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Abstract

This work treats the problem of weighted least squares fitting of a 3D
Euclidean-coordinate transformation matrix to a set of unit vectors measured in the

reference and transformed coordinates. A closed-form analytic solution to the problem
is re-derived. The fact that the solution is the closest orthogonal matrix to some
matrix def'med on the measured vectors and their weights is clearly demonstrated.
Several known algorithms for computing the analytic closed form solution are
considered. An algorithm is discussed which is based on the polar decomposition of
matrices into the closest unitary matrix to the decomposed matrix and a Hermitian
matrix. A somewhat longer improved algorithm is suggested too. A comparison of
several algorithms is carried out using simulated data as well as real data from the
Upper Atmosphere Research Satellite. The comparison is based on accuracy and time
consumption. It is concluded that the algorithms based on polar decomposition yield a
simple although somewhat less accurate solution. The precision of the latter
algorithms increase with the number of the measured vectors and with the accuracy of
their measurement.
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1. INTRODUCTION

The problem of attitude determination from vector observations is as follows. A

sequence, b i, i=0,1,2 .... K of unit vectors is given. These unit vectors are the

result of measurements performed in vehicle body axes of the directions to known

objects. The sequence, r i, i=0,1,2 .... K of unit vectors, is the sequence of the

corresponding representation of these directions with respect to some reference
coordinate system. We wish to find the attitude matrix, A, such that the cost
functional p(A) defined as follows

p(A) _ m _ 12= _ ai[lb i Ari[ (1)

i=l

is minimized. This problem, which is basically a least-squares fit problem for the
attitude matrix, A, was posed in [1] and is generally known as Wahba's problem. This
problem has been treated extensively [see, e.g. 2-11].

In the next section we derive an analytic solution to Wahba's problem, then in
Section III we show, in a rather simple way, that this solution is actually the
closest orthogonal matrix to a matrix defined on the reference and measured unit

vectors r i and b i respectively, and on their relative weight. Several algorithms for

computing the attitude matrix are considered in that section. The connection between
polar decomposition of matrices and the solution to Wahba's problem is then discussed
in Section IV. Two algorithms for computing the solution, which are based on the
polar decomposition, are considered. A numerical comparison between these algorithms
and other suggested ones, using simulated as well as real satellite data, is
presented in Section V. The conclusions of this work are finally presented in Section
VI.

II. DIRECT SOLUTION OF WAHBA'S PROBLEM

Since only the relative value of the weights, a i, matter, we may, with no loss

of generality, normalize the weights to give

It can be shown [2] that

K

--1a i
i=l

p(A) = 1 - tr(AB T) (2)

where tr denotes the trace of a matrix and

K

B = _ a.b.r T
1 1 1

i=l

(3)

We seek the orthogonal matrix, A, which minimizes p(A). Obviously, that matrix

maximizes tr(ABT). Using the method of Lagrange multipliers, we can incorporate the

orthogonality constraint on A into the maximization problem of tr(AB T) by defining

the new functional p*(A)
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p*(A) = tr(BAT) + tr[_L(AAT - I)] (4)

where I is the 3x3 identity matrix. The matrix L is a matrix of Lagrange multipliers
scaled to enable the inclusion of the one half factor which is added for simplicity

of the ensuing derivation. Also note that with no loss of generality, we may choose L
to be symmetric. The new cost function, p*(A), can be written as follows

p*(A) = tr[(BA T) + _ L(AA T - I)] (5)

Use now the directional derivative to maximize p*(A). To accomplish this, express A
as follows

A = A + eH (6)
o

where A ° is the A matrix which maximizes p*(A), e is a scalar variable, and H is any

3x3 real matrix. Note that A in (6) is expressed as a sum of the maximizing matrix,

A o, and a "step", e, in the "direction" of H. Also note that any real 3x3 matrix can

be expressed in this way. Substitution of (6) into (5) gives

p'(e) = tr{B(A ° + ell) T + ½ L[(A o + eH)(A o + ell) T - I]} (7)

Next differentiate p'(e) with respect to e to obtain

dp'(e)_ tr[BHT+ _ LH(AT+ eHT)+½ L(A + eH)H T]----d-e o (8)

A necessary condition for p'(e) to have a maximum at A ° is

dp' (e) [ = 0e=0
for all H (9)

Applying (9) to (8) yields

tr[(B + LAo)HT ] = 0 for all H (10)

The latter can exist only if

or, assuming L is non-singular,

B+LA =0
O

A = L'IB
O

Using (11) in the orthogonality constraint on A o

symmetric we obtain

A A T= L-1BBTL -1 = I
O O

(11)

and making use of the fact that L is

which yields
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BBT = L2

The matrix BB T is a positive definite matrix thus it can be decomposed as follows

= 2 2 2 vTBB T V diag{131,[32,133}

where diag{vl,V2,v3} is a diagonal matrix whose elements are 13 ,13 and 13.

Consequently

L = _+(BBT) 1/2 = V diag{+_[31, +-'_2' +-133} VT (12)

Substitution of (12) into (11) yields

A ° = ¥(BBT)-I/2B = V diag[+_l, +[32' -+[331 VT B (13)

It can be verified that to obtain maximum of p*(A) we need to choose the plus signs

in (13). We designate it by choosing the plus sign in front of (BB1)I/2; that is

A ° = (BBT) -1/2B (14)

which is the sought solution of Wahba's problem.
The expression given in (14) is also the solution of another problem

discussed next.
as

III. THE CLOSEST ORTHOGONAL MATRIX

Consider the following problem. Given a real matrix, B, what is the closest (in
the Euclidean-norm sense) orthogonal matrix to it? To solve this problem denote the
square of the Euclidean norm of the difference between B and any same order real
matrix, A, by s(A); that is

s(A) = liB - AI 12

(where tl. I1 denotes the Euclidean-norm) and find the 3x3 orthogonal matrix, A, which
minimizes s(A). It can be easily shown that

s(A) = tr[(B - A)(B - A) T]

thus

s(A) = tr(BB T - BA T - AB T + AA T)

Using the fact that A has to be orthogonal and the properties of the trace operation
it can be easily shown that

s(A) = tr(BB T) + 3 - 2tr(AB T) (15)

Obviously, that A which minimizes s(A) is the A which maximizes the term tr(ABT). An
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inspection of (2) reveals that this particular A is also the solution to Wahba's
problem. This result can be statedas follows. The closest orthogonal matrix to B,
where B is as defined in (3), is the solution to Wahba's problem. Indeed if we

proceed with finding that orthogonal A which minimizes (15), we will obtain the

result given in (14); namely,

A = (BBT)" 1/2B (16)
O

Consequently, any solution to the closest orthogonal matrix problem is also a
solution to Wahba's problem. This conclusion will be exploited in the ensuing.

The solution expressed in (16) to the closest orthogonal matrix problem was

obtained and investigated quite extensively in the past [12 - 19]. The solution of A o

using (16) is cumbersome. Various iterative solutions have been investigated [15 -
19].

Another solution to the closest orthogonal matrix problem, and hence to Wahba's

problem, makes use of the singular value decomposition (SVD) of A o. This solution is

presented next. It is well known [20] that any matrix, and therefore also B, can be

decomposed as follows

B = USV T

where U and V are 3x3 orthogonal matrices and S is a diagonal matrix whose elements

are the nonnegative square roots of the eigenvalues of BTB. It can be shown that

A =UV T
O

The latter was used in [21] to solve Wahba's problem.

IV. POLAR DECOMPOSITION

It is well known [22] that B can be decomposed as follows

B = PH (17)

where P is orthogonal and H is symmetric. This decomposition is known as polar
decomposition (PD). It was shown [23] that P is precisely the orthogonal matrix
closest to B; that is, P of the polar decomposition is the solution to Wahba's

problem when B is as defined in (3). We can write therefore

(where A
O

B=AH
O

is, of course, the closest orthogonal matrix to B). This yields

A = BH -1 (18)
O

We wish now to utilize the PD concept for solving Wahba's problem. We consider two
cases as follows.

IV. 1: The Error Free Case

Assume now that both sequences of vectors b i and r i i=1,2,3 .... K are error free.

We can then write b.=Ar.. Substitution of this equation into (3) yields
1 1
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K K K
B= _ aibirT = _ aiArirT= A _ airir T (19)

i=l i=l i=l
Define now the matrix R as follows

K
R = _ a.r.rT111 (20)

i=l

then from (19) we obtain

B = AR (21)

where R is a symmetric matrix. Comparing (21) with (17) it is easy to see that in
this case (21) is the PD of B where A=P and R=H. It is clear then that A =A. In this

o
case A can be found as follows

O

A o = BR -1 (22)

provided that in constructing R, according to (20), we use at least 3 non-collinear
vectors. (This assures that R is invertible.)

IV. 2: The Actual Case

In practice the vectors b i are contaminated by measurement noise. However, since

the position of the body and the time of measurement are known within a high degree

of precision, the error in the determination of the r i vectors is negligible. Denote

the error in b i by n i then we can write that

b. = n. + Ar.
1 1 1

Using the last equation in (3) we obtain

K

B = _. ai(n i + Ari)r T

i=l

This can be written as

B

K K

_. a.n.rT,,, + _. a.Ar.rT,, ,
i=l i=l

which yields

K K

B- _ a.n.r T. = A_. a.r.r T
1 1 1 1 1 1

i=l i=l

Using (20) we obtain from the last equation
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A= [B-_ainirT]R -1 (23)
i=l -J

We can now use the last equationto obtain the "best" estimateof A. We note that B
A

contains all measured information, therefore we compute A, the "best" estimate of A,

as the conditional expectation of A given B [24]. Performing the conditional
expectation on both sides of (23) yields

[ K T]EIA/B} = B- _ aiElni/B}r R-1 (24)

i=l

It is assumed that the measurement errors are unbiased, therefore

Elni/B} = 0 (25)

(The latter assumption is based on the premise that the measurement biases have been
removed or else are very small. If this is not the case, there is no way to obtain
the correct attitude from the biased measured vector no matter what algorithm is

used.) Substitution of (25) into (24) yields

E{A/B} = BR -1

thus

I A BR_ 1A= (26)

where B and R are computed according to (3) and (20) respectively.
Note that this result was first obtained by Brock [13, eq. (5)] in a way

unrelated to the notion of polar decomposition and with no consideration of the
randonmess of n.

If n i are very small or the number of measurements is large such that the

particular realization of n. has a negligible mean, which complies with the
1 A

assumption in (25), then the computation of A according to (26) yields an accurate
estimate of A. When this is not the case, the estimate can be quite erroneous. It is

A

interesting to note that when K<4, A zeros the cost function of Wahba's problem which
is given in (1) as follows

K

p(A)=_ _ aillbi- Arill 2

i=l

A

even if A is not equal to A. This is a result of the approximation b.=Ar, which was
A A 1 1 A

made in the derivation of A. However, while A drives p(A) to its minimal value, A is
not necessarily orthogonal. (Recall that we seek the orthogonal matrix which

^
minimizes p(A)). We can correct the non-orthogonality of A by the application of one
orthogonalization iteration as follows [17, 18]

^ A T ^
A' = 0.5(A- + A) (27)

^

This operation yields a close to orthogonal matrix, A', which is usually also closer
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to A. (The superscript -T denotes the inverse of the transpose.) We can, of course,
^

bypass the computation of A by using (26) in (27) to obtain

A
A' = 0.5(B-TR + BR -1) (28)

V. NUMERICAL COMPARISON

Five possible solutions to Wahba's problem are considered as follows.

(1) QUEST

Use the algorithm QUEST [6] to obtain, q, the quaternion which corresponds to
the solution matrix of Wahba's problem, and then use q to compute the solution

matrix itself which we denote by Aqs t.

(2) ITERATIVE ALGORITHM (IA)

Apply the iterative orthogonalization algorithm [17, 18]
computation of B according to (3) and then continue with

^
A =B

O

starting with the

(29.a)

^ = 0.5(_j T + ^Aj+ 1 Aj) (29.b)

which converges to the solution of Wahba's problem given in (13). We denote the

final matrix by Ait r.

(3) SINGULAR VALUE DECOMPOSITION (SVD)

Apply the SVD algorithm to decompose B into

B = USV T (30.a)

and compute

Asv d = UV T (30.b)

As explained in Section III, Asv d too is the solution of Wahba's problem.

(4) FAST OPTIMAL MATRIX ALGORITHM (FOAM)

Use the FOAM algorithm [25] to obtain the solution matrix to Wahba's problem. We

denote the computed solution by Afo m.

(5) POLAR DECOMPOSITION (PD)

Compute the matrices B and R, the latter according to (20), and then calculate
the estimate of the solution to Wahba's problem according to (26)
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= BR -I (26)

(6) IMPROVED POLAR DECOMPOSITION (IPD)

Compute an improved estimate of the solution to Wahba's problem by performing
one orthogonalization iteration on the preceding estimate. The overall algorithm
is as in (28)

A

A' = 0.5(B-TR + BR -1) (28)

V.1 Results with Simulated Data

The five algorithms were tested with simulated data. The importance of tests
with simulated data stems from the fact that using real data we do not know the
correct attitude. This constitutes a major difficulty since the difference between
algorithms may be smaller than the difference between the correct attitude and the
computed ones. Only when we use simulated data can we observe the difference between
the computed attitude and the correct one. The simulated measurements of vectors in

body axes were obtained by transforming the reference, r i, vectors to body axes using

A, the correct attitude matrix, addition of a noise component to each component of
the transformed vector and normalization of the resultant vectors. The added noise

components had a zero mean and a standard deviation value of 0.144. Typical
simulation results are shown next for four and three measured vectors. Three cost

values were computed in order to evaluate the accuracy of the results. The cost p is
Wahba's cost function computed according to (3) for the particular solution matrix.
The cost f is the Euclidean norm of the difference between the particular solution
matrix and the correct attitude matrix. Finally, the cost J is a measure of the
non-orthogonality of the solution matrix. It is the Euclidean norm of the matrix

xxT-I where X is the particular solution matrix.

V.1.1 Four reference vectors

rl=

".267261]
.534522 /
.801784J

[-.666667"

r 2 = [-.666667
[-.333333

r3=

.267261 _
-.801784
.534522

r4=

Four "measured" body vectors

.815399"b 1 = .577901
-.033975

b2=

"-.872214]
-.075280 /
.483296J

b3=

.290203
..206009
.934528

[-.118959]

b 4 = | .679197[
L-.7069401

Four weights

a 1 = .100000 a2 = .300000

The correct attitude matrix

[ .764744 .293558
A = [-.636031 .486370

[-.103103 -.822963

a3 = .400000

.57357G

.599090

.558660

a4 = .200000
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Solutions

[.770135 .274589 .575754]A = -.629265 .474889 .615228 /

qst [-.104485 -.836111 .538518J

.761290 .266299 .591204]

Ai_ = /-.639697 .457436 .6176891
[-.105948 -.848432 .518593J

Pqst = .44078E-03
f = .37578E-01

qst
J = .20588E-06

qst

Pitr = .22933E-03

fitr = .67264E-01

Jitr = "19037E-06

.761290 .266299 .591204'

Asv d = [-.639697 .457436 .617689

[-.105948 -.848432 .518593

Psvd = .22933E-03

fsvd = .67264E-01

Jsvd = .18014E- 15

A
fom

.770135

= -.629265

-.104485

.274589 .575754]

.474889 .615228 /

-.836111 .538518J

Pfom = .44078E-03

ffom = .37578E-01

Jfom = .86667E-16

A

m =

.770556 .263174 .561689] p = .67846E-04

-.654729 .455528 .628148[ f = .75595E-01

-.143061 -.851596 .551271J J = .ll190E+00

A

A' =

.768038 .263582 .5840801
-.630931 .473739 .615274

-.115625 -.840565 .530461

V.1.2 Three reference vectors

.267261]r 1 = .534522[
.801784]

"-.666667]

r 2 = -.666667 /
-.333333J

Three "measured" body vectors

b 1 =

.815399"

.577901
-.033975

[-.872214]

b 2 = |-.075280 /
[ .4832961

Three weights

a 1 = .125000 a2 = .375000

p' = .33350E-03

f' = .52240E-01

J' = .25319E-02

[ .267261"

r3 = |-.801784
L .534522

.290203]

b 3 = ..206009|
.934528]

a3 = .500000
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The correct attitude matrix

A

.764744 .293558 .573576]
-.636031 .486370 .599090 /
-.103103 -.822963 .558660J

Solutions

.767731

Aqs t = [-.631488

[-.108683

.276451 .578069]

.479442 .609392 /

-.832893 .542658J

Aitr

.758264

= -.643834

-.102537

.271018 .592946'

.454336 .615676

-.848604 .518997

Pqst = .55884E-03
f = .29705E-01

qst
J = .67617E-07

qst

Pitr = .23600E-03

fitr = .67219E-01

Jitr = .32845E-06

msv d =

.758264 .271018 .592946"

-.643834 .454336 .615676

-.102537 -.848604 .518997

Psvd = .23600E-03

fsvd = .67219E-01

J svd = "11102E- 15

Afo m =

.767731 .276451 .578069"

-.631488 .479442 .6093921

-.108683 -.832893 .542658

Pfom = .55884E-03

ffom = .29705E-01

Jfom = .30626E- 15

A
A=

•739265 .275664 .586784'

-.664499 .459428 .635984

-.172692 -.839769 .575035

p = .11783E-14

f = .97131E-01

J = .16640E+00

A
m' =

.753716 .268839 .600058"

-.645610 .483007 .593789

-.131702 -.833708 .539069

p' = .60457E-03

f' = .53687E-01

J' = .53638E-02

We observe that, as expected, Ait r and Asv d are practically identical. We also^
observe that as expected, for three measured vectors (K=3) Wahba's cost, p, for A is

A

practically zero. The single normalization cycle which generates A' improves the
orthogonality (reduces J) considerably. This^comes at the expense of an increase in
p. For four measured vectors (K=4), p for A is similar in value to that of the other
algorithms, and again, the single normalization cycle improves orthogonality
considerably at the expense of Wahba's cost.
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V.2 Results with UARS Data

The following are results of the application of the five algorithms to data
measured on-board the Upper Atmosphere Research Satellite (UARS). UARS was deployed
on September 15, 1991 at 04:23 GMT by the shuttle spacecraft Discovery which was
launched on September 12, 1991, at 23:12 GMT. The data were measured on September 30,
1991 at 18:32:31.206749916 GMT. The first vector corresponds to the Sun Sensor, the
second to the triad of Magnetometers, and the third to the Infra-Red Horizon Sensor.

The reference vectors

[-.992324]

rl = |-.113458 /
[-.0491921

[-.814177]

r2 = /.5508621
[-.183487J

l" .543295

r 3 = /-.542620
[ .640619

The measured body vectors

[-.810765] [-.455867] I" .002528"

b 1 = |-.2949521 b 2 = / .1864911 b 3 = [ .003031L-.4114031 [-.8702911 .999992

Three weights

a 1 = .243291 a2 = .002506 a 3 = .754203

Solutions

Aqs t =

Ait r =

.826549

.178119

.533939

.832537

.180280

.523814

.178850

.816336

-.549189

.172669

.814010

-.554593

-.533694"

.549426

.642885

-.526372"

.552166

.646564

Pqst

J
qst

= .96423E-03

= .20183E-06

Pitr = .89246E-03

Jitr = .15599E-07

msv d =

.832537

.180280

.523814

.172669

.814010

-.554593

-.526372"

.552166

.646564

Psvd = .89246E-03

J svd = "19700E- 15

Afo m =

.826549

.178119

.533939

.178850

.816336

-.549189

-.533694

.549426

.642885

Pfom = .96423E-03

Jfom = .46516E-15
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A

m--

.818163 .211577 -.510709'

•182985 .778550 .508996

.466235 -.700019 .572641

p = .13611E-12

J = .28575E+00

A
A' --

.837978 .176650 .517931] p' = .39206E-02

.217866 .767101 .613477 /

.503300 -.622646 .606208J J' = .16305E-01

Here too we observe the identity between Ait r and Asv d. As before, we also

observe the reduction in J at the expense of an increase in p when a single
A A

orthogonalization cycle is applied to A to generate A'.

V.3 Time Consumption Analysis

A computation-time measurement was performed on all five algorithms using the
simulated three and four measured vectors. The runs were made on a VAX 9210 computer
employing the VMS Version 5.4-2 operating system. The time measurement routine used
the internal machine clock at a resolution of 10 msec. In order to increase the

resolution, the runs were performed over 50000 successive solutions and the total
time was then divided by 50000. The results are presented in Table I.

Table I: Algorithm Computation Time (msec).

A
qst Aitr Asvd Afom

A

A
A

A'

Three
measured 0.0890 0.790 0.548 0.060 0.058 0.084

vectors

Four
measured 0. 1060 0. 694 0. 526 0.070 0.068 0. 094
vectors

Note the decrease in computation time of Ait r when the number of measured vectors

increased from 3 to 4. This is due to the fact that in the four vector case the

convergence criterion was met after only 7 iterations whereas in the 3 vector case 8
iterations were performed until the same convergence criterion was met. In all our
tests it was found that when a fourth measured vector was added, less iterations were

required. This stemmed from the fact that when a fourth measured vector is added the
orthogonality of B increases provided the fourth vector is not a linear combination

of the other three. The decrease of the computation time of Asv d with the increase of

the number of measured vectors is not consistent. It depends on the number of
iterations needed for the completion of the SVD calculations.
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VI. CONCLUSIONS

It was shown that the solution to Wahba's problem is the closest orthogonal
matrix to B where B is defined on the measured vectors and on weights associated with

their measurements. The weights signify the confidence assigned to the measurements.
The matrix B includes all the information contained in the measurement.

Once it was established that the sought solution is the orthogonal matrix

closest to B, algorithms for computing that orthogonal matrix were considered, and an
algorithm was discussed which is based on the polar decomposition of matrices into
the closest unitary (in our case: orthogonal) matrix and a Hermitian (in our case
symmetric) matrix. The accuracy of the algorithm increases with the accuracy of the
measurements and with their unbiasedness. If the measurements are error free the

algorithm yields the exact solution.
When only three measured vectors are used the new algorithm yields a solution

which zeros Wahba's cost; however, the solution is not necessarily orthogonal. An

application of one orthogonalization iteration to the solution matrix constitutes a
modified algorithm which yields a better solution. Although the latter algorithm
generates a matrix which increases Wahba's cost. The new matrix is closer to
orthogonality. We note that the same iteration cycle if applied repeatedly to B
itself, yields eventually the optimal solution as shown in the examples; however,
since B is usually quite far from orthogonality, it takes several iterations to
obtain the solution.

The advantage of the algorithm is in its simplicity which enables its use for
obtaining first cut solutions using "back-of the envelop" like programs such as
MathCAD. Another advantage of the first new algorithm is its ability to indicate the
precision of the measurements. This stems from the fact that generally the closeness
of the solution matrix to orthogonality is indicative of the precision of the
measurements. It is interesting to note that the fact that the two PD algorithms
yield the exact solution in the noise-free case is analogous to the fact that the
largest eigenvatue of the 4x4 K matrix used in the QUEST algorithm is precisely 1 in
the noise-free case.

The two PD algorithms were tested vis-a-vis other popular algorithms using
simulated and real UARS data.
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