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Tsien's method is extended to treat the orbital motion of a

body undergoing accelerations and decelerations. A generalized

solution is discussed for the generalized case where a body under-

goes azimuthal and radial thrust and the problem is further simp-

lified for azimuthal thrust alone. Judicious selection of thrust

could generate either an elliptic or hyperbolic trajectory. This

is unexpected especially when the body has only enough energy for

a lower state trajectory. The methodology is extended treating the

problem of vehicle thrust for orbiting a sphere and vehicle thrust

within the classical restricted three-body problem. Results for

the latter situation can produce hyperbolic trajectories through

eigenvalue decomposition. Since eigenvalues for no-thrust can be

imaginary, thrust can generate real eigenvalues to describe hyper-

bolic trajectories. Keplerian dynamics appears to represent but a

small subset of a much larger non-Keplerian domain especially when

thrust effects are considered. The need for high thrust long-

duration space-based propulsion systems for changing a trajectory's

canonical form is clearly demonstrated.
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Subscripts

o

az
rd

e

Initial or reference value

Azimuthal

Radial

Earth reference value

I. INTRODUCTION

This paper is a continuation of efforts previously presented

in Murad I. Some aspects from this reference are included for con-

tinuity and the analysis is considerably expanded to treat more

problems of general interest to the astrodynamicist. The original

problem will be briefly addressed followed by a discussion that
treats these other situations.

There was a problem of interest concerning a missile event

captured on photographic data. The data consisted of two streaks

against a star background. Simple evaluations based upon the local

sidereal time and the expected distance to the earth day-night ter-

minator indicated that at least one and possibly both streaks were

produced in total darkness, possibly by a missile. The problem was

to place a trajectory through the streaks to define apogee and

velocity which would be used to identify a specific missile system.

Gauss' method 2"4 was used unsuccessfully to place a trajectory

through both streaks. The method is adequate for either an ellip-

tic or hyperbolic trajectory, however, it was expected that the

missile energy was too low to reach hyperbolic velocities although

the software implied that hyperbolic trajectories ought to match

the spatial data alleviating any constraint on time. When an

elliptic trajectory was considered, adequate spatial matches were

obtained, however, the calculated time period was larger than re-

quired to support the data.

Clearly a contradiction exists. Assuming that the software

was correct, under what conditions could a missile trajectory be

defined by a hyperbola when the energy is insufficient to reach

hyperbolic velocities? This paper partially examines this concern

by evaluating the equations of motion for a vehicle in orbit having

azimuthal thrust. As a consequence of treating this problem, sig-

nificant insights were obtained that have more general applicabil-

ity to other problems of interest.

A. Background

To correctly use Gauss' method, several assumptions are

implied in the derivation of these orbits. Specifically_ the body

under investigation is not accelerating or decelerating from forces

other than through the attraction of a central force field; bodies

undergoing thrust or reentry clearly violate this assumption.

Some words regarding the original data are noteworthy.

Several hypotheses were tested concerning what caused the streaks.

These hypothesis were used to explain reasons that would have

allowed the data to be photographically captured. In the course of

trying to match the data, it appeared that the streaks involved

thrust creating lateral and axial accelerations or decelerations.

352



Thus, if these streaks were thrust related, Gauss' method is not

applicable.

This problem provided the initial motivation to develop the

methodology. This effort's main theme is to present a rationale

suggesting that the trajectory canonical form can be altered by
thrust.

B. Current Considerations

There is additional motivation regarding the present paper.

During a recent conversation with V. R. Bond 5, it was suggested

that the time required for long space voyages can be reduced sig-

nificantly by altering thrust to generate specific trajectories

based upon suggestions from the author's original paper. This idea

generated a different modus operandi. If Tsien's method simplified

the problem of altering a spacecraft orbit using thrust, what other

problems could be resolved?

The original paper judiciously selected an analytical thrust

term to reduce angular momentum simplifying the governing equations

of motion. Admittedly biased, the thrust term allows the space-

craft to fly either an elliptical, parabolic or hyperbolic traject-

ory without any real stipulation on initial velocity. Could this

approach treat more complex trajectory problems?

This paper will show that an answer is mathematically tract-

able, however, several issues should be briefly mentioned. Use of

control thrust to alter interplanetary trajectories or for station-

keeping was limited by technology developed during the sixties and

the early seventies. Thrust from reaction control motors or launch

boosters used either a single constant setting or several distinct

settings; the latter demanded feedback to regulate flowrate of

oxidizer or propellant. Inert structural weight of cooling sys-

tems, fuel lines, turbines and engines, as well as large amounts of

propellants created limitations that stressed launch booster

capabilities. Weight and reliability kept propulsion systems to

the bare essentials. Thus, altering thrust as a function of orbit-

al parameters or time, was not technically feasible. Furthermore,

instrumentation and interpretation of on-board inertial data to

identify these parameters also stressed available technology.

The advent of the Shuttle-C 6 and other large boosters such as

the Soviet Energiya concepts and its many adaptations z (i.e.:

Buran-T Space Launch Vehicle, etc.), provides future designers with

more flexibility in the design of spacecraft and subsequent

payloads. However, chemical propellent mass fraction greatly

limits the scope of any extraterrestrial exploration in the near

future.

The original paper implies and will be further demonstrated

here, large thrust to weight ratios and variable time-dependent

long-duration thrust profiles to meet future contingencies are

clearly needed. Technology limitations have displaced such ideas

only as subliminal thoughts due to the need for finding practical

and timely solutions to contemporary problems. Chemical systems

have their limitations, although several exciting high risk tech-

nology approaches offer promise 811. These potential concepts

include: nuclear propulsion, nuclear propulsion with electrical
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hybrids, MHD, tachyon beam ejection, and space warp concepts.

Gravity gradient or gravity potential drives with their analogues

(i.e.: magnetic potential or magnetic gradient concepts) should be
included to extend this list.

Admittedly, these are far-reaching propulsion concepts yet to

demonstrate technical maturity. Feasibility must parallel long-

term serious funding efforts. Without political emphasis, present

concepts will keep man bound to both this planet and solar system

for a longer period limiting man's imagination and possibilities
for growth.

Realizing the thrust-to-weight problem may be unsolvable,

there are solutions that are technically feasible that should be

examined. Time-dependent thrust appears to offer advantages.

Amongst these is the intuitive feeling that expended propellent can

be used more efficiently than with constant thrust systems. Time-

dependent thrust can be incorporated in liquid rocket chemical

systems and hybrid propulsion systems. Hybrid rockets offer the

advantage of half the plumbing of a liquid rocket propulsion system
with the reliability of a solid propellent rocket motor albeit with

a performance degradation. Furthermore, if thrust variation is

gradual, a solid core nuclear rocket engine, such as NERVA, could
be designed with this built-in feature.

C. Preliminaries

The equations of motion were examined and cast to account for

thrust effects. In the classical derivation, a body in polar

coordinates is moving about a much larger body located at the

coordinate system origin. The angular momentum equation is simp-

lified, applying Kepler's law, reducing the mathematical complex-

ities. Subsequent substitutions provide an expression for the

radius as a function of anomaly. If eccentricity is less than one,

the trajectory reduces to an ellipse and if the eccentricity is

greater than one, the solution describes a hyperbola. In both

cases, foci of the conic represents the location of the larger body
central force field.

A brief review of the two-body problem followed by Tsien's

approach will be presented as a frame of reference. This is

followed by looking at the equations with both axial and azimuthal

thrust with the specific example of examining azimuthal thrust and

its effects. This problem is extended to a spacecraft with thrust

orbiting a large body in two-dimensions to one in three-dimensions.

Finally, the problem of a single thrusting spacecraft orbiting two

large bodies will be examined by generating different canonical

types of trajectories based upon extending further some earlier
work by the author.

C-1. The Classical Two-Body Problem

The equations of motion in the radial and transverse dir-

ections under the influence of a radial inverse gravitational
potential are:

"r" r(_2 " go r2 (la)
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I[ r2]rO + 2_(_ = -7- ( I_) =0
(ib)

the dot signifies time differentiation, r is the radial distance to

the body measured from the center of the force field and 8 is the

true anomaly.

The integrals for the above ordinary differential equations
are:

1 - E (2a)+ (re)2] r

r2E) =A
(2b)

where A, a constant value, is the areal velocity and the trajectory

is Keplerian. By Keplerian, it is implied that the area swept by

the radius vector from the central force field to the spacecraft is

equal for similar time intervals along the spacecraft's orbit. The

quantity E represents the sum of the spacecraft's kinetic and

potential energy which remains constant throughout the trajectory.

Substituting the second expression into the first, and chang-

ing the independent variable from time to anomaly results in:

--de + r A2 = 0 (3)

The solution for this initial value problem has the form:

P
r = (4)

l+e cos (e - e o)

where p is the semilatus rectum and e is the eccentricity necessary

to satisfy initial conditions. This equation represents an ellipse

or a hyperbola depending upon the eccentricity which is based upon

parameters such as the kinetic energy, E, to satisfy this initial

value problem.

C-2. Tsien's Approach

Batti_ gives an excellent perspective concerning Tsien's

contribution to the field of orbital mechanics with regard to non-

Keplerian'two-body motion. Tsien in several classic papers n14

examined two basic problems for predicting orbital change due to

constant thrust directed either radially or tangentially along the

flight path. Tsien's insights made these difficult problems math-

ematically tractable and from these initial results, sensitivities

resolving problems of practical interest can easily be formulated.

Following Battin's development, Tsien included a constant term

in the radial momentum equation signifying radial thrust acceler-

ation. After an integration of the azimuthal momentum equation and
substitutions into the radial momentum equation, an integration

" The definition of non-Keplerian used in this evaluation is that

the areal velocity is no longer a constant.
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provided a closed form solution for the velocity as a function of
radius and acceleration for an initially circular orbit to reach

escape velocity.

d2r I de% 2 IJ.
dt 2 - r _, dt / + -_ = a_

(5a)

d (r, de)d--{ ._- = 0 (5b)

or r 2 de
dt = _ (5c)

Various solutions are obtainable. Depending upon definition,

the radial thrust problem is Keplerian because of the treatment of

the azimuthal equation; the areal velocity is still constant.

For tangential thrust, the case is entirely different. Here,
the integration of the azimuthal equation results in an expression

for the areal velocity which, even for constant thrust, is now a

function of time. In this case, the trajectory should be consid-

ered non-Keplerian.

d2r _ r(de_2 I_
dt 2 _-/ + _ = 0 (6a)

dO
d (r2)=raaz (6b)

which yields various solutions.

Although these examples treat constant thrust acceleration,

there are many solutions involving variable thrust which will not

be discussed here. Can other more general families of solutions be

derived that have practical value to simplify the vehicle
trajectory undergoing tangential thrust?

II, ANALYSIS

A. The Two-Body Problem

Examining the momentum equations for a vehicle simultaneously

having radial and azimuthal thrust yields:

• re2 = _
I.2 + ard

2i'e + r§ = aaz

(7a)

(7b)

The integral for these equations has the generic form:

.___[1 p2 + (re)2] _P -Eo + toft{ardP + a_re} dt (8)

In this equation, the vehicle's energy is no longer equal to the

integration constant _ which includes the kinetic and potential

energy at the initial state. The expression for spacecraft energy
includes an additional quantity that depends upon the time-
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dependent integration of the separate thrust components. As

expected, thrust effects alter the vehicle's energy as a function

of time or position within the trajectory.

It is feasible to reduce these equations into other simpler

forms. For a general class of solutions, let the azimuthal thrust

term have the following generic form:

B_

aaz- r(r2(_)n (9)

which, when substituted into the azimuthal momentum equation

produces:

1 {(r 2 (_)n._. (ro2 (_o)"+_} = B(r- ro)(n+l)
(i0)

The B parameter is selected to eliminate terms defined at the

initial state integration.

There are many interesting classes of solutions as well as

mathematical problems arising from these expressions. If the

exponent n is equal to zero, the term within the integral, using

the expression for the rate of change of anomaly, becomes:

,t B 2 r (11)t a_ r6dt = In {-60-}

which represents an embedded logarithmic singularity within the

energy integral. Similarly, when n is equal to i, this term has

the same form in the energy expression as the term generated from

an inverse-square gravitational force field. If n is larger, the

exponent will accordingly increase in the energy forcing function

which alters the form of the resulting equation of motion. These

higher-order problems require elliptical integral solutions or

other more unorthodox approaches.
Let us return to the more restrictive case for treating

azimuthal thrust alone. The equations of motion are as follows:

.f . re 2 = _ _ (12a)
r2

2i'e + re = aaz (z2b)

Let us examine the situation for azimuthal thrust and assume

a form that allows closure to reduce the azimuthal equation of

motion to a quadrature:

87
aaz =

r (r 2 (_)

d_- I_" (r2 e)2} = Bi "

(13a)

(13b)

Clearly orbits described by this expression are non-Keplerian. The
thrust term is non-conservative and alters the nature of the solu-

tion. Here, the expression is simplified by judiciously selecting
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the following integration factors:

I
B = _ ro38o2 (14)

resulting in:

1 [2Br]'_-= 7 (15)

There is a need to explain the selection of the acceleration

profile and how it satisfies the overall problem regarding the
initial streak data. For the case when a missile accelerates

toward the apogee (i.e.: boost) and decelerates moving away from

apogee (i.e.: reentry/retro thrust), B is positive. The terms

involving radius and the rate of change in anomaly are positive

valued; they only change in overall magnitude but not in sign. The

inclusion of the rate of change of radius with time, however, does

change sign when the vehicle passes through apogee. The positive

sense of this term represents positive thrust where a negative sign

implies retro or reentry decelerations. It is assumed the

accelerating/decelerating forces on the body act tangential to the

flight path represented by the azimuthal term.

By non-Keplerian, the implication is that areal velocity is

not constant and the body governing the central force field may not

be collocated with the geometric foci for either an ellipse or

hyperbola. This is important in the analysis for the latter

situation; the apogee must be the closest point to the foci while

for an ellipse the apogee is the furthest from the foci at the

center of the Earth for a surface-to-surface missile trajectory.

When used with the radial equation of motion and integrated,

the constant Eoterm representing initial energy is not directly
removed from the formalism as in the classic sense but remains

throughout the derivation. This becomes:

de----_ + = y (16)

with a solution that takes either of the following forms depending

upon whether lambda is real or imaginary:

r=<

1. p cosh _. [6 - 6 o] for Z,2 < 0

E 02 ]-I Z2+ 6, e for =0
a

1,13cos x[e-e o] for t 2 >0

!17)
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where:

7 - 2B o +

u = _2/7 and [] = 7/_. 2

(z8)

Baxter15derives a similar expression for the case of force

field perturbations in the radial direction. Baxter suggests that

the fundamental problem of Keplerian representations of real orbits

is the failure to correctly account for the energy of the orbiting

body. This could lead to in-track errors in Keplerian mean motion.

Baxter compensates by using perturbation terms in the gravitational

potential to remove in-track drift. Furthermore, the method can

produce Keplerian trajectories in a non-Keplerian environment by

inclusion of these radial terms where orbital elements are changed

to include perturbative quantities. For example, energy is

directly included in these expressions and is not treated as a

secondary term through the definition of eccentricity.

The change in the form of the trajectory relies principally

upon the nature of whether lambda is real or imaginary. Values for

B depend upon location along the trajectory where thrust is applied

and as the value of B increases, the sense of lambda becomes more

negative. When the magnitude of this term is equal to 2.0, the

equation is parabolic. When larger than 2.0, the equation is

hyperbolic. This is independent of energy considerations which

enters the problem only through eccentricity.
If the coefficients are altered to reflect when this express-

ion is identical to the classically derived equation, an interest-

ing analogy develops. For specific initial conditions defining B

and the azimuthal thrust profile, a thrusting trajectory could be

derived having the same spatial-time dependency as a Keplerian

trajectory. Thus it is entirely feasible, with caveats, that an

inefficient trajectory, using thrust, could be replaced by a

trajectory without thrust.

B. The Problem of a Spacecraft Orbiting a Spherical Body

The equations of motion for a spacecraft orbiting a spherical

body are :

av
- r(_ 2 - r_ 2 sin 2 e - 8r (19a)

r8 +2i'(_-r$ 2 sine cos8 = - 1 8_VV
r 29 (19b)

1 8V

rsin¢ _ + 2i'sine $ + 2rcose I_ $ = - rsine 8_ (zec)

where: # is the out-of-plane angle required for a spherical coor-

dinate system. The gravity gradient can have the simple form:

359



V(r, 8,9) ==" 7" (20)

These expanded equations include terms in both the radial and

azimuthal momentum equations as well as a third equation describ-

ing momentum in a second angular plane. These three-dimensional

spherical coordinate equations more accurately predict trajector-

ies for non-thrust situations due to gravity potential variations

acting outside of the original plane of motion.

If the out-of-plane angle phi is constant regardless of orbit

inclination, or if the time rate of change of this angle is zero,

terms in the first two equations are zero and the third equation

vanishes. Here, the problem reduces to two dimensions. Similarly,

if the angular rate of change of phi is constant, these additional

terms may still appear although the third equation is greatly simp-

lified. If it is assumed that the gravity potential consists only

of terms involving radial and azimuthal variations, the constant

term creates a rate of change in either radial or azimuthal vari-
ables or both.

Here, the last equation reduces to:

d (rsin8)= 0
d-t" (21)

This is consistent with the two-dimensional case and may provide

another 'integral' to reduce the equations of motion. Again, this

is still without looking at thrust effects.

The emphasis will require examining out-of-plane thrust and

subsequent effects on the spacecraft's trajectory. One can assume

thrust components can be defined as a gradient acting in similar

directions as the gravity potential gradient for example:

VV "= VV ÷ VF (22)

The following insights can be gained from these equations with

thrust. Out-of-plane thrust impacts both radial and azimuthal

momentum adding to the non-linear mathematical coupling of these

expressions. Clearly, the spacecraft's radius and its rate of

angular rotation are dependent upon this thrust component as it

alters the time rate of change of phi. Thrust in either radial and

azimuthal directions have either little influence on the out-of-

plane momentum or no influence if there is no time variation in

phi.

Obviously, these equations are difficult to solve in closed-

form. There are two alternatives. Can these equations be reduced

to those in two dimensions or can the thrust term be selected such

that either the coupling or non-linearities are reduced or removed?

B-1. Reduction of the Spherical Orbit Problem to Two-Dimensions

The solution is straight forward. In both of the radial and

azimuthal momentum equations, select the thrust term to exactly

cancel the additional terms induced by the second angular coor-
dinate variable:

= r sin e (23a)
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1 aF
- r _2 sin e cos e (23b)

r ae

This reduces the first two equations to identical expressions

of a spacecraft moving about a body with no thrust. By standard

definitions, the orbits are Keplerian within the plane of motion.

However, due to the third equation of motion and the rate of change

of all variables, the rate of change of phi may not vanish. If

this is so, then azimuthal thrust should be selected such that

angular acceleration disappears and the remaining terms are compen-

sated by the third thrust vector component.

F d (r sin e)2- " $ (24)
Note that all of these thrust components depend upon 4; they

also contain the expression identified in equation (21).

B-2. Removal of Coupling Terms

In a similar fashion using superposition, thrust components

are selected to cancel the coupling terms. Angular momentum

effects from out-of-plane motion are prevented from influencing the

momentum in the remaining coordinate variables. Here, the

equations of motion, based upon the two momentum integrals, are

rewritten to define the force components:

av
r- r3 "-T :" a--;-

(25a)

rdk-_2cosef = 1 aV
d-_ " T" a-_ (25b)

rsin¢¢+2¢df=''l av (25c)
dt f aS

where k = r 2 8 and f = r sin e -

C. The Restricted Three-Body Problem

In an earlier effort 17, the thesis was presented that a potent-

ial of motion could be defined which reduced the coupling and

complexity of the two-dimensional equations of motion governing a

spacecraft in motion about two larger bodies. The potential was

not a Hamiltonian in the purest sense and required several mathe-
matical restrictions in its definition.

First, the potential has to be analytical in a complex

variable context. Second, the potential would satisfy rules of

partial differentiation, and third, the potential possesses an

integration property that did not violate energy considerations.

If this potential is admissable, pseudo-analytical terms can be

defined that allow for the principle of superposition This

accounts for effects from gravity potential perturbations or the

influence of additional larger bodies at considerably far dis-

tances. The problem is extended to consider thrust.

By psuedo-analytical, the functions solve a similar relation-
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ship as the Cauchy-Reiman conditions for analytical functions.

They do, however, represent solutions to the inhomogeneous Laplace

equation. Briefly, psuedo-analytical functions consist of analy-

tical functions which are solutions to Laplace's equation and may

be multiplied by a complex function based upon the inhomogeneous

source term, cross-product term(s), or first-order derivatives;

they represent solutions to elliptical partial differential

equations.

The equations of motion in three-dimensional rotating

cartesian coordinates for a spacecraft having thrust moving about

two larger bodies are:

-29-x = -V x+ Fx

_/+2_-y= -Vy+Fy

_; = -V z + Fz

(26a)

(26b)

(26c)

where acceleration components are: Fx, Fy and Fz. The gravity
potential for the two large primaries, located on the x axis, is

defined as: 2
(l-p) _ rl = (X.Xl)2+ y2 + z 2

V(x,y, z)
rl r 2 ; r22 = (x-x2)2+y2+ z 2

(27)

and the energy integral for no thrust accelerations is defined as:

I (_2+y2 i2 IE - 2 + )- (x2+y2) +v(x' y, z) (2s)

C-I. The Two-Dimensional Case Without Thrust

Accordingly, a potential may be defined such that:

k = d_./x = _x, and 9 = dy yy (29)
dt dt-

where the potential is a perfect differential which means the

cross-derivatives are equal. The derivative is defined as:

d_ = _tdt + _xdX + _ydy (30)

then the cross-derivatives imply:

_Fxy = _yx or _= -
y x

and

(3la)

d_( d_,
_ + J' dt - 0 (31b)

When this is integrated, the results reveal the kinetic energy

portion of the energy integral and a constant of integration that

is a function of both potential energy and the gravity potential.

Thus, this definition possess both mathematical properties and also

satisfies energy considerations. Results satisfy the energy integ-

ral requirement and compatibility suggesting that the expression is

admissable.
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The potential is a function of both spatial variables and
time. The second derivative or acceleration in the x direction can

be defined as:

= _ + X_xx + 9_xy = _xt + _x_xx" _y_yx (32)

with a similar expression for acceleration in the y component.

Substituting these terms into equations (26a) and (26b), with

no force components, these equations are further differentiated and

when combined, the resulting equation has the form:

V 2 = _xx + _ = -Vxy (33)

This resulting equation is elliptical in the canonical partial

differential sense and suggests this transformation is a psuedo-

analytical function. Due to superposition, the potential can

consist of an analytical function and an inhomogeneous term

accounting for the gravity potential. This additional term can

also be a pseudo-analytical function. A general solution to this

equation has the form:

(X, y) = -Jj G(_,'q;x,__ ,, --Y)V'nd_'d'n + ... (34)
D

where additional terms satisfy boundary conditions and G (_,_;x, y)
is the Greens function:

G(_,'rl;x,y) = - (---). Iog[(x-xl-_) 2 + (y-'ri) 21 (35)

- P-----log [(x-x2-_) 2 + (y-'rl) 2]2=
These two terms represent point source distributions. The Greens

function retains the mathematical behavior near the origins of the

primaries. Integration should be performed over the domain bound

by the zero-velocity curves. No contributions are added to this

expression from the region beyond the zero-velocity curve because

the spacecraft can not cross into this forbidden zone on the basis

of energy considerations. Thus there is consistency between the

mathematics and physics of the problem.

C-2. No Thrust in Three-Dimensions

The potential for this problem is defined such that: X = _x

= - _. and Z = _z Using similar substitution into eqs (34a)-(34c) and

cross-dlfferentzatzon results in several partial differential

equations:

+ = "Vxy (36a)

_xz = - Vyz (36b)

_yz = O. (36c)

Note that (36a) is the same as previously derived. The latter two

equations are additional expressions that show the gravity potent-
ial drives the motion.
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C-3. Thrust in Two-Dimenslons

With such simplifications, the problem is reduced to altering

the partial differential equation form by specifying thrust. This

eliminates coupling appearing in the momentum equation in a given

direction or removes coupling in another momentum equation.
Results are shown in Table I for several forms of thrust

components. Basically, the elliptical canonical nature of these

expressions is preserved. For the third case, the results is

equivalent to motion in a simplistic linear potential field and

there is no clearcut way of accurately predicting the spacecraft's

motion. In the last case, thrust is selected to nullify force from

the gravity potential reflecting earlier comments regarding large

sustained thrust-to-weight ratios. Consequently in this situa-

tion, the potential is truly analytical.

i 9 F,

Table I

Fy Functional Form

_x "_y +2_ -2_,

_1/x -_y -2_< +2_,

_x -_Vy +2_, -25<

_x "_y Vy-X Vy-y

_xx + 2_xy + _yy = " Vxy

 xx- 2 Vxy + = - Vxy

Vxy = O.

_xx + Yyy = O.

Depending upon the judicious selection of thrust, the

governing equations are reduced to an equation having the form:

V2_ + _xy +_ = -Vxy (37)

where the constants depend upon the transformation function and

thrust terms.

C-4. Analytlcal/Pseudo-Analytical Functions

Another means of solving the equation (37) would be to intro-

duce a direct relationship between the velocity potential and

gravity potential. This expression can be expanded to include a

potential representing the thrust components. A direct relation-

ship can be defined between the velocity and gravity potentials in

a Beltrami equation:

Yx = _V x + _Vy (38)

_y = _V x+ 7Vy.

Note the similarity with the Cauchy-Reimann equations governing

complex variables. The problem is to determine the value of the

constants to define the desired potential.

Inversely, when certain derivatives are taken, the resulting

equation reduces to the inhomogeneous equation. However, when

these derivatives are taken in reverse order, the resulting expres-
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sion is a hyperbolic canonical partial differential equation that

is a two-dimensional wave equation.

With these thoughts, define the psuedo-analytical function as:

I V
_x =_y" _ y (39)

1
_y='_x'_Vx.

If different cross-derivatives are taken, the results yield

that depend upon the gravitypartial differential equations

potential :

_xx + _yy = "Vxy and

_xx+ _'_ = " l(Vxx.V_)
(40)

To a degree this explains why these equations tend to demonstrate

an elliptical and hyperbolic nature. For example, a spacecraft's

trajectory near the zero-velocity curve domain tends to resemble

mixed characteristics in the sense of a Tricomi partial differ-

ential equation.

Since this activity focuses upon finding a means for changing

the nature of the spacecraft's trajectory, it is not clear how

changes in the canonical form of the partial differential equation

produces change in the spacecraft's trajectory. The above is pro-

vided only to demonstrate that the governing equations can be

altered to result in real as well as imaginary characteristics

which influence the type of spacecraft orbit.

A more lucid approach is available. Here the governing equa-

tions are reduced by phase-space notation into an inhomogeneous

vector-matrix equation. The gravity potential represents the

inhomogeneous expression which will be referred to in a similar

sense as a control vector•

Using the following definitions:

x 1 =x Yl =Y

x2 =xl = _ Y2 = _'1 =9

This transforms equation(26a) and (26b) into:

00 [el2 x 2 V x x

1 Yl 0

0 Y2 Vy IFy
x,I[old x2 1 0 0

y_ o o o
Y2 0 -2 1

or the vector-matrix equation:

(41)

(42)

x = _'Y"÷ 5" (43)

The dot denotes time differentiation and the matrix has constant

coefficients. A bar denotes a vector and a double bar signifies a

matrix.

This vector-matrix equation is subject to boundary conditions

as a function of the control vector. Due to the elliptical nature

of some orbits, one should expect periodic solutions. The solution
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of this equation has the form:

jt =(t) = Xo e_'t + eA(t'%) _' (_) d_

where the vector, Xo, represents initial conditions•

the degenerate kernel in the integral, let:

= _ _ ,_t2 + (X3"_ 3eA(t-_) = 0_o1+ Or,lA + a 2

(44)

To evaluate

(45)

where the constants are determined by the eigenvalues of the cons-

tant matrix. For this particular matrix, the eigenvalues are

repeated according to the following characteristic expression:

_,4+ 2;L2+ 1 = 0 Then: _. = +_i, ±i (46)

Since the eigenvalues repeat, the problem is to solve for the

coefficients in:

(t -_)e_("_) = _o _ + _1_ (47)

where I is the identity matrix•

After finding the coefficients and using the Cayley-Hamilton

theorem, the final matrix becomes:

e_t =

cos t sin t 0 0

sin t cos t 0 2 sin t

0 0 cos t sin t

0 -2 sint sint cost

(48)

Subsequently, the resulting matrix has the desired features of

periodicity due to the embedded circular functions within the

kernel displaying an elliptical nature. However, to examine

changes to the 'type' of trajectory with thrust, eigenvalue

decomposition is necessary. If the vector defining thrust is

provided as a function of the initial state vector (i.e.: thrust as

a function of either position or velocity), the matrix is altered

by including additional coefficients to those within the A matrix.

Here, the thrust acceleration term can have the form:

0

F X

0

Fy

0 0 0 0

13oPl 132P3
0 0 0 0

(50 (51 62 63

X 1

X 2

Yl

Y2

The resulting characteristic equation has the form:

(49)

_4 + 70_L3 + (2+71)12 + 72 ;L + 73 = 0. (50)

This provides several interesting insights• For real solu-

tions, coefficients of the odd powers of the eigenvalue should not

vanish• This eliminates eigenvalue multiplicity. If these parti-

cular terms are negative, eigenvalues are no longer imaginary but
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real. Solution for these real eigenvalues results in hyperbolic

sine and hyperbolic cosine terms as a function of time. Similar

changes could provide eigenvalues producing parabolic solutions.

In this fashion, changing thrust can produce trajectories which can

linearly vary as a function of time, or vary in a hyperbolic

fashion. Again, as mentioned earlier in the original analysis, the

form of the equation can easily be altered without a strong

dependency upon an initial velocity constraint.

III. CONCLUSIONS

This generalized approach demonstrates that Tsien's method
leads to a class of solutions where thrust and other acceleration

effects change the trajectory classification. In addition to

explaining deviate behavior when viewed from the classical sense,

constraints placed upon a trajectory based upon energy considera-

tions may no longer be valid under certain thrust applications.

The zero-order solution, without consideration of thrust, for

classical Keplerian dynamics should be viewed as a small subset of

a much larger non-Keplerian domain.
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