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Abstract: When a knowledge base represents the experts' uncertainty, then it is reasonable

to ask how far we are from the complete knowledge, that is, how many more questions do

we have to ask (to these experts, to nature by means of experimenting, etc) in order to

attain the complete knowledge. Of course, since we do not know what the real world is, we

cannot get the precise number of questions from the very beginning: it is quite possible,

for example, that we ask the right question first and thus guess the real state of the world

after the first question. So we have to estimate this number and use this estimate as a

natural measure of completeness for a given knowledge base.

We give such estimates for Dempster-Shafer formalism. Namely, we show that this

average number of questions can be obtained by solving a simple mathematical optimiza-

tion problem. In principle this characteristic is not always sut_cient to express the fact

,- that sometimes we have more knowledge. For example, it has the same value if we have an
O,

,._ event with two possible outcomes and nothing else is known, and if there is an additional

knowledge that the probability of every outcome is 0.5. We'll show that from the practical

0_¢u viewpoint this is not a problem, because the difference between the necessary number of

questions in both cases is practically negligible.

Keywords: complexity of knowledge acquisition, Dempster-Shafer formalism.

1. BRIEF INTRODUCTION TO THE PROBLEM.

Knowledge is usually not complete. The vast majority of modern knowledge bases

include uncertain knowledge, that is, statements about which the experts themselves are

not 100% sure that they are absolutely true. This uncertainty leads to uncertainty in

the answers to the queries: instead of yes-no answers, we get answers like "probably" and

"with probability 0.8". Sometimes the uncertainty is too high, and we cannot get anything

definite from the resulting expert system. When a knowledge base represents the experts'
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uncertainty, then it is reasonableto askhow far we are from the complete knowledge, that

is, i_owmany more questions do we have to ask (to theseexperts, to nature by meansof

experimenting, etc) in order to attain the complete knowledge. Of course, sincewe do not

know what the real world is, we cannot get the precise number of questions from the very

beginning: it is quite possible, e.g., that we ask the right question first and thus guess the

reM state of the world after the first question. So we can only get estimates for the number

of necessary questions. These estimates are a natural measure of completeness for a given

knowledge base.

Estimates of incompleteness are useful. Such estimates can be useful in several cases.

For example, suppose that we feel like our knowledge base needs updating and we want to

estimate the cost of the update. The main part of updating is the acquisition of the new

knowledge from the experts. Since it is desirable to take the best (and therefore highly

paid) specialists as experts, the knowledge acquisition cost is an essential part of the total

update cost. From our previous experience, we can get the expected per question cost c

by dividing the previous update cost by the number of questions asked. To estimate the

total acquisition cost, we multiply c by the number of necessary questions.

Another situation where these estimates are applicable is when we choose between

the existing knowledge bases (for example, when we decide which of them to buy). When

choosing we must take into consideration cost, performance time, etc. But the main

characteristic of the knowledge base is how much information it contains. It is difficult to

estimate this amount of information directly, but we can use the estimates of the number

of questions if they are available: Evidently the fewer questions we need to ask in order to

obtain the complete knowledge, the more information was there initially. So the knowledge

base, for which we have to ask the minimal number of questions, is the one with the greatest

amount of information.

What we are planning to do. There exist several different formalisms for representing

uncertainty (see, e.g., Smets et al, 1988). In the present paper we estimate the neces-

sary number of questions for the case of Dempster-Shafer formalism. Namely, we show

that this average number of questions can be obtained by solving a simple mathematical

optimization problem.

It turns out that the same techniques can be applied to estimate the complexity of

knowledge acquisition for the probabilistic approach to uncertainty (Nilsson, 1986).

It seems desirable to have such a characteristic of uncertainty that if we add addi-

tional information (i.e., diminish uncertainty), we decrease the value of this characteristic.



Strictly speaking, our characteristic (averagenumber of binary question) do not satisfy
this property. For example, it has the samevalue if we have an event with two possible

outcomes and nothing elseis known, and if there is an additional knowledge that the prob-

ability of every outcome is 0.5. We'll show that from the practical viewpoint this is not a

problem, becausethe difference between the necessarynumber of questions in both cases

is practically negligible.

The main results of this paper appearedfirst in (Chokr et al, 1991).

The structure of the paper is as follows: there exists a well-known case, where a formula

for the average number of questions is known: the case of probabilistic knowledge, that

was considered in the pioneer Shannon papers on information theory. We are planning to

use the same methods that were used in its derivation. Since the derivation is not as well

known as Shannon's formula itself, we'll briefly describe it in Section 2. In Section 3, we'll

formulate a corresponding problem for Dempster-Shafer formalism in mathematical terms

and present our results. In Section 4, we'll show that this characteristic is sometimes not

sufficient, but from practical viewpoint there is no need to worry. In Section 5 we apply

the same techniques to the case of a probabilistic knowledge. Proofs are in Section 6.

2. SHANNON'S FORMULA REVISITED

First let's analyze the simplest possible case: formulation. Before we actually

analyze Shannon's formula, let us recall how to compute the complexity of knowledge

acquisition in the simplest case: Namely, we consider one event, and we know beforehand

that it can result in one of finitely many incompatible outcomes. Let's denote these

outcomes by A1, A2,..., and their total number by n. For example, in the coin tossing case

n equals two, and A1 and A_ are "heads" and "tails". If we are describing weather, then

it is natural to take "raining" as A1, "snowing" as A2, etc. How many binary questions

do we have to ask in order to find out which of the outcomes occurred?

The simplest case: result. The answer is well known: we must ask Q questions, where

Q is the smallest integer that is greater than or equal to log 2 n. This number is sometimes

called the ceiling of log 2 n and is denoted by [log2 n]. And if we ask less than Q questions,

we will be unable to always find the outcome.

Although the proof of this fact is well-known (see, e.g., Horowitz and Sahni, 1984),

we repeat it here, because this result will be used as a basis for all other estimates.



The simplest case: proof. First we have to prove that Q questions are sufficient.

Indeed, let's enumerate all the outcomes (in arbitrary order) by numbers from 0 to n - 1,

and write these numbers in the binary form. Using binary numbers with q digits, one gets

numbers from 0 to 2q - 1, that is, totally 2q numbers. So one digit is sufficient for n = 1, 2;

two digits for n = 1,2, ..., 4, q digits for n = 1, 2, ..., 2q, and in order to represent n numbers

we need to take the minimal q such that 2q k n. Since this inequality is equivalent to

q k log 2 n, we need Q digits to represent all these numbers. So we can ask the following

Q questions: "is the first binary digit v.n7", "is the second binary digit v.n'_", etc, up to "is

the q-th digit 0?".

The fact that we cannot use less than Q questions is also easy to prove. Indeed,

suppose we use q < Q questions. After we ask q binary questions, we get a sequence of

q O's and l's (q bits). If there is one bit, we have 2 possibilities: 0 or 1. We have q bits,

so we have 2.2.2.... 2(q times) = 2 q possible sequences. This sequence is the only thing

that we use to distinguish outcomes, so if we need to distinguish between n outcomes, we

need at least n sequences. So the number of sequences 2 q must be greater than or equal

to n: 2q k n. Since logarithm is a monotonic function, this inequality is equivalent to

q >_ log 2 n. But Q is by definition the smallest integer, that is greater than or equal to

this logarithm, and q is smaller, than Q. Therefore q cannot be k log 2 n, and hence q < Q

questions are not sufficient.

Situations that are covered by Shannon's formula. The above formula works fine

for the case when we have a single event, and we need to find what its outcome is. But in

many real- life cases same types of events happen again and again: for example, we can toss

the coin again and again, and we must predict weather every day, etc. In such cases there

is a potentially infinite sequence of repeating independent events. By the moment when

we are asking about the outcome of the current event, we normally already know what

outcomes happened before, which of them were more frequent, which were more seldom.

In some cases these frequencies change essentially in course of time: for example, in

case of the global warming the frequencies of cold weather days will become smaller and

smaller. But in many cases we can safely assume that these frequencies are more or less

the same. This means that the outcomes, that were more frequent in the past, will still be

more frequent, and vice versa.

Of course, the frequencies with which some outcome occurs in two long sequences

of N events, are not precisely equal. But it is usually assumed, that the larger N is, the

smaller is the difference between them. In other words, when N tends to oc, the frequencies



conyergeto a number that is called a limit frequency, or a probability Pi of an outcome i.

We can also express the same supposition by saying that the frequencies are estimates for

these probabilities: the bigger sample we take, the better are these estimates.

These frequencies are the additional information, that Shannon (1948) used to dimin-

ish the number of necessary questions.

Why probabilities help to diminish the number of questions: explanation in

commonsense terms. If we have just one event, then probabilities or no probabilities,

we still have to ask all Q = Flog2 n] questions. However, if we have N similar events,

and we are interested in knowing the outcomes of all of them, we do not have to ask Q

questions all N times: we can sometimes get out with less than QN questions and still

know all the outcomes.

Let's give a simple example why it is possible. Suppose we have 2 outcomes (n = 2),

and their probabilities are Pl = 0.99 and p2 - 0.01. If there is just one event, we have to

ask Q -- 1 question. Let's now consider the case of 10 events. If we knew no probabilities,

there would be 2 l° - 1024 possible combinations of outcomes, and so we need to ask at

least 10 - log 2 1024 questions in order to find all the outcomes.

But we do know the probabilities. And due to the fact, that the probability of the

second event is very small, it is hardly unprobable, that there will be 2 or more cases out

of 10 with the second outcome. If we neglect these unprobable cases, we conclude that

there are not 1004, but only 11 possible combinations: second outcome in first event, first

in all the other; second outcome in the second event, first in all the other, ... (10 such

combinations), and the eleventh which corresponds to first outcome in all the events. To

find a combination out of 11 possible we need only [log 2 11] = 4 questions. On average

we have 4/10 questions per event.

So, if we neglect low probability combinations of outcomes, then we can drastically

reduce the average number of questions. What if we do not neglect them? Let us show

that the average number of binary questions can still be kept small. Indeed, in the above

example, we can consider 12 mutually exclusive classes: 11 defined as above (classes that

consist of a single sequence of outcomes), and a 12th class that contains all rare outcome

sequences (in this example, outcome sequences with 2 or more second outcomes). We still

need 4 questions to figure out to which of these 12 mutually exclusive classes the sequence

of 10 actual outcomes belongs. If it belongs to one of the first 11 classes (that consist of

one sequence each), then we know the outcomes of all 10 events. In case we are in the 12th



class,we still have to ask 10 additional questions to find out the actual outcomes of all 10
events. In this casewe need 10additional questions,but this caseis very rare (probability

< 0.01). Therefore, it adds _< 0.01 • 10 = 0.1 to the average number of questions. So, we

can handle rare cases with a small effect on the average number of questions.

The above-given example may look purely mathematical, but it has lots of real-world

applications. As an example, Iet us take technical diagnosis: a system doesn't work, and

we must find out which of n components failed. Here we have two outcomes: good and

failed. In case the reliability of these components is sufficiently high, so that p2 << 1, we

can neglect the possibility of multiple failures, and thus simplify the problem.

Some statistics. When talking about Shannon's theory one cannot avoid using statistics.

However, we'll not copy (Shannon, 1948)" instead we reformulate so that it would be easy

to obtain a Dempster-Shafer modification.

Suppose that we know the probabilities pi, and that we are interested in the outcome

of N events, where N is given. Let's fix i and estimate the number of events Ni, in which

the outcome is i.

This number Ni is obtained by adding all the events, in which the outcome was i,

so Ni = nl + n2 + ... + nN, where nk equals to 1 if in k-th event the outcome is i and 0

otherwise. The average E(nk) of nk equals to Pi • 1 + (1 - Pi) ' 0 = Pi. The mean square

deviation a[nk] is determined by the formula ae[nt,] = pi(1-E(nk)) 2 +(1-pi)(O-E(nk))2.

If we substitute here E(nk) = Pi, we get _r2[nk] = p/(1 -- Pi). The outcomes of all these

events are considered independent, therefore nk are independent random variables. Hence

the average value of Ni equals to the sum of the averages of nk: E[Ni] = E[nt] + E[n2] +

... + E[nx] = Npi. The mean square deviation a[Ni] satisfies a corresponding equation

_2 [./Vii "" O'2[nl] + 0"217221 + ... -- Npi(l - Pi), so if[Nil "- X/Ipi(i - pi)Y.

For big N the sum of equally distributed independent random variables tends to

a Gaussian distribution (the well-known central limit theorem), therefore for big N we

can assume that Ni is a random variable with a Gaussian distribution. Theoretically a

random Gaussian variable with the average a and a standard deviation a can take any

value. However, in practice, if, e.g., one buys a measuring instrument with guaranteed

0.1V standard deviation, and it gives an error 1V, it means that something is wrong with

this instrument. Therefore it is assumed that only some values are practically possible.

Usually a "k-sigma" rule is accepted that the real value can only take values from a - k_r

to a + k_r, where k is 2, 3 or 4. So in our case we can conclude that Ni lies between



Npi - kv/_(1 -pi)N and Npi + kx/pi(1 -pi)N. Now we are ready for the formulation

of Shannon's result.

Comment. In this quality control example the choice of k matters, but, as we'll see, in our

case the results do not depend on k at all.

Formulation of Shannon's results.

Definitions. Suppose that a real number k > 0 and a positive integer n are given, n

is called the number of outcomes. By a probabilistic knowledge we mean a set {pi} of n

real numbers, Pi >_ O, _, Pi = 1. pi is called a probability of i-th event.

Suppose that an integer N is given; it is called the number of events. By a result of

N events we mean a sequence rk, 1 _< k _< N of integers from 1 to n. rk is called the result

of k-th event. The number of events, that resulted in i-th outcome, will be denoted by Ni.

We say that the result of N events is consistent with the probabilistic knowledge {pi } if for

every i the following inequality is true: N pi-k _/pi(1 - pi)N <_ Ni <_ N pi + k _/pi(1 - pi)N.

Let's denote the number of all consistent results by Ncon_(N). The number

[log2( Nco,s( N) )_ will be called the number of questions, necessary to determine the results

of N events and denoted by Q(N). The fraction Q(N)/N will be called the average number

of questions. The limit of the average number of questions will be called the complexity

of knowledge acquisition.

THEOREM (Shannon). When the number of events N tends to ini]nity, the average

number of questions tends to _ -pi log_(pi).

Comments. 1. This sum is known as an entropy of a probabilistic distribution {pi} and

denoted by S or S({pi}). So Shannon's theorem says that if we know the probabilities

of all the outcomes, then the average number of questions that we have to ask in order

to get a complete knowledge equals to the entropy of this probabilistic distribution. In

other words: in case we know all the probabilities, the complexity of knowledge acquisition

equals to the entropy of this probabilistic distribution.

2. As promised, the result does not depend on k.

3. Since we modified Shannon's definitions, we cannot use the original proof. Our

proof is given in Section 6.
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3. DEMpSTER-SHAFER CASE

Dempster-Shafer (DS) formalism in brief (Smets et al, 1988). The basic element

of knowledge in this formalism is as follows: an expert gives several hypotheses El,..., Ep

about the real world (these hypotheses are not necessarily incompatible), and describes

his degrees of belief re(E1), re(E2), ..., m(Ep) in each of these hypotheses. These values are

called masses, and their sum is supposed to be equal to 1. There are also combination rules

that allow us to combine the knowledge of several experts; as a result we again get a set

of hypotheses (that combine the hypotheses of several experts), and their masses (degrees

of belief).

So in general the knowledge consists of a finite set of statements El, E2, ..., Ep about

the real world, and a set of real numbers m(Ei) such that _ m(Ei) = 1.

What "complete knowledge" means in DS. This knowledge is incomplete: first of all,

because we do not know which of the hypotheses Ei is true. But even if we manage to figure

that out, the uncertainty can still remain, because this hypothesis Ei does not necessarily

determine uniquely the state of our system. Therefore, if we want to estimate how far we

are from the complete knowledge, we must know what is meant by a complete knowledge.

In other words, we need to know the set W of possible states of the analyzed system

(these states are sometimes called possible worIds). Of course, there are infinitely many

states of any real objects, but usually we are interested only in finitely many properties

P1, P2, ..., Pro. It means that if for some pair of states Sl, s2 each of these properties is true

in sl if and only if it is true in s2, then we consider them as one state. In this sense a

state is uniquely determined by the m- dimensional Boolean vector, that consists of truth

values Pi(s). So the set of all possible worlds consists of all such vectors, for which a state

s with these properties is possible at all.

Where do we take the masses from? In order to use this formalism to describe actual

knowledge we must somehow assign the masses to the experts' beliefs. The fact that the

sum of these masses equals to 1 prompts the interpretation of masses as probabilities. And,

indeed, the very formalism stemmed from probabilities, therefore probabilistic way is one

of the possible ways to estimate masses.

For example, we can ask several experts what statement better describes their knowl-

edge, take all these statements for Ei and for m(Ei) take the fraction N(Ei)/N, where N

is the total number of experts, and N(Ei) is the number of experts whose knowledge is

described by the statement Ei. Or, alternatively, we can ask one expert, and by analyzing



the similar situations he can say that in the part m(Ei) of all these cases a hypothesis Ei

was true. It is also possible that the expert does not know so many cases, but he tries to

make a guess, based on his experience of likewise cases.

There exist other methods to determine masses, that are not of probabilistic origin,

but we'll consider only probabilistic ones for 3 reasons (more detailed explanations of the

pro-probabilistic viewpoint can be found in Pearl, 1989, Dubois and Prade, 1989, Halpern

and Fagin, 1990, Shafer and Pearl, 1990):

We'll consider only probabilistic methods to determine masses; why?

1) There are arguments (starting from Savage, 1954, 1962) that if an expert assigns

the degrees of belief to several mutually exclusive events, and assigns them in a rational

manner, then they automatically satisfy all the properties of probabilities (they are called

subjective probabiIities). In Dempster-Shafer case, the mass re(E) represent an expert's

degree of belief in the statement "the set of all possible alternatives coincides with E".

Such statements for different E are mutually exclusive, and therefore, we can apply the

above-mentioned arguments.

2) Several non-probabilistic methods of assigning degrees of belief that we successfully

applied, turned out to have probabilistic origin; for example, for the rules of MYCIN, the

famous successful expert system (Shortliffe, 1976, Buchanan and Shortliffe, 1984), it was

proved in (Heckerman, 1986).

3) Finally, in case we interpret masses as probabilities, we know precisely what we

mean by saying that we believe in Ei with the degree of belief re(E,): namely, as we'll show

right now, this knowledge can be easily reformulated in terms of the future behavior of the

system. Therefore we can understand in precise terms, what is meant by this knowledge,

and what knowledge do we need in addition so that we would be able to narrow our

predictions to one actual outcome and thus get a complete knowledge. In case we do

not use a probabilistic interpretation, what restrictions this knowledge imposes on future

outcomes is difficult to figure out.

What does a DS knowledge mean? In case we accept a probabilistic interpretation,

then the knowledge that the hypothesis Ei is true with mass m(Ei), can be interpreted as

follows: if we have N similar events, then among these N cases there are approximately

Nrn(Et) in which the outcomes satisfy the statement El; among the remaining ones there

are approximately Nrn(E2) cases in which E2 is true, etc.



Warning. This does not mean that El is true only in Nm(E1) cases. According

to the original interpretation of Dempster and Sharer, the relation between masses and

probabilities is more complicated. In this interpretation, when our knowledge is given in

a DS form, it means that we do not know all the probabilities p. Instead, we know a

class 7v of probability distributions, that contains the actual distribution p. For each event

E, different distributions p from this class lead to different values of p(E). These values

form an interval [p-, p+]. The smallest possible value (it is also called a lower probability)

is equal to our belief bel(E) in E, and the biggest possible value p+ coincides with the

plausibility pl(E) of the event E.

To illustrate this point, let us give an example when masses are different from proba-

bilities.

Example. Suppose that the whole knowledge of an expert is that to some extent he

believes in some statement E. If we denote the corresponding degree of belief by m, we can

express this knowledge in DS terms as follows: he believes in E1 = E with degree of belief

re(E1) --- m, and with the remaining degree of belief rn(E2) = 1 - m he knows nothing,

i.e., E_ is a statement that is always true. In our terms this knowledge means that out of

N events there are _ Nm, in which E is true, and _ N(1 - rn), in which E_ is true. But

E2 is always true, so the only conclusion is that in at least ,_ Nm events E is true. It is

possible that E is always true (if it is also true for the remaining N(1 - m) events), and

it is also possible that E is true only in Nm cases (if E is false for the outcomes of the

remaining events).

We are almost ready to formalize this idea; the only problem is how to formalize

"approximately". But since we interpret masses as probabilities, we can apply the same

statistical estimates as in the previous section. So we arrive at the following definitions.

Definitions and the main result.

Denotations. For any finite set X, we'll denote by IX[ the number of its elements.

Definitions. Suppose that a real number k > 0 is given. Suppose also that a finite

set W is given. Its elements will be called outcomes, or possible worlds.

Comment. In the following text we'll suppose that the possible worlds are ordered, so

that instead of talking about a world we can talk about its number i - 1, .., n -- IWI. In

these terms W is equal to the set {1, 2, ..., n}.



By a Dempster-Shafer knowledge or DS knowledge for short we mean a finite set of

pairs < Ei, mi >, 1 _< i _< p, where Ei are subsets of W (called statements) and mi are

real numbers (called masses or degrees o£ belie D such that mi > 0 and _ mi = 1.

If an outcome r belongs to the set Ei, we'll say that r satisfles Ei. Suppose that an

integer N is given; it is called the number of events. By a result of N events we mean a

sequence rk, 1 _< k <_ N of integers from 1 to n. rk is called the outcome of k-th event.

We say that the result of N events is consistent with the DS knowledge < Ei,rn i >, if the

set {1, 2, ..., N} can be divided into p subsets H1,H2, ...,Hp with no common elements in

such a way that:

1)

2)
[Hi[

if k belongs to Hi, then the outcome rk of k-th event satisfies Ei;

the number [Hi[ of elements in Hi satisfies the inequality Nmi-k v/rni(1 - mi)N <_

Nmi + kv/rni(1 - mdN.

Let's denote the number of all results, that are consistent with a given DS-knowledge,

by Nco,,8(N). The number [log2(Nco,s(N))] will be called the number of questions, nec-

essary to determine the resuits of N events and denoted by Q(N). The fraction Q(N)/N

will be called the average number oar questions. The limit of average number of questions,

when N --* c_, will be called the complexity ofknoMedge acquisition.

To formulate our estimate we need some additional definitions.

Definitions. By a probabilistic distribution we mean an array of n non-negative

numbers Pl, ...,P,, such that _pj "- 1. We say that a probabilistic distribution is consistent

with the DS knowledge < Ei,rni >, i = 1,...,p, if and only if there exist non-negative

numbers zij such that _i zij = pj, Y_i ziy = mi and zij -- 0 if j does not belong to El.

Comments. 1. Informally, we want to divide the whole fraction mi of events, about

which the expert predicted that Ei is true, into the groups with fractions zij for all j E Ei,

so that the outcomes in a group zij is j.

2. This definition is not explicitly constructive, but if we fix a probabilistic distri-

bution and a DS knowledge, the question whether they are consistent or not is a linear

programming problem, so we can use the known algorithms to solve it (simplex method

or the algorithm of Karmarkar (1984)).

By an entropy of a DS knowledge we mean a maximum entropy of all probabilistic

distributions that are consistent with it.



In other words, this entropy is a solution to a following mathematical problem:

--_-_pjlog2p j ---* max under the conditions that _"_izij = pj, _-_jzij = rni, zij ___ 0

and zij = 0 for j not in Ei, where i runs from 1 to p, and j from 1 to n.

If we substitute pj -" _i zij, we can reformulate it without using p j: Entropy is a

solution of the following mathematical optimization problem:

--Z(Ezij)log2(Zzij)--*max,
i i

under the conditions that __,j zij = mi, zij >_ 0 and zij = 0 for j not in Ei.

Comments. 1. Entropy is a smooth convex function, all the restrictions are linear in zij,

so in order to compute the entropy of a given DS knowledge we must maximize a smooth

convex function on a convex domain. In numerical mathematics there exist sufficiently

efficient methods for doing that.

2. For the degenerate case, when a DS knowledge is a probabilistic one, i.e., when

n -- p and Ei = {i}, there is precisely one probabilistic distribution that is consistent with

this DS knowledge: this very pj, and therefore the entropy of a DS knowledge in this case

coincides with Shannon's entropy.

MAIN THEOREM. The complexity of knowledge acquisition for a DS knowledge

< Ei, rni > is equal to the entropy o£ this knowledge.

Comments. 1. Our definition of entropy is thus a natural generalization of Shannon's

entropy to a DS case. This not mean, of course, that this is the generalization. The

notion of entropy is used not only to compute the average number of questions, but in

several other applications: in communication theory, in pattern recognition, etc. Several

different generalizations of entropy to DS formalism have been proposed and turned out to

be efficient in these other problems (see, e.g., Yager, 1983, Pal and Datta Majumer, 1986,

Dubois and Prade, 1987, Nguyen, 1987, Klir and Folger, 1988, Dubois and Prade, 1989,

Pal, 1991, Kosko, 1992).

2. That the complexity of knowledge acquisition must be greater or equal that the

entropy of a DS knowledge is rather easy to prove. Indeed, if a probabilistic distribution

pj is consistent with a DS knowledge, and a result of N events is consistent with this

distribution, then it is consistent with a DS-knowledge as well. Therefore there axe at

least as many results consistent with DS knowledge as there are results consistent with

pj. Therefore the average number of questions in a DS case must be not smaller than the



averagenumber of questions (entropy) for everyprobabilistic distribution that is consistent

with this knowledge. So it must be greater than or equal to the maximum of all such

probabilistic entropies; and we have called this maximum an entropy of a DS knowledge.

The fact that it is precisely equal, and not greater, is more difl:icult to prove, and demands

combinatorics (see Section 6).

4. THE ABOVE COMPLEXITY CHARACTERISTIC IS NOT SUFFI-

CIENT_ BUT WE NEED NOT WORRY ABOUT THAT

Example. The above characteristic describes the average number of questions that we

need to ask in order to attain the complete knowledge. However, we'll now show that it

is sometimes possible that we add the new information, and this characteristic remains

the same. The simplest of such situations is as follows: suppose that there are only two

possible outcomes. If we know nothing about them, this can be expressed in DS terms

as follows: there is only one statement (p = 1), and this statement E1 is identically true

(i.e., E1 = W = {1, 2}). In this case the above mathematical optimization problem is easy

to solve, and yields 1. This result is intuitively very reasonable: if we know nothing, and

there axe two alternatives, we have to ask one binary question in order to figure out, which

of the outcomes actually occurred.

Suppose now that we analyzed the previous cases and came to a conclusion that on

average in half of these cases the first outcome occurred, in half of them the second one.

In other words, we add the new information that the probability of both outcomes is equal

to 1/2. This is really a new information, because it diminishes the number of possibilities:

For example, if we observed 100 events, in case we knew nothing it was quite possible that

in all the cases we would observe the first outcome. In case we know that the probability is

1/2, then the possible number N1 of cases, in which the first outcome occurs, is restricted

by the inequalities 1/2. 100- k_/1/2(1 - 1/2)100 < N1 _< 1/2. 100+ kv/1/2(1 - 1/2)100,

or 50-5k < N1 _< 50+5k. Even for k = 4 the value N1 = I00 does not satisfy this

inequality and is therefore negligibly rare (therefore for k < 4 it also cannot be equal to

100).

In other words, we added a new information. But if we compute the uncertainty

(entropy) of the resulting probabilistic distribution, we get - 1/2 Iog2 (1/2)- 1/2 log2(1/2) =

-1 • log2(1/2 ) = 1, i.e., again 1! We added the new information, but the uncertainty did

not diminish. We still have to ask in average one question in order to get a complete

knowledge.



Isn't it a paradox? No, becausewe were estimating the averageamount of questions

lira Q(N)/N. We have two cases, in which the necessary number of questions QI(N) in the

first case is evidently bigger than in the second one (QI(N) > Q2(N)), but this difference

disappears in the limit. In order to show that it is really so, let us compute Q(N) in both

cases.

If we know nothing, then all sequences of 1 and 2 are possible as the results, i.e., in

this case Ncons is equal to 2 N. Therefore log 2 Neons = N, and Q1 (Y) = [log 2 Neons7 = N.

In the second case computations are more complicated (so we moved them to Section

6), and the result for big N is Q2(N) = N- cl where c is a constant depending on k. Since

c/N ---. O, in the limit this difference disappears and so it looks like in these two cases the

uncertainty is the same.

Do we need to worry about that? To answer this question let's give a numeric

estimate of the difference between Q_(N) and Q2(N); this difference occurs only when

the inequality N/2 - kN/2 < N1 <_ N/2 + kN/2 really restricts the possible values of N.

If k = 2, then for N < 4 all possible values of N1 from 0 to N satisfy it, so Q1 = Q2-

Therefore the difference starts only with N = 5. The bigger k, the bigger is the N, from

which the difference appears. The value of this difference c = Q1 (Y)- Q2(N) depends on

k (see the proof in Section 6). The smaller the k, the bigger is c. The smallest value of k

that is used in statistics is k = 2. For k = 2, we have c ,_ 0.1. In comparison with 5 it is

2%. For bigger N or bigger k it is even smaller.

So this difference makes practical sense, if we can somehow estimate Q(N) with a

similar (or better) precision. But Q(N) is computed from the initial degrees of belief

(masses) mi. There is already a tiny difference between, say, 70% and 80% degree of

belief, and hardly anyone can claim that in some cases he is 72% sure, and in some other

cases 73%, and that he feels the difference. There are certainly not so many subjective

degrees of belief. In view of that the degrees of belief are defined initially with at best

5 - 10% precision. Therefore the values of Q(N) are known with that precision only, and

in comparison to that adding _< 2% of c is, so to say, under the noise level.

So the answer to the question in the title is: no, we don't need to worry.

5. PROBABILISTIC KNOWLEDGE

Let's analyze the case of a probabilistic knowledge as described in (Nilsson, 1986),

when we know the probabilities of several statements. In this case, we can repeat the

above-given definitions almost verbatim.



Definitions. Suppose that a real number k > 0 is given. Suppose also that a finite

set W --- {1,2, ...,n} is given. Its elements will be called outcomes, or possible worlds. By

a probabilistic knowledge we mean a finite set of pairs < Ei,p(Ei) >, 1 <_ i <_ p, where Ei

are subsets of W and 0 < p(Ei) _< 1. Subsets Ei are called statements, and the number

p(Ei) is called a probability of i-th statement.

If an outcome r belongs to the set Ei, we'll say that r satislqes El.

Suppose that an integer N is given; it is called the number of events. By a result of N

events we mean a sequence rk, 1 <_ k _ N of integers from 1 to n. rk is called the outcome of

k-th event. We say that the result of N events is consistent with the probabilistic knowledge

< Ei,p(Ei) >, if for all i from 1 to p the number Ni of all rk that belong to Ei satisfies

the inequality Np(Ei) - k x/p(Ei)(1 - p(Ei))g <_ Ni <_ Np(Ei) + k x/p(Ei)(1 - p(Ei))N.

Let's denote the number of all results, that are consistent with a given probabilistic

knowledge, by Nco,,s(N). The number [log2(Ncons(Y))] will be called the number of

questions, necessary to determine the results of N events and denoted by Q(N). The

fraction Q(N)/N will be called the average number of questions. The limit of average

number of questions, when N _ oe, will be called the complexity ofknowIedge acquisition.

By a probabilistic distribution we mean an array of n non- negative numbers Pl, ..., P,_

such that __,pj = 1. We say that a probabilistic distribution is consistent with a proba-

bilistic knowledge < Ei,p(Ei) >, i = 1,...,p, if and only if for every i: EjEEi -" Pi. By

an entropy of a probabilistic knowledge we mean a maximum entropy of all probabilistic

distributions that are consistent with it, i.e., the solution to a following mathematical op-

timization problem: - _pj log 2 pj ---* max under the conditions _jEE, PJ - p(Ei), pj >_ 0

and E" j=lPJ = 1.

Comment. This is also a convex optimization problem.

THEOREM. The complexity of knowledge acquisition t'or a probabilistic knowledge is

equal to the entropy of this knowledge.

Comments. 1. Main Theorem and this result can be combined as follows: if our knowledge

is not sufficient to determine all the probabilities uniquely, so that several different proba-

bilistic distributions are compatible with it, then the uncertainty of this knowledge is equal

to the uncertainty of the distribution with the maximal entropy. It is worth mentioning

that the distribution with maximal entropy has many other good properties, and is there-

fore often used as a most "reasonable" one when processing incomplete data in science
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(for a survey seeJaynes, 1979, and referencestherein; seealso Koshelevaand Kreinovich

(1979) and Cheeseman(1985)).

2. Similar maximum entropy result can be proved for the casewhen part of the
knowledge is given in a DS form, and part in a probabilistic form. In this casewecan also

formulate, what we mean by saying that probabilities are consistent with a given knowl-

edge, and prove that the complexity of knowledgeacquisition is equal to the maximum

entropy of all probabilistic distributions, that are consistent with a given knowledge.

6. PROOFS

Proof of Shannon's Theorem. As we have mentioned in the main text, the Theorem

that we prove is not the original Shannon's,but its modification: Shannonwas interested

in data communication, and not in asking questions. So we must modify the proof. The

proof that weare using first appearedin (Kreinovich, 1989). Let's first fix some values Ni,

that are consistent with the given probabilistic distribution. Due to the inequalities that

express the consistency demand, the ratio f, = Ni/N tends to Pi as N _ oc. Let's count

the total number C of results, for which for every i the number of events with outcome i

is equal to this Ni. If we know C, we will be able to compute Nco,s by adding these C's.

Actually we are interested not in Nco,_, itself, but in Q(N) _ log 2 Neons, and moreover,

in lim(Q(N)/N). So we'll try to estimate not only C, but also log 2 C and lim ((log 2 C)/N).

To estimate C means to count the total number of sequences of length N, in which

there are N1 elements, equal to 1, N2 elements, equal to 2, etc. The total number C1

of ways to choose N1 elements out of N is well-known in combinatorics, and is equal to

(NN1 ) = N!/((N1)!(N- N1)!). When we choose these N1 elements, we have a problem in

choosing N2 out of the remaining N - N1 elements, where the outcome is 2; so for every

choice of l's we have C2 = (NN_vl) possibilities to choose 2's. Therefore in order to get

the total number of possibilities to choose l's and 2's, we must multiply C2 by C1. Adding

3's, 4,s, ..., n's, we get finally the following formula for C:

N! (N - N_)! N!
C = CI C2...C._I = =

NI[(N - N_)[ (N2!(N - N_ - N2)! "'" NI!N2[...N,!

To simplify computations let's use the well-known Stirling formula, according to which k!

is asymptotically equivalent to (k/e)k_. If we substitute these expressions into the

above formula for C, we conclude that

( N / e) N 2vf_-N
C_



Since _ Ni = N, terms e x and ex_ annihilate each other.

To get further simplification, we substitute Ni = Nfi, and correspondingly N y_

as (Nfi) NI_ = NNY_fi NA. Terms N N is the numerator and NNANNI_...N Nf" =

N NII+NI2+'''+NI" = N N in the denominator cancel each other. Terms with v/N lead

to a term that depends on N as cN -(n-I)�2. Now we are ready to estimate log 2 C. Since

logarithm of the product is equal to the sum of logarithms, and log a b = b log a, we conclude

that log 2 C _ -N fl log 2 fl - N f2 log2 f2 - ... - Nf,_ log 2 f, - 1/2(n - 1) log 2 N - const.

When N ---+ oc, we have 1/N --+ 0, log 2 N/N ---+ 0 and fi -+ Pi, therefore log 2 C/N

-Pl log2 Pl - p2 log2 P2 - ... - P,_ log2 P,_, i.e., log 2 C/N tends to the entropy of the proba-

bilistic distribution.

Comment. We used the denotation A _ B for some expressions A and B meaning that the

difference between A and B is negligible in the limit N -+ c_ (i.e., the resulting difference

in (log 2 C)/N tends to 0).

Now, that we have found an asymptotic expression for C, let's compute Neons and

Q(N)/N. For a given probabilistic distribution {pi} and every i possible values of Ni

form an interval of length Li = 2kx/pi(1 - pi)v/-N. So there are no more than Zi possible

values of Ni. The maximum value for pi(1 - pi) is attained when pi = 1/2, therefore

pi(1 -pi) < 1/4, and hence eli < 2kv/'N/4 = kv/-N/2. For every i from t to n there are at

most (k/2)v/-N possible values of Ni, so the total number Nco of possible combinations of

N, is smaller than ((k/2)v/N) n.

The total number Nco,,s of consistent results is the sum of N_o different values of

C (that correspond to different combinations N1, N2, ..., Nn). Let's denote the biggest of

these C by Cm_x. Since N_on, is the sum of N_o terms, and each of them is not greater

than the biggest of them Cm_x, we conclude, that Ncon, <_ NcoCmax. On the other hand,

the sum Ncon, is bigger than each of its terms, i.e., Cmax <_ Ncons. Combining these two

inequalities, we conclude, that Cmax ___ l_7"cons _ NcoCmax. Since Nco <_ ((k/2)v@-) n, we

conclude that Cmax _ N¢ons <_ ((k/2)v/-N)nCm_x. Turning to logarithms, we find that

log2(Cm_× ) _< log2(N_on, ) _< log2(Cm_, ) + (n/2) log 2 N +const. Dividing by N, tending to

the limit N _ oc and using the fact that limN_oo(log 2 N)/N = 0 and the already proved

fact that log2(Cm_x)/N tends to the entropy S, we conclude that lim Q(N)/N = S. Q.E.D.

Proof of the Main Theorem. Let's denote by hi some integer numbers that satisfy

the inequalities Nmi - kx/rni(1 - mi)N < hi <_ Nmi + k_/mi(1 - rni)N from Section 3.

Let's denote the ratios hi/N by gi. Due to these inequalities, when N ---+0% gi -+ rni.



Unlike the previous Theorem, even if we know gi, i.e., know how many outcomes

belong to Ei for every i, we still cannot uniquely determine the frequencies fj of different

outcomes. If there exists a result of N events with given frequencies gi and fj, then we

can further subdivide each set Hi into subsets Zij that correspond to different outcomes

j _ Ei. In this case _j Zij = hi and _i Zij = Nfj; therefore the frequencies tij = Zij/N

satisfy the equalities _j tij = gi and _i tij = fj. Vice versa, if there exist values tij such

that these two equalities are satisfied, and Ntij is an integer for all i,j, then we can divide

W into sets of size hi, each of them into sets with Ntij elements and thus find a result with

given gi and fj. If such tij exist, we'll say that the frequencies gi and fj are consistent

(note an evident analogy between this concept and the definition of consistency between

a DS knowledge and a probabilistic distribution).

Let's now prove, that if the set of frequencies {fj } is consistent with the set {gi}, and

we have a result, in which there are N fl outcomes that are equal to 1, N f2 outcomes that

are equal to 2, etc., then this result is consistent with the original DS knowledge. Indeed,

we can subdivide the set of all the outcomes, that are equal to j, into subsets with Ntij

elements for all i such that j EEi. We'll say that the elements that are among these

Ntij ones are labeled by i. Totally there are )-'_j Ntij = N _'_j tij = Ngi = hi elements,

that are labelled by i, and for all of them Ei is true. Since hi was chosen so as to satisfy

the inequalities that are necessary for consistency, we conclude that this result is really

consistent with a DS knowledge.

The number C of results with given frequencies {fj } has already been computed in

the proof of Shannon's theorem: lira ((log 2 C)/N) = - _ fj log 2 fj.

The total number of the results Nco,s, that are consistent with a given DS knowledge,

is the sum of Nco different values of C, that correspond to different fj. For a given N

there are at most N + 1 different values of N1 = N fl (0,1,...,N), at most N + 1 different

values of N2, etc., totally at most (N + 1) n different sets of {fj }. So, like in the proof of

Shannon's theorem, we get an inequality Cmax _< Nco,s <_ (N + 1)"Cmax, from which we

conclude, that limQ(N)/N = lim(log2Cm_,x)/N.

When N --_ oo, the values gi tend to mi, and therefore these frequencies fj tend

to the probabilities p./, that are consistent with a DS knowledge. Therefore (log 2 C)/N

tends to the entropy of the limit probabilistic distribution, and (log 2 Cm_x)/N tends to the

maximum of such entropies. But this maximum is precisely the entropy of a DS knowledge

as we defined it. So lim(Q(N)/N) equals to the entropy of a DS knowledge. Q.E.D.



The estimates for a probabilistic case are proved likewise.

Proof of the statement from Section 4. We have to consider the case, when n = 2

(there are two possible outcomes). In this case the result of N events is a sequence of l's

and 2's. A result is consistent with our knowledge if and only if the number N1 of l's

satisfies the inequality N/2 - k_"K/2 < N1 < N/2 + kv'_N (actually we must demand that

the likewise inequality is true for N2 = N - N1, but one can easily see that this second

inequality is equivalent to the first one). Let's estimate the number Ncons of such results.

In order to get this estimate let's use the following trick. Suppose that we have N

independent equally distributed random variables rk, each of which attains two possible

values 1 and 2 with equal probability 1/2. Then the probability of each of 2 N possible

sequences of l's and 2's is the same: 2 -N. The probability P that a random sequence

satisfies the above inequalities is equal to the sum of the probabilities of all the sequences

that satisfy it, i.e., is equal to the sum of Neons terms, that are equal to 2 -y. So P =

Neons2 -y. Therefore, if we manage to estimate P, we'll be able to reconstruct Neons by

using a formula Neons = 2N p.

So let us estimate P. Let's recall the arguments that lead to the inequalities that we

are using. The total number N1 of l's in a sequence {rk} is equal to the sum of terms that

are equal to 1 if rk = 1 and to 0 if rk = 2. In other words, it is the sum of 2 - rk. So N1 is

the sum of several equally distributed variables, and therefore for big N its distribution is

close to Gaussian, with the average N/2 and the standard deviation a = v/-N/2. Therefore

for big N the probability that N1 satisfies the above inequalities is equal to the probability

that the value of a Gaussian random variable with the average a and standard deviation

a lies between a -/co" and a + ka. This probability P depends only on k and does not

depend on N at all. For example, for k = 2 P _ 0.95, and for bigger k P is bigger. Since

Ncons- P2 N, we conclude, that Q(N) ,._ log2(P2 N) = N- c, where c = -log 2 P. For

k = 2 we get c = -log 2 P ,_ 0.1, and for bigger k it is even smaller.
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