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1 Introduction and Statement Of the Problem

The traditional AI answer to the decision making problem for a robot is plan-

ning. However, planning is usually" CPU-time consuming dependent on the
availability and accuracy of a world model .......

The Dyna system generally described in [1], uses trial and error to learns a
world model Milch is simultaneously used to plan reactions resulting in optimal

action sequences. It is an attempt to integrate planning, reactive and learning

systems.
The architecture of Dyna is presented ill figure 1. The different blocks are

described in the following. For details, see [1].
There are three main components of the system. The first is the world

model used by the robot for internal world representation. The input of the
world model is the current state and the action taken in the current state. The

Output is the corresponding reward and resulting state.
The second module in the system is the policy. The policy observes the cur-

rent state and outputs the action to be executed by the robot. At the beginning

of program execution the policy is stochastic and through learning progressively
becomes deterministic. The policy decides upon an action according to the out-

put of an evaluation function which is the third module of the system.
The evaluation function takes as input, the current state of the system, the

action taken in that state, the resulting state, and a reward generated by the

world which is proportional to the current distance from the goal state.

2 _- "

r



r==l

EVALUATION
FUNCTION,

.-!

i HeuHstic
Reward
(scalar)

Reward
(scalar)

State

POLICY

w

OR_, WORLD

WORLD MODEL

Action

Figure 1: Dyna architecture. Reprinted from [1]

A slightly different version of this approach is the rei,lforcement learning

method called Q.learning [2]. At each discrete time step k = 1,2,-.- the con-

troller (a mix of evaluation function plus policy) observes the state xk of the
world, selects action at:, receives a reward v_ and observes the resultant state

Zk+l. The objective is to maximize the expected discounted sum of future
reward

OO

E[E _',.,.+_], 0 < -__<1
j=0

The recursive relationship

O(x, a) = E[,'k+ 7 m_,xO(_+,, b)lxk= _, _k = a]

is satisfied by a function Q which is the expected discounted sum of future

reward for performing action a in state x and performing optimally thereafter.

An optimal control rule can be expressed in terms of Q. At each step the optimal
action for state x is selected as the action a that maximizes Q(x, a). Thus, given

the observations xk, ak, rt, and xk+l, the estimate Q of Q is updated at time

step k:

O(x_, ak) = 0,(':_,"_) +/3_[,'_+ r ,n:x 0(_,_, b) - _)(_, a_)] (1)
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If flk is a gain sequence such that

0</3_ < 1

OD

k=l

k=l

and all actions continue to be tried from all states

P(klhn O_ = O) = 1

Deterministically selecting the action that maximizes O is analogous to a

steepest descent search, and is prone to getting stuck in local minima. To

correct this problem, the next action is chosen randomly where the probability

of choosing action a ill state x, P(a]x) is a function of Q(;r,a). Using this

scheme the estimated best action has the greatest probability of being chosen,

however the randomness allows the system to escape local minimum that will

eventually be smoothed through learning. As time progresses these local minima

are eliminated from Q, allowing the selection process to become increasingly
deterministic.

The Q-learning method was actually used in our implementation instead

of the policy and evaluation functions of the Dyna algorithm. The modified

algorithm is

1. Decide if this is a real experience or a hypothetical experience. For each

real experience, do N hypothetical experiences;

2. Pick a state zk. If this is a real experience, use the current state. Other-

wise, use a random stale.

3. From the value of O(z_,ai,), Vi choose randomly action a for state xk,

using a Boltzmann Distribution

exp(Q(x, ai))
P(ailx) =

_"_.jexp(O(z, aj ))

4. Do action a. From world (real experience) or world model (hypothetical

experience) obtain next state xk+l and reward r ;

5. Update (_(x, ai) using (1);

6. Go to step 1.
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Figure 2: Simple world for a navigation problem. Reprinted from [1]

2 Proposed Work

Originally, the work proposed was:

rl} to implement t_te simple 2-D ,vorld described in [11 where a "robot" is nav-
igating around obstacles to learn the path to a goal, by using lookup tables

as described in the paper. The purpose of this step was to demonstrate

the convergence properties of the algorithm.

2. to substitute_the wor[d model and Q estimate function Q by neural net-

works,

"3. to apply the algorithnl to a more complex world where the use of a neural

' network would be ful]y justified. In a complex world the completeset of

state/action pairs becomes prohibitively large and renders a lookup table
method impractical. A neural network should be able to generalize to

state/action pairs which have not yet been encountered by the robot, this
property is very desirable in the planning stage of the algorithm.

In thd next t_vo_s_ctions, the system design and achieved results will be
described. First we implement the world model with a neural network and
leave Q implemented as a look up table. Next, we use a lookup table for the

world model and implement the Q function with a neural net. Time limitations

prevented the combination of these two approaches. The final section discusses

the results and gives clues for future work.

=

3 Results Using Lookup Tables for the World

Model and Q function

The problem consists of a 2-D world with obstacles where a robot is located at

a starting point and must reach a goal stale G with no a priori knowledge of
the world or the goal. The robot, receives a reward r = 1 when it reaches G,
and zero reward otherwise.

The world can be modeled as a finite automaton. The Primitive Actions of

the robot are move commands. The robot can move UP, DOWN, RIGHT, or

LEFT, within the confines of the world shown in figure 2.
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Given tile low dimensionality of the problem, the world model and Q function

were implemented as lookup tables. After an initial random walk first trial (until
a reward r = 1 is received), tile algorithm learns very quickly short paths to the

goal. However, the shortest path is not always obtained, which is a result of the
system getting stuck ill local minima. Bot.h the random and deterministic cases

were successfully tested, as reported in figure 3.

4 Implementing the World Model by a Neural

Network

In the above sections we have shown that when the system is given a perfect

world model, it can learn an optimal path to the goal on the second trial.

While this result is encouraging, the t_ssumption of an exact world model is a

very strong condition that most likely will not be satisfied by actual systems.

Therefore the next step of the project w_,s to implement the world model with
a neural network.

The original system which is described above is modified ill the following
way. While the robot is moving around ill the world during an actual trial, each

state, action, next state tuple is stored to a file. When the robot has found the

goal state, tim trial ends. Before planning begins, the system recalls each state,
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action, next state tuple and after preprocessing uses this tuple as a training

sample to the network. The test samples are shown to the network cyclically
until some error criteria is met. Once the world model has been trained, the

planning routine is executed. The planning routine, sends the network a tuple
specifying tile curreut state and action that is to be executed in that state. Tile
network returns the next state and the reward associated with that state. It

has been found (by experimentation) that it is sufficient to show each training

sample to the network once. This has significance for on line implementation.

The final algorithm essentially learns the world model on line.

There are several advantages to using a neural network for the world model.

The first advantage is that it is highly improbable that all of the possible state-
action pairs will be tried during tile first trial run in the world. A system which

explicitly stores state, action, next state tuples, and uses these tuples for the

planning phase, would not be able to generalize to state-action pairs which had

not been experienced by the automaton. However for planning to be successful,
the result of all state-action pairs needs to be available to the routine. The

generalization capabilities of neural networks are ideal because they can induce
the result of a state-action pair that has not been shown to the network in its

training set. Another advantage to using a neural network to approximate the
world model, is that the a neural network is relatively insensitive to noisy data

collected from the world. Another advantage is that a neural network should

be able to model a world which is stochastic. We have designed experiments

that demonstrate the ability of neural networks to perform adequately in the

presence of data noise, and in the case of a stochastic world. These experiments
will be described later in this section.

4.1 World Model Representation

The first issue in the design of a world model was how to represent the world
with a neural network. Tlle specifications for the world model are as follows.

The world model is sent the x, y coordinates of the current location of tlle

robot, and the action that the robot takes in that state. The world model
returns the next state of the system and the reward associated with the action

taken in the previous state. For this project a positive reward was given when
the robot entered into the goal state, and a negative reward was given when tile
robot moved into an obstacle or into a wall. Four different approaches to the

world model were tried and analyzed. Unfortunately data regarding the first

two approaches was not saved and therefore is not available.
The first representation is to use three analog input units and three analog

output units. The first two input units represent tile x and y coordinates of the

current position occupied by the robot. The third input unit is tile action taken

by the robot in the current state. The first two output units represent the x

and y coordinates of the robot after executing the action. And the third output

unit represents the value of the reward given to that action. Linear transfer
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functions were used at the output, and sigmoidal transfer functions were used

at the hidden layer.
The second representation uses nine binary input units and nine binary out-

put units. The meaning of the units is similar to the first representation except
that the x, y coordinates and action are converted to binary. The presence of

a binary reward is represented by the eighth output unit, and the presence of

a negative reward is represented by tile ninth output unit. Sigmoidal transfer
functions were used for all units.

The third and fourth representations take advantage of the fact the world can

be represented by a finite automata. For any given state-action pair the system

will do one of two things; 1) it moves according to action, 2) it does not move

due to the presence of a wall or barrier. The reward is similar; when the system
moves, it either receives a reward (corresponding to the goal) or it does not. If

the system does not move, it always receives a negative reward. Therefore the

automata can be represented with two binary output units. The first indicates
whether the robot moves or not, and the second signals tlle presence of a positive

reward. The third representation uses binary inputs, similar to the second
representation. The fourth uses analog inputs similar to the first representation.

Sigmoidal transfer functions were used for all units in these representations
The third and fourth representations were analyzed and the training and test

set error are plotted in figure 4.1. The plot labeled "Network 1" corresponds to

the third representation, and the plot labeled "Network 2" corresponds to the
forth representation. As can be seen froth figure 4.1, training error is smaller for

binary inputs. Surprisingly however, the test error is similar for both cases and

is actually worse for binary inputs as the training set is repeatedly shown to the

network. Test sample error is the most important evaluation of the performance
of the network, therefore we decided to go with the forth representation. This

representation also offers the advantage that it requires the fewest units and

thus optimizes training and recall speeds.
Due to the reduced size of the output layer,the third and fourth represen-

tation are clearly better than the first and second. It is reasonable to expect

that the performance of the first and second will be similar to the forth and
third respectively. Therefore we feet that we are justified in choosing the forth

representation over the first and second, even though we have not explicitly

compared them experimentally.

4.2 Network Design

In this subsection, we will describe the design of the network.

network parameters must be specified.

The following

1. The number of hidden layers.

2. The number of hidden units.
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3. The step size ETA.

4. The momentum gain MOM.

All parameters will be chosen according to experimental results. Network

performance verses sample size is also considered. In our system, the number of
samples shown to the network is determined by the (initially random) walk of

robot. The number of samples has ranged from 120 to 3360. It will be shown

later that the system is self correcting with respect to sample size.

The first tests that were performed were with the number of hidden lay-

ers. The squared error of randomly generated training and test samples were

compared for one and two hidden layers. Tile result of these tests was that

the training error decreased slightly for two hiddeu layers, but the test error
increases. Also, the training t.ime of the network with two hidden layers was

significantly longer. Based on these results we decided that one hidden layer

was sufficient for this project.
In order to analyze tile effects of the four parameters listed above the follow-

ing experiment was designed. A routine initially generates a random state. The

robot, then randomly wanders around tile world generating a specified number

of samples. The number of samples generated is indicated in figures 4.2 - 4.9,

by the field SAMPLES. The test set was generated in exactly the same fash-
ion. Therefore the test set may contain samples in the training set, but will

also contain many samples that are not present in the training set. (Although,

most neural network application require that the training and test samples are

disjoint, it was decided that because the actual usage of the network will be in

exactly an analogous fashion, that this type of analysis would be more informa-

tive.) The number of test samples was always 500. Most cases shown in figures
4.2 - 4.9 have 100 training samples.

Figures 4.2 - 4.9 show plots of four types of error. "Train err", and "test err"

are the squared error on the training set and the test set respectively. "train

miss" and "test miss" are the percentage of the training set and the test set
that are incorrect after the output unit has been rounded to plus or minus 1.

"Train miss," and "test miss" give a better indication of the error that will be

seen by our particular system.

There are comparison graphs which compare training and test error, for each

of the cases considered. These figures will not give exact quantitatively accurate

comparisons of the different cases. However, qualitatively the general behavior

of plot should be accurate.
Number of Hidden Units. Figures 4.2 - 4.3 show error plots for varying

hidden units. Hidden units of 3, 5, 10 and 30 were examined. Figure 4.4 directly

compares the squared error for varying hidden units. In all cases, the training

error is monotonically decreasing as expected. The results with the test error
are very interesting. While 5, and 10 hidden units result in test error which is

decreasing. 3 and 30 hidden units show test error which gets worse after a large
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number of training cycles. It was explained in class that we should expect this

behavior if our training set had a noise component, since the network would

eventually attempt to fit the noise. In this case, however, we do not have noise

in our training set. One possible explanation of this behavior is that after a
certain number of training cycles the value of the weights becomes so large that

saturation begins to hinder generalization. In effect this is the same phenomena

as the problem with noise. The tile network learns to classify the training set,

but progressively performs worse on ally sample that is not in the training set.

Figure 4.4 indicate that 3 hidden units is not sufficient and that relatively little

improvement is observed by increasing the number of hidden units from 5 to 10.
Therefore the number of hidden units used in the project was chosen to be 5.

Step Size ETA Figures 4.5 - 4.7 show error plots for variations in the step

size ETA. As expected, the training error decreases more quickly for larger step

size. Strange behavior is observed for ETA = 0.1, and ETA = 0.05 seemed to

give adequate convergence, therefore ETA was chosen to be 0.05.
Momentum Gain MOM Figures 4.8 - 4.9 show error plots for variations in

the momentum gain MOM. The results are exactly as we would expect. For

no momentum the network converges very slowly. As momentum increases the

convergence of the network increases. However, for large MOM the network

does not converge at all. Due to these results we choose MOM=0.5.

Sample Size The size of the sample size is not a variable which we can chosen
in this problem, since the world model is essentially trained "on line." However
we did look at the absolute error levels to insure that the error decreases as the

sample size increases. This behavior was observed as expected.

The design of the world model will now be summarized. The world model
is implemented with a neural network with three analog input units and two

binary output units. The network has one hidden layer with five units. The

step size is 0.05, and the momentum gain is 0.5.

4.3 A Few Comments on Experimental Results

Several interesting effects were observed when the neural network explained
above was used to implement the world model. During the planning phase after

the first "real world" experience the behavior of the robot usually indicates that

the system has not adequately learned the proper world model. The robot is
oblivious to some of the obstacles a,ld therefore begins planning a route that

is obscured by an obstacle. During the next "real world" experience, the robot
follows the planned path until it runs into the obstacle. The robot then essen-

tially wanders around in the vicinity of tile location which the world model had

not previously learned. The robot repeatedly tries to move through the object,

and repeatedly fails. Each of these action-failures are then taught to the world
model. The next time the robot enters the planning phase, the world model has

been corrected in the very locations which are the most critical to the optimal

behavior of the system. Therefore the systems learns to avoid obstacles and
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paths which lead to these obstacles. This behavior provides a self correcting
aspect to the problem. Normal behavior of the system that the second "real

world" trial is usually longer than the previous trail, however the third trial is

usually optimum, or close to optimum.
The world which we have considered in this project is rather simplistic. In

order to get a feel for the systems ability to handle more difficult problems, we
have added a random component to the world. When the policy function returns

an action, and this action is given to the world, rather than deterministically

applying this action, the world applies it with probability P. The randomness

thus introduced can be thought of in several ways. P can be considered as a

probability of communication failure, or P can be thought of as an unexpected
occurrence in the world. The overall effect is to introduce incorrect training

samples.
The introduction of noise has several effects. The most surprising effect

for us was that the noise actually helps the system to converge. Figure 4.10

shows typical behavior of the system with several different values of P. P = 1 is

the deterministic case, and it can be seen that this case is actually the worst.

This seemingly odd behavior can be explained as follows. When the system is

performing its random walk, the robot will sometimes try to go up, and actually

go down. If down is a barrier the the world rewards a negative reward. The

Q function will then learn not to go up when actually up is a desirable action.
This "false" teaching, increases the initial walk of the robot. The increase in

the initial walk, increases the number of training samples shown to the network,

which improves the world model. Therefore planning is more complete, and the

optimal path is learned quicker.

5 Implementing the Q function by a Neural

Network

The reason why the Q functio,a was used instead of the Eval and Policy functions

was due to the difficulty of figuring out how to update the policy neural net, as

well as because the Q function provides a more general framework [2].

In [1] it is suggested that a lookup table indexed by states z and actions a

should be updated by wx_ak *- w,:_a_ + _(r + 7 EVAL(zj,+I) - EVAL(xk).
If we use zk, ak as inputs of a multi-layer perceptron, backpropagation will not

work here, clearly, since the target is be r + 3' EVAL(xk+I) but EVAL(.r._:) is

not the output of the network.

Using a neural net to represent Q, the inputs are zk, ak and, as in [2], the

target is r + 7maxb 0(a:_+l,b). A feedforward net with 1 hidde,a layer was

implemented. The non-linearity at the hidden unit is a sigmoid, while a linear
function is used in the output. Backpropagation was used to update the network.

Different number of hidde,l units (usually below 20), different r/, momentum
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gains and input implementations (integer, binary) were tested. 7 was made

equal to 0.9.

The major problem found is that, when a reward is received, the weights

are largely increased for the corresponding action and subsequent recalls from

the net will reflect the reinforcement of that action, whatever the state is. The

opposite case happens when, after a random walk by states far from the goal,

all actions are penalized, and the net "unlearns" all that was previously learned.

This happens since no previous training of the neural net is possible. The

method gives as target for a state a value based on the value of Q for the next

state. Thus, it is not possible to anticipate a training set! Another problem

is that, due to the asymmetry of the problem -- the best action from the

states before tile goal is going UP -- actions like LEFT and DOWN are rarely

experienced and the network can't learn how good they are for some states as

fast as it learns RIGHT and UP actions, for example.

When the number of hypothetical steps of the algorithm was increased, a

choice of small 77 (= 0.05) was made to prevent oscillations in the convergence

to Q and the inputs were binary coded to prevent influence of bigger integers

in the range, the states closer to the goal learned and stabilized at the right

preferred actions after a few steps. However, tile other states in "free-space"

randomly changed their evaluation and most promising action along time and

converged after a considerable amount of iterations (4 hours running in a Sun

workstation). The success was due to the increase of the number of times that

a state was visited, together with a slower but safer convergence of (_(zk, ak).

The following is a copy of the screen after almost complete convergence of

the algorithm. The numbers in the lower matrix are the values of the probability

of the best action for each state, and the character after them represents the

best action at that state. It is noticeable that a shortest path of 17 steps has

been achieved, and the algorithm only fails to improve since the DOWN action

from the start state has not been learned yet.
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6 Discussion and Future Work

The results presented ill this report are encouraging and suggest that the fea-

sibility of implementing both the world model and the Q function by neural
networks. This would become necessary if we were working with complex world

which could not be represented by lookup tables. The results show that general-
ization occurs and that the use of the neural network for a simple world improve

the performance of the learning algorithms with respect to lookup tables. Also,

Q function implementation using a neural net, even though hard to tune and

slow to converge, suggest strategies for similar implementation in more com-

plex problems. The lookup table version would prevent the application of the
Q-learning method to problems where generalization is strongly needed. The

self correcting nature of the system when tile world model is implemented with

a neural network suggest methods that could be used for error recovery within

planning systems.
Future work should thus proceed in tile following directions:

• Solve tile 2-D world problem presented above using neural networks for

both the Q function and world model;

Model more complex problems, such as robotic tasks, in a similar way to

the nmdeling of the "Robot. in a Maze" problem. Robotic tasks executed
on CIRSSE testbed are excellent candidates for this type of modeling. We

also think that Dyna planning is a possible approach for the Organization

Level of an Intelligent Machine. A world model would be required though,

for the hypothetical experiments.

Another approach may be to have a Markov process as the world. This

would probably require a net with stochastic units, and/or nets which

would learn the transition probabilities, such as a Boltzmann Machine, to
model the world.

• Make a detailed study of the tuning procedure and convergence process

for the neural network implementing the Q function.
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