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Abstract

By utilizing MSC/NASTRAN DMAP in an existing NASA Lewis Research Center coupled loads methodology,

solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or

uncoupled (exact mode superposition) integration available within module TRDI. Both the coupled and newly

developed exact mode superposition methods have been used to perform transient analyses of various space systems.
However, experience has shown that in most cases, significant time savings are realized when the equations of

motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world

engineering analysis, advantages of using the exact mode superposition methodology are illustrated.
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Introduction

As presented in [1], a solution algorithm was developed using MSC/NASTRAN DMAP whereby linear system modal

equations of motion with initial conditions can be solved utilizing the uncoupled integration routine [2] within DMAP
module TRD1. It was shown that the total modal response due to the loads acting on the system can be solved for

as the superposition of two responses. The first response is a shifted Izansient solution due to loads equal to the

original applied loads minus the loads at time t = 0.0. The second response is a steady-state solution caused by the
constant initial loads acting on the system. The implementation of the exact mode superposition methodology was

an enhancement to the NASA Lewis Research Center coupled loads methodology [3]. Using a simple numerical

example [1], it was shown that the new exact mode superposition method is very accurate for solving system modal

equations of motion with initial conditions.

Solving system modal equations of motion with initial conditions has been possible with the NASA LeRC coupled
loads methodology. The only limitation was that the analyst was forced to use coupled integration (modified

Newmark-Beta [4]) solver due to the logic within DMAP module TRD1. In order to use the more efficient and

reliable uncoupled solver within TRD1, the exact mode superposition method was developed and implemented.

Another motivation for developing the exact mode superposition methodology concerned time step selection. The

process for selecting integration time steps for solving modal equations of motion can be lengthy. The analyst must

take into consideration the definition and frequency content of the input loads, the expected frequency of output
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responses, and the overall analysis cost. If too large a time step is chosen, the representation of the input load, and
hence, modal solution will be inaccurate. Conversely, if too fine a time step is chosen, computational costs can be

prohibitive. When using a Newmark-Beta integration routine, additional time must be spent to insure the algorithm

has converged to the accurate modal solution. Eventually the Newmark-Beta algorithm will converge to the exact

modal solution given a fine enough integration time step, but the resulting analysis time (and cost) may be large.
Hence, an accurate modal solution with a reasonable analysis cost not requiring a lengthy procedure for selecting

integration time steps was needed.

The exact mode superposition methodology was developed and implemented based on what was noted during a STS

transient liftoff analysis. The analysis was performed with the coupled solution algorithm, and a considerable effort

was spent selecting the very small integration time step required to converge to a system modal solution. Hence, the

analysis was inefficient and costly. After the exact mode superposition methodology using uncoupled integration was

implemented, a reanalysis of the STS liftoff was performed. By comparing the results and resource requirements of

both analyses, the advantages realized using the new method could be assessed via a real-world engineering problem.

As was alluded to earlier, a motivation for developing the exact mode superposition method was the need for an

efficient method not requiring a lengthy integration time step selection process. Procedures for selecting integration

(and output) time steps when considering coupled and uncoupled integrators are outlined in the next section.

Following that, the STS liftoff analyses performed using the coupled and exact mode superposition methods is

described. Results from the analyses are compared in a subsequent section. Lastly, conclusions will be drawn

concerning coupled versus uncoupled integration for modal equations of motion with initial conditions.

Time Steps

Accurately solving for system modal responses due to transient loads is dependent upon the time step of integration.

In many cases when analyzing aerospace systems forced by severe transients, very fine time steps are required to

accurately integrate the equations of motion and recover peak physical responses. Unfortunately, finer time steps

translate into longer analysis times, and costs can become prohibitive.

When solving modal equations of motion, the process followed to select integration time steps can be lengthy

depending upon whether the solution routine employs coupled or uncoupled integration. To aid in selecting the

optimum integration time step for a particular transient analysis, the procedure outlined in Fig. 1 can be followed.

The procedure takes into account both the coupled (Newmark-Beta) and uncoupled (exact mode superposition)

solution methodologies. Note that the procedure involves recovering selected physical responses. These items

constitute a very small subset of the total amount of responses finally recovered. Output time steps for data recovery

are chosen as multiples of the integration time steps. It is important to note that engineering judgement plays a big

part in defining how frequent data recovery is output in order to capture peak responses.

The first step in the procedure is the selection of an initial integration time step (ti in Fig. 1). This is done using two

candidate time steps. The first candidate time step (tI in Fig. l) is derived from the input transient loads. It is

assumed the transient loads are well defined. The best approximation of the loads occurs when integration is

performed at every time instant loads are specified. A FORTRAN code was developed which processes the
MSC/NASTRAN bulk data load definition cards and determines times at which loads are defined. These data are

used to choose t1. Hence, t I insures a best representation of the input transient loads for both integration routines.

While tI insures a best approximation of the input transient loads, it does not insure that peak output responses will

be captured by both methods. Hence, a second time step is derived. The second candidate time step (t2 in Fig. 1)
is calculated using an accepted "rule-of-thumb' for capturing peak responses of output for both the coupled and exact

mode superposition methods. Time step t2 is calculated as one over ten times (or more) the highest system modal
frequency.

Given the candidate time steps tI and t2, they are compared. If t1 is less than or equal to t2, it is assured that the
input load time histories are best approximated, and there is a very good chance that peak responses will be captured.



Hence,t1 is chosen as the initial integration time step ti for both methods. If t 1 is greater than t2, the best
approximation of the transient loads is still assured, but peak responses may not be recovered. Hence, integral

fractions of h are calculated until tI is less than or equal to _. This subdividing guarantees that integration still

occurs at all time instants transient loads are defined. The final tI value is then chosen as the initial integration time
step ti for both methods.

After the initial integration time step is chosen, the modal responses are solved for, and selected physical responses

are recovered using both methods. Accurate integration is guaranteed when uncoupled integration is performed; and

hence, it is only done once. An accurate integration is not insured for the coupled integration because it is an

approximate numerical method. Although the Newmark-Beta method is unconditionally stable for a given time step,
it can converge to an inaccurate result depending on the time step size [5]. To insure accurate results, an iterative

approach must be taken whereby the analysis is performed using finer and finer integration time steps until a

converged solution results. Responses are recovered for a small subset of data recovery items, and once converged

responses are obtained, the final time step for the coupled method (tf in Fig. 1) is defined. Given the results and

resource requirements of both methods, the more efficient method and corresponding integration time step are chosen.
After this, the full analysis is performed whereby all required physical responses are recovered.

STS Liftoff Analyses

To compare the performances of the coupled and the exact mode superposition methods, STS liftoff transient

analyses were performed. The payload analyzed was the first cargo element to be launched for Space Station

Freedom. It is known as the WP-02/WP-04 Combined Cargo Element, and a schematic of the design is shown in

Fig. 2. Modal responses were solved for using both the Newmark-Beta and exact mode superposition algorithms.

Selected physical responses were then recovered using all modal solutions. The physical responses were compared,
as were CPU times required for analysis.

The payload finite element model is shown in Fig. 3. The model weight is 30,343 lb., and it consists of 4470

elements and 16,956 MSC/NASTRAN g-set DeF. To reduce the size of the physical payload model, the model was

dynamically reduced to eight physical interface DOF and its 222 fixed-interface component modes from 0.0 to 75.0

Hz. The STS liftoff model consists of 96 physical interface DOF and 610 fixed-interface component modes from
0.0 to 70.0 Hz. It weighs 4,465,162 lb.

Using MSC/NASTRAN superelement capabilities, component mode synthesis [6] was used to couple the payload

model to the STS model. The superelement tree is shown in Fig. 4. The eight payload physical interface DOF were

coupled to eight STS physical interface DOF, and an eigensolution was performed on the free-free coupled system.

Six rigid-body modes and 576 elastic modes were calculated up to 50.0 Hz. Proportional damping was applied at

the system modal level. No damping was applied to the rigid-body modes, 1% critical damping was appfied to all
elastic modes up to 10.0 Hz., and 2% critical damping was applied to all elastic modes above 10.0 Hz.

For a typical STS liftoffanalysis, eleven transient load cases are analyzed. Many loads representing winds, STS main

engine build-up and hold, and STS solid rocket booster ignition are applied to the system. The liftoff analyses for
method comparisons were performed over an eleven second time interval for a single fiftoff load case. For all

analyses, the integration time step was selected based on the criteria described in the preceding section. The time

steps between transient load definitions were smaller than a time step calculated using the "mle-of-thumb," and the

integration step was set as 0.001 sec. When the exact mode superposition method was used, the analysis was

performed only once. When the coupled integration method was used, three analyses were performed in order to

check for convergence. Each subsequent analysis used an integration step size equal to one half the previous step

size. In terms of requesting output, experience has shown that for SIS liftoff analyses, peak physical responses occur

between six and ten seconds during the analysis. Hence, output time requests were specially tailored. Integration and
output time step sizes used for all analyses are listed in Table 1.

Selected physical data recovery was performed using the mode acceleration method [3] for the payload model in all

analyses. The thirteen selected items represent interface loads between various payload components. Referring to
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TableI, it shouldbenotedthatthe frequency of data recovery output was a function of the integration time step

definition. Output timing for recovering physical responses was the same for all analyses.

Discussion of Results

The reason for performing the STS liftoffanalyses was to compare the performances of the exact mode superposition
and coupled solution methods. The objective was to efficiently obtain accurate physical responses. Thirteen interface
loads were considered in the comparisons. Interface loads were chosen since their values are a function of both

acceleration and displacement data. The ratios of the absolute maximum responses and corresponding times of

occurrence between the three Newmark-Beta analyses and the exact mode superposition analysis are shown in

Table 2. The first five responses are interface loads between the Array Assemblies (as shown in Figs. 2 and 3) and
the Integrated Equipment Assembly (IEA). Responses six and seven are loads between the PV Radiator and IEA.

The remaining six responses are loads between the IEA and WP-02 Hardware.

From the ratios in Table 2, it is clear that the results from the Newmark-Beta analyses converge to those of the exact

mode superposition analysis. Based on the selected items, percent errors between the first coupled analysis
(Newrnark-Beta #1) and the exact solution range from 0.3 % to 3.3 %. The range of percent errors decreases with the

second coupled analysis (Newmark-Beta//2). The range is 0.1% to 0.6%. Finally, percent errors for the third coupled

analysis (Newmark-Beta//3) decrease further and range from 0.0% to 0.2%. To obtain results within one percent

of the exact mode supeq_osition results, at least one half of the integration time step size had to be used for the
coupled analysis.

To assess the efficiency of each algorithm, CPU times required to solve for the modal responses were compared.
They are shown in Fig. 5. It is clear from Fig. 5 that the exact mode superposition methodology was more efficient

than the coupled solution method. To obtain results within one percent of the exact mode superposition results, over

four times the amount of CPU time was required for the coupled analysis. It is important to remember that the times

shown in Fig. 5 are for one STS liftoff analysis load case. Considering that for a full STS liftoffanalysis eleven load

cases are analyzed, the savings in CPU time using the exact mode superposition method could be significant.

Conclusions

A methodology has been developed and implemented using MSC/NASTRAN DMAP which allows for the solution

of modal equations of motion with initial conditions using the uncoupled solver within module TRDI. In order to

illustrate the advantages of using the new exact mode superposition methodology, STS liftoff coupled loads analyses

were performed for a real-world engineering application. Comparisons of results showed that while physical

responses obtained using the coupled method would converge to those obtained using the exact mode superposition
method, a much finer time step was needed for the coupled algorithm. Additionally, for results to be within one

percent of each other, the coupled methodology required four times the amount of CPU time as did the exact mode

superposition method. Also, when using the exact mode superposition methodology, a convergence study is not

needed when selecting integration time steps. Hence, the exact mode superposition methodology which takes
advantage of the uncoupled integration routine within DMAP module TRDI was more efficient and reliable.
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Table 1. Integration Methods and Time Step Definitions

Integration
Method

Exact

Newmark-Beta #I

Newmark-Beta #2

Newmark-Beta #3

Time

Interval (see)

0.0 - 2.0
2.0 - 6.0

6.0- 10.0

10.0 - 11.0

0.0 - 2.0

2.0 - 6.0

6.0- 10.0
10.0- 11.0

0.0 - 2.0

2.0 - 6.0

6.0- 10.0

10.0 - 11.0

0.0 - 2.0

2.0 - 6.0

6.0- 10.0

10.0 - 11.0

Integration Frequency of

At (see) Output

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.0005

0.0005

0.0005

0.0005

0.00025

0.00025

0.00025

0.00025

every lOOth step

every 20th step

every 2nd step

every lOth step

every lOOth step
every 20th step

every 2nd step

every 10th step

every 200th step

every 40th step

every 4th step

every 20th step

every 400th step

every 80th step

every 8th step

every 40th step



Table 2. Selected STS Llftoff Analysis Results

Physical

Response

Ratio of Newmark-Beta Value to Exact Value

Absolute Maximum Response and Time of Occurrence*

Newmark-Beta HI

0.980

(0.930)

1.0[4

(t.000)

Newmark-Beta//2

0.994

(l.O00)

1.002

(1.000)

Newmark-Beta//3

0.998

0.000)

l.O00

(I.000)

3 0.995 1.001 1.001

(t.O00) 0.03O) (LO00)
I

4 1.004 1.001 1.000

(t.ooo) (1.ooo) (1.ooo)

5 1.033 1.OO1 1.000

(0.984) (0.984) (1.000)

6 0.992 0.998 1.000

(1.000) (1.000) (1.000)

7 1.003 1.002 1.001

(1.000) (1.000) (1.000)

8 0.983 0.994 1.000

0.o78) 0.ooo) (1.ooo)

9 1.002

(I.O00)

0.997

(i.ooo)

! .007

(1.000)

0.990

(!.000)

I0

II

1.001

(1.000)

1.000

(l .ooo)

0.994 0.998 1.000

(I.000) (I.000) (I.000)

12 0.991 0.998 1.000

(l.O00) (l.O00) (I.000)

13 1.005

(1.000)

1.022

(l.OOO)

* Ratio of time of occurrence values shown in

1.001

(I.000)

parentheses.
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Figure 2._WP.02/WP-04 Combined cargo element.
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Figure 3.--WP-02/WP-04 Combined cargo element finite element model.



Figure 4.---STS liftoff analysis superelernent tree.
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