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ABSTRACT

In real life, the degrees of certainty that correspond to one of the same expert can differ

drastically, and fuzzy control algoirthms translate these different degrees of uncertainty

into different control strategies. In such situation, it is reasonable to choose a fuzzy control

methodology that is the least vulnerable to this kind of uncertainty. We show that this

"robustness" demand leads to min and max for &- and V-operations, to 1-z for negation,
and to centroid as a defuzzification procedure.

INTRODUCTION

In case we do not have the precise knowledge of a controlled system, we are unable to apply traditional

control theory. In such cases, we can find an expert who is good at control, extract as many rules as possible

from him, and try to transform these rules into the precise control strategy. Zadeh and Mamdani initiated

a methodology for such a translation ([4, 14]) that is based on fuzzy set theory [18] and is therefore called

fuzzy control (see, e.g., the surveys [1, 12, 17]). In order to apply this methodology, we must:

1) describe the expert's uncertainty about every natural-language term A (such as

"small") that he uses while describing the control rules; this is done by ascribing to every possible

value z of the related physical quantity a value/_A(z) from the interval [0,1] that describes to what

extent this expert believes that z satisfies the property A (e.g., psman(0.3) is his degree of belief that

0.3 is small). The resulting function PA is called a membership function;

2) experts' rules contain natural-language words combined by logical connectives (e.g., "if z is small, and

is medium, then u must be small"). Therefore, we must be able to estimate the experts' degree of

belief in A&B, A V B, -A (where -_ stands for "not") from the known values of degrees of belief of A

and B. In other words, we must describe the fuzzy analogues of &, v, and ", to combine the original

membership functions into a membership function tic(u) for control;

3) finally, we must transform this membership functions into an actual control value by a proper defuzzi-
fication procedure.

As concerns the first stage, there exist several methods that allow us to ask several questions to an expert or

experts and come out with the desired values of membership functions (see, e.g., [6, 8]). This makes perfect

sense if the experts (whom we ask) give "yes" or "no" answers to all these questions, i.e., when they are

absolutely sure of what they are doing. They may be unable to describe their control strategy in precise

mathematical terms, but they are absolutely confident in what they are doing (a good example is a person

driving his car: he has no doubts about his ability to drive, but he usually cannot formulate his strategy in
precise terms).

However, if we are planning a trip to the unknown (e.g., a mission to Mars), then operators are often not

that confident in their control abilities. For example, they can formulate a rule in terms of a certain angle

being small, but they are uncertain of whether, say, 10 ° is a small angle or not. As a result, the values of

membership functions that we extract from the same expert can differ drastically. Different membership

functions, in their turn, can lead to drastically different control strategies, with different quality of the
resulting control.

This situation can be viewed as one step further away from the precision of traditional control:
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precise knowledge ---, uncertain knowledge with known degrees of certainty---,
uneerlain knowledge with uncertain degrees of certainty

What to do in thesemaximally uncertainsituations?Sincefuzzy controlproved to be a very efficient

methodology [1,12, 17],we stillwant to use,but we must now be verycautiousin choosing&-, v-, and

--,-operations,and in choosinga defuzzificationprocedure.In allthesechoices,we want to resultto be as

robustto the possiblechangesin the valuesofmembership functionsas possible.In otherwords,we want

to develop robust control.

ROBUSTNESS OF &- AND V-OPERATIONS

Let us first analyze the case of &- and V-operations (this section subsumes [15]).

The firstpaperby L.Zadeh [18]thatintroducedthisapproachtoknowledgerepresentationproposedmin(a,b)

and ab as&-operations,and max(a,b) and a + b - ab as V-operations.Zadeh himselfstressedthatthese

operations"arenot the only operationsin terms ofwhich the union and intersectioncan be defined",and

"whichof these...definitionsare more appropriatedepends on the context"[19,pp. 225-226].Sincethen

severaldozensdifferent&- and V-operationshave been proposed and successfullyused.Some operations

have been discoveredempiricallywhileworkingon realexpertsystems(e.g.,the famous MYCIN [3])or while

analyzingcommonsense reasoning[16,20]);some ofthem were proposed on a more theoreticalbasis(see,

e.g.,[6,8]).A surveyofsuch operationsisgivenin [11].

Definition I.

(i).By a binaryoperation(or operationforshort)we mean a functionf(a,b)from [0,1]× [0,I]into[0,1].

(it).A binaryoperationiscalleda &-operationifthefollowingconditionsaretrue:

f(0,0) = f(0, 1) = f(1,0) = 0, f(1, 1) = 1; f(a,b) = f(b,a) for all a,b; f(a,b) < a for all a and b.
(iii). A binary operation is called an V-operation if the following conditions are true:

f(0, 0) = 0, f(0, 1) = f(1,0) = 1(1, 1) = 1; f(a, b) = f(b, a) for all a, b; f(a, b) > a for all a and b.

Remark. The above binary operations are slightly more general than the usual t-norms and t-conorms in

the literature [7].

Definition 2. Suppose that a binary operation f(a, b) is given. We say that a 5-input uncertainty leads to a
< a-output error, iffor every a, d, b, U, for which la-a'l < 6 and [b-b'[ < 6, we have If(a, b)-f(a', b')l < a.

Remark. In otherwords,ifa'• [a- 6,a + 6],and b'• [b- 5,b+ 6],thenf(a',b')• [f(a,b)- a,f(a,b)+ a].

For example,ifthe intervalofpossiblevaluesforthe expert'sdegreeofbelieft(A) insome statementA is

[a- 5,a+ 5],and forsome otherstatementB theintervalofpossiblevaluesoft(B) is[b- 5,b+ 5],then the

intervalofpossiblevaluesoft(A&B) must be containedin[f(a,b)- a,f(a,b)+ a].

Definition 3. Suppose that f(a,b) is a binary operation, and 5 > 0 is a positive real number. By a
5-robustness of an operation f(a, b) we mean the smallest of real numbers a, for which a 5-input uncertainty

leads to a < a-output error. The $-robustness of an operation f(a, b) will be denoted by r.t(5).

Remark. It is easy to check that rl(5) = supIIf(a,b) - f(a', b')l : la - a'l S 6, Ib - b'l _< 5}. When f is

continuous, rl(5) is the well-known modulus of continuity of f [13]. The above sup is in fact max: see
Proposition 1 below; its proof, as well as all the proofs of the results are in the last Section for easy reading.

Proposition 1. For every operation f(a,b), and for every 5 > O, there e_ists a 5-robustness (i.e., the

smallest of real numbers a, for which a 5-input uncertainty leads to a < a-output error).

In order to compare different operations in terms of robustness, we will proceed as in standard decision

theory, where rl(5) plays the role of the "risk" (see, e.g., [2]).

Definition 4. We say that operations f(a, b) and g(a, b) are equally robust if for every 6, r/(6) - rg(5). We

say that an operation y(a, b) is more robust than an operation g(a, b), if for every $, rl(6 ) < r9(5), and at
least for one 5 > 0, r](5) < r9(5 ).
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Definition 5. We say that an &-operation f(a,b) is the most robust &-operation, if it is either more
robust, or equally robust than any other &-operation. We say that an v-operation g(a,b) is the most

robust V-operation, if it is either more robust, or equally robust than any other V-operation.

Remark. In otherwords,we saythatan operationisthe most robust,iftheresultingintervalsofuncertainty

arethe smallestpossible.

Theorem 1. f(a, b) - rain(a, b) is the most robust &-operation.

Theorem 2. f(a, b) - max(a, b) is the most robust V-operation.

Remarks.

1. In [9-11] general optimization problem are analyzed on the set of all possible &- and V- operations.
As a result of this mathematical analysis, lists axe given that include all &- and V- operations that can
be optimal under reasonable optimality criteria. Our Theorems 1 and 2 are in good accordance with that

general result, because both rain and max are elements of those lists.

2. Similar questions of robustness in the context of neural networks are analyzed in [5].
3. It is interesting to know to what extent the robustness functions that correspond to rain and max are

smaller than those of the other binary operations: are they smaller in a few points only, or essentially smaller
for all 6? The answer is given by the following Theorems:

Theorem 3. Suppose that f(a, b) is an &-operation, and f(a, b) is different from min. Then there ezists a

positive real number A > 0 and positive real number C < 1 such that for all 6 < A, train(6) <: Crl(6 ).

Theorem 4. Suppose that f(a,b) is an V-operation, and f(a,b) is different from max. Then there e_ists

a positive real number A > 0 and positive real number C < 1 such that for all 6 < A, rmax(6 ) < Cr1(6 ).

The following Theorem describes 6-robustness for several other operations:

Theorem 5.

I) if f(a,b) = ab, then rl(6 ) = 26-62;
e) if f(a, b) = a + b - ab, then r1(5 ) = 26 - 6_;
3) iff(a, b) = min(a + b, 1), then rl(6) = rain(26, 1).

Remarks.

1. Unlike Theorems 1 and 2, this result uses traditional techniques of interval mathematics.

2. In these three cases, tim6-0 r/(6)/rmin(6) -- 2, so in Theorems 3 and 4 we can take C - 1/2 + a for
arbitrary small a > 0.

3. From Theorem 5 we can conclude that the operations ab and a + b - ab are equally robust, and that
f(a. b) = min(a + b, 1) is more robust than both of them.

4. The fact that ab and a + b - ab are equally robust stems from the fact that in general dual operations
have the same modulus of continuity, where g(a, b) is dual to an f(a, b) if g(a, b) = 1 - f(1 - a, 1 - b).

Proposition 2. Dual operations are equally robust.

ROBUSTNESS OF NEGATION OPERATIONS

Definition 6. By a negation operation we mean a decreasing function f : [0, 1] -- [0, 1] such that f(0) = 1,
f(1) = 0 and/(f(z)) = x.

Definition 7. Suppose that a negation operation f(a) is given. We say that a 6-input uncertainty leads to
a < a-output error, if for every a, a', for which la - a'l < 6, we have If(a) -/(a')l < a. By a 6-robustness
of an operation f(a) we mean the smallest of real numbers a, for which a 6-input uncertainty leads to a

< a-output error. The 6-robustness of an operation f(a) will be denoted by rf(5).

Theorem 6. f(z) = 1 - z is the most robust negation operation.

Theorem 7. Suppose that f(z) is a negation operation, and f(x) is different from to(z) = 1-2. Then there

ezists a positive real number A > 0 and positive real number C < 1 sueh tha_r all5 < A, rio(5 ) _ Cr$(5).
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ROBUST CHOICE OF A DEFUZZIFICATION

Motivation. A defuzzification is a procedure D that transforms a membership function #(z) into a real

number D(V). In the present paper, we will compare two defuzzification rules that are most wide spread in
fuzzy control theory: centroid rule and center-of-maximum rule (see description below). Both defuzzification

rules are applicable in case a membership function p(z) has a compact support (i.e., is equal to 0 outside
some interval), and is not everywhere equal to 0. Let us recall the definitions.

Definition 8. Let us fix an interval [a, hi, and consider only membership functions that are equal to 0 outside
this interval, and that are not everywhere equal to 0. The set of all such membership functions will be denoted

by M. A mapping D from M to [a, b] is called a defuzzification. By a centroid defuzzification we mean a
mapping that transforms V(z)into a number Dc(/J) = (f  u(z)dz)/(f v(z)dz). By a center.of.mazimum
defuzzification we mean a mapping that transforms p(z) from M into a number DCOM (V) = 1/2(m_ + rn+),

where m_ = inf{z : v(z) = maxy(u(y))}, and m+ = sup{z : _(z) = maxy(v(u))}.

Motivation of the following definition. In this case, it turns out that it is not necessary to compare the

numerical estimates of robustness, because it turns out that one of these procedures is simply robust, and
another is not in the following sense. It is reasonable to say that a procedure is robust if small deviation of

p(z) lead to small deviations in the result. Here "small deviations" mean that IV(z) - V'(Z)[ < 6 for some
small number 6, or, in other words, that p(p,p I) < 5, where we denoted p(p,p') = sup= IV(x) - p'(z)l. So,

in mathematical terms, robustness just means that a mapping D must be continuous in this metric p. Let
us first remind the definition of continuity:

Definition 9. A mapping D from M to [a, b] is called continuous at the point P with respect to metric p,
if for every c there exists a 6 such that if P(V, P') < 6, then ID(v) - D(a')l < c. If D is continuous in all the
points of M, it is called a continuous mapping.

Definition 10. We say that a defuzzification is robust, if it is a continuous mapping from DM (with metric
p) into the interval [a, b].

Theorem 8. Centroid defuzzification is robust, while center-of.mass defuzzification is not.

ROBUST NORMALIZATION

Motivation. In some cases, before making a decision an auxiliary operation is performed with a membership
function Vc(u) that is called a normalization. The reason for this operation is that for many notion from

natural language, there is a value about which all the experts (or at least the vast majority of them) agree
that this value satisfies the desired property: for example, for "negligible" it is 0, for "big" it is 1000 (or
106 if 1000 is not enough). So, for the corresponding membership functions p(z), there exists a value z0 for

which tt(z0) = 1, hence sup_ V(z) = 1.

However, after appiying the &-, V- and -,-operations, we sometimes obtain a membership function V(z), for

which sups: p(z) < 1, and which is thus difficult to interpret. So, before we apply a defuzzification procedure

to it, we first want to normalize this membership function, i.e., apply some transformation t : [0, v] -- [0, 1]
and get a new function p'(z) = t(V(Z)) whose biggest value is already equal to 1. Usually, the function
t(z) = z/v is taken. The question is: which of the possible normalization procedures is the most robust?

Definition 11. Assume that a number v < 1 is given. By a normalization we mean an increasing function
f: [0, v] -- [0, 1] such that f(0) = 0 and f(v) = 1.

Definition 12. Suppose thata normalizationf(a) isgiven.We say thata 6-input uncertaintyleadsto a

< a-output error,ifforeverya,a',forwhich [a- a'I< 6,we have If(a)- f(a')l< a. By a 6-robustness

ofa normalizationf(a)we mean thesmallestofrealnumbers a, forwhich a 6-input uncertaintyleadsto a

< a-output error.The 6-robustnessof a normalizationf(a)willbe denotedby r/(6).

Remark. As the following result shows, no normalization is most robust than the others:

Proposition 3. For every normalization f there ezists another normalization g and a value _ > 0 such that

r,(6)< rj(6).

156



Remark. This results is not as discouraging as it may seem at first glance. The reason is as follows. As one

can see from the proof, this 5 can be big. From the purely mathematical viewpoint, this is quite reasonable.
However, the entire purpose of analyzing robustness of fuzzy operations is to take into consideration the
uncertainty with which experts can estimate their own beliefs, and this uncertainty is usually small. So it

makes sense to compare b-robustness of different operations only for small 6. So we arrive at the following
definition.

Definition 13. We say that a function f(6) is asymptotically smaller than a function g(6) if there exists a

A > 0 such that for 6 < A, f(5) < g(6).

Definition 14. We say that a normalization f(z) is asymptotically more robust than a normalization g(z)

ifthe robustnessrl(6)of f(z) isasymptoticallysmallerthan the robustnessrg(6)ofg(z). We say thata
normalizationf(z) isthe most asymptoticallyrobustnormalization,ifitisasymptoticallymore robustthan

any othernormalization.

Remark. In doing this,we alsoproceedas in standarddecisiontheory,with rj(6)playingthe roleof the

"risk"(see,e.g.,[BG79]).

Theorem 9. f(z) = z/v is the most asymptotically robust normalization.

Theorem 10. Suppose that f(z) is a normalization, and f(z) is different from f0(z) = z/v. Then there

exists a positive real number A > 0 and positive real number C < 1 such that for all 6 < A, r fo(df ) < Crl(6).

ROBUST CHOICE OF MEMBERSHIP FUNCTIONS

Motivation. All the above considerations are about the case when the experts can be uncertain, but the

inputs for the control decision (i.e., the values of z, k, etc) are considered to be precise. In real-life situations,

especially in the case of the future space missions, it is important to take into considerations that the input
data can also be imprecise. In this case, we want to choose membership functions in such a way that the

change in an input value z will lead to the smallest possible change in the value of p(z) (and thus in the
resulting control). In other words, we want to guarantee that the interval of possible values of p(z) is the
least possible.

We want touse thisideato choosethe most robustextrapolationprocedureformembership functions.In

otherwords,when we have a fuzzynotionforwhich we want todescribea membership function,we describe

when thisnotionisabsolutelytrue,and when itisabsolutelyfalse(i.e.,when the membership functionis

equalto I and 0) and get allothervaluesofmembership functionby extrapolation.

In fuzzy control, four types of natural-languages terms (fuzzy variables) variables are mainly used:
1) Variables like "negligible", where one can name a value zo for which the corresponding property is

absolutely true (ta(z0) = 1), (for negligible it is z0 = 0), and the values z_ and x+ such that for z < z_
and z > z+ the corresponding property is absolutely false (e.g., values with z < z_ or z > z+ are

absolutely not negligible).
2) (similar case) Variables, for which we can name an interval [a_, a+], inside which the corresponding

property is absolutely true, and a bigger interval [z_, z+], outside which this property is absolutely false
(the first case can be considered as a particular case of this one, when a_ = a+ = z0).

3) Variable like "positive big", for which we can name values z_ < z+ such that for z < z_ the corre-

sponding property is absolutely false, and for z > z+ this property is absolutely true.

4) Variable like "negative big", for which we can name values z_ < z+ such that for z < z_ the corre-
sponding property is absolutely true, and for z > z+ this property is absolutely false.

In the first and second cases, usually the intervals are symmetric, i.e., in the first case, x+ - z0 = z0 - z_,
and, in the second case, z+ - a+ = a_ - z_.

Now we are ready for the definitions.

Definition 15. Suppose that z_ < z0 < z+ are realnumbers such that z+ - z0 = z0 - z_. By an

e_:trapolatedmembership functionoftypeI we mean a membership function/J(z)such thatp(zo)= I,and

/_(z)=0ifz<z_ orz>z+.
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Remark. The simplest possible extrapolation (that is often used in fuzzy control) is a piecewise-linear
extrapolation, that in this case leads to a triangular function:

Definition 16. Assume that z_,z0 and z+ are given. By a triangular function we mean a membership

function/_0(z) that is equal to 1 - ix - z0[/(z+ - z0) for z E ix_, z+] and 0 outside this interval.

Definition 17. Suppose that a membership function/J(z) is given. We say that a 6-input data uncertainty

leads to a < a-output error, if for every a,d, for which la - a' I < 6, we have [f(a) - f(a_)l < a. By a
6-robustness of a membership function/_(z) we mean the smallest of real numbers a, for which a 6-input

data uncertainty leads to a < a-output error. The 6-robustness of a membership function/_(z) will be

denoted by ru(6 ).

Theorem 11. For any given z_,zo, z+, triangular membership function p0(x) is asymptotically the most

robust extrapolated membership function of type 1.

Definition 18. Suppose that z_ < a_ < a+ < z+ are real numbers such that z+ - a+ = a_ - z_. By
an eztrapolated membership function of type _ we mean a membership function #(z) such that #(z) = 1 for

z E [a_, a+], and/_(z) = 0 if z < x_ or z > z+.

Definition 19. Assume that z_, a_,a+ and z+ are given. By a trapezoidal function we mean a membership
function/_0(z) that is equal to 1 for z E [a_,a+], to 0 outside the interval [z_,z+], to (z - z_)/(a_ - z_)
for z E [z_,a_], and to 1 - (z-a+)/(z+-a+) for zE [a+,z+].

Theorem 12. For any given z_, a_,a+, z+, trapezoidal membership function #o(X) is asymptotically the

most robust extrapolated membership function of type 2.

Definition 20. Suppose that z_ < z+ are real numbers. By an extrapolated membership function of type 3

we mean a membership function IJ(z) such that tl(z) = 0 for z < z_, and/_(z) = 1 if z > z+.

Definition 21. Assume that z_ and z+ are given. By a piecewise.linear function (of type 3) we mean a

membership function/_0(z) that is equal to 0 for z < z_, to (z - z_)/(z+ - z_) for z E ix_, x+], and to 0

forz > z+.

Theorem 13. For any given z_ and z+, piecewise.linear membership function/_0(z) is asymptotically the

most robust extrapolated membership function of type 3.

Definition 22. Suppose that z_ < z+ are real numbers. By an eztrapolated membership function of type ,t
we mean a membership function/J(z) such that/_(z) = 1 for x < z_, and p(z) = 0 if z > z+.

Definition 23. Assume that z_ and z+ are given. By a piecewise.linear function (of type ,_) we mean a

membership function #0(z) that is equal to 1 for z < x_, to 1 - (z - z_)/(z+ - z_) for z 6 [z_,z+], and
to 1 for z > z+.

Theorem 14. For any given z_ and z+, piecewise-linear membership function go(Z) is asymptotically the
most robust eztrapolated membership function of type ,(.

PROOFS

Proof of Proposition 1. The set S of all real numbers a, for which a 6-input uncertainty leads to a

< a-output error, is bounded from below (by 0), and therefore, has an infinum (the greatest lower bound)
r. r is the value of 6-robustness. Indeed, since r is the greatest lower bound of the set S, for every positive

integer k there exists a number rt _ S such that rk < r+ 1/k. According to the definition of S, from r_ E S
we conclude that if [a - a'[ < 6 and [b - b'l < 6, then If(a, b) - f(a', b')[ _< r_. Letting k -- oc, we conclude

that ]f(a, b) - f(a', b')] < limk r, = r. Q.E.D.

Proof of Theorem 1.

1°. Let us first prove that, as in the case of t-norm, we have f(a, b) < min(a, b) for any &-operation f.
Since f(a, b) < a and f(a, b) = f(b, a) <_b, it follows that f(a, b) <_ rain(a, b).

2 °. Next, rmin(_ ) = _.
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Indeed, for la- a'[ < 5, we have a _< a'+ 6 and likewise b <_ b'+ 6. Hence, min(a,b) < min(a' +
5, b'+ 5) = min(a', b')+ 6, therefore, rain(a, b) _< min(a', b')+ 5. Likewise, min(a', b') < rain(a, b)+ 6, so

-5 <_ rain(a, b) - min(a', b') < 6, and I min(a, b) - min(a',b')l <_ 6. Take a = b = 6, a' = b' = 0. Then
] rain(a, b) - min(a', b')] - 6, and therefore, the output error is precisely 5. So, we cannot take a < 5, and so
the 6-robustness of min is really equal to 6.

3°. For every &-operation f(a, b): rl(6 ) > train(6) = 5.
Suppose that for some 6 E (0, 1), r1(6 ) < 6. This means that if la - a'l < 6 and Ib - b'l < 5, then

If(a, b) - f(a', b')[ <_.rf(6) < 6. In particular, if we take a = b = I and a' = b' = I - 6, we conclude
that II(1, 1) - f(1 - 6, 1 - 6)[ < & But according to the definition of a &-operation, 1(1, 1) = 1, therefore,
this inequality turns into l1 - 1(1 - 6, 1 - 6)l < 5. Hence, 1 - f(1 - 6, 1 - 6) _< [1 - I(1 - 5, 1 - 6)l < 6,

therefore, f(1 - 6, 1 - 6) > 1 - 5. But we have already proved in 1° that f(a, b) < rain(a, b), therefore,
f(1 - 6, 1 - 6) < 1 - 6. These two inequalities contradict to each other. Therefore, our assumption that

rl(6) < 6 is incorrect. Hence, r.t(6) > 6.
4°. min(a, b) is the only &:-operation, for which rl(6) = 6 for all 6.
Indeed, suppose that f is different from min. Then for some a and b, f(a, b5 # min(a, b), hence f(a, b) <

rain(a, b). Without loss of generality, assume a < b, resulting in f(a, b) < min(a, b) = a. For a' = b' = 1, we
have la - a'] = 1 - a, Ib - b'] = 1 - b _< 1 - a, but If(a, b) - f(a', b')l - 1 - f(a, b) > 1 - a. So, for 50 = 1 - a,

rl(6o) > 6o.Q.E.D.

Proof of Theorem 2 is similar.

Proof of Theorem 3. We have alreadyproved (seepart 4° of the proof of Theorem I) that ifan

&:-operationf(a,b)isdifferentfrom min(a,b),then rl(6o) > 60 forsome 60. So, in orderto prove the

Theorem itissufficientto provethe followingLemma:

Lemma..ffrl(6o ) > 60 for some 6 > O, then there exists a positive real number A > 0 and positive real
number C < 1 such that for all 5 < A, train(6) < Crl(6 ).

Proof of the Lemma. As we have alreadynoticed,6-robustnesscoincideswith themodulus ofcontinuity

off. The modulus ofcontinuityisasubadditivefunction[13],i.e.,r!(61+52+...+5, ) < r!(61)+rI(52)+...+6n

for all 51,...,5, > 0. In particular, for 5: = 62 = ... = 6, = 5o/n, we conclude that rt(5o) < nrj(5o/n).

Therefore, r/(5o/n) > r/(5o)/n. If we denote rl(50) by D, then this inequality takes the form r/(5o/n) >
D/n.

In order to continue the proof, we need to use one more property of the modulus of continuity [13]: if 6 < 6',

then rf(5) < r/(t_').

Let us now take any real number C between c = 6o/D and 1 (c < C < 1), and prove that there exists a

A > 0 such that for all 6 < A, we have 5 < Cr](65 (or, equivalently, rl(6) > 5/C).
We already know how to estimate the values of rj(5) for 5 = So�n, where n = 1, 2, 3,... So, to get the
estimates for arbitrary 6, we can use these known estimates. For every 5 < 5o, we want to find an n such

that 50/(n + 1) < 6 < 5o/n. This inequality is equivalent to (n + I)/60 > I/5 > nSo, which, after multiplying
both sides by 50, turns out to be equivalent to the inequality n < 6o/5 _< n + 1. Therefore, we can take for n

the integer part [60/5J of the ratio 50/5. From monotonicity, we can conclude that rl(6 ) > rf(5o/(n + 1)).
We have already proved that rl(So/(n + 15) > D/(n + 1). Therefore, rf(65 > D/(n + 15. We defined c as
c = 6olD; so, D = 6o/c, so rS(6) >_5o/(c(n + 1)).
We want to get an inequality r](6) _> 6/C. We will be able to deduce this inequality from the one that we
have just proved if 6o/(c(n + 1)) > 5/C. Since 6 < 6o/n, this inequality is valid if 6o/Cn < 6o/(c(n + I)).

Dividing both sides by 60 and then inverting both sides, we get an equivalent inequality Cn > c(n + 15,
which, in its turn, is equivalent to (C - c)n >_.c and n > c/(C - c). Therefore, if n > c/(C - e), then for
5 < 6o/n we get the desired inequality rl(5) >_ 6/e.
The inequality n > e/(C - e) is valid for all n starting from N = Ic/(C - c)J + 1. Therefore, the desired

inequality r/(6) > 6/c is true for all 6 < A, where A = 5o/N. Q.E.D.

Proof of Theorem 4 is similar.

Before proving Theorem 5 let us prove Proposition 2.
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Proof of Proposition 2.
I °. Let us first prove that iff and g are dual, i.e., g(a, b) -" 1 -f(l -a, I -b), then for every 6, r_(6) > rl(6).
Indeed, suppose that In - n' I < 6 and Ib - b' I < _f, and let us prove that ]9(a, b) - 9(a', b')] <_.rl(6 ). Since

]a-a'] < 6 and [b-b' I < 6, we have ]A-A'] = ]a-a'] < 6 and ]B-B'I - ]b-b'] < 8, where we
denoted A = l-a, A _ = 1-a', B = l-b, and B _ = 1-W. Due to the definition ofrf(6), we can

conclude that Lf(A, B) - I(A', B')] < r](8), nut g(a, b) = 1 - I(A, B) and g(a', b') = 1 - ](A', B'), therefore
]g(a, b) - g(a', b')] = If(A, B) - f(A', B')[ < rj(6). So, for a = rl(6), if ]a - a' I < 6 and Ib- b'] _< 6, then

]g(a, b) - g(a',b')l <_ a. Since rg(6) is defined as the smallest of all a with this property, we conclude that

rg(8) < rs(8).
2 °. One can easily check that if g is dual to .f, then f is dual to g. Therefore, we have both r0(6 ) < rl(6 )

and r/(6) < rg(6), hence rg(6) - r9(6 ). Q.E.D.

Proof of Theorem 5.

1) We must prove, first, that if la - a'] < 6 and ]b - b'l _< 6, then lab - a_b'] _< 26 - 62, and, second, that
there exist such a, b, a', b' for which la - a'l _<6, Ib - b'[ _<6, and lab - a'b' I - 28 - 62.
The second statement is easy to prove: take a = b = i, a' = b' = 1- 6, then lab- a'bl[ = 1 - (I - 6): = 25- 6 :.

Let us now prove the first one.

Let us denote la - a'] by As, and ]b - bt[ by Ab. Then As < 8 and Ab < 8. Without losing any generality
we can assume that a > a_. Then a r = a - As. With respect to b and b', there are two possible cases: b >_ b'
and b < b'. Let us consider both of them.

If b > b', then b_ = b - Ab, and ab > aT, so the desired absolute value d = lab - atb_I can be computed as
follows: d = lab - a'b' I - ab - a'b t = ab- (a - Aa)(b - Ab) = dab + bad -- AsAb. Since a < 1 and b < 1, we

have d < As + At -- AsAt. The right-hand side of this inequality can be expressed as 1 - (1 - A=)(1 - At).
Therefore, it is a monotonely increasing function of both As and At. So, its maximal value is attained when
both of these variables take their biggest possible values. Since/xs < 6 and At < 8, the maximal possible
value is attained when As - At = 6, and is equal to 25 - 82. Therefore, d < Aa + At - AsAt <_ 26 - 6_.

So for this case the desired inequality is proved.
Let us now consider the case when b < b'. Then b = b' - At, and d = lab- atb'[ : la(b' - At) - (a - As)b'l =

[aAb -btAs[. Let us consider two subcases: when the expression under the absolute value is positive or

negative, i.e., when dab > b_As and dab < b'As. In the first subcase, d = nat - btAo, therefore, d <_b_As.
Since As _< 6 and b' _< 1, we get d _<6.
In the second subcase similarly d = WAs - nat < WAs < 6. So, in both cases d _<6.
So, to complete the proof, it is sufficient to show that 6 < 28 - 62 for all 6 from 0 to 1. Indeed, by dividing

both sides by 6 and moving all terms to the right-hand side, we conclude that this inequality is equivalent

to 0 < 1 - 5, which is certainly true for 6 < 1.

2) follows from 1) and Proposition 2.

3) Let us first consider the case, when 6 < 1/2. Then 26 < 1, and min(26, 1) = 2_. Let us prove that in this
case, if [a - a'[ <_ 6 and Ib- b'] _<6, then If(a,b) - f(a',b')l <_26.
Indeed, ifla-a' I _< 6 and [b-b'[ < 6, then [(a+b)-(at+b')[ -- [((a-a')+(b- b')l _< 26. In
particular, this means that a' + b' _< a + b + 28. Evidently, a' + b' < 1, therefore, a' + bt _< 1 < 1 + 26.

So, a t + b' is not bigger than the smallest of these two numbers: a' + b' < min(a + b + 25, 1 + 25). But

min(a+b+25, 1+28) = min(a+b, 1)+25 = .f(a, b)+26. So, a'+b t <_f(a, b)+26. Since .f(a', W) = min(a'+b', l)
and therefore, f(a', b') < at + bt, we conclude that .f(a', b') <_ .f(a, b) + 26. In a similar manner we can prove
that f(a, b) < f(a', b') + 25. Combining these two inequalities, we conclude that If(a, b) - f(a t, b')l < 2&.

So, for 6 < 1/2, r](6) < 26.
Let us now show that a = 28 is the smallest value, for which 6-input uncertainty leads to a < a-output
error, and thus, ri(6 ) = 26. Indeed, if we take a - b - 0, at = bt = 8, then In- all _< 6, Ib- b'l _< 26, and

If(a, b) - f(a', b_)l - [0 - 261 - 28, so the values a < 25 do not work in this case. So, for 6 < 1/2, we proved

that rl(6) : 26.
Now let us consider the case when 6 _> 1/2. In this case, rain(26, 1) = 1. If we take a = b = O, a' = bt = 6,

then f(a,b) = O, .f(a',b') = 1, la - a'l _< $, Ib- b'l _< 26, and If(a,b)- /(at,b')l = I0- II = 1. Therefore,

nothing smaller than 1 can serve as a, hence r.¢(_) = 1. Q.E.D.

Proof of Theorem 6. Let us first prove that for every negation operation, ry(6) > 6 for all 6. For a standard

negation operation fo(X) - 1 - z, f0(6) = 1 - 5. So, let us consider three possible cases: f(6) < 1 - 5,
f(6) < 1-6, and f(6) > 1 -5. ._
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In the first case, for a -- 0, a' = 6, we have la-a' I _< 6 and I/(a)-f(a')]- [1-.f(6)l > 6. Therefore,

r:(6) >_ If(a) - f(a')l > 5, and rI(6 ) > 6.
In the second case, likewise r! (6) > 6.
In the third case, for a - 1 and a' - f(6), we have la - a' 1 < 6, but If(a) - f(a')l "- ]0 - 61 - 6. Therefore,

rl(6) > If(a)-f(a')l > 6, and rl(6 ) > 6. So, in all three cases, we have r!(6) > 6 for all 6. For f(z) = 1 -z,

r/(6) = 6. So, it is sufficient to prove that if a negation operation is not standard, i.e., f(x) ¢ 1- z for some
z, then rl(6) > 6 for some 6. The case when f(z) < 1 - z was already considered above, and in this case,
as we have already proved, r!(6) > 6 for 6 = z.
Suppose now that f(z) > 1 - z. Then z > 1 - f(z). So, for a = 1 and a' - f(z), we have ]a - a' I - 1 - f(z),
and If(a)- f(a')l- l0- zl"-z. Therefore,fory --1- f(z),r/(y)_>If(a)- f(a')[- x > y,and rl(y)> y.

Q.E.D.

Proof of Theorem 7 follows easily from the same Lemma as the proof of Theorem 3.

Proof of Theorem 8. Let us first prove that Dc is a continuous mapping. For that it is sufficient to prove

that the mappings # --* f p(z) dz and/a --* f z/J(=) dz are continuous, then Dc will be continuous as a ratio
of two continuous mappings. Indeed, if I/J(z) - #'(x)l < 6 for all z E [a, b], then -5 </_(x) -/(z) < 6, hence

-6(b-a) <_ f(/_(x)-/(x)) dx = f p(z) dx-f p'(z) dx < (b-a)6. Therefore, ]/p(z) dz -f/(z) dz] <_ (b-

a)6, and we can easily prove continuity with 6 "" el(b-a). Likewise, I fxlJ(Z) dx- f z/(z) dxl <_6(f_= Izl dz),

so this expression is also continuous.
Let us now prove that center-of-maximum is not continuous. Indeed, let us take a trapezoidal function/J(z)

that is equal to 0 for [z] > 2, to 1 for [zl _< 1, to 2- [z I for 1 < Izl < 2. Then m_ -- -1,m+ = 1, hence
DCOM(P) = 0. For every 6, we can define a new function p6(x) =/J(z)(1 - (6/3)(1 - [xl) ). For this new
function, the maximum (equal to 1) is attained in only one point x = 1, so DCOM(IJ6) = 1.
Since we are considering only the values from -1 to 2, we have I1 - Ixl < 3, hence (6/3)(1 - Izl) _< 6, and

Imu(x) - #'(z)l < 6. So, for c = 1/2, no matter how small 5 > 0 we take, we can always find a new function

#6 such that p(p, p6) < 6, but DCOM(P6) - DCOM(P) i > 1/2. So DCOM is not continuous. Q.E.D.

Before proving Proposition 3 and Theorem 9, let us first prove Theorem 10. ,

Proof of Theorem 10. For f0(z) = z/v, one can easily compute that rio(6 ) = 6/v. We assumed that f
is different from f0, so f(z) ¢ fo(z) for some z. For this z, either .f(x) < z/v, or f(x) > x/v. In the first

case, for a = x and a' = v, we have la - a'] = v - z and If(a) - f(a')l = 1 - f(z) > 1 - x/v = (v - x)/v, so

r1(6 )>6Iv for6= 1-z.
In the second case, for a = 0 and a' = z, we have la - a' I = z and If(a) - f(a')l > x/v, so r!(6) > 6Iv for

6 = z. In both cases, r!(6) > 8/v for some 6 > 0. Arguing like in Lemma, we can find the desired C and A.
Q.E.D.

Proof of Theorem 9 directly follows from Theorem 10.

Proof of Proposition 3. If f(z) _ z/v, then the existence of the desired g(x) follows from Theorem 9: we

can take g(z) = z/u. So in order to prove this Proposition, it is sufficient to prove it for f(x) = z/v, i.e., it
is sufficient to find a normalization g(z) such that r0(6 ) < 6/v for some 6 > 0.
Let us define the following function F(x): F(x) = 100/3z for z < 0.01, F(z) = 1/3 for 0.01 < z < 0.495,

F(z) = 1/3 + 100/3 * (x - 0.495) for 0.495 < z _< 0.505, F(z) = 2/3 for 0.505 < x <_ 0.99, and F(z) =
2/3 + 100/3 • (x - 0.99) for z > 0.99. This is a continuous function from [0,1] to [0,1]. Let us prove that

for g(x) - F(z)/v, rg(0.4) < 1/(3v) < 0.4/v. In other words, we want to prove that if la - a' I < 0.4, then

Ig(a)- g(a')l<_i/(3v)< 0.4/v.

Without losing generality, we can assume that a < a'; then a' < 0.4 + a, and the desired inequality takes
the form g(a') - g(a) < 1/(3v) < 0.4/v. Let us consider all possible locations of a.

• If 0 < a _< 0.01, then a' < 0.4-1- a < 0.4 + 0.01, and, therefore g(a') <_ g(0.45) = (1/3)/v. Hence,

g(a') - g(a) <_ g(a') <_ (l13)lv.
• If0.01 < a < 0.495, then g(a) = (1/3)/v, and a' < 0.4+0.495 = 0.895, hence g(a') <_g(0.895) = (2/3)/v.

Therefore, g(a') - g(a) < g(0.895) - g(a) = (1!3)Iv.
• If 0.495 < a < 0.505, then g(a) > g(0.495) - (1/3)/v; here a' <_ 0.505 + 0.4, hence g(a') < g(0.905) =

(2/3)/v). Therefore, g(a') - g(a) < g(a') - g(0.495) = (1/3)/v.
• For the cases 0.505 < a < 0.99 and a >_0.99, the proofs are similar. ______.
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" So, in all the cases, Ig(a) - g(a')l _< 1/(3v) < 0.4iv. Q.E.D.

Proof of Theorems 11-14. For the piecewise-linear functions, r_o(_) = k6, where k = 1/(z+ - z0) for
functions of type 1, k = 1/(z+ - a+) for functions of type 2, and k = 1/(z+ - z_) for functions of types 3
and 4. The fact that these functions are asymptotically more robust than the others follows from Lemma,

just like in the proof of Theorem 9.

CONCLUSIONS

As far as combining degrees of belief of experts is concerned, in situations where estimates can vary drastically,

it is reasonable to use robust fuzzy logic connectives, which are the least sensitive to these variations, i.e., for
which the resulting intervals of uncertainty are the smallest possible. We have proved that in this situation,
the dual pair min(a, b), max(a, b) are the most robust operations. Results are also given for choosing the

most robust negation operations, defuzzification procedures, and membership functions.
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