View metadata, citation and similar papers at core.ac.uk

-

P
brought to you by .. CORE

provided by NASA Technical Reports Server

Final Technical Report

Telescience Testbed Program
A Study of Software for SIRTF Instrument Control

Grant NAG 2-661

30 June 1992

Erick T. Young, Principal Investigator
Steward Observatory
_University of Arizona

(NASA-CR-192764) TELESCIENCE N93-24476
TESTBED PROGRAM: A STUDY OF

SNFTWARE FOR SIRTF INSTRUMENT

CONTROL Final Technical Report unclas
(Arizona Univ.) 25 p

G3/61 0154188

https://core.ac.uk/display/42807637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Study of Software for SIRTF Instrument Control

1. Summary

As a continued element in the Telescience Testbed Program (TTP), the University
of Arizona Steward Observatory and the Electrical and Computer Engineering
Department (ECE) jointly developed a testbed to evaluate the Operations and Science
Instrument System (OASIS) software package for remote control of an instrument for the
Space Infrared Telescope Facility (SIRTF). SIRTF is a cryogenically-cooled telescope
with three focal plane instruments that will be the infrared element of NASA's Great
Observatory series. The anticipated launch date for SIRTF is currently 2001. Because of
the complexity of the SIRTF mission, it was not expected that the OASIS package would
be suitable for instrument control in the flight situation, however, we considered its
possible use as a common interface during the early development and ground test phases
of the project. The OASIS package, developed at the University of Colorado for control
of the Solar Mesosphere Explorer (SME) satellite, serves as an interface between the
operator and the remote instrument which is connected via a network. OASIS provides
a rudimentary windowing system as well as support for standard spacecraft
communications protocols.

The SIRTF instruments share many common operational, human interfacing and
data processing requirements. All three SIRTF instruments use infrared detector arrays
that generate two-dimensional image data, all three have filter wheel mechanisms and
internal calibration sources, and all three instruments will have similar housekeeping
telemetry (temperatures, voltages, currents, etc.) Our goal for this experiment was to
evaluate several software alternatives in order to establish a common human/computer
interface for developing instrument control and analysis software for all SIRTF
instruments. By establishing a common framework early in the definition phase of
SIRTF, the three instrument teams could realize a considerable savings in effort and
resources. An additional aspiration was to identify a systems architecture that would
separate the programming for the instrument hardware from the programming for the
human interface. The key to this second goal is the establishment of a well defined
communication convention between_the various software components.

This study was implemented in two stages. The first consisted of an experiment
evaluating the suitability of the OASIS package for instrument control of an infrared
detector array from the Multiband Imaging Photometer for SIRTF (MIPS). The testbed
for this activity simulated the operation of one of the MIPS instrument detectors by
utilizing a program written in the C language. An IBM PC was the instrument-
controlling computer. Instructions to the IBM PC were communicated remotely using an
Ethernet connection from a DEC MicroVAX I workstation running OASIS. During this
first stage, some of the limitations of the OASIS package became clear. In particular, the
inability to support display image from the remote task was identified as a major

PREGEDING PAGE BLANK NOT FILMED

weakness. Consequently, the second stage involved the investigation of the availability
of other software packages that might be used for instrument control.

The experiment performed all of the functions required of the MIPS simulation
program. Remote control of the instrument was demonstrated but found to be
inappropriate for SIRTF at this time for the following reasons: (1) programming
interface is too difficult; (2) significant computer resources were required to run OASIS;
(3) the communications interface too complicated; (4) response time was slow; (5) quick-
look of image data was not possible.

2. Introduction

The Space Infrared Telescope Facility (SIRTF) is planned to be launched in the
early 2000's. SIRTF is a 0.9-meter cooled telescope with a lifetime of >3 years. It will
serve as a national facility for infrared investigations in all areas of astronomy and
astrophysics. Three instruments have been selected for SIRTE: the Infrared Array
Camera (IRAC); the Multiband Imaging Photometer for SIRTF (MIPS); and the Infrared
Spectrometer (IRS). These instruments are being developed by separate teams centered
at the Smithsonian Astrophysical Observatory, the University of Arizona, and Cornell
University, respectively. During 1992, significant changes have been made in the SIRTF
concept, with the goals being to greatly simplify the mission and to reduce costs. Since
the redefinition work is still ongoing, this study was done using the earlier mission
concepts. Those characteristics are summarized in Table 1

The Infrared Array Camera will provide wide field and diffraction-limited
imaging for wavelengths between 1.8 and 30 um. IRAC will utilize infrared arrays with
formats as large as 256x256 pixels. The Multiband Imaging Photometer for SIRTF will
extend the imaging capability to wavelengths as long as 120 um with arrays as large as
32x32 elements. Additionally, MIPS will have small detector arrays that will provide a
photometric capability out to 1200 um wavelength. The Infrared Spectrometer will
provide low and medium resolution (AAA ~ 100 - 2000) spectroscopy between 3 and
200 um. Like the other SIRTF instruments, the IRS will use large arrays of infrared
detectors. . .

Although the three instruments are diverse, they share many common aspects in
term of modes of operation, interfacing with the facility, and data processing. In
particular, all three instruments utilize infrared array detectors of various types, have
filter and optical mechanisms, and have similar housekeeping requirements. Moreover,
the conceptual processing steps to go from raw instrument data to useful quick-look
information are quite similar. Despite these many common aspects, the teams have
independently developed software for the control of their test detector systems. It has
become clear, that the teams could realize a considerable savings in effort and resources
if they used a common framework for developing the instrument control software.

Table 1. SIRTF Instrument Characteristics
Wavelength (um) Array Format Function
IRAC
1.8-5.3 256x256 High Resolution Imaging
5.3-27 128x128 High Resolution Imaging
MIPS
30-55 16x32 Photometry
50-120 32x32 Imaging, Polarimetry
120-200 2x8 Photometry
200-500 2x2 Photometry, Polarimetry
500-1200 1 Photometry, Polarimetry
IRS Spectroscopy Resolution:
2.5-4 256x256 R=75-150
4-36 128x128 R=75-200, R=1500-2500
36-50 2x8 R=75-200, R=1500-2500
50-115 Stacked 1x32 R=75-200, R=1500-2500
115-200 2x16 =750-1250

Figure 1 shows a possible simplified model for the structure of the SIRTF data
system. It is important to remember that the SIRTF data system is currently under
conceptual design, and the model presented is only one of a number of possible
configurations. The actual system configuration will not be finalized until detailed
system level trade-off studies have been done. The model in Figure 1 represents a
generic type where a significant amount of intelligence is present in the instrument
computer. The version shown in Figure 1 has the advantage of having separable
components that allows a modular development effort. In particular, the interface
between the instrument and spacecraft computers is well defined. This investigation
assumed this model.

In this proposed data system model, each of the instruments has a computer that is
responsible for both hardware control of the instrument functions and communication
with the spacecraft computer. The spacecraft computer handles the operation of the
overall spacecraft systems such as attitude control, power distribution, etc., and it also
serves as the communications interface between the instruments and the telemetry
system. All signals between the instruments and the spacecraft are communicated via a
well defined packet protocol. Hence, under this model, the instruments would require at
least enough computing power and memory to handle functions such as data buffering,
data compression, and data packetization.

: IRAC | SR

1 Zon i ; [S Sl e :

CE T INSTILMENT L CIMMUNICATION |

25 — C2usLER 1 NTIRFacE .

5;5 — l o i

i Z i .
z | |

i
i COMMUNICZAT] -N '

— L TinTERFacE i

i - : .

: MIPS ; — !
= ! SPaCICRAFT | TELZMETRY / g
Zu | . } CIMPLTZR — SYSTEM ‘— P
§ T — INSTRUMENT | COMMUNICATIIN | i |\ ‘
2= CoMPUTE INTZRFACE ,

Ema CCMPUTER INTEZRFAC 11,;”5!;”
ﬁ; [N B B
= SPACECRAF
SYSTEMS
; A
i =2
IRS E
! -
p=t i
Eg b - INTATT } ?
£z INSTRUMENT | CEMMUNICATION 1 E:
25 CCMPUTER INTERFACE 2
g (]
;;) i <
z b5

Figure 1. Strawman SIRTF Data System Model

2.1 Goals and Objectives

As envisioned in the mission operations plan, control of the satellite and the
instruments will be the responsibility of an Operations Center. A key step in the
development of the mission will be the transfer of knowledge from the individual SIRTF
teams to the Operations Center staff. Through the use of a common software framework,
the process of translating instrument requirements into Operations Center software will
be greatly simplified.

Enhanced reliability of the software is an additional potential benefit. The same
software could follow the instruments from the SIRTF development computers, to the
ground support computers. The enhanced reliability comes from using algorithms and
code that have been generated on the same software platform and tested with all of the
SIRTF instruments. The degree of duplication of effort is minimized.

The primary goal of the investigation was to assess the suitability of the OASIS
software package for control of SIRTF instruments during the development and ground
test phases. It was not expected that a generic package would have the performance
necessary for the actual SIRTF mission. Moreover, the anticipated operating scenario for
the mission involves pre-planned "canned" operation sequences and observations with
little opportunity for real time control.

With the data system architecture shown in Figure 1, the spacecraft computer
could be replaced with a ground test computer prior to integration. Since the MicroVAX
to the spacecraft or test computer is via a well defined protocol, changes in the
instrument hardware do not impact the interface. A goal of this investigation was to
demonstrate this architecture.

The OASIS control program is designed to be a general purpose instrument-
operator interface. To simplify the development of an OASIS application, the operating
functions (actions, screen displays, communications, etc.) are defined via applications
databases that are interpreted by OASIS. This flexibility is also potentially a liability
since an interpreter is significantly slower than a compiled custom application. One of
the objectives of this investigation was to evaluate both the ease of database coding and
the speed the program was able to carry out representative tasks.

Another objective of this investigation involved the identification of areas in
OASIS MicroVAX that were inadequate for the SIRTF application. Prior to our work, it
was recognized that the lack of image display capabilities in OASIS would be a serious
drawback in working with the image-oriented SIRTF data. Because of this deficiency,
we also did a preliminary investigation of two other software packages that include
image display and image processing capabilities. The two packages we considered were
PV-Wave (developed by Precision Visuals) and extensions to the Image Reduction and
Analysis Facility (IRAF) developed by the National Optical Astronomy Observatory
(NOAO).

2.2 Scope

The scope of activity for this study focused on a detailed experiment involving
OASIS running on a MicroVax workstation communicating with an IBM Personal
Computer (PC) instrument computer via a DECnet link. At the beginning of the
investigation, the Unix version of the OASIS package was not yet available, although
that was the desired configuration for study. The evaluation was done on the Vax VMS
version of OASIS with the expectation of migration to the Sun Unix version when it

became available. The VMS environment limited the choices for communications
protocol between the workstation and the IBM PC. We utilized the DECnet protocol for
this link since existing communications drivers were available for both ends. In a
separate effort, TCP/IP enhancements to OASIS have been developed (Wibowo 1990).
The Unix version of the experiment was subsequently compared with the VMS version.

At this point in the development of the SIRTF mission, complete simulators of
all the functions for either the MIPS or the SIRTF facility are some years away. As an
example, Figure 2 shows a functional block diagram for the MIPS instrument. The
instrument is envisioned to have five focal plane arrays, six rotating mechanisms, a
number of reference sources, and numerous thermometers. A full scale simulation of
MIPS was well beyond the scope of this investigation. Consequently, we limited the
investigation to a subset of the possible operations and data that will result from the
mission. Specifically, the MIPS instrument was simulated by a program that generated
sampled data from a single infrared detector array and also provided the expected delays
for operations such as power up sequences, filter changes, resets, etc.

Since it was recognized that image display capabilities were important in the
SIRTF context, we examined other programs that had a strong emphasis on image
processing and display. We limited out work to IRAF and PV/Wave since they are well
supported on Sun workstations. IRAF, in particular, has become a very widely used
program in the astronomical community.

2.3 Rationale

The rationale for this investigation was the potential savings in effort if a
common instrument interface could be identified for the three SIRTF instruments during
the development and ground test phases. Since the three instruments have many
functional similarities, we considered the use of a general purpose program that could be
adapted to the specific requirements of a given instrument. Moreover, the normally
tedious effort associated with coding the user interface should be minimized with an
effective general purpose program.

A second rationale for this line of investigation was the increase in flexibility of
the overall system if a common user interface and common communications protocol
were used during the development stages of the mission. In particular, the simplification
of the instrument interface to a well-defined communications standard (both hardware
and software) allows changes to be made in the instrument hardware or in the user
control workstation with minimal impact on that interface.

uresger(] Yo0[g [euonduny SJIW 7 2msty

_ Foanvo Bl gvd)

.NVHOVIA X009 TVNOILLONNS SdIN-

viva— - -
HOSS3D0Hd V.1va ANV — SMO010:—] 3JV4H3INI
JOYINOD LNIWNH.LSN SaNVIWWOD —{ LIVHO30VdS
HIMOd —
IwEO.r\r..ww.,wO SOILdO dOlS
_ WIGS-0E 1OAT .
; ¥ _
| HOHHIN Iv , SOILdO
s40.103130 T|m|.|||H||J\.7 S EINRE
Tﬂ W00zt SOLJO | TEo s
_ H313IWOLOHd
|
d01S
_ 1OA1] wriooz1-00s 93LHds
_ —{H0103130r—SOILdO m SOILdO - SOILJO
“., N o
HOV | vNHIHL [Sgandy . [BOLVINWILS) | = IIIHM
_ < ONIH3ILS Wv3
< —{590102130F z 3218V 10
TeRRS 3 ERINEEEEER
fg313no108] 03| BOIVINWILS] a10o
]
| [S51240]
N BE3ad} | [se3zigviod |
SO1LdO \A mm__,\ %Al_l
IIIIII) 301
735HM DNIDNVHO 31VDS 1653 [BOLVINNILS] _

[z 130vd4 WOH4 Bl

[130V WOH4 dij

3. Experiment Description

3.1 Architecture

The architecture of the SIRTF-OASIS experiment is illustrated in Figure 3. The
test configuration consists of a MIPS detector test simulator written in the C language.
The simulator represents the microprocessor based Instrument Controller (IC) which will
control the MIPS instruments on board SIRTF. The IBM PC compatible computer used
in the experiment served two functions, (1) to run the test simulator and (2) to represent
the spacecraft's flight command and data subsystem and the telecommunications
subsystem (Spacecraft). The Spacecraft is the interface between the Ground Support
Equipment (GSE) and the SIRTF instruments. The ethernet link represents the
communications link to earth. The DEC workstation running OASIS represents the
GSE.

TESTBED ARCHITECTURE
MicraVAX fl GPX
IBM PC/XT

_1 I 3

— Ethernet
i O e e
J TR

Spacecraft Ground Support Equipment

+
DECnet DOS and Ada Command Parser OASIS As User Interface

MIPS Instrument Controller ' MIPS Command Windows

DECnet and CCSDS via Ada Front-End

Figure 3. Testbed Experiment Architecture

3.2 Hardware, Software and Networks

An IBM PC/XT compatible computer was used to represent both the MIPS IC
and Spacecraft. It was connected to the University of Arizona Ethernet network using a
3Com 3c503 Etherlink IT Ethernet card. A DEC MicroVAX GPX Workstation running
the VMS operating system served as the GSE. The intent of the initial experiment was to
use industry standards like UNIX and the TCP/IP communication protocol. At the time
of the experiment, OASIS was not available for a UNIX platform, therefore the VMS
version of OASIS was used on the DEC MicroVax machine. Since the Electrical and
Computer Engineering Telescience Laboratory (ECE TSL) had previous experience with
two testbed demonstrations using OASIS (Schooley and Cellier, 1988) it was decided to
modify existing software designed at the ECE TSL (Bienz and Hunter, 1988).

The overall block diagram for the software on the instrument control computer
(the IBM PC) is shown in Figure 4 (taken from Wibowo 1990) and is based on software
written by Pan and Lew (1988) for the remote fluid handling telescience project. The
Command Processing software on both machines was written in Ada. The Ada compiler
used for the MicroVAX was DEC Ada, and for the PC it was Meridian Ada. The
communication protocol between the PC and the MicroVAX was DECnet for the lower
layers. Consultative Committee on Space Data Systems (CCSDS) recommendations for
telecommands and packet telemetry, were implemented for the upper layer. VAX
DEChnet was used on the MicroVAX, while DECnet-DOS was used on the PC. CCSDS
protocol recommendations were implemented through software interfaces written in Ada
on both machines. This was necessary to allow DECnet and CCSDS protocols to pass
CCSDS packets between them (Bienz and Hunter, 1988). More information about the
communication software design, see (Bienz and Hunter, 1988), for a more detail
description of the Command Processing software used in the SIRTF experiment see,
(Wibowo, 1990). OASIS was used to develop the user interface on the MicroVAX
workstation.

10

NOTE:

......

In1tial Implementation
— final [mplementation

l —| NATLBOXES:
' -
Priority

T,

Time=tagged

‘ ———>! Real-time

®

NON-NEY HOLDER

LOCQL KE’BMRD ———* SCQNNER —~———>| PARSER |— INYERPRETERS T

—————»{ REIRIEVER |

- Gomi]

6 l
'

§

D

J
b| SCIENTIFIC
DATA HANDLER

—J—vﬁom Rt |

[patagase |¢—

~—P| (30§ SECONDARY | 4-
PACKETIZER
y |
TELENETRY PACKET | ———| CCSDS ERINARY
ST0RAGE PACKETIZER

NOTE: {. Tele-command packet
acknoulodqe to 0ASI[S, wrong 4,
0AS1S version nusber, 5

2, Telemetr 3 and scientific data 8,
acknowiedge from 04815 1.

3, NALLBOX a full signal, a2 {2000y 8.

Comand error messages

Ney-holder MAILBOX reset

Key request

Packet sequence count error

Direct interrupt

Figure 4. Instrument Control Computer Communications Software

11

At the user interface workstation, a number of displays were developed to provide
the operator with information on the status of the detector array operation. The
information displayed was divided into four categories: static parameters, active
parameters, display parameters, and action parameters. The static parameters were those
quantities that were only infrequently changed and were displayed primarily as indicators
of system health. The static parameters included various voltages, sample rates, etc. The
active parameters are quantities that could be expected to frequently change during the
operation of the instrument. Active parameters included filter wheel position,
observation time, and system mode. The only display parameter was used to set which
channel was displayed in the quick-look output. Finally, the action parameters were set
the system state for commands. Tables 2-5 list the commands associated with the various
parameters used in this investigation.

Table 2. Active Parameters Update Commands

Command Type Parameter Format Allowed Range
SET FILTER integer 1d 1-7
SET SYSMODE character Is C: Calibration
N: Normal
L: Loop
SET LOOPMODE character Is G: Global
S: Scan
Q: Quit
SET ITIME float 5.1f 0.0-1000.0
SET RA integer 2d:2d:2d hour: 0-24
min: 0-60
sec: 0-60
SET DEC integer 2d:2d:2d deg: -90 - 90
min: 0-60
sec: 0-60

Table 3. Quiék-Look Parameter Update Command

Command Type Parameter Format Allowed Range

SET CHANNEL integer 2d 1-32

12

Table 4. Static Parameter Update Commands

Command Type Parameter Format Allowed Range
SET FILNAME Integer 2d
SET VOLTAGE_1 Float 7.3f 0.0-5.0
SET VOLTAGE_1 Float 7.3f 0.0-5.0
SET VOLTAGE_1 Float 7.3f 0.0-5.0
SET SRATE Float 5.1f 0.1-30.0
SET BIAS_VOLT Float 7.3f 0.0-0.5
SET DELAY_TIME Float 5.1f 0.0-30.0
SET PWIDTH Integer 5d 1-1000
SET HILEV Float 3.1f 0.0-5.0
SET LOLEV Float 3.1f 0.0-5.0

Table 5. Action Parameter Update Commands

Command Type Parameter Format Allowed Range
SET INISYS integer 1d 0-1
SET QLOOK integer 1d 0-1
SET START integer 1d 0-1
SET ABORT integer 1d 0-1
SET SHUTDOWN integer 1d 0-1
3.2 Issues Investigated

The main and foremost issue addressed was the ease of implementing and using
OASIS as the software development platform for the SIRTF instruments teams. How
much computer resources are required to implement the OASIS package and it's
associative software? How easy is it to program the OASIS database? How easy is it to
make quick modifications? Minimal computer resources, ease of use and a flexible
programming environment are key issues.

In terms of operational issues, basic control of the instruments such as monitoring
temperatures, turning filter wheels, etc., it was already clear that OASIS could do these
functions. It was not clear, however, how optimally OASIS could perform these
functions in a test environment typical of those performed by the various SIRTF
instrument teams. A second operation issue relates to the speed of the user interface.

13

Response time to operators commands must be kept at a minimum to prevent operators
from submitting repeated requests.

Two technical issues involve both engineering and scientific analysis. An
engineering issue addresses the need for a graphic quick-look evaluation of raw data in
near realtime. The ability to conduct scientific graphic quick-look analysis (not realtime)
also needs to be addressed. Can we merge the capabilities of OASIS with analysis
programs such as the Image Reduction and Analysis Facility (IRAF) that would provide
astronomical quick-look capability?

3.4 Method of Investigation

The original experiment was to take place at University of Arizona, Steward
Observatory using the UNIX version of OASIS to do real testing of the MIPS detector
arrays. It was planned that an Electrical and Computer Engineering (ECE) graduate
student with OASIS programming experience would convert our detector test code into
OASIS database format. Because of the delay of UNIX OASIS, arrangements were
made with Co-Investigator, Dr. Larry Schooley, to conduct the actual experiment at the
ECE Telescience Laboratory (ECE TSL). The ECE TSL already had VMS OASIS
installed on a DEC MicroVAX GPX workstation. The DECnet implementation of the
communications software was previously developed the TSL for the remote fluid
handling experiment for the Telescience Testbed Pilot Program (Bienz and Hunter 1988).
A c-program was written to simulate a single array of the MIPS instrument and supplied
to ECE. Identification of required instrument functions and GSE computer displays were
developed by the MIPS systems programmer Irene Barg. These functional requirements
were then converted into OASIS database by ECE graduate student Yadung Pang. An
additional programmer was required to write the communication interface between the
simulation program and IBM PC DECnet DOS networking package. This
communications software was written by ECE graduate student Henky Wibowo.

4. Experiment Results

It took two programmers working half time approximately one month to code the
OASIS database and the communications software. Since the OASIS program was
already in place at ECE, the actual coding of the operational functions in OASIS
database form took approximately one week. The rest of the time was involved writing
the communication software. The modifications to the communication software were on
the PC. The parser on the PC was modified to accept the commands characteristic of the
MIPS array. The other major coding activity involved the development of the MIPS
detector array simulator program.

14

The computer display is shown schematically in Figure 5, and consists of a set
of windows identifying the MIPS Instrument Controller (IC) functions which include:

the static parameters icon

active parameters

a quick look window

current coordinates (RA and DEC)
a group of 'action’ buttons

The static icon pops up and displays the parameters that normally remain constant
for the specific instrument or are changed only infrequently. These values can be
changed at the beginning of an observation. They include, voltages, sampling rate,
detector bias, pulse widths and pulse amplitudes.

The active parameters are those quantities that are frequently changed. The active
parameters are always displayed and updated by telemetry from the Spacecraft every 10
seconds. Parameters include current temperatures, filter wheel position, detector bias,
integration time, time left in integration, and RA and DEC.

The quick look graphic window plots a time series line graph of the data collected
(in near realtime). The MIPS test simulator program simulated the data collected from a
32x32 detector array. Since the OASIS package did not have any support for image
display, quicklook data were presented as a time series. The observer can plot one
channel or a range of channels. These plots provide the ground support engineers with
valuable information conceming the status of the instrument. For example, if the dewar
housing the detector were warming up, the values could start to drift. This drift would
appear on the time series plot, even thought the temperature values displayed appeared to
be within the acceptable range.

The action buttons icons pop up sub-windows and are the primary user interface
items. All action buttons initiate events such as system initialization, changing the mode
of the detector, adjust active or static parameters, initiate quick look, begin an
observation, abort an observation and finally shut down the connection.

The experiment performed all of the operational functions required of the MIPS
simulation program. The ability to abort a task remotely was not demonstrated. The PI
felt that response times to commands was sluggish. Controlled speed measurements are
documented in greater detail in the Master's thesis of Wibowo (1990). These results are
summarized below. Three functions were measured: window display speed,
telecommand packet transmission speed, and telemetry packet decomposition speed. Ten
test runs were conducted for each measurement.

15

OASIS USER INTERFACE

MIPS Testbed Displays

Static
Active lcon Quick
Parameters RA Look
DEC

Action Buttons

Figure 5. Workstation OASIS Display

16

5. FUNCTIONAL AND PARAMETRIC EVALUATION

The ease of coding of the OASIS database was judged to be good.
Approximately two weeks were spend developing the database and refining the displays.
Since OASIS assembles the windows elements in an interpreted manner, changes were
easy to make. In that sense, OASIS is useful as an interface development tool. The
flexibility exacts a penalty in performance, however, as indicated by the times needed to
respond to action requests.

The window display speed measured the experiment's response to an ACTION
button being pressed. From the time the button was pressed, it took an average of 115.4
seconds to bring up the required display.

The telecommand packet transmission time is a measure of the OASIS command
translator and the communications link. The command SET INISYS initializes the
SIRTF parameters and was used to evaluate this time. The average telecommand packet
transmission time was 17.4 seconds.

The average telemetry packet decomposition time measures the time between
receipt of the first packet by the receiver process and the acceptance of the final packet.
For this evaluation a total of six packets were received. The measured decomposition
time averaged 16.4 seconds. Added together, the packet transmission time and the
packet decomposition time represent the total time spent sending a command from the
remote commanding computer to interpreting it on the local controlling computer. Once
the connections were made and commands interpreted, the actual data telemetry took
place at the maximum speed of the ethernet connection. All these times proved to be
unacceptably long for a laboratory or GSE environment.

Wibowo (1990) also reports results for the same software ported to the Sun/UNIX
version of OASIS using a TCP/IP protocol. The response of the system was found to be
significantly better than the MicroVAX implementation. The measured times were 39.6,
1.5, and 9.6 seconds, respectively. Although the total command response time has now
been cut by a factor of 3, some additional improvement is highly desirable.

The issue of quick-look capabilities was also addressed in this investigation.
Discussions with a number of astronomers underlined the need for image display to fully
understand the performance of the scientific instruments. In particular, infrared
astronomy has recently undergone a technological revolution with the advent of large
format infrared arrays. The proper operation of these arrays requires the ability to
display the data from all the pixels in a comprehensible manner. Since OASIS lacked
this capability, we investigated two other approaches to the ‘image display problem.
These approaches are discussed in Section 7.

17

6. LESSONS LEARNED

6.1 Technical Requirements

The main technical lesson learned was the difficulty in tailoring a "general
purpose” program like OASIS to a task if the performance requirements are challenging.
Specifically, two areas were judged especially weak in OASIS. First, as an interpreted,
database-driven program, the response time was considered far too slow for useful
interaction with an infrared instrument. Since the primary use would have been during
the laboratory and ground test environments, quick response is especially important. The
user population has become used to good response time in windowed systems (as most a
very few seconds to open a complicated window), and the very long response times
associated with OASIS are clearly unacceptable. The Sun Unix implementation of
OASIS is significantly faster than the MicroVAX VMS version, but the times are still a
factor of ten too long.

The advantage of OASIS as an interpreted language is in the ease of developing
applications. The actual coding of the OASIS database was quick, and changes were
easily incorporated. The development of an OASIS compiler could do much to improve
the performance of the program.

The second area where the SIRTF needs were not well served by OASIS was in
the area of data display. Most astronomical data are now in the form of images, and
some form of rudimentary image display would be particularly useful.

6.2 Programmatic Requirements

Significant delays were encountered in the startup of this Telescience Testbed
Program activity. Most of the delays were directly attributable to the changing of the
lead center for the SIRTF project from NASA Ames Research Center to the Jet
Propulsion Laboratory. During this changeover, there was confusion over which center
should be responsible for the monitoring of this grant. This activity was ultimately
funded through Ames, but schedule for the SIRTF telescience investigation was not well
synchronized with the rest of the telescience program.

Since the funding came from the individual science disciplines (specifically
astrophysics in this case), coordination of various elements of the program was difficult.
In future testbedding activities, funding through a single program office would facilitate
one of the goals of this type of program -- interdisciplinary interaction.

6.3 How Did Telescience Help?

The main area that telescience helped was in the identification of a systems
architecture that best supported remote operations. By separating the functional aspects
of the data system and reducing the instrument-to-spacecraft control link to a well-

18

defined communications interface, many of the potential confusions resulting from mis-
understood interface requirements are eliminated.

The telescience investigation also clarified the actual requirements for a user
interface and the acceptable level of performance. In particular, users are especially
sensitive to the responsiveness of a computer system. In this investigation, we found that
delays of greater than a few seconds for the generation of windows or for the
acknowledgement of requests were generally unacceptable. Additionally, image display
is essential in most astronomy instrument interfaces. Since the scientific data are, for the
most part, in image form, a display capability is needed if any control program is to be
generally useful.

7. ISSUES IDENTIFIED/FURTHER STUDIES REQUIRED

During the course of this testbed we identified two other packages capable of
providing a software development platform for SIRTF. The two packages reviewed were
Steward Observatory's/IRAF data acquisition package called CCDACQ, and
PV~WAVE, Precision Visuals' workstation analysis and visualization package. An
overview of each package is presented below. To present a more accurate comparison
between OASIS, IRAF/CCDACQ and PV~WAVE, the same MIPS experiment should be
conducted with these two additional packages.

Steward Observatory's CCDACQ is a astronomical data acquisition program
written by Skip Schaller, Manager of Steward's Computer Group. It is a set of routines
that operate within the Image Reduction and Analysis Facility (IRAF) environment.
IRAF has become a de-facto standard in the US astronomical community, and it includes
most of the capabilities needed for the display and analysis of astronomical image data.
CCDACQ is an extension to IRAF that provides instrument control functions to the
analysis package. This program was originally written for use with the Steward
Observatory Charge Coupled Device (CCD) camera, but the software is general enough
for use with other astronomical imaging instruments.

CCDACQ is written in IRAF's Subset Preprocessor language (SPP) with low
level functions written in the ¢ language. CCDACQ is a set of IRAF tasks that perform
various telescope, instrument and detector functions from a remote workstation.
CCDACQ is currently used at Steward Observatory's 90 inch telescope at Kitt Peak, in
lab testing of various optical CCD's, and is currently being incorporated into the
operations programs of three telescopes operated by National Optical Astronomy
Observatory at Kitt Peak.

19

The basic hardware architecture for implementing remote operations using
CCDACQ is similar to that used by our OASIS testbed and is shown in Figure 6. In this
example, the remote workstation is running the UNIX operating system and IRAF. The
real-time system contains the hardware interface needed to control the instrument. The
real-time system could be a VME chassis or an IBM PC housing intelligent controllers
used to communicate with the instrument(s). The instrument could be a single CCD
array, or an entire system of telescope, additional instruments and the detector(s). The
remote workstation is connected to the real-time system using an ethernet connection
(however, this could be a serial connection). The physical connection between the real-
time system and the instrument can be serial or parallel.

The CCDACQ, starts three processes that act as servers for the detector,
instrument and telescope. Communication between the UNIX workstation and the real-
time system is accomplished through TCP/IP network protocols accessed by way of
Berkeley UNIX socket library functions. The interface between the real-time system and
the instrument is accomplished through the use of specialized programmable plug-in

IRAF CCDACQ - BASIC ARCHITECTURE

Observation Client Real-time System Instrument

Ethemet

UNIX Workstation Pusel

VME Chassis
or PC

Telescope/CCD

or Serial

Detector Server
Instrument Server
Telascope Server

Figure 6. CCDACQ Block Diagram

20

boards that are used for data acquisition and control. An IBM PC or some specialized
microprocessor communicates with the plug-in board through locally developed code,
generally written in the C language. This local processor code controls the instrument
and provides the communication interface to the remote server software.

The CCDACQ process is twofold, first a set of parameters for each of the server
processes (detector, instrument and telescope, observation) must be set. These parameter
set tasks only edit the parameters. They do not initiate any physical action until an actual
"observe” or "detector" task is run. The observer can make a series of test observations
to check all of the instruments and to receive status information on each. Once the
observation has been initiated, other action tasks allow the observer to pause an exposure,
then resume, stop exposure and read out data, or make a series of observations with
current parameters. IRAF/CCDACQ basic functions are outlined in Figure 7.

IRAF has already been identified as the image reduction package of choice by the
SIRTF teams. With CCDACQ, instrument control as well as image reduction can be
done in one environment. Future plans are to convert current MIPS detector test code
into portable C code incorporating the communications functions required to interface
with the remote UNIX workstation. Socket-based IPC (interprocess communication) was
chosen for the transport level programming interface because at the time of development,
it was the preferred standard. However, other OSI-compatible transport mechanisms
based upon STREAMS and accessed by way of a Transport Library Interface (TLI) will
need consideration.

The second package reviewed was Precision Visuals' Workstation Analysis and
Visualization Environment (PV~WAVE). PV~WAVE is an interactive data display and
analysis software package currently used by the Short Wavelength Spectrometer (SWS)
Team for the European Infrared Space Observatory. PV~WAVE has it's own structured
application development language, and a set of procedures and functions that can be
linked with existing C or FORTRAN code. PV~WAVE is currently installed on a Sun
SPARCstation 1 and used by MIPS scientists in graphic analysis and modeling of MIPS
detectors. In the implementation of the ground support software, 62 detector channels
are displayed in real time on MicoVAX workstation. The PV~WAVE application is
characterized by very high performance graphics display.

PV~WAVE could function in the capacity as IRAF/CCDACQ described above.
The same communications software describe above could be linked with PV~WAVE
functions for real-time data acquisition and quick look analysis. Although PV~WAVE is
capable of performing many of the same data analysis and graphic functions found in
IRAF, the major difference is it's target user. IRAF is a package written specifically for
astronomical image reduction and analysis. It incorporates many standards used by the
astronomical community, like using the FITS format for data exchange. PV~WAVE
users can be any scientific or technical user. Additional programing may be required to
perform specific astronomical tasks in the PV~WAVE environment.

21

IRAF CCDACQ PROCESS

IRAF Scripts

comps
darks
flats
mores
tests
Zeros

Set Parameters ————— Status

obspars Detector
Observe Task |————>1 detpars |<&——————| Instrument
instrpars Telescope

telpars

pause

resume
stop
abort

Figure 7. IRAF CCDACQ Processes

22

APPENDIX A

Testbed Participants

University of Anizona
Steward Observatory
Dr. Erick T. Young, Principal Investigator

Irene Barg, MIPS Systems Programmer

Electrical and Computer Engineering
Dr. Larry Schooley, Co-Investigator
Yadung Pang, Graduate Student

Henky Wibowo, Graduate Student

23

CCSDS
DEC
DEChnet
ECE
GSE
IC
IRAC
IRAF
IRS
LCC
MIPS
OASIS
PI

RA
RCC
SIRTF
TCP/IP
TSL
VMS

APPENDIX B

Glossary

Consultative Committee for Space Data Systems
Declination Astronomical Coordinate

Proprietary Communications Protocol from Digital Equipment Corp.
Electrical and Computer Engineering

Ground Support Equipment

Instrument Controller

Infrared Array Camera

Image Reduction and Analysis Facility

Infrared Spectrometer

Local Control Computer

Multiband Imaging Photometer

Operations And Science Instrument System

Principal Investigator

Right Ascension Astronomical Coordinate

Remote Control Computer

Space Infrared Telescope Facility

Transmission Control Protocol/Internet Protocol
Telescience Laboratory

Proprietary operating system from Digital Equipment Corp.

24

APPENDIX C

Bibliography

Bienz, Richard and Hunter, Jerry, "Communication Software Design for Telescience
Demonstrations”, Telescience Technical Report TLS-019/88, Electrical and Computer
Engineering Department, University of Arizona, Tucson AZ., 1988.

Schooley, L.C., and F.E. Cellier, "Telescience Testbed Pilot Program Final Report”,
Technical Report TSL-021/88, Electrical and Computer Engineering Department,
University of Arizona, Tucson AZ., 1988.

Wibowo, Henky, "Communications Software for Telescience”, Masters Thesis Electrical
and Computer Engineering Department, University of Arizona, Tucson, AZ., 1990.

25

