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ABSTRACT

Fuzzy control is a methodology that translates natural-language rules, formulated by expert
controllers, into the actual control strategy that can be implemented in an automated
controller. In many cases, in addition to the experts’ rules, we have additional statistical
information about the system. In the present paper, we explain how to use this additional

information in fuzzy control methodology.

INTRODUCTION

There are two main methodologies that lead to automated control. If we have a mathematical description of
the system that we are going to control (either in deterministic, or in statistical terms), then we can apply
methodology of traditional control theory. If we do pot have such a description, but we have experts who
are good in controlling this kind of objects, then we can ask the experts to formulate the rules that they use

in whatever fuzzy, natural-language terms they can, and then apply fuzzy control methodology (see, €.g., (1,
2, 4]) to translate these rules into the actual control strategy.

then we can apply fuzzy control. If we have a

~ Both methodologies work fine. If we have enough rules,
del of the controlled object, and then apply

~ sufficient amount of statistics, we can build a mathematical mo

o -

o traditional control methodology.

~

o . . . .
Usually, when we start controlling some complicated object, we first do not have a mathematical model, so

m the only information we have is the experience of the expert controllers. Then, gradually, we get more and

0 more statistical information about this object, and eventually, we become able to apply traditional control
mathematical model, but we already

™ methods. During this transition period, we do not yet have a precise
have some statistical information about the object. While controlling the system, in course of time we get
some experience, and we can extract some statistical information from our experience. Since we now know
more about the controlled system, we would like to use this additional statistical knowledge to improve the

control strategy. How to do it?
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gestion is to wait until we have enough

At present there are no known ways to do it, and the only sug
d an optimal control and switch to this

information for applying traditional control theory, and then fin
control.

So, we need a method to «translate” probabilistic knowledge into fuzzy terms. In the present report, we
propose and justify such & method.

FORMULATION OF A PROBLEM: A REALISTIC EXAMPLE

ader a better understanding of what we are talking about, let us give a simple example of this
kind of a situation. Let us consider a control system whose purpose is to stabilize the value of some parameter
r at some desired value Zo, and this parameter is difficult to measure directly (e.g., the temperature inside
the nuclear or chemical reactor). We will consider the simplest situation, when it is possible to apply the
direct control u that changes the value of z in the desired direction: dz/dt = u. For such systems, the
optimal control can be described as a function u(Az), where Az = Z — To- When Az = 0, we do not need
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any control at all, so u(0) = 0. For Az close to 0 (i.e., for the situations in the vicinity of equilibrium),

we can neglect quadratic and higher terms in the Taylor expansion of u(Az), and thus approximate this
function u(Az) by a linear expression u = —kAz.

Since we assumed that the parameter z is difficult to measure directly, we can have two kinds of information
about its value: first, we can apply indirect (and therefore, not very precise) measurements. Second, we can
rely on the ability of the experts to control such systems and thus to estimate Az. Suppose that for some
situation (some combination of observable parameters), an indirect measurement resulted in an approximate
value = z, and that the standard deviation of this estimate (i.e., the mean square value of the difference
z — i) equals 0 (e.8, Z = 1.0, and ¢ = 0.5). We can assume that the probabilities of different errors are
normally distributed (this is more or less standard assumption in measurement theory). Suppose that for
this same situation, an expert uses his experience to estimate the actual value of z as “approximately X,
with precision = ¢” for some values X and € (e-g., “approximately 1.5, with precision ~0.5"). Using known
methods of fuzzy theory, we can describe this statement by 2 membership function p(z) whose maximum

corresponds to z = X (e.g., 2 triangular membership function).

If we use only the statistical information (i.e., the result of the measurements), then it is reasonable to apply

the value of the control u that corresponds to the most probable value of z, ie, u= —kz. I we use only
the expert’s estimate, then it is reasonable (according to well known defuzzification techniques) to apply a
control that corresponds to the most possible values of z, i.e., in this case, 2 control u = —kX.

Both estimates of = are not very precise: expert’s estimates are practically never precise, and about the
result of the measurement, we specifically assumed that it is not precise. Therefore, both control values —kz
and —kX are far from being ideal. So, it is desirable to combine these two types of knowledge and design a
better control strategy.

But how to do it? If we use statistical methods, then we do not know how to use fuzzy estimates. Besides,
even if we invent some methods to translate fuzzy estimates into probabilities, these fuzzy estimates will still
remain subjective expert’s estimates. Calling them probabilities will be misleading: if this “probability” of
an error is 0.5, it does not mean (as for usual probabilities) that this kind of an error occurs in half of the
cases. So, statistical methods are out of question. Hence, we must somehow use fuzzy methods to handle
both fuzzy estimates and probabilities. But how?

So,_what we need is a method to translate probabilities into fuzzy terms.
BASIC IDEA OF TRANSLATING PROBABILITIES INTO FUZZY TERMS

Fuzzy estimates of degree of belief: where do they come from? In fuzzy control, we start with the
unce- 1inty values that characterize our degree of belief that, say, 0.3 is small, or that 10 is big. Where do we
get these degrees of belief from? One of the standard ways to do so is to ask an expert to quantify his degree
of belief, say, on a scale from 0 to 10, and then, if he chooses some value D, to estimate his degree of belief
as D/10 (e.g., if he chooses D = 6, then his degree of belief is 60%). The readers who ever answered any
polls or sociological tests will easily recognize the standard way to quantify such vague notions as “degree
of satisfaction with the service”, etc.

In applying this methodology, one has to be very accurate in choosing a scale (107 57 100?). On one hand,
the bigger the scale, the better estimates we get. On the other hand, an expert cannot distinguish between
too many possible degrees of certainty, so there is no sense in using extremely long scales.

Optimal decisions are based on probabilistic estimates. In decision making, it is well known since (3]
that if decisions of a decision-maker are consistent (in some reasonable sense), then they have to be based
on some probabilistic estimates.

It sounds reasonable to assume that experts (whose decisions we are analyzing) are consistent decision-
makers (else they would not have been successful in control, and would not have been experts). So, it is
reasonable to assume that the decision-making process that is going on inside their brains is based on some

probabilities, i.e., is based on some statistical estimates.
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Let us apply optimal decision theory to experts estimating their degree of belief. How does an
expert get these probabilities? Suppose, for example, that someone asks an expert to estimate his degree
of belief in some statement A (e.g., that 0.3 is negligible). To give such an estimate, an expert recollects
(consciously or subconsciously) all the cases in which 0.3 (or a value that is close to 0.3) was tested, and
figures out when 0.3 proved to be really negligible, and when the difference of 0.3 caused important changes.
Suppose that totally, he recalls n cases, and in m of them 0.3 was negligible. Then a reasonable estimate for
the probability p(A) (i.e., the probability that 0.3 is negligible) is f = m/n.

The actual probability p can be different from f and, therefore, different values of m/n can correspond to
one and the same probability. Indeed, if we have a sequence of n independent events with robability p,
then the mathematical expectation of m/n is p, and the standard deviation ¢ of m/n is \/p(1 — p)/n. We
can now apply a “30— rule” from mathematical statistics, and conclude that for a given f, all the values
p such that |f —p| £ 3./p(1 — p)/n are possible. Therefore, the estimates m/n and m'/n can correspond
to one and the same probability p if there exists a probability p such that |m/n - pl £ 3+/p(1 —p)/n and
m/n - p| < 3/p(1 — p)/n. We say that the estimates are different if there is no such p. Now, we are ready
to form a scale: we take 0 as the first element fo of this scale; for the second element f;, we take the smallest
estimate that is different from 0; for f2, we take the smallest estimate that is different from both 0 and fi,
etc. Suppose that there are totally k elements on this scale. Then, when we must estimate our degree of
belief on a scale from 0 to k, we recall n cases, estimate f = m/n, and produce k for which fi < m/n < fe41-

Let us denote by f(p) the value of this scale that corresponds to a probability p. This is not a uniform
scale. because the distance between two consequent elements p and p+ Ap on this scale is proportional to
+/p(1 = p). In other words, Ap ~ /p(1 — p) leads to Af(p) = consi. For small Ap, we get Af(p) = f'(p)AP.
Therefore, from Af(p) = const and Ap ~ /P(1 = p), we conclude that the unknown function f(p) must

satisfy the differential equation f'(p)v/ p(1 — p) = const.

From the definition of f(p), we can easily conclude that f(0) = 0 and f(1) = 1. The solution of the above-
given diflerential equation with these boundary conditions is f(p) = 1/2+1 /maresin(2p—1). So, we arrive
at the following conclusion:

RECOMMENDATIONS

If we know the probability p(A) of some event A, and we want to use this information in the fuzzy knowledge
base, then we must to this knowledge base that we know A with degree of belief f(p(4)), where f(p) =
1/2 4 1/m arcsin(2p — 1).

APPLYING THESE RECOMMENDATIONS TO THE ABOVE EXAMPLE

Let us follow these recommendations on the above realistic example. In that example, it was necessary to
translate the following statistical information into the fuzzy language: that z is distributed according to the
Gaussian law, with the average value Z, and the standard deviation o.

For this information, the most probable value of z is #, and the bigger the difference between z and Z, the
less probable this value z. Hence, it is reasonable to translate this information into a membership function
p(z) that would attain its maximal value for z = #, and would monotonically decrease to 0 as z starts
decreasing or increasing. So, we are looking for a membership function of the type u(z) = g(|z — £|/0),
where g(z) is a decreasing function from (0, 00) to [0,1].

A reasonable interpretation of a membership function p(z) is as follows: for every value v from 0 to 1, our
degree of belief that it is possible for z to belong to the set {z : p(z) 2 v}, is equal to v. This means that
our degree of belief that it is impossible for z to belong to that set is equal to 1 — v. But the fact that it
is impossible for z to belong to this set means that z necessarily belongs to its complement {z : p(z) < v}
According to our expression of p in terms of g, the inequality p(z) < v is equivalent to |z| > ¢~ 1(v), where
¢! means an inverse function, and z = (z — £)/0. So, our degree of belief that |z|] > g~!(v) is equal to
1 — v. If we denote w = g~1(v), we conclude that v = g(w), and so our degree of belief that |z| > w is equal




Now, z has a standard normal distribution, and hence, the probability that |z| > w, Is equal to 2F(-w),
where by F(z) we denoted a (cumulative) distribution function of a standard normal distribution. According
to our recommendations, this means that our degree of belief that |z| > w, is equal to f(2F(—w)), where
f(p) is the above-described function. So, 1 — g(w) = f(2F (—w)), hence g(w) = 1 = f(2F(-w)), and

u(z) = 9(lz = £l/0)-

So, we have translated the statistical information into a membership function. Now, both parts of our
knowledge are expressed in fuzzy terms: statistical one on terms of this function p(z), and the original fuzzy
one in terms of some other fuzzy function go(z)-

Now, we can apply an & —operation to combine these two pieces of knowledge into a combined mem-
bership function pe(z) that expresses both parts of this knowledge. E.g., if we use min as &, then
pe(z) = min(u(z), po(2))- If we use product as &, then pe(z) = p(z)po(z). To this resulting function
pe(z), we can apply a defuzzification procedure and determine the appropriate value of z. (e.g., the value
for which p.(z) attains its maximum), and then apply the control u = —kz..
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