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Abstract

A technique is developed which demonstrates how to interpret a large fully-populated filter

gain matrix as a set of scalar gains. The inverse problem is also solved, namely, how to develop a

large-order filter gain matrix from a specified set of scalar gains. Examples are given to illustrate

the method_.*

Introduction

The intent of the present work is twofold. First, the Scalar Gain Interpretation (SGI) of the

gain matrix for discrete f'flters is developed. The scalar interpretation provides the filter designer

with an easily understood description of large-order Multi-Input Multi-Out'put (MIMO) filters.

This interpretation can be used to aid filter designers in analyzing the effects of changes in the gain

matrix or other filter parameters. Second, a technique for determining a, fully-populated gain ma-

trix which satisfies specified scalar equivalent gains is demonstrated. Thus, in the common in-

stance that a filter designer does not know certain filter parameters, making the choice of the gain

somewhat arbitrary, the gain may be selected based on the scalar equivalents directly rather than

by assuming values for the unknown covariances.

The motivation for f'fltering is to obtain the best estimates of the true states of a dynamic

system, given a (generally imperfect) model and a (generally imperfect) set of measurements[5].

To illustrate the concepts of the paper and to motivate the discussion, consider the simple linear

discrete Kalman filter, which may be represented as [3]:

x_ + (la)= _kXk- 1

PZ = %_ xek- _or_ x+o.k_ _ (ab)

xk = -aL k u (Ic)

x+ =x_ + Kk (ld)k (zk - HkX- k )

ek+ = It- Kd-,,k]v_ (re)
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where x is the nxl state vector, _ is the nxn state transition matrix, Pk is the nxn state error cova-

riance matrix, Qk is the _n process noise, Kk is the nxm gain matrix, z_ is an rnx 1 measurement

vector modeled by

z k = HkX k + v k (2)

where H is the mxn measurement model, v is the measurement error vector, and R k is the mxm mea-

surement covariance matrix. The subscriptst- 1, k refer to discrete times tk_ 1, tk. The superscript

(-) refers to values based on measurements up to but not including zk, and the superscript (+) refers

to values obtained after including measurement z_.

The operation of the filter proceeds as follows. Eqs. (la) and (lb) are used to calculate the

state estimate and its error covariance between measurements. When a new measurement set zk is

obtained, Eqs. (ld) and (le) are used to update the values of the state estimate and its error covari-

ance. The updated values depend on the value of the gain matrix calculated using Eq. (lc), and so

the accuracy of the filter is directly tied to the determination of K k. Kk depends on the two cova-

riance matrices: R, representing the error covariance matrix of the measurements, and Q, represent-

hag the state error covariance introduced as a result of the approximation of the system dynamics

via Eq. (la).

Theoretically, the Kalman and related filters fred the unbiased minimum variance (or max-

imum likelihood) estimate of the state vector. Unfortunately, this is only true if all the noise and

system parameters are known exactly. In practice, neither the measurement noise covariance,R,

nor the process noise covariance,Q, is perfectly known. In fact, modeling errors may be far more

complex than what is theoretically modeled by the process noise. Moreover, the initial value for

Po may not be known. Thus, the filter design problem normally requires these matrices to be as-

sumed at least somewhat arbitrarily. For a large, fully populated, non-square gain matrix, it is very

difficult to interpret the correlation between the assumed covariances and the filter performance.

Often, the gain matrix itself is simply assumed directly. If the assumptions are poor, then the filter

will be suboptimal, and in certain cases, the filter may itself become unstable [11].

The main motivation behind the scalar gain interpretation is to give the filter designer some

insight into the process of designing a filter and an understanding of how the gain matrix affects

the MIMO estimation. Although the theoretical development of classical filtering techniques is

sound, the practical implementation of the theory is difficult due to the unknown numerical values

of the process noise covariance matrix, and measurement noise covariance matrix. In the case of

a scalar filter, the effect of the gain is readily apparent. In order to fred an easily understood inter-

pretation of the M1MO gain matrix, a parallel between the scalar filter and the MIMO filter gain is

found. This parallel then allows the filter designer to visualize the MIMO filter as several scalar

filters.

There are two major reasons why the fdter designer's intuition has been removed from the

design process. The first reason is due to breakthroughs in estimation theory. For example, many

algorithms and theories have been developed to fred the noise and filter parameters for the Kalman
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filter and its gain. Mehra [1] used the innovation sequence property to identify the process noise

covariance matrix and the measurement noise covariance matrix. In other methods adaptive Kal-

man filters have been devised to determine the unknown noise and system parameters [8]. Algo-

rithms such as least squares [8] and the dead beat process noise estimator [7] have also been used

to determine the noise and system parameters. However, these algorithms do not describe the ef-

fect that the newly found Kalman gain has on the estimation. Other adaptive filters attempt to fred

the Kalman gain directly [2,9,10]. The accuracy of these techniques varies greatly from case to

case, but in any event the interpretation of the gain matrix is difficult at best.

The second reason is that high order systems diminish a designer's general understanding

of the effect the Kalman gain has on the estimation. In the scalar case, the affect of the Kalman

gain on the estimation is obvious. But as the order of the system increases, the interpretation of the

Kalman gain matrix, which determines the optimal estimates, becomes vague.

Incorporating the robust methods mentioned above and the scalar gains interpretation, the

MIMO filter designer can determine the best gain and still retain insight as to how the gain affects

the estimation.

Scalar. Inte.rpretation

The Scalar Filter

To define the problem in this paper, consider a scalar system represented by Eqs.(1).

Eq.(la) provides the state estimate, from the filter model, at time tk, based on the estimates ob-

tained through time tk. 1. At t k, measurement zk becomes available. Eq.(ld) is used to update the

state estimate based on the residual between zk and the predicted value Hex _.

In the scalar case, if H=I (i.e., the state is measured directly), the gain Kk has a value be-

tween 0 and 1. At Kk=l, the filter relies only on the measurement

x k =x k- 1 (Zk-X'k) =z k

At Kk= 0 the filter relies only on the model estimate:

+
x t =x-_ - 0 (z t -x't) =x-_

When the value of K t is between one and zero, the filter takes a weighted average of the model and

the measurements. In the scalar case, Eq.(ld) can be solved for Kt to obtain

+ -x_x k

Kk - (3)

zt - Hex tc

To "normalize" the gain to lie within 0 and 1 we define the "physical scalar gain" (PSG) as
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PSG -

This concept is illustrated in Figure 1.

Hk x+ - HkX"

zk - Hex"
(4)

)<

D

where:

X is the measurement zk

O is the model estimate Hx"

[] is the updated estimate I-Ix+

Figure I Graphical interpretation of the scalar filter gain

In Figure 1, D is the residual between the model output estimate and the measurement. It

can be seen that the PSG represents the amount, A, of the residual used in the update, divided by

the total residual, D, i.e.,

Hk x+ -HkX" total correction update estimate - model estimate
PSG - - =

zk - Hkx" total residual measurement - model esmnate (5)

Thus in the scalar case, the physical scalar gain and the Kalman gain are equivalent if the

measurement is the state of the filter.

The effect of the filter parameters Q and R on the gain and state estimates can be seen by

examining the scalar Kalman gain given by Eq.(lc)

p- T

KI¢ : [_HIcp_HT +R_.] (6)
L. k

The Kalman gain can be written as a function of Q and R by substituting the error covariance/'" :

K k =

( 0 n+ dpT T
k- l--k- 1 k-l+Qk-1)Hk

+ T
IHk (C_k_ lPk_ l OT_ l +Qk_l) Hk + Rk_ (7)

For the scalar case where H=I this simplifies to
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@k_ IP;_ I_T_ I +Qk_ 1

+ (8)
Kk - _k-IPk-1OT-I+Qk-I+Rk

From Eq.(8) it can be seen that ff Q is large and R is small, then the denominator and the numerator

will be approximately equal. This scenario describes the filtering of a good measurement with a

poor model. In this situation the optimal filter relies primarily on the measurements. The other ex-

treme occurs when Q is small and R is large (poor measurements and a good model). The gain for

this case is close to zero.

The effect of Q and R on the Kalman gain matrix is very difficult to interpret in the MIMO

triter case. With the scalar gain interpretation one can clearly see the effect of Q and R on the Kal-

man gain matrix, by examining the scalar equivalents.

The Scalar Equivalents for the MIMO filter

In the previous section, the theory of the Kalman filter and the concept of the physical sca-

lar gain (PSG) have been given. In this section, the scalar gain interpretation for MIMO filters is

derived. The concepts of the scalar gain interpretation are applicable to any order MIMO system,

and to any filter gain. Consider the matrices of Eq.(ld):

Kk _ 1"" : H;,= : ... •

n l ::: knmJ k ['hml "'" h "mnjk

Xk = Irk =

k k

Expanding Eq.(ld)at time tk, we may write

+ = x] + - " hl, .x_,)+x I kll(Z 1 hl, lXl-.-.-

•" +kl, m (Zm- hm, 1x] - "'" -hm, _x_)

: : : (9)

_.+=_ +k., 1_zl-h,, 1_]-... - hl,._) +

"'" + kn, m (zm - hm, lXl - "'" - h m, nX'n )

where the subscripts now refer to position in the vector or matrix at time tk. Eq.(9) can be written
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in asimplifiedform by definingD i as

D i = (z i-hi,lx-I - . ..... -hi, nX'n ) i = 1 .... r_ (10)

D i represents the residual between the i th measurement and the i th element of the predicted model

output Hx'. Eq.(ld) can now be written as

+
xj = x; +Kj, iD i j = l...n (11)

Thus, the elements of the jth row vector of Kk describes how much of each residual is used in the

estimation of the flh state.

In order to find the PSG associated with each residual D i, the state estimates must be con-

vetted to the output estimates by multiplying by output matrix H:

m

yj = Hj, x i + _ (H_O j, iDi (12)

i=l

In Eq.(12), yj is the estimate of thef h output at time tt using all measurements including z/o and Hj

is thej th row of the output matrix. Comparing Eq.(12) with Eq.(4), the physical scalar gain for a

MIMO f'flter is described mathematically as:

(1"110 il (z -Hx') 1 + ""+ (H10 im (z -Hx') m

PSGi= (13)

(z-Hx')i

In the typical case where the ith estimated output is strongly dependent on the i th measurement but

not on the other measurements, Eq.(13) simplifies into:

(H10 ii (z - Hx" ) i

PSG i - = (H10 ii (14)

(z-Hx') i

If this assumption is not valid then the concept of the physical scalar gain is still valid, but the PSG

is not a constant since the random elements of the numerator in Eq.(13) are not canceled by the

denominator as in Eq.(14). However, for stationary measurement noise statistics, the expected

value of the PSG's are constant. The HK matrix still contains the scalar percentages of the resid-

uals used in the estimation of each output estimate. Comparing Eq.(13) and Eq.(14), the PSG's

approach constants if HK becomes diagonal dominant. The concept of the scalar gain interpreta-

tion and the diagonal assumption for the HK matrix is reinforced in the expectation analysis sec-

tion.

The scalar gains can be used to monitor the effect of Q and R. If 12 is large and R is small

then the corresponding scalar equivalent gains should all be close to 1. In the inverse case if R is

large and 12 is small the scalar gains should be close to zero. In the common situation where 12 and

R are not well known, checking the scalar gains can aid in interpreting the effect of assumed values

of Q and R.

To illustrate the equivalence between the physical scalar gains and the full gain matrix con-

sider the following simple example, where n--4 and m=2.
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Let

_°°1,0,:_
k= x'-- 0.2

O05 0.30.51

Substituting into Eqs.(1), we find

nx ° _. E'o_].o_.--,--['o:]
KD = .0

Lo:,J.0

+ .2
x =x'+KD=

io:,j.4

Eo'._;IY = Hx+ = .2

_EOo_O_]
The physical scalar gains (PSG) are

[o'",]-['o_I
Hx + - Hx" .2 .

z - Hx"

The physical scalar gains are the same as the diagonal elements of the diagonally dominant

H K matrix.

The Expectation Analysis

The PSG described in Eq.(14) can be written in the following simplified form:
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m

(HK) j; [z,- (Hx')i]
i=]

(PSG)j = (15)
[zj- (Hx) j]

Performing the expectation analysis of the PSG results in the predicted numerical value of the PSG

at steady state. This value describes how much weight is placed on the measurement vs. the model

of a particular measurement estimate. The expectation analysis of the PSG is similar to the analysis

of the error covariance [3]. As in the case of the error covariances the PSG is squared and then the

expectation is taken:

II II(HK) j; [zi- (Hx') i]

E[ (PSG)_] = g .'
[zj- (Hx') j]

(16)

Since H and K matrices are time invariant (constants), they can be taken outside the expectation

nl m

E E (HK) jI(HK) j rE{ [zi- (Hx') i] [zt- (Hx') t] }

E[(PSG)}] i=I,=I (17)
E { [zj- (Hx')j] [z i- (nx')fl }

The expected value in the numerator and denominator is expanded by substituting for z=Hx+v.

E{[Hx+v-Hx] [Hx+v-Hx']r}=E{[H(x-x-) +v] [H(x-x') +v] r} = RHS

The right-hand side can be expanded by multiplying out the internal terms to obtain

RHS = E {H (x -x') (x-x') rHr+vv +H (x -x') vr+ v (x-x') rHT } (18)

Note that (x-x') = e" , E[vv r] = R and E[e'(e') r] = P'xx Eq.(18)now simplifies into

RHS=HP_fftr+R +ttE{v (e') r} +E { (e') vr} Hr (19)

Assuming that the noise vector, v, and the estimation error, e, are uncorrelated, the last two terms

in Eq.(19) are zero. Eq.(19) can now be written as:

RHS=HP',ff-1 r + R (20)

Substituting this back into Eq.(17) yields

101 m

E E (HK)j i (HIOj t(HF_J'Ir+R)

E[ (PSG)_.] = ;=lt-I
[Hi(,"L) flI +n j]

_ (HIOj [HP'_j-Ir+R] (Hit')7

[+6('%)jyl +'%]
(21)

If HK, R and He'_xl-1r are diagonal matrices, then Eq.(21) may be simplified to

E[ (PSG)}] = (HK)_j (22)

This assumption is valid for systems where the covariance error matrix is diagonal; therefore, the

errors associated with the states are not coupled. Taking the square root of both sides gives the
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expression for the approximation of the expected magnitude of the PSG.

Jel <esa) l = T
'1 w:o',,) :yI (23)

The square root of the squared expected value PSG is a function of not only thef h measurement

but also of the other measurements and the residuals associated with them [Eq.(23)].

Finding a Fully Populated Gain Matrix

Determination of Q and R (or directly, K) is rarely simple for a large order filter. Since it

is easier to determine and understand a scalar gain rather than a fully populated gain matrix, MIMO

filters are often written as sets of decoupled scalar Filters. The process of transforming a MIMO

filter into several scalar ones is clumsy and may result in errors. This is the primary motivation for

finding a method to determine an equivalent fully populated gain matrix from a set of scalar gains.

Let the specified scalar gains be placed in the diagonal G d matrix (mxm). The fully popu-

lated K matrix is determined by equating the scalar gains to the HK matrix. If n is a square matrix,

then premultiplying both sides by the inverse of H yields an equation for the gain matrix as a func-

tion of the scalar gains:

H-1HKd =H-1Gd
(2"0

K d = H" 1 Gd

where Ka is the MIMO filter gain matrix designed from the scalar gains. Since H is generally not

a square matrix one can not use this procedure to determine Kd. To circumvent this problem the

Moore -Penrose Pseudoinverse [4,6] is utilized to determine the pseudoinverse of a non-square ma-

trix H:

K d = (H)*'I Gd (25)

where ( ) *-1 represents the pseudoinverse.

This method of determining a fully populated gain matrix from a set of scalar gains, con-

strains the output of the filter. It does not constrain the states of the filter. Since the scalar gain

interpretation is associated with the output of the filter and not the states, then the fully populated

gain matrix found from these gains is forced to have the same output as dictated by the scalar gains.

A design gain matrix that has the same scalar gains as another fully populated gain matrix will have

the same output estimate but not necessarily the same states.

Simlalation Results

A filter simulation is used to verify the theory of the scalar gain interpretation. There axe

two objectives of this section. The fn'st objective is to demonstrate that the SGI does approximate

the scalar gains of the falter. The second objective is to verify that a fully populated gain matrix

can be determined from a set of specified scalar gains.
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To accomplishthefirst objective an 8th-order time-varying Kalman f'dter is used. During

the execution of this filter the average physical scalar gains are calculated. These averages are

compared to the expected scalar gains to validate the scalar gain interpretation. To ensure a fair

comparison, the constant gain filter is implemented with the steady-state gain matrix, K. The phys-

ical scalar gains of both f'flters are compared to prove the equivalence of the scalar gains interpre-

tation. The parameters and model of the filter are described in a problem statement.

The second part of this section uses the scalar gains from part 1 to determine the fially pop-

ulated design gain matrix, Kd A constant gain filter is implemented using Ka. The physical scalar

gains are calculated during the execution of the f'flter. The physical scalar gains are compared to

expected scalar gains to prove the equivalence of the design gain matrix to the set of scalar gains.

Then, the output estimates of both filters are compared to prove that the Kd and the original steady-

state gain matrix produces the same output estimates.

Consider the following example to illustrate the scalar gain interpretation. The measure-

ments are created from the following state space equations.

= Ax (26)
measurements = Cx + noise

A is the model of the states and C is the output matrix of a 8 state system. The true model of the

m_

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

-I0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

5.0 -10.0 5.0 0.0 0.0 0.0 0.0 0.0

0.0 5.0 -I0.0 5.0 0.0 0.0 0.0 0.0

0.0 0.0 5.0 -5.0 0.0 0.0 0.0 0.0

system is

The state transition matrix is use to find the state trajectories of the true model. A perturbed model

is used as the filter model. This perturbed model is created by changing the last four elements in

the true A matrix to -3.5 and changing -10.0, -5.0 to -9.5, -4.5 respectively. After the states have

been converted to output via the output matrix, 26% noise is added to the output to create the mea-

surements. The measurement noise covariances is _ ,: 2.2. t4x 4. These perturbations and simulated

measurements noise are arbitrarily; the values given here are simply for demonstration purposes.

The simulation is implemented for 500 and 1000 measurement points. The Kalman gain

reaches steady state at approximately the 200th time step. The steady state Kalman gain matrix is.
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K ._

0.5124 0.0068 0.0033 -0.0051

0.0115 0.6262 0.0057 -0.0002

0.0032 0.0039 0.5161 -0.0012

-0.0052 0.0001 -0.0013 0.5175

-0.0913 0.0622 0.0054 -0.0018

0.0740 -0.0829 0.0722 0.0058

0.0052 0.0615 -0.0847 0.0767

-0.0021 0.0023 0.0753 0.0407

The H*K matrix at steady state is

0.5124 0.0068 0.0033 -0.0051

0.0115 0.6262 0.0057 -0.0002

0.0032 0.0039 0.5161 -0.0012

-0.0052 0.0001 -0.0013 0.5175

The expected PSGs and the diagonal elements of the H*K matrix are almost identical, since the

noise covariance, error covariance, and process noise are assumed to be diagonal. Since the H*K

matrix and the expectation gain are diagonally dominant the scalar gains can be found by Eq.(23)

or by taking the ii th element of H*K. The expected scalar gains are

Table 1: The Scalar Gain

gain 1 gain 2 gain 3 gain 4

10.5122 0.6261 0.5161 0.5174

The average physical scalar gains (PSGs), of the time-varying filter simulation, are calcu-

lated using the matrix form of Eq.(4), which is equivalent to Eq.(13). The average physical scalar

gains of the time-varying filter are

Table 2: The average PSG of the variable

ave PSG gain 1 gain 2 gain 3

lain f'dter

gain 4

500 pts 0.5851 0.6191 0.5743 0.5211

1000 pls 0.5591 0.6188 0.5156 0.5190

Notice the similarity between these gains and the expected gains.

Next a constant gain filter is executed with the steady-state gain matrix shown above. The

average PSGs of the constant gains filter are
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Table 3: The average PSG of the constant gain f'dter

ave PSG gain 1 gain 2 gain 3 gain 4

500 pts 0.5842 0.6189 0.5747 0.5202

1000 pts 0.5586 0.6187 0.5158 0.5185

The PSGs of the constant gain Filter and the time-varying filter approximate the expected scalar

gains in Table 1. The average PSGs from the constant gain Filter are closer to the predicted physical

scalar gains, since the gain matrix of the time-varying filter does not reach steady state instantly.

As the number of cycles increases this average approaches the predicted value. This trend can be

seen in the comparison between the 500 and 1000 point average. The physical scalar gains of these

Filters are constantly fluctuating, but the average of these gains approach the expected PSGs as time

goes to infinity. This fluctuation is due to the off-diagonal residuals of the H*K matrix.

The second objective of this section is to prove that the design gain matrix can be found

from the scalar gains. This gain matrix will produce the same estimated outputs. The set of scalar

gains used in this part are taken from Table I. The design gain, Ka is determined for a diagonal

dominant H*K matrix and the diagonal Ga. This is done to test the uniqueness of the method.

The Ka is found from the diagonally dominant H*K matrix. A constant gain Filter is execut-

ed with this Ka. matrix and the same initial conditions as in part 1. The average physical scalar

gains of this Filter are

Table 4: The average PSG of the design gain filter

ave PSG gain 1 gain 2 gain 3 gain 4

500 pts 0.5948 0.6175 0.5109 0.5288

1000 pts 0.5510 O.5936 0.5176 10.5216

Like the constant gain and time varying gain filter, the PSGs of this filter are not constant.

Next, the Kd for a diagonal Ga is found. The gain matrix that is produced from this method

only uses the ith residual to determine the ia' estimate. The PSGs are not a function of the off-diag-

onal residual effects, therefore physical scalar gains of the diagonal gain Filter are constant. The

diagonal elements of the Ga matrix are taken from Table 1. The average PSGs are

Table 5: The average PSG of design.diagonal gain filter

ave PSG gaml gam2 gam3 gain4

500p_ 0.5122 0.6261 0.5161 0.5174

1000p_ 0.5122 0.6261 0.5161 0.5174
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Thephysicalscalargainsof thediagonalgainfilter areconstant;therefore,theaveragePSGisalso
constant.

Tables2,3,5 illustrate how aU three constant gain filters approach the predicted scalar

gains. The comparison of 500 and 1000 points sets of average gains illustrate how the accuracy of

approximation increases as time goes to inf'mity. Therefore it can be inferred that the SGI is a good

approximation of the true physical gains of the filter.

Since the scalar gains are the same, the output estimates should be the same. Figures 2-4

contain the fin'st output estimates of the three constant gains filters.

constant gain filter output of position 120 ..... ' '

10

0

-lot-
-20 ' ' ' ' _ ' '

0 1 2 3 4 5 6 7 8 9

tilde

Figure 2 The output estimates of the constant filter
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20 , filter output of position 1
I I ! I I

o

10

0

-10

-20
0 1 2 3 4 5 6 7 8 9

time

Figure 3 The output estimates of the constant design gain filter

20

10

0

-10

, diagonal filter output of position 1

I ! ! !

-20 , _ _ , 1 , I ,
0 1 2 3 4 5 6 7 8

time

Figure 4 The output estimates of the constant diagonal design gain filter

Figures 2-4, which contain the first output estimate, are essentially identical. Therefore the

three constant gain filters have an equivalent effect on the output estimates and it can be inferred

that a gain matrix can be found from a set of scalar gains. This accomplishes the second objective.
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Conclusion

This paper has demonstrated that a large fully populated gain matrix can be interpreted as

a set of scalar gains; and, conversely, a fully populated gain matrix can be developed from a spec-

ified set of scalar equivalences. The simulation results verify that the scalar gain interpretation is

a good approximation of the true filter scalar gains associated with the gain matrix. The accuracy

of this approximation increases as the number of measurements samples approaches infinity. Also,

the results showed that a fully populated gain matrix can be found from a set of scalar gains. The

fully populated gain matrix found from this method is not unique. This was demonstrated by the

comparison of the filtering results of the Kalman gains found by the diagonal Ga and the diagonal

dominant H*K matrix.

With the scalar gain interpretation, filter designers can easily interpret the effect of assumed

values for the covariance matrices Q and R (or, the gain matrix itself). Alternatively, the scalar

gains may be specified directly and the equivalent fully populated gain matrix may be found.

Pxeferences

[1 ] Mehra, R. K.," On The Identification Of Variance And Adaptive Kalman Filtering", IEEE

Transactions Automatic Control, vol. AC-15, pp. 175-184. 1970.

[2] Leondes, C. T., and Sin, T. K. "Identification Of Both The Unknown Plant And Noise Pa-

rameters Of The Kalman Filter", Inter. J. Sys. Sci.,vol 1I, no. 6, pp. 711-720., 1980.

[3] Gelb, A., Applied Optimal Estimation, MIT Press,1974.

[4] Golub, G.H., and Van Loan, C., MATRIX Computations, John Hopkins University

Press, 1985.

[5] Chui, C. K., and Chen, G, Kaiman Filtering With Real-Time Applications, Springer Se-

ries in Information Science 17, Springer-Verlag, 1987.

[6] Albert, A., Regression And The Moore-Penrose Pseudoinverse, Academics Press 1972.

[7] Gutman, P., and Velger, M., "Tracking Targets With Unknown Process Noise Using Adap-

tive Kalman Filtering", Proceedings of the 27th IEEE Conference on Decision and Con-

trol, vol 1., pp. 869-874, 1988.

[8] Moghaddamjoo, A., and Kirlin, R.L., "Robust Adaptive Kalman Filtering With Unknown

Inputs", IEEE Transactions on Acoustics, Speech, and Signal Processing, v27, n8, pp.

1166-1175, Aug 1989.

[9] Sinha, N.K., and Alvan, T.," Adaptive State Estimation For Systems With Unknown Noise

Covariance", Int. J. System Sci., v 8, n4, pp. 377-384, 1977.

[I0] Carew, B., and Belanger, P. R., "Identification Of Optimal Filter Steady State Gain For

Systems With Unknown Noise Covariance," IEEE Tran. A.C., vol. AC-18, pp. 582-589,

1973.

[11] Fitzgerald, R. J., "Divergence Of The Kalman Filter", IEEE Tran. A.C., vol. AC-16, pp.

736, 1971.

521




