECT BOEINGPL FROM AIRPLANS USING ALL WHERE MFG EQS “BOE”
SUCCESSFUL PROJECT OPERATION 6 ROWS GENERATED

R>SELECT ALL FROM BOEINGPL

MODEL TYPE NUMENG CRUSALT CRUSSPD

B727-100 PASSENGER 3 39000. 560

B727-200 PASSENGER 3 39000, 560

B747-200 PASSENGER 4 43000, 580.

B737-200 PASSENGER 2 35000. 590

B747-5P PASSENGER 4 45000. 600

B747-F CARGO 4 50000. 650

R>EXIT
Standard exit. This works from
the main level (R>). If
it doesn’t seem to work, you
might be in a submode (Load,
Define, etc.). Try “end”, then
“exit”.

END LARCRTM EXECUTION 91/10/24 10.44.52

14

2.0 GENERAL COMMAND SYNTAX

LARCRIM is used by entering commands in response to input prompts. Each
command begins with a keyword followed by the information needed to complete the
command specification. Three of the commands (DEFINE, LOAD, and HELP), are
used to enter sublevels which have their own sets of commands for defining a
database, loading a database, and providing help to the user. The input prompt
indicates which commands are expected: D> indicates the define sublevel
commands, L> the load sublevel commands, H> the help sublevel commands, and
R> for all other commands. In describing the LARCRIM commands, the following

conventions are used:

relname name of a relation(s)

or

relnamel, relname2, ... (1-8 alphanumeric characters)
attname name of an attribute(s)

or

attnamel, attname?2, ... (1-8 alphanumeric characters)
value actual value (s)

or (value may be a text string,
valuel,value?2, ... scalar, vector, or matrix)

All relation and attribute names must contain at least 1 and no more than 8
alphanumeric characters. The first character must be alphabetic.

Many of the commands in LARCRIM have optional parts. These optional parts are
enclosed in square brackets.

[THIS IS OPTIONAL]

Some keywords in the commands are selected from a list of acceptable keywords.
These keywords are in a vertical list with the first choice enclosed in braces.

(CHOOSE]}
ONE
OF
THESE

LARCRIM command keywords may be abbreviated. However, at least the first 3
characters in the keyword are required.

15

The following keywords are interpreted as equivalent:
1) SELECT, SELEC, SEL
2) INTERSECT, INTER, INT
3) DELETE DUPLICATES, DEL DUPLICATES, DEL DUP

All LARCRIM commands are entered in a free-field format with blanks or commas
as item separators. Each command may contain up to 100 items. This section
presents a short description of LARCRIM conventions and data generation
facilities. A more extensive description, intended for the experienced LARCRIM
user, is found in Appendix E.

Keywords and data values must be separated by at least one blank or comma. If a
command is too long for one 80 character line, it may be continued on succeeding
lines by entering “+" as the last character of the preceding line. LARCRIM also
remembers the previous command, which enables you to reuse all or part of it. An
asterisk is used to indicate which item(s) of the previous command are to be
reused. A single asterisk means to reuse the corresponding single item. An
asterisk followed by a number n means to reuse the next n corresponding items.
Two asterisks mean to reuse all remaining corresponding items.

The following are all equivalent:
1) THIS 1S A COMMAND
2) THIS +
1S ¢
A+
COMMAND
3) * IS, A COMMAND
4) THIS *2 COMMAND

5) THIS **

Multiple commands may be entered on one line separated by a semicolon or dollar
sign.

THIS IS THE FIRST ; THIS IS THE SECOND $ THIS IS THE THIRD

Comments may be placed anywhere within a command by enclosing the comment
between the characters *(and).

16

-

* (THIS IS A COMMENT) THIS IS NOT

When numeric data is to be interpreted as text (alphanumeric) data, the numerals
must be enclosed by quotation marks.

~1234~

When entering text strings which contain embedded blanks or commas, the entire
string must be enclosed by quotation marks.

“THIS 1S A TEXT STRING”

When entering a text string that contains an item enclosed by quotation marks,
double quotation marks are used.

“THERE IS A ““QUOTE”” IN THIS STRING”
A text string may require continuation on one or more lines. The + sign continuation
can then be used within the quotation marks. The use of leading blanks in text
strings is not recommended and trailing blanks are ignored.

Integer data is input as a string of digits without a decimal point. A sign may
precede the digits.

123, -63, t56, 0

Real or floating point numbers must include a decimal point or E for the exponent.
If a decimal point is not present, the E must be preceded by an integer.

1.3, .005, 0., 6.E-1, 6E-1, 0.60, -23.45
The absolute value of real numbers is limited to the range between 1.0E-38 and

1.0E+38. Any real number less than 1.0E-38 in absolute value will be interpreted
as 0.

17

2.1 LARCRIM Execution

Execution of LARCRIM as a stand-alone program can be initiated in either of two
modes: command mode or menu mode. The command mode is used when
LARCRIM is executed in the batch environment or for interactive users who wish to
bypass the menu dialog. A detailed description of the commands are given in section
2.2. The menu mode offers assistance to inexperienced users. An overview of this
mode is discussed in section 2.3 and a more detailed description of the menu mode
dialog Is given in section 2.4. The learning curve for a new user to become capable
of using the command mode is not particularly long, and the user may switch freely
between menu mode and command mode.

When executing LARCRIM in the stand-alone mode, the opening command is:
larcrim
and the first output will be:

BEGIN LARCRIM ---- CONVEX VERSION 1.0 UDXX YY/MM/DD HH.MM.SS

LARCRIM COMMAND MODE
ENTER “MENU” FOR MENU MODE

UDXX identifies the update level of LARCRIM and is not significant at this point. The
date and time stamp indicate current date and time. At the star of execution you are
in the command mode but you may switch immediately to the menu mode as
indicated. And, of course, “CONVEX" would become the name of the current
computer, if not Convex.

18

2.2 LARCRIM Commands

This section presents a summary of the LARCRIM commands. All of the commands
discussed are available if no passwords are assigned to the relations and if the “owner” is
known. If passwords are assigned, the use of certain commands is restricted. In addition,
certain commands are available only to the database owner. See the password/command
matrix below.

I | | | I | I
| 2.2.1 | Defining a database schema | X |] | I
] ! I | I I |
] 2.2.2 | Loading a relation | X | X | | |
| I | | I | I
| 2.2.3 | Querying a relation | X | X | X | |
I I I | | | |
| 2.2.4 | Querying the schema | X | X* | X* | |
| I I I | I |
f 2.2.5 | Computation command] X | X |1 X | |
| I I | I I |
i 2.2.6 | Modification commands I X | X**| | |
I I I I | | I
| 2.2.7 | Relational Algebra commands| X | X | | |
| | I I | | |
1 2.2.8 | Report commands] X | X |1 X | |
| | I | | | |
| 2.2.9 | Key commands | X 1 X | | |
| | I | | | I
i 2.2.10 | LARCRIM to LARCRIM commands| X | X | | |
I I | I | I |
| 2.2.11 | General commands | X X 1 X | X |
I | | | | | |
IR e e e I
* Except print rules **Except change owner

Pagssword/Command Matrix

19

2.2.1 Defining a Database Schema

The DEFINE sublevel (prompt= D>) commands are used to define the structure of
the database and are used in the sequence described below. The definition of the
databass Is called the schema. The schema name corresponds to the name of the
database and is used to form the names of the files used for the database. A
schema includes attributes, relations, passwords, and rules (constraints) all of
which are defined using this sublevel. To access the DEFINE sublevel enter:

DEFINE dbname

You must identify the name of the database whose definition you are going to
create or expand by specifying “dbname”, the 1-6 character alphanumeric schema
name. The first character in “dbname” must be alphabetic. This name is used to
form the name of the files used to store the database. The dbname, when
augmented with a single number must be a legal filename. Once dbname is
specified you must identify the owner password of the database.

OWNER password

The “password” entered must be a 1-8 character alphanumeric name. When used
in the USER command, this password represents a master password to the
database. It will override any individual relation passwords. if the database already
exists and you want to define additional attributes or relations, “password” is
checked against the existing owner password. If security is not an issue, you may
specify “none” as the password.

Following the entry of the database name and owner password, the attributes,
relations, relation passwords, and rules are defined. See the following section.

20

2.2.1.1 Defining Attributes

To enter the DEFINE submode, enter:
DEFINE

Then, to define some attributes, enter:
ATTRIBUTES

attname typel [{length}] [KEY]
VAR

attname type2 [{row, col}][KEY]
row, VAR
VAR, VAR

The attributes definitions are ended when you specify one of the DEFINE sublevel
keywords RELATIONS, PASSWORDS, RULES, or END. ‘

TYPE1 Attributes

LARCRIM supports seven “type1” data types: real (floating point), integer, text,
double precision, real vectors, integer vectors and double precision vectors. You
must enter REAL, INT, TEXT, DOUB, RVEC, IVEC or DVEC for type 1. The default
length is one value except for TEXT which is 8 characters. The length is specified
in terms of the number of values and characters respectively. VAR indicates
variable length. The optional KEY specification causes an index file to be built for
the attribute. This file is used by LARCRIM to quickly find qualifying rows for
retrievals and updates. If KEY is not specified (nonkey attribute) the index file is not
built. You should consider the cost of building and storing KEY attribute pointers on
the index file versus the benefits you will obtain when deciding if a KEY declaration
should be used. No specific rules are given here, experience should be used as a
guide. An attribute can be changed from KEY to non-KEY or vice-versa by using
the BUILD KEY and DELETE KEY commands described in section 2.2.9. For large
databases (more than 1,000 rows), experience has shown that it is most efficient
not to specify a KEY in the DEFINE sublevel but rather to load the data without keys
and then build the index files using the BUILD KEY command. The greater the
number of keys, the more efficient this method is.

21

TYPE2 Attributes

LARCRIM supports three “type2" data types: real matrices, integer matrices or
double precision matrices. You must enter RMAT, IMAT or DMAT for type2. The
matrices can be of fixed size, have variable column dimensions or variable row and
column dimensions. You enter the row dimension first, followed by the column
dimension. The default dimension is 1 by 1. The keyword KEY has the same
meaning as for “type1” attributes.

2.2.1.2 Defining Relations
To define relations, while still in the DEFINE mode, enter:
RELATIONS

relname WITH attnamel [attname2....]

The relation definitions are ended by specifying one of the DEFINE sublevel
keywords ATTRIBUTES, PASSWORDS, RULES, or END.

The attributes must be listed in the order in which they are to appear in the relation.
No attributes can be used which have not been previously defined, either in the
current attributes definition subsection or in a previous definition of this database.
Attributes which are defined but not included in a relation will not become part of
the LARCRIM schema.

2.2.1.3 Password Definition

A LARCRIM database must have attributes and relations defined, but passwords
and constraint rules are optional. If read or modify passwords are desired enter:

PASSWORDS
{READ PASSWORD} FOR relname IS password
RPW

{MODIFY PASSWORD)} FOR relname IS password
MPW

The password definitions are ended by specifying one of the DEFINE sublevel
keywords ATTRIBUTES, RELATIONS, RULES, or END.

22

A password can be any string of 1-8 alphanumeric characters. When you are doing
queries, loads, or modifications, the current password is specified by the USER
command. If this password does not match the read, modify, or owner password
for a given relation, you cannot query that relation. If this password does not match
the maodify or owner password, you cannot load or modify the relation.

2.2.1.4 Constraint Rule Definition

Constraint rules are another optional section of the DEFINE sublevel. If rules are
specified, they are used during the loading process or during CHANGE commands
to screen out rows which do not meet the constraint rules. Rules may be defined
for REAL, INT, and DOUB attributes of length 1 and for fixed length TEXT
attributes. At most, 10 rules may be specified for a single relation.

To define constraint rules enter:

RULES
attname [IN relname]{ EQ} value [{AND} attname...]
NE OR
GT
GE
LT
LE
or

attnamel IN relname { EQA} attname2 IN relname [{AND}...]

NEA " OR
GTA
GEA
LTA
LEA
where EQ = Equals
NE = Not equal to
GT = Greater than
GE = Greater than or equal to
LT = Less than
LE = Less than or equal to
EQA = Equals attribute
NEA = Not equal to attribute
GTA = Greater than attribute
GEA = Greater than or equal to attribute
LTA = Less than attribute

LEA = Less than or equal to attribute

23

The rule definitions are ended by specifying one of the DEFINE sublevel keywords
ATTRIBUTES, RELATIONS, PASSWORDS, or END.

Attributes referenced in the rule definitions must have been previously defined. By
specifying rules, you can restrict an attribute to a range of values or require that the
value of an attribute in one relation have a specified relationship to the values of an
attribute in the same or a different relation. The comparison operators ending in “A”
are used when the comparison is to existing attribute values rather than to a
specified constant. A rule expression may contain a maximum of 9 Boolean
operators.

The method used for constraint checking is that the value of the first attribute
mentioned in the rule is obtained from the input (LOAD or CHANGE command) and
checked against the value specified or against the existing database values of the
second attribute.

To complete the schema definition and leave the DEFINE sublevel you enter:
END
Example of DEFINE sublevel commands

DEFINE LRCDB
OWNER ME
ATTRIBUTES
MODEL TEXT KEY
WEIGHT REAL
NUMPASS INT
CARRIER TEXT 16
FLIGHTNO INT
NAME TEXT KEY
AGE INT
MATRIX IMAT 4,VAR
RELATIONS
ATIRPLANE WITH MODEL WEIGHT NUMPASS
FLIGHTS WITH CARRIER FLIGHTNO MODEL MATRIX
PEOPLE WITH NAME AGE
PASSWORDS
MPW FOR FLIGHTS IS AGENT
RPW FOR PEOPLE IS BLUE
RULES
MODEL IN FLIGHTS EQA MODEL IN AIRPLANE
AGE GT 21 AND AGE LT 65
NUMPASS IN ATRPLANE LE 350
END

24

2.2.2 Loading a Relation

The LOAD sublevel (prompt=L>) commands are used to add data to a newly
defined relation or to a relation which already contains data. To access this sublevel
enter:

LOAD relname

You may now load data into the relation, one row at a time, by entering data values
in an order corresponding to the attribute order:

valuel value2 ... valuen
The syntax of the input values for the different attribute types is shown below:

Attribute Length or

Type Dimension Valuei Remark
REAL, INT n n>1 (vall ... valn) Parentheses
DOUB, RVEC optional
IVEC, DVEC
REAL, INT VAR (vall val2 ...) Parentheses
DOUB, RVEC required
IVEC,DVEC
TEXT any “text string” In special

cases, (see
Section 2.0)
quotes are
optional.

RMAT, IMAT m,n ((ricl...rmcl) (rlc2...)+ Columnwise
DMAT ...rmcn)) Parentheses
optional
RMAT, IMAT m, VAR ((rlcl...) (rlc2...) (...))Columnwise
VAR, VAR Parentheses
required

When data loading is complete you enter:

END

25

Multiple relations may be loaded from within the LOAD sublevel by re-entering the
LOAD pommand instead of the END command.

Example of LOAD sublevel commands:

USER AGENT

LOAD AIRPLANE

w7577 120000. 150

DCY 87000. 110 - S SRS
747SP 200000. 350) T :
LOAD PEOPLE

BOB 30

JOE 32

ALICE 29

LOAD FLIGHTS

UAL 16 “757”7 ((1,2,3,4)(4,5,6,7))

*3 ((21415’ 8) (1121 314) (4:5: 617)) '

END

If the value for an attribute is unknown, you enter the characters -0- for the missing value
or use two successive commas.

11011 -0- -0- 250
L1011, ,,250

These two examples have identical meaning.
2.2.3 Querylhg A Relation

SELECT

The SELECT command is used for displaying or printing data from a relation. The
options available for this command are discussed in the following paragraphs.

To print all the data from a relation:
SELECT ALL FROM relname
" To print selected attribute values from all rows in a relation:
SELECT attnamel [attname2 ... attnamen] FROM relname
The above command will print up to 20 attributes in any order. The number of attributes
may also, in a practical sense, be limited by space available in aline. As a general rule,

7 attributes may be selected when running at an 80 character interactive terminal and
11 attributes when running in the batch mode or at a 132 character terminal.

26

o ey e o o w4

For variable length attributes or for attributes of fixed length that would otherwise
not fit on a line alone or together with other attributes, you may format the output
using the optional field width control:

SELECT attnamel [=fwl] [attname2 [=fw2]...]+

FROM relname

fw1 is the output field width for attname1. For a text type attribute, fw1 is the width
of the output paragraph in number of characters, for other attribute types it is the
number of values.

When the field width option is used, LARCRIM will use as many output lines as
required for each row of data.

The field width defaults depend on the attribute type. For a fixed length attribute,
other than matrix, no paragraphing is attempted and the default paragraph width is
a full row. The system will use a field width equal to the attribute length or column
dimension to display the value(s) of the attribute. For a variable length attribute of
type TEXT, the default field width is 40 characters with paragraphing. For variable
length attributes of types REAL, INT, DOUB, the default is 4 values with
paragraphing. For variable length vector type attributes, the default is a display of
the length and 3 values with paragraphing. For variable length matrix attributes the
default is a display of the row and column dimensions and 3 values with
paragraphing. Each row starts on a new line.

If a field width is specified, the system will display the dimension of variable length
vectors and matrices and use one of the specified output positions for these values.
However, if a field width of 1 is specified for such an attribute, the row and column
dimensions will not be displayed.

When paragraphing TEXT type attributes, LARCRIM will identify substrings of text
separated by blanks. The substring is placed on the current line if there is space
available. If there is not space available and the current line contains less than four
characters, the number of characters that fit on the line are put on the line (without
hyphen) and the substring continued on the next line. f the current line contains
more than four characters, the entire substring will be placed on the next line.

If the sum of the lengths (or field widths)riofrihe attributeS requested exceeds the
line capacity, the data line will be truncated and a warning message displayed.

Further information about line Width, number of lines per page, defaults and use

specifications is given in the section on the LARCRIM report writing features
(section 2.2.8).

27

Examples of SELECT command:

SELECT ivecvar FROM rell

DIM IVECVAR
7 1 2 3
4 5 6
7
1 10
SELECT imatvv FROM rell
ROW COL IMATVV
2 5 11 12 13
14 15
21 22 23
24 25 - — s -
1 1 11

——— —— -

THIS IS

AN EXAMPL

E OF

WRAPAROUN

D OF TEXT- - — —

THIS IS -

ANOTHER .
EXAMPLE -« - - - 550 il s e e inloBDoen Ll e
OF TEXT -~ ' -

When entering the SELECT command, the attribute name attnamei may be
replaced by its corresponding attribute number (attnum1). The attribute number
is determined by the position of the attribute in the relation. Specific elements of
a vector or a matrix may also be designated. The general form of the
unconditional SELECT command is:

28

SELECT {attnamel [=fwl]} [attname2 [=fw2])...] +
attnuml [=fwl]
attnamel (i)
attnamel (1, J)

- attnuml (1)

attnuml (i, j)
ALL

FROM relname

To print all attributes from a relation where certain conditions are met:

SELECT ALL FROM relname WHERE conditionl [{AND} +
OR

condition?2....]

Up to 10 conditions may be combined using the Boolean operators AND/OR. A
LIMIT condition, if used, does not count as one of the 10 conditions. The conditions
are combined from left to right. Each condition may be one of the following forms:

attname EXISTS
i attname FAILS
: attname EQ MAX
attname EQ MIN
attname EQ value
attname EQS value
attname NE value
! attname GT value
attname GE value
attname LT value
attname LE value
attname EQ list
" attname EQS list
attname NE list
i attnamel EQA attname2
H attnamel NEA attname2
attnamel GTA attname2
attnamel GEA attname2
attnamel LTA attname2
attnamel LEA attnameZ2
- ROWS EQ rownumber
M ~ ROWS NE rownumber
P ROWS GT rownumber
ROWS GE rownumber
ROWS LT rownumber
ROWS LE rownumber

A ——— et 5 48 iy e v

RN I T A S 1 3 At

29

ROWS EQ list
ROWS NE list
LIMIT EQ number

where:
EQ = Equals
EQS = Contains the text string
NE = Not equals
GT = Greater than
GE = Greater than or equal to
LT = Less than
LE = Less than or equal to
EQA = Equals attribute
NEA = Not equals attribute
GTA = Greater than attribute
GEA = Greater than or equal to attribute
LTA = Less than attribute
LEA = Less than or equal to attribute
MAX = Maximum value
MIN = Minimum value

Attname, attname1, attname2 may not refer to an element of a vector or a matrix,
e.g., vec(3) or mat(2,3).

EXISTS will qualify those attributes which have been assigned a value. FAILS will
qualify those attributes which have not been assigned a value (loaded with -0-).

MAX and MIN comparison can only be made for integer, real and double precision
attributes of fixed length equal to 1.

“VALUE” in a comparison statement must follow the syntax of section 2.2.2 for
vectors and matrices, i.e., if the attribute is of variable length or dimension,
parentheses must be used to input a vector or a matrix value or a list of vector and
matrix values.

EQS appliss to text strings only. In such a comparison, “value” is a text string and
the comparison is true if “value” is found as a substring anywhere within-the
requested attribute values.

NE comparison when applied to vectors or matrices is true if the length or
dimension is different from the length or dimension of your specified vector or
matrix “value” or if any vector or matrix element differs from the elements of the
“value” specified.

30

o

GT and LT comparisons for vector and matrix attributes are “lexicographical”, i.e.,
a comparison is made element by element (columnwise for matrices) and
continued until a non-equal condition is detected. If no such condition is detected
after the last element is checked, a false condition is assumed. Comparisons are
made only for data rows where the dimensions of the attribute are the same as the
dimensions of the “value” specified. For all other rows, a false condition is
assumed.

GE and LE comparisons for vector and matrix attributes are similar to GT énd LT
comparisons except when an equal condition is detected after the last element is
checked, a true condition is assumed.

Comparison rules for vector attributes also apply to real, integer and double
precision attributes of fixed or variable length.

A “list" is a simple list of values: a1, a2, a3,...,an. An EQ or EQS list has the same
effect as a series of OR conditions. A NE list has the same effect as a series of
AND conditions. Note that the *=N+STEP option available through the LARCRIM
user interface provides a more powerful list option (see Appendix E). For example,
if you want a list, 0 to 100, in equal increments of 20, you may enter 0 20 40 60 80
100 or 0 *=5+20.

The comparison key words ending in A (EQA etc.) are used when comparing the
value of one attribute to the value of another attribute in the same row of the
relation.

ROWS refer to row numbers in a relation. Note that a relation is loaded in input
order but that subsequent operations (modifications) to the database may cause
the order of the rows to change.

When the LIMIT clause is used, only the first “number” of rows that qualify wiil
actually be displayed.

Processiné the WHERE condition can be speeded up greatly if key processing is
used. Key processing involves using the pointers created for KEY attributes rather
than looking at each row of a relation to find the rows qualified by the WHERE
conditions. Key processing will be used when the following are all true:

1) The last condition uses an attribute which is KEY

2) The last condition uses EQ |

3) The last condition is combined with the other conditions by AND.

The output can be sorted by specifying the attributes to sort on and the sorting
order for each attribute. The sorting order default is lowest to highest.

31

SELECT ... FROM relname +

SORTED BY attnamel [{=A}] [attname2 [{(A}=]...] +
D D

WHERE ...]

A or D is entered to request ascending or descending sort. If a sort on more than
one attribute is requested, the output will first be ordered according to the first sort
attribute, the corresponding rows will be ordered by the second sort attribute,
duplicates within this by the third and so on. A maximum of 5 attributes may be
used, and ascending or descending order may be used in any combination.
Variable length attributes may not be used as sort attributes. When fixed length
attributes of length greater than 8 characters or 1 value are used as sort attributes,
only the first 20 characters or the first value is used.

All the SELECT options can be described using the following general syntax:

SELECT { attnamel [=fwl] [... attnamen [=fwn]]} +
attnuml...
attnamel (1) ...
attnamel (i, j) ...

attnuml (1) ...
attnuml (i, 3) ...
ALL
FROM relname +
[SORTED BY attname [{=A}]...] +
D
[WHERE conditionl [{=AND} condition2 ...]]
: OR

TALLY

The TALLY command prints the number of times each unique value of an attribute
occurs in a relation. The order, ascending or descending, of the tally is user
specified. Default is ascending. The WHERE clause is optional and uses the same
syntax as in the SELECT command.

TALLY attname [(=A}] FROM relname [WHERE ...]
D

Examples of SELECT and TALLY commands:

SELECT ALL FROM AIRPLANE

SELECT MODEL FROM AIRPLANE

SELECT ALL FROM AIRPLANE WHERE WEIGHT GT 100000 +
AND NUMPASS LT 200

SELECT AGE FROM PEOPLE WHERE NAME EQ BOB

SELECT ALL FROM AIRPLANE SORTED BY MODEL=D

32

¥ T e UIT weme e

i]

TALLY MODEL FROM FLIGHTS
TALLY MODEL FROM FLIGHTS WHERE CARRIER EQ UNITED
SELECT ALL FROM DIMENS WHERE HEIGHT GTA WIDTH
SELECT FILE TITLE=4 OWNER FROM PFDATA

2.2.4 Querying the Schema

When you use these commands, LARCRIM will display only the data you are
authorized to access according to your current user password.

LISTREL

The purpose of LISTREL is to provide you with inform'atiohA about the relatioﬁs in
the database.

There are three options for the LISTREL command. The first consists of simply
entering:

LISTREL

This option provides you with a list of all relations currently defined in your
database. If you wish to display information about a specific relation, enter:

'LISTREIL relname

This option provides you with a display of the definitioh bf thé requested relation

and a count of the number of rows of data in the relation.
LISTREL ALIL

This option will display the relation definitions and count of the number of rows in
each relation for all relations in the database that you are permitted to access.

EXHIBIT

The purpose of the EXHIBIT command is to allow you to query the LARCRIM
schema to obtain the names of all relations having a specific set of attributes. For
example, if you want to know which relations contain the attribute “attname” you
would enter: '

EXHIBIT attname
You would then obtain either a list of the relations having this attribute, or a

message indicating that this attribute was not found in any relations in the
database.

33

The EXHIBIT command also allows you to obtain information for a list of attributes
(maximum of 10). Suppose that you want to know which relations contam both
attname1 and attname?2. The command would be:

EXHIBIT attnamel attname2
The general syntax of this command is: S

EXHIBIT attnamel [attname2,.. attnamen]

PRINT RULES

This command is used to obtain a complete list of the constraint rules.
PRINT RULES

PRINT RULES can be used only when the current user password matches the owner
password of the database definition.

2.2.5 Computation Command

MPUTE

The COMPUTE command is used to compute simple functional values of an
attribute. The WHERE clause is optional and uses the same syntax as is used in the
SELECT command.

COMPUTE {COUNT} attname FROM relname [WHERE ...]
MIN
MAX
AVE
SUM

There are some restrictions as to the type and word length of the attribute used for
these functions. All functions except COUNT exclude any -0- values when making
their computations. The following table describes the attribute type and length
restrictions for each function:

FUNCTION ATTRIBUTE ATTRIBUTE LENGTH

COUNT any any

MIN any of fixed length 1 for non-text, ANY for text
MAX any of fixed length 1 for non-text, ANY for text
AVE int, real, double 1

SUM int, real, double 1

34

p————

AR A] gy

Examples of COMPUTE command:

COMPUTE AVE NUMPASS FROM FLIGHTS
COMPUTE MAX WEIGHT FROM FLIGHTS WHERE NUMPASS LT 100
COMPUTE COUNT NAMEM FROM PEOPLE WHERE AGE GT 30

2.2.6 Modlfication Commands

These commands are used to change the contents of the database or the database
definition. Your password must match the modify or owner password in order to
use these commands. If the CHANGE OWNER command is used, the password
must match the owner password.

CHANGE (Attribute values)

The CHANGE command is used to change the value of an attribute in a relation
where certain conditions are met.

CHANGE {attnamel} TO value [IN relname] WHERE ...
attname (i)
attname (i, 3j)
The “value” entered has the same syntax as described in Section 2.2.2. The
WHERE clause is required and uses the same syntax as in the SELECT command.

If the relation name is not specified, the attribute is changed in all relations where
the attribute is found and the WHERE clause conditions are met.

CHANGE (Passwords)
The read or modify passwords may be changed by using the following command:

CHANGE {RPW} TO newpass FOR relname
MPW

CHANGE OWNER

The CHANGE OWNER command is used to change the name of the database
owner password. Only the current owner is allowed to use this command.

CHANGE OWNER TO newowner

DELETE ROWS

The DELETE ROWS command is used to delete selected rows in a relation.

DELETE ROW FROM relname WHERE ..

35

The name of the relation must be specified as well as a WHERE clause. The syntax
for the WHERE clause is the same as in the SELECT command.

DELETE DUPLICATES

This command is used to remove any duplicate rows from a relation. It is particularly
useful on relations which have been created by any of the relational algebra
commands (JOIN,INTERSECT, SUBTRACT, or PROJECT). The syntax for this
command is:

DELETE DUPLICATES [attnamel attname2 ...] from relname

Duplicates are checked only for the specified attribute(s). Default is to check the
complete row (all attributes).

DELETE RULE

The DELETE RULE command is used to delete a specified constraint rule. The USER
password must match the OWNER password for this command to be used.
Rulenumber is obtained using PRINT RULES.

DELETE RULE rulenumber

RENAME ATTRIBUTE

The RENAME attribute command is used to change the name of an attribute in the
database definition (schema).

RENAME attnamel TO attname2 [IN relname]
The old name is attname1 and the new name is attname2. If a relation is not specified,
then the name change takes place in every relation that contains the old name. If
relname is specified and attname1 occurs more than once, only the first occurrence
will be changed.

RULES and KEY(s) defined for attname1 will automatically be redefined to apply to
attname?2.

RENAME RELATION
You may change the name of a relation by using the following command:
RENAME RELATION relname TO newname

RULES applying to relname will automatically apply to newname.

36

s

o 158 i, B8 R 114

REMOVE

The REMOVE command is used to remove a relation definition and its data from
the database.

REMOVE relname

2.2.7 Relational Algebra Commands

These commands allow you to create new relations from existing relations. All of
these commands, except PROJECT, form rows in the new relation based upon the
comparison of attributes from two parent relations. These comparisons are “exact,”
i.e., they do not use the user specified tolerance. All relational algebra commands
require modify permission on the constituent relations.

INTERSECT

The purpose of the INTERSECT command is to allow you to combine the rows of
two relations into a third relation based on common values within a set of specified
attributes. The syntax of the INTERSECT command is:

INTERSECT relnamel WITH relnameZ FORMING relname3 +
[USING attnamel [attname2...attnamen]]

You may INTERSECT two relations restricted to specific sets of attributes (the
USING clause) or use all attributes of both relations. In either case LARCRIM will
identify the common attributes and use these values to qualify rows for intersection.

If the USING clause is specified, it identifies the attributes that form the resulting
relation. The attributes used in the INTERSECT process are the subset of those
identified by the USING clause which are present in both relations.

For example, assume that you have the following two relations defined:

REL-1 REL-2
NAME DEPT JOB DEPT JOB PAY
BOB A ENGR A ENGR 800
JIM C SUPR B ENGR 450
BOB B ENGR C ENGR 750
RAY C ENGR ' '

Suppose you want to INTERSECT the two relations using attributes DEPT, NAME,
and JOB. The command for this would be:

INTERSECT REL-1 WITH REL-2 FORMING REL-3 USING DEPT NAME JOB
37

The result would be the new relation REL-3 shown below:

REL-3

DEPT NAME JOB

A BOB ENGR
B BOB ENGR
C RAY ENGR

In this example there are no duplicate rows in REL-3. However, it is not uncommon
that the INTERSECT command creates duplicate rows. In general, duplicate rows
are not desired in a relation and may be removed with the DELETE DUPLICATES
command. It should also be noted that by specifying which attributes the
INTERSECT is using, you restrict the number of attributes in the resulting relation

to only those specified in the USING clause.

Suppose you want LARCRIM to use all the attributes in the two relations. In this

instance, you would enter:

INTERSECT REL-1 WITH REL-2 FORMING REL-4

The result would be REL-4 consisting of the attributes NAME, DEPT, JOB, and

PAY, shown below with the resulting rows:

REL-4
NAME DEPT JOB
BOB A ENGR
BOB B ENGR
RAY C ENGR

There may be situations where an INTERSECT is impossible to perform. These

include:
1) The name of the resulting relation array exists

2) The two relations have no common attributes

PAY
800
450
750

3) The attributes in the USING clause do not exist in the

relations being intersected.

4) A row of the resulting relation exceeds 1021 computer words.

38

e

If any of the above situations is encountered, you are warned of the problem and the
INTERSECT command processing is stopped. In the case where common attribute
names exist but there are no matching values, the operation will be successful
resulting in an empty relation (0 rows).

The INTERSECT command is a powerful tool and may be used to satisfy queries
which require attributes from two relations.

JOIN

The JOIN command is a function operating on two relations to form a third relation.
The purpose of the JOIN is to juxtapose two relations based on a specified attribute
from each. The result of the JOIN command is a third relation containing all of the
attributes from both relations. Rows are generated in the new relation as a result of
the comparison conditions between attributes being satisfied. The syntax of the JOIN
command is:

JOIN relnamel USING attnamel WITH relname2 USING attname2 +
FORMING relname3 [WHERE {EQ}]

NE

GT

GE

LT

LE

The WHERE clause of the JOIN command is different from the WHERE clause of
the SELECT command. In JOIN it applies only to the comparison of the two attributes
upon which JOIN is based. If the WHERE clause is omitted, EQ (default) is used.

The value of attname?2 in the first row of relname2 is compared to all the values of
attname1 in relname1. Rows which qualify are placed in relname3. The value of
attname?2 in the second row of relname2 is compared to all the values of attname1,
etc. Each row from relname2 may generate 0, 1, 2, or more rows in relname3.

For example, consider the relations REL1 and REL2:

REL1 REL2
A B C D E
1 2 3 3 1
4 5 6 6 2
7 8 9

The foliowing JOIN command would produce the result shown.

39

JOIN REL1 USING B WITH REL2 USING D FORMING REL3 WHERE LT

REL3
A B C D E
1 2 3 3 1
1 2 3 6 2
4 5) 6 2

The JOIN will function correctly on any comparison providing that you compare
attributes of the same data type. All attribute names in the resultant relation must
be unique in order for you to obtain accurate results from subsequent commands
using the relation. Any duplicate attribute names should be changed using the
RENAME command before doing queries or updates to the new relation. In this
case, RENAME will change the first attribute name.

There may be situations where a JOIN is impossible to perform. These include:
1) The name of the resulting relation already exists
2) The attribute in the USING clause does not exist in the relation being joined
3) The attributes being compared are different data types or lengths
4) An attribute in either of the relations is greater than 300 computer words
5) A row of the resulting relation exceeds 1021 computer words.

If any of the above situations are encountered you are warned of the problem and
the JOIN command processing is stopped. In the case where a legal comparison
has been specified, but there is no matching values, the operation will be
successful, resulting in an empty relation (0 rows).

PROJECT

The function of a PROJECT command is to create a new relation as a subset of an
existing relation. You may want to create the new relation from the existing relation
by removing attributes, removing rows, or both. In all cases, the parent relation
remains unchanged. The syntax for the PROJECT command is:

PROJECT relnamel FROM relname2 USING (attnamel [attnamel} +
ALL

[WHERE ...]

The WHERE clause is optional but if specified, it has the same syntax as in the
SELECT command. You are required to specify which attributes are to be retained
in the new relation. If all the attributes are to be retained, the keyword ALL may be
used. The existing relation is relname2 and the new relation is relname1.

40

For example consider the following relation:

PEOPLE
EMP NUM EMPNAME BOSS POSITION GROUP
2181 JONES SMITH MANAGER AADE
3964 ERICKSON BUSS APPL-MGR ACC
6543 GRAY PARKER ASST-MGR PHOTO
2233 SCHMITZ BUSS APPL-MGR ACC

To create a new relation with EMPNAME and GROUP as the only attributes and
where no rows contain PARKER as BOSS enter the command:

PROJECT TEMP1 FROM PEOPLE USING EMPNAME GROUP +
WHERE BOSS NE PARKER

TEMP1
EMPNAME GROUP
JONES AADE
ERICKSON ACC
SCHMITZ ACC

The PROJECT command is useful to reduce the size of a relation when only a
subset of the data is needed. If duplicate rows are formed, and not desired in the
new relation, you may delete them with the DELETE DUPLICATES command.

There are cases where a PROJECT is impossible to perform, for example:
1) when the name of the resulting relation already exists, or
2) when an attribute in the USING or WHERE clause is not in relname2.

If any of the above situations are encountered, you are warned of the problem and
the PROJECT processing is stopped. In the case where a legal PROJECT has
been specified but there are no rows that satisfy the WHERE clause, the operation
will be successful, resulting in an empty relation (0 rows).

SUBTRACT

The SUBTRACT command is similar to the PROJECT command in that the new
relation is a subset of an existing relation. The rows, however, are selected based
on the data in another relation rather than on a WHERE clause within the same
relation. Where the INTERSECT command looked for rows of two relations which
matched up, the SUBTRACT command does just the opposite. It looks for rows in
relname2 which do not match any rows in relnamel. The syntax for the
SUBTRACT command is:

41

SUBTRACT relnamel FROM relname2 FORMING relname3 +
[USING attnamel [attname2 ... attnamem]]

The rows in the new relation will be the rows from relname?2 that do not have a
match in relname1. If the USING clause is not specified, then all attributes of
relname?2 will be included in relname3. If a USING clause is specified at least one
of the attributes in the clause must be common to both relations.

As an example consider the following two relations:

EMPDATA BOSSDATA
EMPNUM EMPNAME BOSS BOSS POSITION .GROUP
2181 JONES SMITH - SMITH MANAGER AADE
3964 ERICKSON BUSS PARKER APPL-MGR PHOTO
6543 GRAY PARKER BUSS APPL-MGR ACC
8461 BROWN WHITE
2233 SCHMIT2Z BUSS

The following command will produce a new relation by subtracting BOSSDATA
from EMPDATA:

SUBTRACT BOSSDATA FROM EMPDATA FORMING TEMP USING EMPNAME BOSS
The resulting relation TEMP would contain only one row:

TEMP
EMPNAME BOSS

BROWN WHITE

There may be situations where a SUBTRACT is impossible to perform. These
include:

1) The name of the resulting relation already exists,

2) The relations have no common attributes,

3) The number of attributes in the USING clause is greater than the number in
relnamel,

4) An attribute in the USING clause is not in the relname2.

If any of the above situations are encountered, you are warned of the problem
and the SUBTRACT processing is stopped. In the case where a legal
SUBTRACT has been specified but there are no rows in relname2 which are.
not in relname1, the operation will be successful resulting in an empty relation
(0 rows). o ' -

42

2.2.8 Report Commands
These commands establish a limited report generation capability.

NEWPAGE

This command causes subsequent printout to begin on a new page. It applies to
batch output only.

NEWPAGE
BLANK
Blank lines can be inserted into the output stream by using the command:
BLANK n
where n is the number of blank lines written.
JITLE
This command causes the text “titlestring” to be printed centered on the line. If the
length of “titlestring” is longer than current lines width, it will be truncated and a
warning issued.
TITLE “titlestring”
DATE
This command will cause the current date to be printed, centered on the line.
~ DATE
LINES

This command controls the number of lines per page (exclusive of title).
LINES n

The number of lines per page is established by “n". Default is 56.
WIDTH
This command controls the width of a printed line.

WIDTH n

43

The number of characters per line is established by “n". Default is 78 if output is to a
terminal, 132 if output is to a batch printer or output file. If n is specified to be less than 20,
20 will be used.

2.2.9 Key Commands
BUILD KEY

This command is used to change an attribute from non-KEY to KEY. An index is built from
exnstmg data values by making a pass through current rows of the specified relation. This
index is then used and maintained just as if the attribute had been declared to be KEY in
the original database definition.

BUILD KEY FOR attribute IN relname

KEYS are not transferred to relations created by relational algebra commands.

DELETE KEY

This command is used to change an attribute from KEY to non-KEY. The index file for that
attribute is deactivated and no longer maintained or used one the attribute has been
changed to non-KEY with this command.

DELETE KEY FOR attname IN relname

2.2.10 LARCRIM-to-LARCRIM Commands

UNLOAD

The UNLOAD command permits you to off-load a portion or all of your database onto a
previously designated file (see OUTPUT command). The file will contain 80 character text
records and can be read by LARCRIM as an input file on the same or on a different
computer using the INPUT command. Default file name is OUTPUT. The syntax of this
command is:

UNLOAD [dbname[= newname]] {ALL } +
SCHEMA
DATA
[relnamel [(mpwl] relname2 [mpw2] ...]

Specifying SCHEMA will off-load the schema of your database, DATA will off-load the data
and ALL will off-load both schema and data.

44

T e

Optionally, you may rename your database by entering dbname = newname where
dbname is the name of the currently open database. By specifying relation names, you
will only off-load data and/or schemas for the specific relations. If your current user
password does not allow you modify access to the relation, the modify password
assoclated with the relation must be specified.

There are implicit password restrictions to the UNLOAD command as follows: If you are
the database owner, you off-load the complete schema and/or any data. If you are not the
owner, you may off-load only the data and/or definitions for the relations for which you
have modify permission. Your password becomes the owner of the off-loaded database.
Rules, if any, will not be off-loaded.

The UNLOAD command should not be used to off-load relations which contain more than
100 values in a single row. Such records are not readable by the LARCRIM user interface.

2.2.11 General Commands
INPUT

This command is used to specify the name of a file which contains the LARCRIM
commands and/or input data. Alternate input files may be assigned as often as required.
The use of this command allows you to define command procedures on a file and then
have LARCRIM execute the set of commands without user interaction. Typically, you
might input a file you have “unioaded” on the same, or a different computer.

INPUT filename

The last command on the alternate input file should be INPUT INPUT which returns input
to the batch input file or your terminal. INPUT TERMINAL will, for interactive jobs, do the
same thing. If you do not use the INPUT command on your alternate input file, LARCRIM
will return input to your terminal, for interactive jobs, when it encounters an end-of-file
mark. Batch jobs will terminate.

QUTPUT

This command is used to specify the name of the output file. Specifying a file other than
OUTPUT will result in the output from the LARCRIM commands being placed on afile with
the specified file name. Error messages will continue to be directed to the terminal for an
interactive job. The output file name may be changed as often as desired. The use of this
command allows the interactive user to get offline hardcopy output from LARCRIM.

QUTPUT filename

OUTPUT OUTPUT will return the output to the batch output file or your terminal.
OUTPUT TERMINAL will, for interactive jobs, do the same thing.

45

EXIT

To leave LARCRIM enter:

{EXIT}
QUIT

This command closes your current database by copying the data in the incore
working areas to the files whose names were determined by the OPEN
COMMAND or by the name designated in the DEFINE sublevel.

MENU

The MENU command places you in the menu mode. It may be entered at any point
when in command mode except when in the DEFINE, HELP, or LOAD sublevels.
The menu mode is particularly useful for schema definition and data loading.

MENU

HELP

The HELP command allows you to obtain a description of the available LARCRIM
commands, a discussion of the general command syntax, a summary of all
available commands, and general news about the LARCRIM system. HELP is
available at any time during execution except when in the menu mode.

To receive help when in the command mode enter:

HELP [{command name}]
LARCRIM
SYNTAX
WHERE
SUMMARY
NEWS
SORT
INPUT FORMAT

46

3
H

The HELP sublevel (Prompt = H>) options have the following meanings:

OPTION RESULTS
HELP explains the previous command and
' its syntax or if HELP is the first
command entered, it is identical
to HELP LARCRIM

HELP command name explains the indicated command
name and syntax

HELP LARCRIM lists commands for which help is
available

HELP SYNTAX describes the general command
syntax

HELP WHERE explains the LARCRIM where

. clauses

HELP SUMMARY summarizes all available LARCRIM
commands

HFELP NEWS provides general news about the

LARCRIM system
HELP SORT explains the LARCRIM sort options

HELP INPUT FORMAT describes the LARCRIM user
interface routines

The commands available inside the HELP sublevel are identical to the HELP
commands except that the keyword HELP is omitted. The HELP sublevel displays
information approximately 20 lines at a time. After each such display you will have
the option to continue displaying the text or to return to the HELP sublevel by
entering QUIT. You will remain in the HELP sublevel until you enter an END
command which will return you to the command mode.

USER
This command is used to identify your password to LARCRIM. Your user password
is used to check against read, modify, and owner passwords specified for the

relations. Each time this command is issued, the new password replaces the
current password. The default password is “NONE".

47

USER password

ECHO

This command is used to control the printing of your input commands on the output
file. Default is for ECHO to be off for interactive operation and on for batch. To
activate ECHO printing enter:

ECHO
NOQECHO
The NOECHO command turns off ECHO printing.

NOECHO

CHECK

The CHECK command turns on the rule checking which applies to the CHANGE
and LOAD commands. If rules are defined, they are enforced unless the
NOCHECK command is entered. The CHECK and NOCHECK commands may be
issued as many times as required anywhere in the input stream.

CHECK
NOCHECK
The NOCHECK command suppresses the rule checking.

NOCHECK
TOLERANCE
For attributes which contain floating point numbers, a tolerance may be specified
for checking equality, nonequality and order. The tolerance applies to any real or
double precision number you use in a WHERE clause. IfAis an attribute with value

a, and r is a user specified number used in a WHERE clause, and t is a tolerance
(positive, zero, negative), the following are true conditions:

A EQ r if and only if r-t LE a LE r+t

ANE r if and only if a LE r-t or a GE r+T
A GT r if and only if a GT r-t

A GE r if and only if a GE r-t

A LT r if and only if a LT rtt

A LE r if and only if a LE rtt

48

If t is a percentage tolerance, 1 is to be replaced with t x r/100.0, in the above
expressions to define true conditions for percentage tolerances.

~ TOLERANCE tol [PERCENT]

where tol is the tolerance and the presence or absence of the keyword PERCENT
indicates whether tol is a percentage tolerance or an absolute tolerance. The
TOLERANCE command can be used as many times as desired to reset the
tolerance. A tolerance stays in effect for a session, or until a new tolerance is
specified. The default value for tolerance is zero.

RELOAD

The RELOAD command permits you to rebuild your database files to recover
unused space created by row deletions, relation removals, and certain attribute
changes. When a row is deleted or a relation removed, its space is not reused until
you issue this command. In addition, if a variable length attribute is modified so that
it increases in length, the row is deleted and replaced with a new one. The old row
becomes unused space. If your database has any KEY attributes, then the pointer
files maintained for those attributes are also rebuilt. The syntax for this command
is:

RELOAD

You should use this command with discretion and weigh the cost of rebuilding the
files against the saving of mass storage space.

CLOSE

The CLOSE command permits you to close a LARCRIM database without leaving
LARCRIM. This enables you to close one database, then open or define a different
one, all within one LARCRIM session. However, LARCRIM automatically executes
this command whenever a new database is defined or opened, therefore, this
command is generally not entered by the user. This command results in update of
the database files to reflect all changes you have made to the database.

CLOSE
Note: the current database will also be closed for you when you exit.
OPEN
The OPEN command is required whenever an existing database is to be used. You

specify the name of the database. LARCRIM uses the name of the database to
form the names of the three files which contain the database.

49

OPEN dbname

Only one LARCRIM database may be open at a time and LARCRIM will
automatically close the current database whenever a new database is opened. The

OPEN command must be issued before any commands that require data from the
database can be processed.

50

2.3 Menu Mode Execution Overview

The options (create, update, query, command, and exit) available in menu mode
are illustrated in section 2.4. This section explains the background for each option.

Execution may be terminated at anytime by entering the word QUIT, whereas,
EXIT, in response to an input prompt, will return you to the top menu.

2.3.1 Database Creation Option

The purpose of this option is to construct a schema by prompting you for the
database name, owner, the names of the relations, their associated attributes and
read/modify passwords.

Atter compilation of the schema, you have the opportunity to interactively load the
database and/or query the database.

2.3.2 Database Update Option

With this option you may add/modify relations and/or load additional data into the
database. If additional relations are desired, you are prompted for the names of the
relations, their associated attributes and read/modify passwords. If additional data
is to be loaded, the list of relations in the database is displayed and you select the
relations to load. The attributes of the selected relation are displayed and you enter
the required data. Removal or modification of data in the database is done using
the LARCRIM database modification commands in the command mode.

2.3.3 Query Option
With this option you are prompted for the database name. The command mode is

then entered where the full set of LARCRIM commands is available to you for
database query. In addition to query, all other database activities are available.

51

2.4 LARCRIM Menu Mode Interactive Dialogue

This section presents the questions and menus that appear in the menu mode. At
the beginning of each subsection there is a figure that provides an interactive
command/response dialogue for the options discussed in that subsection. These
dialogues describe the interactive questions and menus in the sequence in which
they appear during a terminal session. Whenever a user input is required, an R>
appears followed by a page reference. A discussion of the question and the user
response options is found on the page referenced.

The menu mode is accessed by entering “MENU" anytime in the command mode
when a R> prompt is present.

2.4.1 Menu Dialogue

SELECT THE EXECUT1ON OPTION DESIRED
1) CREATE A NEW DATABASE
2) UPDATE AN EXISTING DATABASE
3) QUERY AN EXISTING DATABASE
4) ENTER COMMAND MODE
5) EXIT

The desired execution option is selected by entering the integer 1,2,3, or 4. If the
session is to be terminated, enter 5.

When option 2 is selected, the following menu appears.

SELECT THE UPDATE OPTION DESIRED
1) DEFINE ADDITIONAL RELATIONS
2) LOAD ADDITTONAL DATA

The desired update option is selected by entering either the integer 1, allowing the
definition of additional relations, or 2, allowing the loading of additional data into the
database.

2.4.2 Schema Definition
The schema, or “OUTLINE", of a database includes the names of the database, the
owner, the relations, passwords and attributes, along with the type and size of each

attribute. Relations are built by first defining the attributes and then by naming the
relation with a set of attributes. The interactive dialog follows, with comments.

52

ENTER THE NAME OF THE DATABASE
The 1-6 character alphanumeric name assigned to the database is entered here.
(At least one character must be alphabetic.) All future references to this database
will be via the assigned database name, with case sensitivity. See also Appendix
G, DATABASE FILES. h '

ENTER THE NAME OF THE DATABASE OWNER

The 1-8 character alphanumeric name of the database owner is entered here. This
name is used as the schema password. Adding to an existing schema definition will
not be permitted unless the existing owner password matches the owner password
entered here. “NONE” is an acceptable owner and is used when a <CR> is entered.
ENTER THE NAME ASSIGNED TO THIS RELATION

A 1-8 character alphanumeric name assigned to the relation being defined.
ENTER THE READ PASSWORD FOR THIS RELATION

A 1-8 character alphanumeric string assigned by the owner as the read password
for the relation being defined. If no read password is desired enter “NONE”.

ENTER THE MODIFY PASSWORD FOR THIS RELATION

A1-8 charracter alphanumeric string assigned by the owner as the modify password
for the relation being defined. If no modify password is desired enter “NONE".

ENTER THE ATTRIBUTES OF THIS RELATION
ENTER END WHEN COMPLETE

attname type length (IF >1) “KEY” (IF KEY)

attname 1-8 character alphanumeric string identifying
the attribute being defined.

type = TEXT {Text)

REAL (Real)

INT (Integer)

DOUB (Double Precision)

RVEC (Real Vector)

IVEC (Integer Vector)

DVEC (Double Precision Vector)

RMAT (Real Matrix)

IMAT (Integer Matrix)

DMAT (Double Precision Matrix)
length = length of the attribute in terms of the number

53

of characters (text attributes) or the number
of values (all other attributes).

The length of a text attribute is specified as a number of characters. The lengths
of numeric data are specified as a number of values. Note that matrix attributes
require values for both the rows and the columns. The maximum length of an

attribute is dependent on other attributes in the relation. See Appendix D,
LIMITATIONS.

A variable length (or length greater than one) INT, REAL, or DOUB attribute can be
considered to be functionally identical to the IVEC, RVEC, or DVEC attribute.

KEY = the word “KEY" indicates a keyed attribute.
Example: To define a text attribute (TEXTST) of 60 characters, a real attribute

(REAL1), an integer keyed attribute (INT-1), and a real matrix with dimensions 6x8
(MAT68), the following entries would be made:

TEXTST TEXT 60
REAL]1l REAL

INT-1 INT KLY
MAT68 RMAT 6,8

To end the definition of the attributes for the current relation, the word “END” is
entered.

DO YOU HAVE ADDITIONAL RELATIONS TO DEFINE--Y OR N

Additional relations may be defined by entering the character “¥”. If no additional
relations are to be defined at this time, enter “N”.

2.4.3 Database Loading

The database may be loaded in the same session as the schema definition, or
postponed. Therefore, you may safely select “N” below.

DO YOU WANT TO LOAD THE DATABASE--Y OR N

Enter “Y” if you want to load the database at this time.
Enter “N” if no data is to be loaded.

SELECT THE RELATION TO BE LOADED

The relations defined in the database will be listed. You select the relation to be
loaded by entering the integer corresponding to the desired relation.

54

ENTER THE MODIFY PASSWORD FOR THIS RELATION

it a modify password is defined for the selected relation you will be prompted for the
password. You will not be allowed to load data unless you enter the proper

password here.

ENTER THE ATTRIBUTE VALUES IN THE SPECIFIED SEQUENCE
ENTER END WHEN COMPLETE

Entering data values at this point loads the database. The values are entered in the
order indicated and the value entered must correspond to the attribute type. If a text
string contains embedded blanks, or if numeric text is entered, it must be enclosed
in quotation marks. If the value of a fixed length text attribute is shorter in length
than indicated by the attribute definition, LARCRIM will blank fill the input text string.
It is recommended that leading blanks not be used in text strings if you plan to
query the database using the text strings. Such queries (except for using EQS) are
sensitive to the number of leading blanks. If vectors or matrices are loaded, all
values must be specified. Enter “END” when data loading is complete. It is
recommended that you use the application program interface for loading data for
large databases and for databases that have vectors and matrices.

DO YOU HAVE ADDITIONAI RELATIONS TO LOAD--Y OR N

If you want to load another relation, enter “¢”. If all the data to be loaded at this time
has been loaded, enter “N”.

DO YOU WANT TO QUERY THE DATABASE AT THIS TIME--Y OR N

You may switch to the command mode for query by entering “Y". If the query option
is not desired enter “"N” .

55

30 LARCRIM EXECUTION THROUGH THE APPLICATION _
PROGRAM INTERFACE

Any programming language which can call FORTRAN subroutines can access and
modify a LARCRIM database through subroutines contained in the LARCRIM
library, LARCRIMLIB. This subroutine library constitutes the application program
interface.

The application program interface requires that you manage the database files.
The database files must exist as three properly named files before your program
can be executed.

Password checks operate in the application program interface in much the same
way as Iin the stand-alone system. No password permission is required for
RMOPEN, RMCLOS, RMUSER, RMRULE, or RMTOL. Read permission is
required for all other calls except RMLOAD and RMPUT for which modify
permission is required. Modify permission implies read permission.

PREGEDING PAGE BLANK NOT FILMED

57

B2 b TN TN v e,

3.1 Initializing the Database

The RMOPEN routine initializes the internal tables used by LARCRIM and opens the
specified database by reading the database control information into the working area
of memory.

CALL RMOPEN (dbname)
Input parameter:
dbname name of the database
The RMCLOS routine closes the current database after copying the working areas
of memory to the database files. Execution of this routine is required (if you have

modified the database) before your program can access another database.

CALL RMCLOS

58

3.2 Status of Database Activity

When an operation on the database has been attempted, the status of the
operation is returned to the application program via the RMSTAT variable in the
RIMCOM common block. The value of RMSTAT should be checked after each
operation. A non-zero value indicates the operation was not successful. As a result,
subsequent operations may not function as expected. RIMCOM must be declared

in the calling program as follows:

COMMON /RIMCOM/ RMSTAT
INTEGER RMSTAT

The RMSTAT values and meaning are as follows:

-1
0
10
11
12
15
16
20
30
40
41
42
43
44
45
46
47
48
50
60
70
80
81
89
30
110
111
112
2XX

NO MORE DATA AVAILABLE FOR RETRIEVAL

OK - OPERATION SUCCESSFUL

DATABASE FILES DO NOT CONTAIN A LARCRIM DATABASE
DATABASE NAME DOES NOT MATCH FILE CONTENTS
INCOMPATIBLE DATABASE FILES (DATE, TIME,ETC)
DATARSE FILES ARE NOT IN DIRECTORY

DATABASE HAS NOT BEEN OPENED

UNDEFINED RELATION

UNDEFINED ATTRIBUTE

MORE THAN 9 AND/OR OPERATORS IN THE WHERE CLAUSE
ILLEGAL “LIMIT EQ N” CONDITION

UNRECOGNIZED COMPARISON OPERATOR

EQS ONLY AVAILABLE FOR TEXT ATTRIBUTES

ILLEGAL USE OF MIN/MAX IN THE WHERE CLAUSE
UNRECOGNIZED AND/OR OPERATOR

COMPARED ATTRIBUTES MUST BE THE SAME TYPE/ LENGTH
LISTS ARE VALID ONLY FOR EQ, EQS AND NE
ILLEGAL WHERE CLAUSE ROW NUMBER

RMFIND NOT CALLED

RMGET NOT CALLED

RELATION REFERENCE NUMBER OUT OF RANGE
VARIABLE LENGTH ATTRIBUTES MAY NOT BE SORTED
THE NUMBER OF SORTED ATTRIBUTES IS TOO LARGE
SORT SYSTEM ERROR

UNAUTHORIZED RELATION ACCESS

UNRECOGNIZED RULE RELATIONS

MORE THAN 10 RULES PER RELATION

UNABLE TO PROCESS RULES

TUPLE VIOLATES RULE XX

59

The following codes should not be encountered in normal use:

1001 BUFFER SIZE PROBLEM

1002 UNDEFINED BLOCK

1003 CANNOT FIND A LARGER B-TREE VALUE
1004 CANNOT FIND B-TREE BLOCK

21XX RANDOM FILE ERROR XX ON FILEl
22XX RANDOM FILE ERROR XX ON FILEZ
23XX RANDOM FILE ERROR XX ON FILE3
24XX RANDOM FILE ERROR XX ON FILE4

60

3.3 General Routines

The following routines are used to set the internal switches for rule checking, to
specify the database passwords, and to set the tolerance for real and double
precision numbers. These routines may be called any number of times with the
new value overwriting the current value.

The RMUSER routine is used to specify the password necessary for database
access or modification.

CALL RMUSER (password)
Input parameters:
~password the password in Hollerith format.

The RMRULE routine turns rule checking on and off (default--on if rules are
defined).

CALL RMRULE (switch)
Input Parameters:

switch 0 no rule checking (NOCHECK)
1 check rules (CHECK)

The RMTOL routine sets trhe ioleréhce for floafing point nrumbers, (default: 0.).
CALL RMTOL (value,type)
Input Parameters:
rvalue | the Value of the tolerance (real)

type 0 if “value” is the tolerance value (int)
1 if “value” is the tolerance percent

61

3.4 Accessing the Schema
The following routines are used to obtain information about the database schema.

The RMLREL routine sets an implicit pointer to the first relation in the database that
your password allows you to read. It must be called before RMGREL is called. If
your password does not allow read access to any relations, RMSTAT will be set to
90. I :

CALL RMLREL

The RMGREL routine returns the data about the current relation (the relation
indicated by the current implicit pointer) and increments the implied pointer to point
to the next relation for which you have read permission. After a successful
execution of this routine RMSTAT is set to 0. If you change passwords between
calls to RMLREL and RMGREL or between successive calls to RMGREL,
unpredictable results may occur. RMSTAT is set to -1 when a call is made to
RMGREL and all qualified relations have been retrieved.

CALI, RMGREL (rname,rpw,mpw,1astmod,numatt,numrows)

Output Parameters:

rname relation name in Hollerith format
rpw read password (.TRUE. or .FALSE.)
mpw modify password (.TRUE. or .FALSE.)

lastmod date (YY/MM/DD) of last modification of
the relation data (Hollerith)

numatt number of attributes in the relation

nUMrows number of rows of data in the relation

The following example shows how to use RMLREL and RMGREL to obtain the
data about all relations in the database.

COMMON /RIMCOM/ RMSTAT
INTEGER RMSTAT

CALL RMOPEN (dbname)
CALL RMUSER (password)

CALIL. RMLREL
IF (RMSTAT.EQ.0) GO TO 100

62

Print message that no relations are available using the
current password. ' S :

GO TO 200

100 CONTINUE
CALL RMGREL(rname,rpw,mpw,lastmod,numatt,numrows)

IF (RMSTAT.NE.O) GO TO 200
print the data about the relation, etc.........

GO TO 100
200 CONTINUE

The RMLATT routine sets an implied pointer to the first attribute of the specified
relation. This routine must be called prior to calls to RMGATT. If the relation exists
and your password allows read access to i, RMSTAT is set to 0.

CALT, RMLATT (rname)
Input Parameters:
rname relation name in Hollerith format.
The RMGATT routine returns the data about the current attribute (the attribute
indicated by the implied pointer) and increments the implied pointer to point to the
next attribute. RMSTAT is set to -1 when a call is made to RMGATT and all the
attributes for the relation have been retrieved.
CALL RMGATT(aname,type,matvec,var,lenl,lenz,column,key)
Output Parameters:
aname attribute name in Hollerith format

type attribute type (3HINT,4HREAL,4HDOUB,4HTEXT)
matvec attribute type (3HVEC,3HMAT or blank)

var variable length attribute (TRUE. or .FALSE.)

lent attribute length data as follows:
TEXT number of characters
INT,REAL,DOUB,VEC number of values
MAT "~ row dimension

len2 column dimension of MAT attributes (otherwise 0)

column attribute column location in the relation
key keyed attribute (.TRUE. or .FALSE.).

63

The

following example shows the use of RMLREL, RMGREL, RMLATT, and

AMGATT to obtain the data about all attributes for all relations. (The equivalent of
LISTREL ALL)

100

200

300

999

COMMON /RIMCOM/ RMSTAT
INTEGER RMSTAT

CALL RMOPEN (dbname)
CALL RMUSER (password)

CALL RMLREL

CONTINUF. ,

CALL RMGREL (rname, rpw, mpw, lastmod, numatt, numrows)

1F (RMSTAT.NE.O) GO TO 300

CALL RMLATT (rname)

DO 200 K=1,numatt

CALI, REMGATT (aname, type,matvec,var, lenl, len2, column, key)
I[F (RMSTAT.NE.0) GO TO 999

printout the relation and attribute data, etc....

CONTINUH
GO TO 100
CONTINUE

CONTINUE
error while retrieving attribute data

64

3
i

3.5 Accessing the Database
The routines which access the database allow the following operations:

1) GET an existing row of data from a specified relation and store it in a local
array (must be preceded by a RMFIND).

2) LOAD a new row of data from a local array to the bottom of a specified
relation (must be preceded by a RMFIND).

3) PUT an existing row of data back into a specified relation after it has been
modified (must be preceded by a RMGET).

4) DELETE an existing row of data from a specified relation (must be
preceded by a RMGET).

Each of the above operations work on one row of data at a time. Get (RMGET), put
(RMPUT) and delete (RMDEL) use an implied row pointer which is initialized by
RMFIND and incremented by RMGET. You have 6 implied pointers referenced by
numbers 0-5 at your disposition. You must not use more than one pointer for a
given relation; unpredictable results may occur. RMPUT, which must be preceded
by RMGET, simply puts a row back where it was taken from. Load (RMLOAD),
while not specifically using the pointers established by RMFIND, requires a call to
RMFIND. In this case, RMFIND simply identifies the relation.

A call to RMFIND establishes an implied pointer chain to all the rows of a relation
in the internal order of the rows. You may restrict the number of rows of the implied
pointer chain by a call to RMWHER following the RMFIND call. You may also sort
the rows qualified by the implied pointer chain by a call to RMSORT. Thus, for each
pointer you wish to use, you must first call RMFIND, then, if you wish to restrict
qualifying rows, call RMWHER and, if you desire sorted order, call RMSORT. You
must not call RMGET, RMLOAD, RMPUT, or RMDEL between the calls to
RMFIND, RMWHER, and RMSORT unless a new pointer chain is being
established.

A pointer may be redefined as many times as desired. Each time RMFIND is
called, the pointer, if previously defined, is reset. The logical sequence of RMFIND,
RMWHER (optional), RMSORT (optional) calls must be set up prior to the first call
to RMGET, etc. Note that a new qualification (RMWHER), a new sort ordering
(RMSORT), or both requires a new call to RMFIND.

The RMFIND routine establishes the initial pointer for a relation and associates the
user assigned number with the pointer. A call to RMFIND must be made before
calls to routines which further define the pointer (RMWHER, RMSORT) as well as
before calls to routines which use the pointer.

65

CALL RMFIND (number,relname)

Input Parameters:
number

relname

user assigned integer number (0-5) used to reference the
pointer for the relation (int)
relation name in Hollerith format

The RMWHER routine qualifies a set of rows for retrieval and corresponds to the
stand-alone WHERE clause.

CALL RMWHER (number, attname, operator,value,numval, nextboo,
numboo)

Input Parameters:
number

attname

operator

value

number (0-5) which identifies the relation pointer previously
established by RMFIND

array of attributes names (may also be attribute humbers,
ROWS or LIMIT) where the attname(n) corresponds to the
nth condition of the WHERE clause

array of operators (2HEQ,3HEQA, etc.) where operator(n)
is the operator for the nth condition of the WHERE clause
2-dimensional array of WHERE clause “values™ where the
nth row corresponds tothe nth condition of the WHERE
clause.

The organization of the array is dependent on the attribute
type and length. Let v represent an attribute value and let v(i)
represent the ith value in a list of values (WHERE clause list
option). The rows of value are organized as follows:

Fixed length attributes:
v(1),v(2),........ v(x) where x is equal to the number of

values in the list

Variable length attributes:
TEXT -
¢(1),0,v(1),c(2),0,v(2),
¢(x),0,v(x)
where c is the number of characters in the corresponding
value and x is equal to the number of “values” in the list.

INT,REAL,DOUB,VEC -

items(1),0,v(1), items(2),0,v(2),

items(x),0,v(x)

where items is the number of items in the corresponding
value and x is equal to the number of “values” in the list.

66

TN PR

MAT -

rows(1),cols(1),v(1),rows(2),cols(2),v(2),...,rows(x),cols(x),v(x)
where rows is the number of rows and cols is the number of
columns in the corresponding matrix value x is equal to the
number of “values” in the list.

numval number of “values” in the list of values (v(1),v(2),....,v(x)).
numval(n) equals x and corresponds to the nth condition of the
WHERE clause. Note that numval(n) may be greater than1 only
for EQ, EQS or NE conditions (see the SELECT command).

nextboo array of “AND” or “OR" operators in Hollerith format.

numboo number of WHERE clause conditions.

Note that a call to RMWHER for a specified pointer (number) must be preceded by
a call to RMFIND. For example, if the following WHERE clause were required:

WHERE ATT1 EQ 4 7 12 OR ATT2 EQS “TEXT STRING” AND +
ATT3 GT 5. AND ATT3 EQA ATT4

(ATT1 -- integer length 1)
(ATT2 -- text variable length)
(ATT3 -- real length 1)

(ATT4 —-- real length 1)

The arrays would be dimensioned:

attname (4)
operator (4)
value (4, 5)
numval (4)

nextboo (4)

The arrays would contain:

attname (1) = 4HATTI1
attname (2) = 4HATTZ2
attname (3) = 4HATT3
attname (4) = 4HATT3
operator (1) = 2HEQ
operator (2) = 3HEQS
operator (3) = 2HGT
operator (4) = 3HEQA
value (1l,1) = 4
value (1, 2) = 7
value (1, 3) = 12
value (1, 4) = 0
value (1, 5) =0

67

value(2,1) = 11

value (2, 2) = 0

value (2, 3) = 4HTEXT

value (2, 4) = 4H STR

value (2,5) = 3HING

value (3,1) = 5.

value (3, 2) = value(3,3) = value(3,4) = value(3,5) = 0
value (4, 1) = 4HATTA4

value (4, 2) = value(4,3) = value(4,4) = value(4,5) =0
numval (1) = 3

numval (2) =1

numval (3) = 1

numval (4) = 1

nextboo (1) = 2HOR

nextboo (2) = 3HAND

nextboo (3) = 3HAND

nextboo (4) = 0

numboo = 4

The RMSORT routine sorts the data prior to retrieval and is equivalent to the stand-
alone SORTED BY clause.

CALI, RMSORT (number,attname, numsort, sortype)

Input Parameters:

number number (0-5) which identifies the relation pointer previously
established by RMFIND (int).

attname array of sort attribute names

numsor number of attributes to sort (int)

sontype sort control numbers, corresponding to attname(n)

sortype(n) = -1 for descending sort

sortype(n) = 1 for ascending sort

For example, if the following SORTED BY clause were required:

SORTED RY ATTl=A ATT2=A ATT3=D

68

i

The arrays would contain:

attname (1) = 4HATTI1
attname (2) = 4HATT2
, attname (3) = 4HATT3
numsort = 3
sortype(l) = 1
sortype(2) = 1

-1

sortype (3)

The RMGET routine gets a row of data from the specified relation and advances
the pointer to the next qualifying row (as determined by RMFIND and optionally by
RMWHER and RMSORT conditions). RMSTAT is set to -1 when a call is made to
RMGET and all qualified rows have been retrieved.

CALL RMGET (number,array)

Input Parameters:
number number (0-5) which identifies the relation from which a row is to
be retrieved (int).

Output Parameters:

array array to receive the row of data. The array used may be unique
for this relation or it may be a general array used for all data
access activities. In either case the array must be large enough to
hold one row of data. LARCRIM does not check the array
dimension. An integer array is recommended.

The attribute values are stored in the array according to the conventions discussed
below. For this discussion, let “coli” be the column number in the relations that
corresponds to the ith attribute.

Fixed length attributes:
Array(coli) contains the start of the value for the i-th attribute.

Variable length attributes:
? Array(coli) contains the pointer “p” which points to the start of the
attribute data in the array.

69

The pointer word, array(p) contains one of the following values:

attribute array(p)

TEXT number of characters
INT,REAL,DOUB,VEC number of items
MAT row dimension

Array(p+1) contains one of the following values:

attribute type array(p+1

TEXT 0
INT,REAL,DOUB,VEC 0

MAT column dimension

Array (p+2),... contains the attribute values
For a more complete explanation of the data array, refer to Section 3.6.
The RMLOAD routine loads a row of data into a specified relation. Calis to
RMLOAD may be repeated with each row being loaded at the bottom of the
relation.
CALIL, RMLOAD (number,array)
- Input Parameters:
number number (0-5) which identifies the relation to load.
array array containing the row of data to load (see RMGET for a

description of array).

The RMPUT routine, following a call to RMGET, will modify a row of data in a
specified relation.

CALL RMGET (number, array)

CALL RMPUT (number, array)

70

Input Parameters:

‘number number (0-5) which identifies the relation to be modified . The
IR row to be modified was established by the call to RMGET.
‘array array containing the modified row of data (see RMGET for a

description of array).

The RMDEL routine, following a call to RMGET, will delefe a row' of data in a
specified relation.

"CALIL RMGET (number, array)

CALL RMDEL (number)

Input Parameters:

number number (0-5) which identifies the relation which is to be modified
The row to be deleted was established by the call to RMGET.

Calls to RMPUT and RMDEL must be preceded by calls to RMGET. The use of
sevaral intermixed modify and load operators using the same pointer should be
avoided since unpredictable results may occur.

71

3.6 The Data Array

An application program passes data to and receives data from a LARCRIM database
one row at a time. In order to receive, load, or modify data, a buffer is used by the
application program. This buffer, a multi-word array, must be large enough to contain
the largest accessed row. An understanding of the organization of the data within this
array is crucial, because for each attribute’s data, LARCRIM either places the data
in or expects it to be in a particular position within the array. This position is
determined by the data type of an attribute.

The structure of the data array is easiest to understand within the context of an
example. Suppose a relation has the following definition:

Attribute Data

Name Type Length
PARTNO INT 1
DISC TEXT 20
OPTEMP RVEC 3
FREQRNG IMAT 2,3

Values in the data array appear in the same order as they are specified in the
relation’s LARCRIM schema definition. In this example relation, the value for
PARTNO will occupy the first postion in the data array, followed in order by DESC,
OPTEMP, and FREQRNG.

The number of words each attribute occupies is determined by its data type. Each
single valued, non-text attribute will occupy one word in the data array, for example,
PARTNO. Text attributes can occupy more than one word, depending upon the
number of characters in the text and the computer’ s word size. Assuming a word
size of four bytes, DESC will require one word for each four characters. Because
DESC is defined with a fixed length of 20, it will occupy 5 words in the data array. If
DESC had been defined with a length of 17 characters, it would still occupy five
words. Attribute values are aligned on word boundries within the data array. Vectors
and matrices require one word for each element in the attribute. Thus OPTEMP will
occupy three words and FREQRNG will require six words in the data array (2 x 3).
The data array for this example relation would require a minimun of fiteen words, but
could have more.

Let's assume that one row in this relation contains the following data:

Attribute Value

- —————— - ——— = - ———— - - ———

PARTNO 4039

DESC “LOW GAIN ANTENNA”
OPTEMP 325, 437, 665
FREQRNG 10.2, 20.5, 40.8

24.6, 38.2, 91.4
72

By knowing the position and number of words occupied by each attribute in this
relation, the data array for the row above would look like:

Attribute Word Data Array Values

PARTNO 1 403
DESC 2 “LOW ”

" 3 “GATIN”

s 4 ™ ANT”

w 5 “ENNA”

w 6)Y ”
OPTEMP 7 325

» 8 437

» 9 665
FREQRNG 10 10.2

w 11 24.6

W 12 20.5

® 13 38.2

» 14 40.8

» 15 91.1

Notice that the values for FREQRNG, a matrix attribute, are stored in the
FORTRAN columnwise convention, i.e., row1i/coll, row2/coll, row1i/col2, row2/
col2, row1/col3, row2/col3. Word six is filed with blanks, because the length of
DESC is 20 and the text is only 16 characters long. Five words must be allocated
for DESC even though there is not enough text to fill up the 20 characters.

Now let's look at a variable length text attribute and its characteristics within the
data array. We will use the same example relation, but change DESC to a variable
length attribute. The definition of the relation becomes:

Attribute Data

Name Typoe Length
- PARTNO INT 1
DESC TEXT VAR
OPTEMP RVEC 3
FREQRNG IMAT 2,3

For a variable length attribute, a data location pointer is placed in the data array at
the position where the attribute’s value would normally begin. This pointer indicates
where in the data array the variable length attribute’s value is actually located. Data
for variable length attribute is always located at the end of the data array. The data
location pointer is an integer which represents the position (word number) in the
data array where information about the variable length attribute begins. Following
this information is the attribute’s value.

13

The information at the data array location indicated by the pointer consists of two
words. What these words represent depends upon the data type of the attribute.
The following table describes what this information means for each data type.

Attribute
Type

Contents of Word 1 Contents of Word 2
Number of characters 0

Number of values 0

Number of values 0

Number of wvalues 0

Number of values 0

Number of values 0

Number of values 0

Number of values 0

Row dimension Column dimension
Row dimension Column dimension

Now in our example, the data array would look like:

Attribute Word
PARTNO 1
— DESC 2
OPTEMP 3
w 4
" 5
FREQRNG 6
. 7
» 8
" 9
» 10
" 11
_—p» DESC 12
" 13
» 14
» 15
" 16
w 17

Data Array Values
403
12 (Pointer to word 12)
325
437
665
10.
24.
20.
38.
40.
91.
16 (Number of characters)
0 (Always 0 for TEXT)
“LOW ™ (Beginning of data)
“GAIN”
“ ANT”
“ENNA”

S NN

Now the value of DESC only occupies four words (16 characters at 4 characters
per word), but the data array needs to be 17 words long instead of 15 words. For
each variable length attribute, the number of words needed in the data array is
three more than the number of words needed for the actual value (one for the
pointer plus two for the information about variable length attribute).

74

wneng oms

]
1
4
i

For the last example, FREQRNG will become a variable length matrix. Both the
number of rows and the number of columns will be variable. The definition of the
example relation is now given by:

Attribute Data

Name Type Length
PARTNO INT 1
DESC TEXT VAR
OPTEMP RVEC 3
FREQRNG IMAT VAR, VAR

Leaving the example data the same, the data array now would look like:
Attribute Word Data Array Values

" PARTNO 1 403

———— DESC 2 7 ({Pointer to word 7)
OPTEMP 3 325
» 4 437
" 5 665
FREQRNG 6 13 (Pointer to word 13)
—® DESC 7 16 (Number of characters)
N 8 0 (Always 0 for TEXT)
w 9 “LOW (Beginning of data)
w 10 “GAIN”
w 11 W ANT”
W 12 “ENNA”
e FREQRNG 13 2 (Number of rows)
» 14 3 (Number of columns)
" 15 10.2 (Beginning of data)
» 16 . 24.6
" 17 20.5
» 18 38.2
w 19 40.8
» 20 91.4

Because of the addition of the second variable length atribute, the data array now
needs to be 20 words long to hold the data plus the information about each variable
length attribute.

The data array should be a FORTRAN integer array. In order to transfer real and
character data to and from the data array without data conversion, a real and/or a
character array can be equivalenced to the data array. For the example above, the
following FORTRAN code could be used:

75

INTEGER 1ARRAY

REAL RARRAY

CHARACTER*4 CARRAY .
DIMENSION IARRAY (20), RARRAY(20), CARRAY (20)
EQUIVALENCE (IARRAY(1l), RARRAY (1), CARRAY (1))

Using this technique, integer data is transferred via the IARRAY, real data via the
RARRAY, and character data via the CARRAY. When calling LARCRIM subroutines,
it's recommended that the data array parameter be a FORTRAN integer array.

In summary, remember the following points about the data array.

1.

Attribute values in the data array are in the same order as declared in the relation
definition.

The number of words required for each attribute depends upon the data type and
size of the attribute and upon the computer’s word size.

For variable length attributes, the position in tha data array normally used for the
attribute’s data, contains a pginter to another location within the data array. This
new location contains information about the attribute followed by the attribute’s
data.

EQUIVALENCE statements are used to transfer non-integer data to and from the
data array.

The data array should be dimensioned with sufficient space to hold the longest
row in a relation. LARCRIM does not determine if the data array was
dimensioned with sufficient space.

The recommended way to pass data between and application program and a
LARCRIM database is via an integer array.

76

APPENDIX A: SUMMARY OF LARCRIM COMMANDS
Defining a database schema

DEFINE dbname
- OWNER password

ATTRIBUTES

attname {REAL} [{length}] [KEY]
INT VAR
TEXT
DOUB
RVEC
IVEC
DVEC

attname { RMAT) {row,col} [KEY]

IMAT row, VAR
DMAT VAR, VAR
RELATIONS
relname WITH attnamel [attname2 ...]
PASSWORDS
{READ PASSWORD} FOR {relname} IS password
RPW ALL
{MODIFY PASSWORD} FOR {relname} IS password
MPW ALL
RULES
attname [IN relname] {EQ} value [{AND} ...]
NE OR
GT
GE
LT
LE
attname IN relname {EQA} attname IN relname [{AND}
NEA OR
GTA
GEA
LTA
LEA
END

Loading a relation
LOAD relname

valuel wvalue?2 ... valuen
END

77

value: SCALARS vall
TEXT “text string”
VECTOR (vall, val2, ...)
MATRICES ((rlcl,r2cl, ...)(rlc2,r2c2, ...) ...)

Querying a relation

SELECT {attnamel[=fw1],attname2[=fw2], ... } FROM relname +
attnuml [=fwl],
attnamel (1),
attnamel (i,73), ...
ALL
[SORTED BY attnamel [=(A}], {attname2 [={A}], ...]11+
D D

[WHERE ...]

TALLY attname [={A} FROM relname [WHERE ... 11
D

WHERE attname (EXISTS} [{ AND} ...]
FAILS OR
EQS value
EQ value
NE MAX
GT MIN
LT
LE
WHERE attname {FEQA} attname [{AND} ...]
NEA OR
GTA
GEA
LTA
LEA
WHERE ROWS { EQ} rownumber [{AND} ...]
NE OR
LT
LE
GE
GT
WHERE {attname} {EQS} list [{AND} ...]
ROWS FQ OR
NE
WHERE LIMIT EQ number {AND ...]

78

Querying the schema

LISTREL [{(relname}]
ALL
EXHIBIT attnamel [attname2 ...)]
T PRINT RULES

. Computation commands

COMPUTE {COUNT} attname FROM relname [WHERE ...]
MIN

¥ MAX

AVE

SUM

Modification commands

CHANGE {attname} TO value [IN relname] WHERE
attname (i)
attname (i, j)
CHANGE ({RPW} TO newpass FOR relname
i MPW
CHANGE OWNER TO newowner
DELETE ROWS FROM relname WHERE
DELETE DUPLICATES [attnamel, attname2,...] FROM relname
DELETE RULFE rulenumber
RENAME ATTRIBUTE attname TO newname [IN relname]
RENAME RELATION relname TO newname
REMOVE relname

-

Relational algebra commands

INTERSECT relnamel WITH relname2 FORMING relname3 +
[USING attnamel [attname2, ... 1]

JOIN relnamel USING attnamel WITH relname2 USING attname2 +
FORMING relname3 [WHERE {EQ}]
NE
GT
GE
LT
LE

SUBTRACT relnamel FROM relname? FORMING relname3 +

[USING attnamel [attname2, ...]]

PROJECT relnamel FROM relname?2 USING +
(attnamel, [attname2, ...]} [WHERE ...]
ALL

79

Report Commands

NEWPAGE

BLANK n

TITLE “title”

DATE

LINES n

WIDTH n I

KEY Commands

BUILD KEY FOR attname IN relname
DELETE KEY FOR attname IN relname

LARCRIM-TO-LARCRIM Commands

UNLOAD [dbname [=newdbname]] { SCHEMA} [relnamel [=mpw]]+

DATA
ALL
[relname?2 [~mpw], ... |

General Commands

INPUT {filename}
TERMINAIL

OUTPUT {filename}
TERMTINAIL

EXIT

QUIT

MENU

HELP [command name]
USER password

ECHO

NOECHO

CHECK

NOCHECK

TOLERANCE tol {PERCENT]
RELOAD

CLOSE

OPEN dbname

80

P

APPENDIX B: SUMMARY OF THE APPLICATION PROGRAM INTERFACE

INITIALIZING THE DATABASE
CALL RMOPEN (dbname)
Input Parameter:
dbname the name of the database in Hollerith format
CALL RMCLOS
GENERAL ROUTINES
CALL RMUSER (password)

Input Parameters:
password the password in Hollerith format.

CALL RMRULE (switch)

Input Parameters:

switch 0 no rule checking (NOCHECK)
1 check rules (CHECK)

CALL RMTOL (value,switch)
Input Parameters:
value the value of the tolerance (real)

switch 0 if value is the tolerance value (int)
1 if value is the tolerance percent

ACCESSING THE SCHEMA
CALL RMLREL
CALL RMGREL (rname,rpwgﬁpQ,léstmod,numatt,numrows)
Output Parameters:

rname relation name in Hollerith format.

rpw read password (.TRUE. or .FALSE.)
mpw modify password (.TRUE. or .FALSE.)

lastmod date of last modification of relation data in YY/MM/DD format
numatt number of attributes in the relation
numrows number of rows of data in the relation

81

CALL RMLATT (rname)

Input Parameters:

mame

relation name in Hollerith format.

CALI RMGATT (aname, type,matvec,var, lenl, len2,column, key)

Output Parameters:

aname
type
matvec
var
lent

len2
column
key

attribute name in Hollerith format

attribute type (INT, REAL, DOUB, or TEXT)
attribute type (VEC or MAT - otherwise blank)
variable length attribute (.TRUE. or .FALSE.)
attribute length data as follows (int):

TEXT - number of characters

INT, REAL, DOUB, VEC - number of items
MAT - row dimension

column dimension of MAT attributes (otherwise 0)
attribute column location in the relation (int)
keyed attribute (. TRUE. or .FALSE.)

ACCESSING THE DATABASE

CALL RMFIND (number,relname)

Input Parameters:

number

relname

user assigned number (0-5) used to reference the pointer for the
relation the pointer for the relation
relation name Hollerith format

CALL RMWHER (number, attname, operator, value, numval, nextboo, numboo)

input Parameters:

number
attname

operator
value
numvall
nextboo
numboo

number (0-5) which identifies the relation pointer for this operation
array of attribute names, attribute numbers,the keyword ROWS,
or LIMIT

array of operators (EQ, GT, EQA, EQS, etc.)

2-dimensional array of WHERE clause “values”

number of “values’ in the list of values.

array of “AND” “OR" operators.

number of WHERE conditions (int).

82

CALL RMSORT (number,attname,numsort,sortype)
Input Parameters:
number number (0-5) which identifies the relation pointer for this
operation
attname array of “numsort” attribute names to sort on
numsort number of attributes to sort
sortype sort control numbers
-1 = descending sort
1 = ascending sort
CALL RMGET (number,array)
Input Parameters:

number number (0-5) which identifies the relation pointer for this
operation

Output Parameters:

array array to receive the row of data.
CALL RMLOAD (number,array)
Input Parameters:

number number (0-5) which identifies the relation to load.
array array containing the row of data to load

CALL RMPUT (number,array)
Input Parameters:

number number (0-5) which identifies the relation to be modified (int).
array array containing the modified row of data

CALL RMDEL (number)
Input Parameters:

number number (0-5) identifies the relation from which rows are to be
deleted.

83

sl i

N Y YN

PHONCESNO NN NONONO NS

SNONONGNY!

100

110

120

APPENDIX C: SAMPLE APPLICATION PROGRAM

PROGRAM SAMPLE

This sample FORTRAN program shows the use of the

application program interface to access the AERODB data-

base and print the following:

1)

2)

All the information about the schema -——~-==-—-veee—-

(LISTREL ALL)

The data in the relation REL300 for the airports in
Brazil sorted by descending altitude -- CITYNAME is

variable length

(SELECT ALL FROM REL300 SORTED BY ALTITUDE=D +

WHERE CITYNAME EQS “BRAZIL")

LOGICAL RPW,MPW, VAR, KEY

COMMON /RIMCOM/RMSTAT

INTEGER RMSTAT :
REAL*8 NAME, LASTMD, NAMEA, NAMEC, IVAR, DBNAME
DIMENSION NVAL (20)

DIMENSION NAMEQS (5)

Open the database

DBNAME=6HAERODB
CALL RMOPEN (DBNAME)

LISTREL ALL

CALIL RMLREL

CONTINUE

CALL RMGREL (NAME, RPW, MPW, LASTMD, NUMATT, NUMROW)
IF (RMSTAT.NE.O) GO TO 200

LRP = 3HNO
IF (RPW) LRP=3HYESS
MRP = 3HNO

IF (MPW) MRP = 3HYES

WRITE(6,110) NAME, LRP,MRP, LASTMD, NUMATT, NUMROW
FORMAT (1X,A8,2(21X,A4),1X,A8,s18)

CALL RMLATT (NAME)

CONTINUE

CALL RMGATT (NAMEA, ITYPE,MAT, VAR, LEN1, LEN2, NCOL, KEY)

85

PRESEDING PAGE BLANK NOT FILMED

el dmﬁ STODNTIONRILY RUEs

130

aoann

@]

300

400

999

9001

O

1000

IF (RMSTAT.NE.O) GO TO 100
IVAR = SHFIXED

IF (VAR) IVAR
IKEY = ZHNO
IF (KEY) IKEY = 3HYES

1t

BHVARIABLE

WRITE (6,130) NAMEA, ITYPE,MAT, IVAR, LEN1, LEN2, NCOL, IKEY

FORMAT (IX,A8,2(1X,A5),1X,A8,318,1X,A3)

GO TO 120
CONTINUE

SELECT ALIL FROM REL300 SORTED BY ALTITUDE=D +
WHERE CITYNAME EQS “BRAZIL”

NAME=6HREL300
CALL RMFIND (1, NAME)
IF (RMSTAT.NE.O) GO TO 999

NAMEQS (1) = 6
NAMEQS (2) = 04
NAMEQS (3) = HBRAZ

NAMEQS (4) =2HIL
NAMEC=8HCITYNAME
IBOOP=3HEQS

CALL RMWHER (1, NAMEC, IBOOP,NAMEQS,1,0,1)

IF (RMSTAT.NE.(0) GO TO 500
NAMEA=8HALTITUDE

CALL RMSORT (1,NAMEA, 1, -1)
IF (RMSTAT.NE.0) GO TO 999
CONTINIUE

CALL RMGET (1, NVAL)

IF (RMSTAT.NE.(0) TO TO 500
NUMX = (NVAL(5)-1)/10 + 1
NUMP = 6 + NUMX

WRITE (6,400) (NVAL(K),K=1,NUMP)

FORMAT (A4,516, 2X, 3A10)
GO TO 300
CONTINUE

IF (RMSTAT .LT.0) GO TO 1000

CONTINUE
WRITE (6, 9001) RMSTAT
FORMAT (6HRMSTAT, I5)

Close the database
CONTINUE

CALL RMCILOS
END

86

v

APPENDIX D: LIMITATIONS

There is no limit on the size of a relation (number of rows) or the number of relations
other than hardware or operating system imposed, e.g., mass storage availability.

A row in a relation must fit in 1021 computer words. If len(i) is the fixed length (in

words) of the ith attribute, and if var(j) is the length (in words) of the jth variable length
attribute, then:

(£ len(i)+ X (var(j)+3))<1021
Note that if a relation fits on a CYBER (60 bit machine), it may not fit on a 32 bit
machine. This is important to consider when using LARCRIM-to-LARCRIM
communications (UNLOAD command).
A relation or attribute name must not begin with the character string RMRUL.
The following words may not be used as attribute or relation names:
TO, FROM, BY, USING, WHERE, IN, FORMING, ROWS, LIMIT, DUPLICATE
Also, names must not be a substring of the above which is 3 characters or more in
length starting with the first character (LARCRIM substring). For example, FOR and
FORM are not allowed, however FORT is legal.
In loading data, the value of the first attribute, if it is TEXT, is limited as follows:

If the relation contains only one or two attributes, then the following text strings and
their LARCRIM substrings are not allowed as values for the first attribute:

CHECK, NOCHECK, ECHO, NOECHO, END, HELP, INPUT, OUTPUT,QUIT

If the relation contains three attributes, then the value for the first attribute may not
be:

HELP, HEL
The number of items in one command may not exceed 100.
The number of rules specified for one relation may not exceed 10.

The number of conditions used in the SELECT WHERE clause may not exceed 10.

87

APPENDIX E: ENTERING INPUT WITH THE LARCRIM USER INTERFACE

The following is a detailed discussion of the algorithms used for reading and parsing
LARCRIM commands and data in the stand-alone system. It is intended to detail the
significant flexibility available to the experienced LARCRIM user.

The LARCRIM user interface is a free-field input routine, used by the LARCRIM stand-
alone system, which separates user input into items which are grouped into records.

TERMINOLOGY
LINE - One line of information with a maximum of 80 characters including blanks.
ITEM - One piece of information. An item may be a real number, an integer or text.

Items are delimited by blanks or commas. Multiple blanks count as a single
blank. Multiple commas generate null items (see section on multiple
commas).

RECORD -A collection or list of up to 100 items entered in response to a single request
for data by the calling program.

INTEGER -All characters must be numeric except the first one which may be + or -. For
example: -1 23 +10000

REAL - Anitem of the form 11.12EI3 where |1 and I3 may be signed integers and 12 is
an unsigned integer. The entire form is not necessary but at least one digit
and the . or two digits separated by the E must be present. For example: 1.
1E-3 -2.7E+4 .0 The size of real numbers are limited to the range between
1.0E+38 to 1.0E-38.

TEXT - Any single item which is not an integer or real. If a text item looks like an
integer or real or if it contains blanks or commas, it must be enclosed in quotes

(‘)-
COMPOSING RECORDS

Ordinarily records consist of one tine, However, multiple records may be put on one line
by separating them with dollars or semicolons. Alternatively, a record may span several
lines by ending all but the last line with a plus. items must be wholly contained on one line
with the exception of quoted text items and comments.

SPECIAL ITEMS - =/(,)

Equals and left and right parentheses are treated as single items unless enclosed in
quoted text items. Thus a=3. is 3 items (two text and one real) rather than one item. “a=3."
is one text item. This allows more convenient parsing of many commands.

89 PRESEDING PAGE BLANK NOT FILMED

"; ""‘f %{W W,L T
" "'#g el

3 «‘,,l"i‘!ii ;? §$’

MULTIPLE COMMAS

If more than one comma separates two items, each additional comma will generate a text
item with three characters “-0-". thus, ,,abc,,2.5 is equivalent to -0-,abc,-0-,2.5.

RULES FOR TEXT ITEMS

A quoted text item is terminated by a record separator (dollar or semi-colon). Quoted text
items may be continued on multiple lines. If the trailing quote is omitted on the last itemin
a record, the quoted item is terminated at the record separator, if any, or the last non-blank
character on the line. Quotes may be included in quoted text items by doubling the quotes
(e.g. “a," “b yields, a, “b as a text string).

SOME EXAMPLES

1,2. ABC “2.”
This record has four items - integer,real, and two text

182
This line is two records - each one integer

1+

2
This is one record on two lines with two integers

COMMENTS

Comments may be included anywhere in the input stream by enclosing them between *(
and). For example *(this is a comment). Comments are completely ignored by the user
interface. Empty lines between records are also ignored and may be used to paragraph
input. An alternative form of comment is */..../ where slashes replace the parentheses.
This may be used if parentheses are needed in the comment.

DATA GENERATION

Activities such as entering large volumes of data, repeating similar records and reentering
mis-typed records can be eased by using the LARCRIM user interface data generation

facilities.

REPEATING ITEMS ON PREVIOUS RECORD - *N,**/*

A data item of the form *n where n is an unsigned integer indicates that the next n items
are identical to the corresponding n items in the preceding record. An isolated * is treated
as *1. Double asterisks (**) indicate that the remaining items in the previous record are to
be copied into the current record.

=

EPEATING AN ITEM IN THE CURRENT RECORD - *=N "=N+STEP

An item of the form *=n, where n is an unsigned integer, indicates that the next n items
are identical to the immediately preceding item. An item of the form *=n+step or *=n-step
where step is an unsigned real or integer, indicates that the next n items are to be
generated by consecutively incrementing the immediately preced- ing item.

GENERATING MULTIPLE RECORDS - *+N

A record beginning with *+n where n is an unsigned integer indi- cates that the next n
records are to be generated from the preceding record. Each item of the generated record
is formed by adding an item of the *+n record to the corresponding item of the immediately
preceding input or generated record. A zero (integer) item should be inserted in an *+n
record for text items in the preceding record. The number of items after the *+n must
match the number in the preceding record.

NOTE ON GENERATING ITEMS

When increments are specified, either on the *+n record or as step on an *=n+step item
they must match the item they are incrementing in type. It should be noted that the *+n
record generation option is based on the expanded representation of the previous record.
The generation does not operate on the preceding record if it contains data generation
items. Therefore, it is not possible to repeat or increment an asterisk-type item.

EXAMPLES

Consider the following seven input records to illustrate the data generation features.
1234567891011 12
2 1 *2 4 *x=2 1 *=242 **
x41 0 *=3 Q0 *=5 k*
x+1 0 *=11
*+1 *12
*1.1 x X
* %k

Twelve data items are defined by each of these records. Each of the last six records is
translated into the same internal record which is:

213444413511 12

Note - the last five records could be replaced by the single record:
X465 ki

91

HANGII PECIAL CHARACTER
It Is possible to change the special characters the user interface uses to break apart
records. These special characters may either be changed to another character or set to
null so that they are ignored. This is useful for reading specially formatted files or to allow
special characters to be input as text items. To change special characters enter the
following special comment as the only entry on a line between records.

* (SET KEYWORD=newvalue)

where KEYWORD canbe DOTLLAR
SEMI
QUOTES
BLANK
PLUS
COMMA

and newvalue is either the word null or the new special character. For example, if one
wanted to use dollars to delimit items rather than records and to not have commas delimit
items, the following two lines could be entered.

* (SET DOLLAR=NULL)
* (SET COMMA=3S)

Note that commas could now be used in unquoted text strings and dollars could now be
included in quoted text strings. Also, note that it is really the function that is being altered,
not the character. Changing plus only changes the line continuation character, not the
representation of real numbers. To restore the original condition after the above example,
the following could be entered.

* (SET DOLLAR=$)
* (SET COMMA=,)

Warning - using the same character for multiple functions will produce undefined
results.

92

- iy

" WM |
Hite

APPENDIX F: HOST DEPENDENT INSTRUCTIONS

Reserved for future use.

93

APPENDIX G: DATABASE FILES

Each database consists of three LARCRIM-generated files whose logical names are
formed by appending a 1, 2, or 3 to the 1-6 character database name “dbname”. The first
file contains the database definition (schema) data, the second file contains the actual
data for each relation, and the third file contains the pointers for the “keyed” attributes.
LARCRIM uses units 5 and 6 for input and output.

If your database files reside on your directory with names different from the logical

database file names, you must use assign control statements prior to the LARCRIM
execution to assign required names to your database files.

PREGEDWNG PAGE BLANK NOT FILMED

References:

F.P. Gray, S. O. Wahlstrom; Boeing Commercial Airplane Co.; USER GUIDE, RIM 5.0,
VAX VMS, Vol 1 of 2; 1982. (Available through COSMIC)

Recommended Reading:

C. J. Date: DATABASE, A Primer, Addison-Wesley Publishing Co.; 1983

96

L Fl

Wi
it

~ Mw

“al,

e

Form Approved
REPORT DOCUMENTATION PAGE OMS No. 0704-0138
Tublic reporting burdan for this collection of inf ion is estimated to average | hour per response, including the lime for reviewing instructions, searching existing data sources,
gathering and maintaining the dsla needed, and ¢ lating and § the collection of information. Send commants regarding this burden estimate or any other aspect of this

colleclion of information, including suggestions for reducing this burden, 1o Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jeferson
Davis Highway, Suite 1204, Arlinglon, VA 22202-4302, and 1o the Office of Managemant and Budget, 'aperwork Reduction Project (0704-0188), Washington, DC 20503,

3. AGENCY USE ONLY(Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1993 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
LARCRIM User’s Guide, Version 1.0
C NAS1-19038
6. AUTHO‘R(S) ' WU 505-90-53-02
John S. Davis
William J. Heaphy
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computer Sciences Corporation REPORT NUMBER
3217 N. Armistead Ave.
Hampton, VA 23666-1379 TAO 60306
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Acronautics and Spice Administrition AGENCY REPORT NUMBER
Langley Rescarch Center
Hampton, VA 23681-0001 NASA CR-191416

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Kennie H. Jones

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlunited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

LARCRIM is a relational database management system (RDBMS) which performs the conventional duties of an
RDBMS with the added feature that it can store attributes which consist of arrays or matrices. This makes
it particularly valuable for scientific data management. It is accessible as a stand-alone system and through an
application program interface. The standalone system may be executed in two modes: menu or command. The
menu mode prompts the user for the inpat required to create, update, andfor query the database. The command
mode requires the direct input of LARCRIM commands. Although LARCRIM is an update of an old database
Gamily, its performance on modern computers is quile satisfactory. LARCRIM is written in FORTRAN 77 and runs
under the UNIX operating system. Versions have been released for the following computers: SUN (3 & 4), Convex,
IRIS, Hewlett-Packard, CRAY 2 & Y-MP.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Database Management System; Relational DBMS; Scientific and engineering DBMS 103
16. PRICE CODE
AQ6
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)

Prescribed by ANSI Std. 739-18
798-102

