
ii

m

z_

SYSTEMS IN(::

A2 97

m

L

C931021-U-2R07

u

AN EXPERT SYSTEM SHELL FOR_RRING VEGETATION

CHARACTERISTICS - INTERFACE FOR THE

ADDITION OF TECHNIQUES (TASK H)

L

W

22 April 1993

m

i

Prepared for:

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, MD 20771

Prepared by:

JJM Systems, Inc.
One Ivybrook Boulevard, Suite 190

Ivyland, PA 18974

m

m

(NASA-CR-192897) AN EXPERT SYSTEM

SHELL FOR INFERRING VEGETATION

CHARACTFRISTICS: INRERFACE FOR THE

ADDITION OF TECHNIQUES (TASK H)

Report, Mar. - Apr. 1993 (JJM

Systems) 34 p

N93-25154

unclas

G3/43 0158567

https://ntrs.nasa.gov/search.jsp?R=19930015965 2020-03-17T06:54:14+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42807419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SYSTEMS INC

TABLE OF CONTENTS

C931021-U-2R07

Page i

imm

m

Section/Description

LIST OF FIGURES

LIST OF TABLES

LIST OF ACRONYMS

1.0 INTRODUCqTON

2.0 THE ADD TECHNIQUES INTERFACE

2.1
2.2
2.3

DEFINING A NEW TECHNIQUE
ADDING PREVIOUSLY DEFINED NEW TECHNIQUES
PURGING PREVIOUSLY DE_ NEW TECHNIQUES

3.0 TESTING AND RESULTS

3.1 TEST 1
3.2 TEST 2
3.3 TEST 3
3.4 TEST 4
3.5 TEST 5
3.6 TEST 6
3.7 TEST 7
3.8 TEST 8
3.9 TEST 9
3.10 TESTI0
3.11 TESTll
3.12 TEST 12

4.0 CONCLUSIONS

APPENDIX A

ii

,oo

111

iv

3
8

10

11

11
11
11
12
12
13
13
14
14
15
15
15

17

w

U

SYSTEM5 INC

LIST OF FIGURES

C931021-U-2R07

Page ii

w

gigalm

2-1

2-2

2-3

2-4

2-5

2-6

3-1

Description

The Add Techniques Interface

The Define New Technique Screen When it is First Opened

Slots in the Unit ADD.TECHNIQUES

The Define New Technique Screen After All the Data for a
New Technique have been Entered

The Pick Techniques Screen for the Goal
SPECTRAL.HEMISPHERICAL.REFLECTANCE

The Add Techniques Interface with the Option
PURGE.PREVIOUSLY.DEFINED.TECHNIQUES Selected

The Output Screen at the End of Test 5

2

3

4

5

10

13

S

=

SYSTEM5 INC

LIST OF TABLES

C931021-U-2R07

Page iii

Table

2-1

Description

The Format in which the Data taken from the Activelmages in

Figure 2-4 would be Stored in the File "new-tech-data"

7

u

w

--2

SYSTEM5 INC

LIST OF ACRONYMS

KEE

VEG

_owl_ge En_neenng Env_onment

_Gemfion Work_nch

_31021-U-2R07

Page iv

L_

i

i

m

L

m

J

SYSTEM5 INC

SECTION 1.0

INTRODUCTION

C931021 -U-2R07

Page 1

All the NASA VEGetation Workbench (VEG) goals except the Learning System provide
the scientist with several different techniques. When VEG is run, rules assist the scientist in

selecting the best of the available techniques to apply to the sample of cover type data being
studied. The techniques are stored in the VEG knowledge base. The design and implementation
of an interface that allows the scientist to add new techniques to VEG without assistance from the

developer have been completed.

In the previous version of VEG, the addition of a new technique was a complex process.
For each new technique, extra units were added manually to the VEG knowledge base and
additional Common Lisp code was added to the methods file. Changes were also made manually
to the interface that allow the scientist to select which techniques to use.

A new interface that enables the scientist to add techniques to VEG without assistance from

the developer has been designed and implemented. This interface does not require the scientist to
have a thorough knowledge of Knowledge Engineering Environment (KEE) by Intellicorp or a
detailed knowledge of the structure of VEG. The interface prompts the scientist to enter the
required information about the new technique. It prompts the scientist to enter the required
Common Lisp functions for executing the technique and the left hand side of the rule that causes
the technique to be selected. A template for each function and rule and detailed instructions about
the arguments of the functions, the values they should return, and the format of the rule are
displayed. Checks are made to ensure that the required data have been entered, the functions
compiled correctly and the rule parsed correctly before the new technique is stored. The additional
techniques are stored separately from the VEG knowledge base.

When the VEG knowledge base is loaded, the additional techniques are not normally
loaded. The interface allows the scientist the option of adding all the previously defined new
techniques before running VEG. When the techniques are added, the required umts to store the
additional techniques are created automatically in the correct places in the VEG knowledge base.
The methods file containing the functions required by the additional techniques is loaded. New
rule units are created to store the new rules. The interface that allow the scientist to select which

techniques to use is updated automatically to include the new techniques.

Task H has been completed. The interface that allows the scientist to add techniques to
VEG has been implemented and comprehensively tested. The Common Lisp code for the Add
Techniques system is listed in Appendix A. A Sun cartridge tape containing KEE and Common
Lisp code for the new version of VEG, including the new interface, has been delivered to the
NASA GSFC technical representative.

U

= =

[i

U

U

SYSTEMS INC

THE

SECTION 2.0

ADD TECHNIQUES INTERFACE

C931021-U-2R07

Page 2

When the ADD.TECHNIQUES option is selected from the VEG Administration screen, the
Add Techniques interface, shown in Figure 2-1, is opened. The option DEFINE.NEW.
TECHNIQUE allows the user to define a new technique and store it ready for subsequent loading

into VEG. Selecting the menu option ADD. PREVIOUSLY.DEFINED.TECHNIQUES causes the
data, functions and rules for previously defined new techniques that have been defined using
DEFINE.NEW.TECHNIQUE to be read from files and added to VEG. The option
PURGE.PREVIOUSLY.DEFINED.TECHNIQUES is used to delete all the techniques defined

using DEFINE.NEW.TECHNIQUE from the files so they are no longer available to VEG. All

three options are described in detail in this section.

,tions

i

n

w

ADD.PREVIOUSLY.DEFINED.TECHNIQUES

DEFINE.NEW.TECHNIQUE

PURGE.PREVIOUSLYDEFINEDTECHNIQUES

QUIT

BIOWSE KNTIIE SYSX'EM

rI_ffYINGIO_K_

L'I_ LOILI _ DF J_STOItCAL_ATA

YIINY _III_Y _'_ITN

w

The Add
Figure 2-1
Techniques Interface

SYSTEMS INC

C931021-U-2R07

Page 3

2.1 DEFINING A NEW TECHNIQUE

When the user selects the option DEFINE.NEW.TECHNIQUE from the Add Techniques
Interface (Figure 2-1), the Define New Technique Screen is opened. This screen allows the user
to enter the data, functions and rule for the new technique, store the new technique, abandon the

new technique or quit the screen. When the screen is first opened, only the "Technique Name" and
"Options" subwindows are opened. The user is prompted to enter the name of the new techniqu.e.

Figure 2-2 shows this. When the Define New Technique Screen is open, the KEE Typescript
Window is visible. This allows the user to see any error messages that are displayed in the

Typescript window when the functions for the new techniques are compiled or the rules are

parsed.

_ine New Technique

i

Unknown [

_ter the technique name

Figure 2-2
The Define New Technique Screen When it is First Opened

[5

w

i

5YSTENI5 INC

C931021-U-2R07

Page 4

A new unit called ADD.TECHNIQUES has been created in the VEG knowledge base.
Figure 2-3 shows the slots in this unit. Each subwindow in the Define New Techniques Screen is
a KEE Activelmage connected to a slot in the unit ADD.TECHNIQUES. Data for the new
technique are entered via the interface and stored in slots such as DESCRIPTION and GOALS of
the ADD.TECHNIQUES unit. The slots ENTER.DESCRIPTION, ENTER.ERROR.MESSAGE,
ENTER.FUNCTIONS, COMPILE.FUNCTIONS, ENTER.RULE and COMPILE.RULE are

methods slots. They contain methods which are executed when the user left-clicks on the method-
actuator Activelmage attached to the slot.

h_
F_

U

L

COEFFS.METHOD

COEFFS.P

COMPILE.FUNCTIONS

DESCRIPTION

ENTER.DESCRIPTION

ENTER.ERROR.MESSAGE

ENTER.FUNCTIONS

ENTER.RULE

ERROR.MESSAGE

GOALS

INITIALIZED .FUNCTION

INITIALIZED .RULE

INTERPOLATE.EXTRAPOLATE?

MESSAGE

NEW.TECH.OPTIONS

OK.TO.USE

OPTIONS

PARSE.RULE

PREVIOUS.TECHS

RULE.PARSED

TECH.NAME

TECHNIQUE.METHOD
WEIGHT

YES.NO

Figure 2-3
Slots in the Unit ADD.TECHNIQUES

w
The first step in defining a new technique is to enter the name of the new technique into the

subwindow labelled "Technique Name" (Figure 2-1). When the Define New Technique screen is
opened, the names of any previously defined new techniques are read from the file and stored in
the slot PREVIOUS.TECHS of the unit ADD.TECHNIQUES. If the name of the new technique
matches a value in the PREVIOUS.TECHS slot or an existing VEG unit, a message is displayed.
This message indicates that the technique has already been defined. In this case, the technique
name is not stored. Otherwise, the technique name is stored in the TECH.NAME slot of the

i

=

J

n

SYSTEM_ INC

C931021 -U- 2R07

Page 5

ADD.TECHNIQUES unit. For a function named "SID," for example, the function names "tech-
SID," "coeffs-SID" and "SID.ok" are then constructed and stored in the slots
TECHNIQUE.METHOD, COEFFS.METHOD and OK.TO.USE, respectively. After the function
name has been stored, the rest of the subwindows of the Define New Technique interface are

automatically opened. The user must enter or select data or activate methods in all the subwindows
of this interface before the technique can be saved. Figure 2-4 shows the Define New Technique
screen after all the data for a new technique has been entered. If the user enters a technique name

and then subsequently enters another technique name before storing the previously named
technique, the interface is re-initialized and any data, functions, or rule entered for the previously
named technique are lost.

SID

pAP3E-RULE

w

!

nter thedata for the

_hnique SID

mira

l

Figure 2-4
The Define New Technique Screen After All the Data

for a New Technique have been Entered

n

L

r _

w

The "Weight" subwindow (Figure 2-4) holds a number between 1 and 5 which indicates
the priority to be given to the technique when the techniques are ranked. The highest priority is 5.
Selecting "YES" in the subwindow labelled "Coefficients" indicates that the function used for
executing the technique requires coefficients. The default selection for the "Interp/Extrap Strings?"
subwindow is "NO." If the technique requires the strings in the reflectance data to be interpolated
and extrapolated before the technique is applied, "YES" must be selected in this subwindow. The
string techniques for the goal SPECTRAL.HEMISPHERICAL.REFLECTANCE require this

extrapolation.

L--

w

m

w

w

i uZ-i-

i
u

SYSTEMS INC

C931021-U-2R07

Page 6

The subwindow labelled "Goals" holds the VEG goal to which the technique applies. New

techniques can be added for the VEG goals SPECTRAL.HEMISPHERICAL.REFLECTANCE,
PORTION.GROUND.COVER (either single or multiple wavelength) and VIEW.ANGLE.

EXTENSION. Only one total hemispherical reflectance technique is currently available in VEG.
The interface to select or rank total hemispherical reflectance techniques has not yet been

implemented. If the user selects the goal TOTAL.HEMISPHERICAL,REFLECTANCE, a
message is displayed. The message indicates that the techniques for this goal have not been

implemented and the new technique will not be stored.

When the user is running VEG and chooses to select the techniques manually, the User
Pick Techniques screen is opened. Each time a technique is selected, a description of the technique
is displayed on the screen. If the selected technique is suitable for the sample being studied, the
message "This technique is suitable for this sample" is displayed. Otherwise an error message is
displayed. Left-clicking on ENTER-DESCRIPTION and ENTER-ERROR-MESSAGE in the
Define New Technique screen enables the user to enter the description and error message that will

be displayed in the User Pick Techniques screen when the technique is added to VEG.

When the user left-clicks on ENTER-FUNCTIONS, the temporary file "temp.lisp" is

opened. Templates for the functions required by the new technique are written to this file. The
names for the technique functions that were constructed when the technique name was entered, are
automatically incorporated in the templates. Then the editor is opened and the user is prompted to
enter the new functions. Functions are required to execute the technique, calculate the coefficients
(if any) required by the technique, and to determine whether the technique is suitable for a
particular sample A prompt in the "Message" window tells the user how to save the temporary file

- " - - " " " nand exit the editor. The method actuator COMPILE-FUNCTIONS is used to compile the functao s

for the new technique. The method first checks that functions have been entered. If the file
"temp.lisp" is not found, an error message is displayed and no attempt at compilation is made.
Otherwise, the function file is compiled and any compilation errors or warnings are displayed in
the KEE Typescript window. If the compilation is successful, the compiled functions are stored in
the binary file "temp.sbin." If any errors occurred during the compilation, this file remains empty.
Note that the functions are compiled both for efficiency and also to create additional error checking.
If the user reselects ENTER-FUNCTIONS while still entering data for the same technique, the

previously edited temporary file is opened once again. The changes made in the previous edit
session are not lost. This allows the user to edit a file repeatedly until the functions are correct and

the file compiles successfully.

When the user selects ENTER-RULE, another temporary file is opened and a template for
the rule is written to the file. The name of the new technique is incorporated in the template. The

editor is then opened, and the user is prompted to modify the template to create the rule required for
the new technique. If the user left-clicks on PARSE-RULE, checks are made to confirm that a rule
has been entered, and that the rule contains the same number of left and right parentheses. The
failure of either of these checks causes an error message to be displayed. Otherwise, an attempt is

made to parse the rule using a user-defined function named TEST-RULE-PARSES. This function
sets up the structure so that the KEE parser can parse the new rule. The function creates a
temporary rule unit as an instance of the KEE unit VEG.RULES. The newly entered rule is stored
in the EXTERNAL.FORM slot of the temporary rule unit. The KEE PARSE function is then

applied to the rule unit. If no parse errors occur, the function returns T. Otherwise the function
returns NIL. Before the value is returned, the temporary rule unit is deleted from VEG. If the rule

did not parse correctly, an error message is displayed in the "Message" box. The slot
RULE.PARSED in the ADD.TECHNIQUES unit is used as a flag to indicate whether or not a
correctly parsed rule has been entered. Note that even though a rule contains the same number of

left and right parentheses and parses correctly, it might still be incorrect.

I

-7
w

= =

m

m

SYSTEMS IN(::

C931021 -U-2R07

Page 7

When the user selects the option STORE-TECHNIQUES, checks are made to make sure

that all the required data has been entered, the functions have been defined and compiled
successfully, and a correctly parsed rule has been entered. If the checks are unsuccessful, nothing
is stored and the user is prompted to complete entry of the required data. Otherwise, the data and

rule are appended to the file "new-tech-data," and the functions are appended to the file "new-
tech.lisp" which is immediately compiled. Table 2-1 shows the format in which the data taken
from the Activelmages shown in Figure 2-4 would be stored in the file "new-tech-data." Next,
the new technique name is added to the PREVIOUS.TECHS slot of the unit ADD.TECHNIQUES.
The interface is then re-initialized, and the subwindows, except the "Technique Name" and

"Options" subwindows, are closed, as in Figure 2-2.

Table 2-1
The Format in which the Data taken from the Activelmages

in Figure 2-4 would be Stored in the File "new-tech-data"

L

= ?

= =

= i

U

DESCRIPTION VALUE

Goal SPECTRAL.HEMISPHERICAL.REFLECTANCE

Technique Name

Description

Error Message

Technique function

Interp/extrap Strings?

Function uses Coefficients?

Weight

Rule

SID

"TECHNIQUE SID - A NEW TECHNIQUE FOR
CALCULATING THE SPECTRAL HEMISPHERICAL
REFLECTANCE OF A SAMPLE THAT HAS DATA AT

4 VIEW ANGLES"

"TECHNIQUE SID IS UNSUITABLE FOR THIS
SAMPLE BECAUSE IT DOES NOT HAVE DATA AT 4
VIEW ANGLES"

tech-SID

NO

YES

Coefficients function coeffs-SID

Suitabili_ Function SID.ok

3

(IF (THE CURRENT.SAMPLE.WAVELENGTHS OF
ESTIMATE.HEMISPHERICAL.REFLECTANCE IS ?X)

(THE NUMBER.VIEW.ANGLES OF ?X IS 4) THEN
(LISP (ADD.VALUE ?X (QUOTE TECHNIQUES)

(QUOTE SID))))

m

!

SYSTEM5 INC

C931021-U-2R07

Page 8

Selecting the option ABANDON-TECHNIQUE causes the deletion of any data, functions,
and rules that have been entered but not stored. The interface is then re-initialized. This is, in

effect, a panic button that the user can activate to stop the process at any point.

The Define New Technique interface can be exited by selecting the QUIT option. Any
partially entered technique is deleted when this option is selected. It is important to note that at this
stage any newly defined and stored techniques have been saved in files, but they have not yet been
added to VEG.

L.,

...-.

! La

m

2.2 ADDING PREVIOUSLY DEFINED NEW TECHNIQUES

Adding a new technique to VEG involves several steps. A new unit must be created in the
VEG knowledge base to hold the data required by the technique. Another unit is required to hold
the rule that will enable the technique to be selected when it is appropriate for the cover type sample
being studied. The functions required by the technique must be loaded. The interface must be
updated so that the displays that list the available techniques for a VEG goal include the additional
techniques. It is important to note that this system automatically places newly created units in their

proper location in the system.

When the user selects the option ADD.PREVIOUSLY.DEFINED.TECHNIQUES from the

Add Techniques screen (Figure 2-1), VEG first checks that the files "new-tech-data" and "new-
tech.lisp" are present. These files hold the data, functions and rules for the new techniques. If
either of these files is missing, the message "No techniques available" is displayed in the
"Messages" box and processing stops. If the required files are present, the file "new-tech.sbin" is
loaded. This file is the compiled version of the file "new-tech.sbin" that contains the functions
required by the new techniques. Processing of the data then begins. The data are read from the
file "new-tech-data." The format of this file was shown in Table 2-1.

The VEG goal to which the new technique applies is read first. The techniques for each
VEG goal are stored in instances of different subclasses of the unit TECHNIQUES. For example,
techniques for the goal SPECTRAL.HEMISPHERICAL.REFLECTANCE are stored in instances
of the subclass unit SPECTRAL.HEMISPHERICAL.REFLECTANCE.TECHNIQUES. The

rules for each goal have names that reflect the goal to which they apply, and they are stored in
ruleclasses that are subclasses of the unit VEG.RULES. For example, rules for the goal
SPECTRAL.HEMISPHERICAL. REFLECTANCE have names that are prefixed by "HRTR,"

and they are stored in instances of the unit HEMISPHERICAL.REFLECTANCE.TECHNIQUES.
The techniques for different goals are displayed in different windows in the interface. After the
goal has been read from the file, the names of the technique subclass, rule prefix, ruleclass, and
interface window that apply to the goal are identified.

The technique name is next read from the file. The system will not allow the same
technique to be added more than once to VEG. If the technique has already been added to VEG,
the remainder of the data for this technique is skipped in the file. Otherwise, a new unit is created
as an instance of the correct VEG subclass to which the technique applies. Information about the
technique, such as its description, the name of the technique function, and whether the technique
function requires coefficients, are read from the file and stored in this unit. A rule unit is then
created in the correct ruleclass. The name of the rule unit is constructed using the appropriate

prefix. The rule is read from the file and stored in the "External Form" slot of the rule unit.

When VEG is running and a cover type sample is being processed, the user can select the
techniques to apply to the sample using the Pick Techniques Screen. The names of all the available
VEG techniques for the appropriate goal are displayed on this screen. The final step in adding a
new technique to VEG is to update this screen to include the new technique. Figure 2-5 shows the

r

w

' u

SYSTEMS INC

C93102 l-U- 2R07

Page 9

Pick Techniques Screen for the goal SPECTRAL.HEMISPHERICAL.REFLECTANCE after two
new techniques called SID and BERT have been added. In the example in the figure, BERT is in
dark because it has already been selected. The user has attempted to select SID. However, an

error message is being displayed because SID is not suitable for the sample being studied.

Adding new techniques continues until the end of the file "new-tech-data" is reached. The

message "Loading " is then removed from the screen.

= =
i

i

m_
l

id

m

Wavelengths.Av ail able:
0.92 0.68

0.92

1 FULL2HALF.STRINOS
1FULL.STRING

IHALF.STRING

1OFF.NADIILANGI-.E.0
IOFF.NADIR.ANGLE.1

1OFF.NADIR.ANGLE.2
1OFFNADIILANGLE.]

IOFF.NADIR.ANGLEA

1OFF.NADIR.ANGLE5
2FUL.L1HALF.STRINGS

2FUIA-STRINGS
2HALF.STRINGS

20FF.NADIR.ANGLE.O

2OFF.NADIILANGLE.1
2OFF.NADIR.ANGLE.2
2OFF.NADIILANGLE.3

2OFF.NADIILANGLE.4
2OFF.NADIR.ANGLE.5

3FULLSTRINGS

3HALF,STRINGS

DIRECTNADIR
NADIR

NORMAN

NORMAN.PLUS
StD

TECHNIQUE SID AVERAGES THE
REFLECTANCE VALUES AT 4 VIEW ANGLES
TO CALCULATE THE SPECTRAL
HEMISPHERICAL REFLECTANCE OF THE
SAMPLE.

"ECHNIQUE SID IS NOT SUITABLE FOR THIS
SAMPLE BECAUSE IT DOES NOT HAVE 4 VIEW
ANGLES.

Ii
E:I_ LO]U: SUllSZTS Or J_S'/_lt TeAt DATA I !

I

pILIWT C'_IIZNT _IC'E ELrI_ J

E,_.OW_Z EI_IYI R £ SYSTEM

I'LOTT;NG _OI,n'I N _"

i

i

Figure 2-5
The Pick Techniques Screen for the Goal

SPECTRAL.HEMISPHERICAL.REFLECTANCE

=.
W

Ed

SYSTEM5 INC

C931021 -U-2R07

Page 10

2.3 PURGING PREVIOUSLY DEFINED NEW TECHNIQUES

This option allows the user to delete from the files any techniques defined using the
DEFINE.NEW.TECHNIQUE option. When this option is activated the techniques are

permanently deleted from the files so they are no longer available to VEG.

When the user selects the option PURGE.PREVIOUSLY.DEFINED.TECHNIQUES from

the Add Techniques Interface (Figure 2-1), additional subwindows are opened, as shown in Figure
2-6. The user is asked to confirm that the techniques should be deleted. If the user left-clicks on
"YES," the file "new-tech-data," that contained the data and rules for the new techniques, is

deleted. The technique functions are then removed form the file "new-tech.lisp." If the user
selects "NO," the techniques are not deleted. Finally, the additional subwindows are removed
from the screen.

Selecting QUIT from the Add Techniques screen (Figure 2-1) returns the user to the
Administration screen.

,tions

I

-::_

m

ADD.PREVIOUSLY.DEFINED.TECHNIQUES

DEFINE.NEW.TECHNIQUE

QUIT

IAre you sure you want to permanently delete all previously defined new I

I

techniques? I

I YES NO [

m

Figure 2-6
The Add Techniques Interface with the Option

PURGE.PREVIOUSLY.DEFINED.TECHNIQUES Selected

m

SYSTEM5 INC

SECTION 3.0

TESTING AND RESULTS

C931021 -U-2R07

Page 11

The Add Techniques options were tested using both valid and invalid data. When errors
were detected, they were corrected and the test runs were repeated to ensure that the corrections
were successful. The tests were designed to test the typical range of user behavior. The test runs
and results are described in this section.

3.1 TEST 1

The purpose of Test 1 was to test the navigation back and forth through the various menu
levels from the VEG top level to the Add Techniques Screen. The user left-clicked on RUN.VEG,
ADMINISTRATION and ADD.TECHNIQUES on successive screens. As expected, the Add

Techniques Screen was opened. The user then selected QUIT in each successive menu to navigate
back to the top level of VEG. This test showed that the screens between the VEG top level and the
Add Techniques Screen were opened and closed in the correct sequence.

3.2 TEST 2

This test was designed to test the operation of the Add Previously Defined New Techniques
option before any new techniques had been defined. At this time, no additional techniques had
been defined so the file "new-tech-data" had not been created and the file "new-tech.lisp" contained

only comments. The option ADD.PREVIOUSLY. DEFINED.NEW.TECHNIQUES was selected
from the Add Techniques menu. The message "No techniques available" was displayed in the
"Messages" window. This test showed that the system could deal correctly with an attempt to add
previously defined new techniques before any new techniques had been defined.

m

3.3 TEST 3

Test 3 was intended to test the entry of valid data to define a new technique. The
DEFINE.NEW.TECHNIQUE option was selected from the Add Techniques menu. The Define
New Technique Screen was opened and the user was prompted to enter the name of the new
technique. At this time, most of the subwindows in the Define New Technique screen were
closed. The user entered the name "SID" for the new technique. Then the rest of the subwindows

were automatically opened and the user was prompted to enter the rest of the data for the new
technique. Note that the technique SID was invented by the developer for testing the system. It is
not a real technique. The user selected "NO" in both the "Coefficients" and the "Interp/Extrap?"
boxes. A weight of three was specified. The goal SPECTRAL.HEMISPHERICAL.
REFLECTANCE was selected. A description and an error message were entered. The user left
clicked on ENTER-FUNCTIONS. The function SID.ok was edited so that it would return T if the

sample had four view angles and nil otherwise. The function tech-SID was edited to return the
average reflectance value of the four view angles. Because the function to execute the technique
SID does not require coefficients, the function coeffs-SID was deleted. The file was then saved
and compiled. Compilation was successful. The user selected ENTER-RULE and edited the

template so that the rule would fire if the cover typ.e sample had four view angles. The rule parsed
correctly. Finally, the STORE.TECHNIQUE option was selected from the menu at the bottom of
the screen. No error messages were displayed. Inspection of the files "new-tech-data" and "new-
tech.lisp" showed that the new technique had been successfully saved. The user was then

prompted to enter the name of the next new technique.

[.

[d

= =

= =
Ill

U

= .

I

m

m

=

W

I

l

SYSTEMS INC

C931021-U-2R07

Page 12

This test showed that the Define New Technique interface was working correctly when
valid data were entered. The data, functions, and rule for the new technique were entered via the

interface and successfully stored in the appropriate files. Inspection of the created files confirmed
this.

3.4 TEST 4

The Define New Technique Interface should not allow the same technique name to be used
more than once. In Test 4, attempts were made to use the same technique name twice.

In the first part of Test 4, the technique name "SID" was entered again. The message
"Technique SID has already been defined" was displayed in the messages box.

In the second part of Test 4, the technique name "NORMAN" was entered. The message

"Technique NORMAN has already been defined" was displayed in the messages box. Technique
NORMAN is a technique for estimating spectral hemispherical reflectance that is part of the VEG

knowledge base.

Test 4 showed that the Add Techniques interface will not allow the same technique name to
be used twice. It can detect attempts to re-use a technique name either already stored in VEG, or
saved in the file of previously defined new techniques.

3.5 TEST 5

This test was designed to test the addition of multiple, previously defined new techniques
to VEG from files and the operation of VEG using the newly added techniques. At the beginning
of this test, another new technique called BERT was defined for the goal SPECTRAL.
HEMISPHERICAL.REFLECTANCE. This technique was also invented by the developer for

testing purposes. The technique was effectively the technique DIRECT.NADIR, applied only to
samples with one view angle. Technique BERT was saved in the files "new-tech-data" and "new-
tech.lisp." Then the ADD. PREVIOUSLY.DEFINED.NEW.TECHNIQUES option was selected
for the Add Techniques interface. The message "Loading " was displayed. After loading
had been completed, this message was removed. Inspection of the VEG knowledge base showed
that new units had been created in the correct places in the VEG knowledge base. These units held
the data and the rules for the new techniques.

The user ran VEG in Research Mode using the goal SPECTRAL.HEMISPHERICAL.

REFLECTANCE. Techniques SID and BERT were designed to operate on samples with data at
four and one view angles, respectively. Sample 4 was selected as the sample to be studied so that
both new techniques could be tested. This sample has four view angles at wavelength 0.68 p.m
and one view angle at wavelength 0.92 p.m.

Sample 4 was processed. The manual method of selecting techniques was chosen for the
data at both wavelengths. As shown in Figure 2-5, both new techniques were displayed on the
User Pick Techniques screen. The user attempted to select both new techniques for the data at both
wavelengths. The functions that check the suitability of each technique for each sample worked
correctly. The user was prevented from selecting technique SID for the wavelength 0.92 _m since
data at only one view angle were available at this wavelength. Similarly, the user was prevented
from selecting technique BERT for the wavelength 0.68 p.m. After selecting the techniques
manually, the user also chose to have VEG choose the techniques automatically. The purpose of
this was to test the rules for selecting the techniques. Technique SID was among the techniques
chosen for the wavelength 0.68 p.m and technique BERT was among the techniques chosen for the

m

L _m

SYSTEM5 INC

C931021 -U-2R07

Page 13

wavelength 0.92 lam. This proved that the new rules were operating correctly. Then the
techniques were ranked and the user chose to use the best two techniques for each wavelength so
that both new techniques were used. The techniques were then executed and the results were

displayed. Figure 3-1 shows some of the results obtained. The results were correct. Test 5
showed that newly defined techniques could be added to VEG and used correctly within VEG.

ths.Available: /,,1,¢
/ Cov_r r'_t "¢xan_i¢ 0i d.eztst vtgtta_0l, c_rtopy" So_ Z_ir-h AZL$_t450.92 0.68
J

G rotund Ccvu lqIL Lea! Ast_ htdtx _i PropoVaoa Orcea]4Ii

,_._rlw" DryBi_mns_HIL WetBi_massi_L Ht*_tMIL

]azgerch_ac_nz_n_

k_f ,_ Index 2 6937 Oro_ad Cove./09270

068 ((OOC 043) (151820043) (35450043) (75 _ 0D54))

,2a.w =[z a.. ,ll-dla'l_, s
P_s,dts

[¢d_uquc S]D E_tt*_e 0 D4_ Enor 0 l_8t C otfficle._sn_ra¢

1"ec.l_que2OFF NADIR ,A2_LE 0 E_e 0CLS40Enor 0 1414 Co¢ff_ae=_ O 0039 0 01S8 11470

R¢s_.zeccdH1stonc.IData

C'_8 -.Tg-|CT99-$9 -I CTI02- 2g- ICTI{]2- 63- I _-42-I C'['I00-56-I CTS_-51-I C'IS_9-4_-I CTI00- 42-I

CT_02-49-I

[_ at t Ch_ t_cA'lt [_0t_

Nad._r dlti_ *v_ablt

Ho t'_t_gt f0_zJacl

I_.F/F

I,IEXT WAVELEt_OTH _REVIOL_ WAVELE],IO'I_ Q_T

= :
L_

u

Figure 3-1
The Output Screen at the End of Test 5

3.6 TEST 6

In Test 6, new techniques were defined and added to VEG for the goals VIEW.ANGLE.
EXTENSION and PORTION.GROUND.COVER. Then VEG, along with the new techniques,
was run. The test showed that the addition of new techniques for these goals was successful.

3.7 TEST 7

In Test 7, a new technique was defined for the VEG goal TOTAL.HEMISPHERICAL.
REFLECTANCE. This option is not yet available. When the user selected this goal from the
Define New Technique Screen, an error message was displayed. The user ignored this error
message and continued to enter data for the new technique. When the user attempted to store the

m

SYSTEM5 INC

C931021-U-2R07

Page 14

data for the new technique, another error message was displayed and the data were not stored.
This test showed that the system was correctly blocking attempts to store new techniques for the

goal TOTAL.HEMISPHERICAL.REFLECTANCE.

3.8 TEST 8

Test 8 was designed to ensure that an incomplete set of data and functions for a new
technique would not be stored. It was also designed to ensure that attempting to compile functions
before they were defined, or to parse a rule before it was entered, would produce appropriate error

messages.

The user opened the Define New Technique screen and immediately attempted to store a
new technique, even though none had yet been defined. The message "Technique name not found
- data not stored" was displayed and nothing was stored. After entering a technique name, the user
again attempted to store the new technique. This time the user was prompted to select the goal.
The user continued to enter the data items, one at a time, in response to the prompts, each time

attempting to store the new technique. As expected, every attempt to save the incomplete technique
data was unsuccessful.

After all the data items had been entered, the message "Functions not found - data not
stored" was displayed when the user attempted to store the technique. The user then attempted to
compile the functions before entering them. This time the error message "Functions not found -
enter them before compiling" was displayed. The user entered the required functions and then
once again attempted to store the technique. This time the error message informed the user that the
functions must be compiled. The functions were then successfully compiled. The next attempt to
store the technique produced the error message "Rule not found - data not stored." The user
attempted to parse the rule before entering it. Again an error message was displayed. After
entering a rule, the user tried again to store the data. This time the user was prompted to parse the
rule. After the rule had been successfully parsed, an attempt to store the new technique succeeded.

This test showed that incomplete data for a technique could not be stored. It also showed
that an appropriate error message is displayed if the user attempts to compile functions before

defining them or to parse a rule before entering it.

w

m

H

Bm

3.9 TEST 9

The user may enter invalid functions for a new technique. The Add Techniques interface
tests whether new functions will compile and it does not store a new technique unless the new
functions compile correctly. Test 9 was designed to test the behavior of the system with invalid

technique functions.

Various errors such as unmatched right parentheses, undefined functions, incorrect
arguments to functions, and missing arguments to functions were introduced into the function file.
These produced warnings which were reported in the KEE Typescript window when the function
file was compiled. However, a compiled function file was created in each of these cases and
attempts to store the function were successful.

An unmatched left parenthesis error was also introduced into the function file. When this
file was compiled, the "End of file reading in a list" error was signaled and a list of debugging
action options was shown in the KEE Typescript Window. The user entered the debugging action
number 1 to kill the process in this case. No compiled file was created and the user was prevented
from storing the new technique.

u

2

U

[!

u

U

w_
l

SYSTEM5 INC

C931021-U-2R07

Page 15

This test showed that many errors in the technique functions produce warnings rather than
error messages. Although the interface prevents the user from stonng a technique function that
produces a compiler error, it does not prevent the user from storing a function that produces a
compiler warning. The user should correct warnings before storing a technique, even though the
interface does not insist on this. Test 9 showed that there are limitations on the detection of invalid

functions by the Define New Function system.

3.10 TEST 10

This test was designed to test the parsing of a new rule and to determine the limitations of
the system in preventing invalid rules from being stored. Various errors were introduced into a
rule to determine how the system would respond. For example, an extra term was added to a rule
clause. It was interpreted by the rule compiler as a literal so the rule parsed successfully even

though it was incorrect. In this case, the invalid rule was stored.

In separate tests, extra left and right parentheses were added to the rule. These were
detected before the rule was parsed, and in each case, the technique with the invalid rule was not
stored.

In separate tests, the IF and THEN clauses of the rule were omitted. Despite these
omissions, the rules parsed successfully.

Test 10 showed that the use of the KEE rule parser to detect errors in a rule is limited to

some syntactic errors. Note that adding new rules is the most difficult part of the Add Techniques
system to control. It is quite possible to add rules that are nonsense. The user is cautioned,
therefore, to be careful when adding rules.

i

L_

I

L_

m

3.11 TEST 11

Test 11 was designed to test the ABANDON.TECHNIQUE option from the Define New
Technique screen. Several new techniques were entered. Each time, the entry of the new
technique was abandoned at a different point. In every case, the interface was initialized correctly
and all the data, functions and rule for the abandoned technique were correctly deleted. This test
showed that the ABANDON.TECHNIQUE option was operating correctly.

3.12 TEST 12

This test was designed to test the operation of the PURGE.PREVIOUSLY.DEFINED.

TECHNIQUES option from the Add Techniques interface (Figure 2-1). When this option was
selected, additional subwindows were opened. The user was prompted to confirm that the

techniques should be deleted. The user left-clicked on "NO." The message "Techniques not
deleted" was displayed in the "Messages" box and the subwindows were then closed. Inspection
of the files "new-tech-data" and "new-tech.lisp" confirmed that the techniques had not been
deleted. The user then selected the PURGE.PREVIOUSLY.DEFINED.TECHNIQUES option

again. This time the user left-clicked on "YES" to confirm that the techniques should be deleted.
The message "Techniques deleted" was displayed in the "Messages" box and the subwindows
were closed once again. Inspection of the files confirmed that the file "new-tech-data" had been
deleted and the file "new-tech.lisp" contained only headings. Test 12 showed that the
PURGE.PREVIOUSLY. DEFINED.TECHNIQUES option was operating correctly.

w

w

m

m

5Y5TEM5 INC

SECTION 4.0

CONCLUSIONS

C931021-U-2R07

Page 16

The Add Techniques system implements a software component for defining additional
analysis techniques that are used to evaluate samples of cover type data. The system provides a
detailed, window driven, user interface which organizes the entry of the technique definitions.

Dynamic error checking, f'tle management, object creation, and def'mition management facilities are
provided.

The technique definition has multiple components that include description, error message,
function body, rule for determining when the technique can be used, and technique priority. The
user follows instructions on various windows to input technique elements. Error checking is done

interactively by the system. The function component of the definition is compiled for efficiency.

The new definition is managed so that it is logically isolated from the basic VEG system.

In a separate step, the new technique may be loaded for use.

Testing of the Add Techniques system focused on the expected range of typical user
behavior. It proved to be reasonably robust and user-friendly.

u

L

m

SYSTEM5 INC

C931021 -U-2R07

u

APPENDIX A

LISTING OF METHODS FILES FOR THE ADD TECHNIQUES SYSTEM

r_

m

lm

k

mini

I[._

r..a

m

m

mm

m

=

m

=

i

U

SYSTEMS INC

;;; veg-methods5.1isp
,°,

;;; Code to allow the user to add techniques to VEG
•,,

;;; Written by Ann Harrison
;;; Created April 1, 1993
;;; Last modified April 20, 1993

(in-package 'kee)

(defun open-add-techniques-menu 0
"Open the screen for adding techniques."

(unitmsg 'viewport-add.techniques. 1 'open-panel!)

(remove.all .values 'add .techniques 'options))

(defun add-previously-defined-techniques 0
"Loads previously defined additional techniques from a file."

(cond ((and (probe-file "new-tech.sbin")
(probe-file "new-tech-data"))

(my-documentation-print "Loading ")
(load "new-tech") ; Load the file containing the functions

; required by the techniques
(with-open-file (str "new-tech-data" :direction :input)

(load-tech-data-from-file str))

(clear-prompt))
(t (my-documentation-print "No techniques available"))))

;;; Note that the function> read-file is in the methods file veg-methodsl.lisp

(defun load-tech-data-from-file (str)
"Sets up the appropriate arguments and calls the function to create the units
to store the data for the technique and rule units in VEG."

(do ((goal (read-file str)(read-file str)))
((null goal) nil) ;End of file

(case goal
(total .hemispherical .reflectance

(my-documentation-print "This option is not yet implemented"))
(spectral .hemispherical .reflectance

(load-tech str
'spectral.hemispherical.reflectance.techniques
'hemisphercal.reflectance.technique.rules
"HRTR."

(unit
'windowpane-selected.techniques-of-6.generate.techniques.3)))

C931021-U-2R07

Page A- 1

| J
|i

m

zz

i

i

=.
i

i

u

! ti

m

i

SYSTEM5 INC

C931021 -U-2R07

Page A-2

(proportion.ground.cover.single.wavelength
(load-tech str

'proportion.ground.cover.single.wavelength.techniques
'proportion. ground.cover, single.wavelength .rules
"PGCSWR."

(unit
'windowpane-selected.techniques-of-portion.ground.cover.5)))

(proportion.ground.cover.multiple.wavelength
(load-tech str

'proportion .ground .cover.multiple.wavelength .techniques
'proportion.ground.cover.multiple.wavelength.rules
"PGCMWR."

(unit
'windowpane- selected.mw.technique s-of-portion.ground.cover.5)))

(view.angle.extension
(load-tech str

'view.angle.extension.techniques
'view .angle.extension .rules
"VAER."

(unit
'windowpane-selected.techniques-of-view.angle.extension.6))))))

(defun load-tech (str tech-class rule-class prefix window)
"Creates the units to store the data for the technique and rule in VEG. Loads
the data from the file."

(let ((new-tech (read-file str)))
(if (unit.exists.p new-tech) ; Technique already read in

(dotimes (n 9) (read-file str)) ; Read past this technique
(let ((new-tech-unit ; Read in technique

(create.unit new-tech 'veg nil tech-class))
(new-rule-unit
(create.unit (gentemp prefix) 'veg nil rule-class)))

(put.value new-tech-unit 'description (read-file six))
(put.value new-tech-unit 'error.message (read-file six))
(put.value new-tech-unit 'technique.method (read-file str))
(put.value new-tech-unit 'interpolate.extrapolate?

(if (eq (read-file str)'YES)
t

nil))

(cond ((eq (read-file str)'YES)
(put.value new-tech-unit 'coeffs.p t)
(put.value new-tech-unit 'coeff.method (read-file str)))

(t (put.value new-tech-unit 'coeffs.p nil)
(read-file str))) ;Ignore coeffs method from file

(put.value new-tech-unit 'ok.to.use (read-file six))
(put.value new-tech-unit 'weight (read-file six))
(put.value new-rule-unit 'external.form (read-file str))
(slot-image-toggle-enable window) ; Update the user pick

; technique interface

(slot-image-toggle-enable window)))))

w

L_

[]

m

m

jr_

m

= :

i

m

5Y5TEM5 INC

C931021-U-2R07

Page A-3

;;; Functions required to define a new technique

(defun define-new-techniques 0
"Opens and initializes the interface to guide the user through entering the
required data for a new technique."

(unitmsg 'viewport-add.techniques. 1 'close-panel!)
(unitmsg 'viewport- add. technique s. 2 'open-panel!)
(remove.all.values 'add.techniques 'tech.name)

(initialize-add-techniques)
(put.value 'add.techniques 'new.tech.options 'enter.technique)
(store-previously-defined-tech-names)
(my-documentation-print "Enter the technique name"))

(defun close-new-tech-windows 0
"Close the subwindows of the define new technique interface."

(unitmsg 'windowpane-coeffs.p-of-add.techniques.4 'close!)
(unitmsg 'windowpane-interpolate.extrapolate?-of-add.techniques. 10 'close!)
(unitmsg 'windowpane-weight-of-add.techniques.4 'close!)
(unitmsg 'windowpane- goals-of-add.techniques. 2 'close!)
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg

'windowpane-enter.description-of-add.techniques.4 'close!)
'windowpane-enter.error.message-of-add.techniques.3 'close!)

'windowpane-enter.functions-of-add.techniques.6 'close!)
'windowpane-compile.functions-of-add.techniques. 1 'close!)
'windowpane-enter.rule-of-add.techniques.7 'close!)
'windowpane-parse.rule-of-add.techniques.2 'close!))

(defun store-previously-defined-tech-names 0
"If any techniques have been defined, calls the function to collect the
technique names."

(when (probe-file "new-tech-data")
(with-open-file (str "new-tech-data" :direction :input)

(remove.all.values 'add.techniques 'previous.techs)
(read-tech-names-from-file str))))

(defun read-tech-names-from-file (str)
"Saves the names of the techniques that have already been defined in the slot
PREVIOUS.TECHS of the unit ADD.TECHNIQUES."

(do ((data (read-file str)(read-file str)))
((null data) nil) ; End of file

(add.value 'add.techniques 'previous.techs (read-file str))
(dotimes (n 9)(read-file str))))

(defun already-defined (tech-name)
"Returns t if a technique of the same name has already been defined and nil
otherwise."

(or (unit.exists.p tech-name)
(member tech-name (get.values 'add.techniques 'previous.techs)

:test #'equal)))

w

=:

w

= :2

|i

w

= :

= =

L

= :

= ;
m

L_

w

m

SYSTEM5 INC

C931021-U-2R07

Page A-4

(defun open-new-tech-windows 0
"Open the subwindows of the define new technique interace.
called after the new technique has been named."

(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg

This function is

'windowpane-coeffs.p-of-add.techniques.4 'open!)
'windowpane-interpolate.extrapolate?-of-add.techniques. 10 'open!)
'windowpane-weight-of-add.techniques.4 'open!)

'windowpane-goals-of-add.techniques.2 'open!)
'windowpane-enter.description-of-add.techniques.4 'open!)
'windowpane-enter.error.message-of-add. techniques.3 'open!)
'windowpane-enter. functions-of-add, techniques. 6 'open !)
'windowpane-compile.function s-of-add, tech niques. 1 'open!)
'windowpane-enter.rule-of-add.techniques.7 'open!)
'windowpane-parse.rule-of-add.techniques.2 'open!))

(defun initialize-add-techniques0
"Initializes the slots in the unit ADD.TECHNIQUES, ready for entering the new
technique. If they exist, deletes the files that have temporarily held the
functions and the selection rule for a previously entered new technique."

(remove.all.values 'add.techniques 'technique.method)
(remove.all.values 'add.techniques 'coeffs.method)
(remove.all.values 'add.techniques 'ok.to.use)
(remove .all .values 'add.techniques 'goals)

(put.value 'add.techniques 'description)
(put.value 'add.techniques 'error.message "")
(put.value 'add.techniques 'interpolate.extrapolate? 'no)
(put.value 'add.techniques 'coeffs.p 'yes)
(put.value 'add.techniques 'weight 1)
(put.value 'add.techniques 'initialized.function t)

(put.value 'add.techniques 'initialized.rule t)
(put.value 'add.techniques 'rule.parsed nil)
(when (probe-file "temp.lisp")

(lcl::shell "rm temp.lisp")) ; Remove temporary function file

(when (probe-file "temp.lsbin")
(Icl::shell "rm temp.sbin")) ; Remove temporary compiled function file

(when (probe-file "temp-rule")
(lcl::shell "rm temp-rule"))) ; Remove temporary rule file

(defun enter-description (self)
"Prompts the user to enter the description of a new technique into a file.
Then reads it from the file into the description slot of ADD.TECHNIQUES."

(declare (ignore self))
(my-documentation-print "Complete the description of the technique.

Save the file and exit the editor to save the description.")
(sleep 1)
(when (equal (get.value 'add.techniques'description))

(with-open-file (str "temp-desc" :direction :output :if-exists :supersede)
(princ (format 0 "Technique -A " (get.value 'add.techniques 'tech.name))

str)))
(lcl::shell "textedit temp-desc")

m

U

i

• L:i

i

= ==

w

: = ,

w

Z =-:

L

SYSTEM5 INC

C931021-U-2R07

Page A-5

(put.value 'add.techniques 'description
(with-open-file (str "temp-desc" :direction :input)

(let ((desc ""))
(do ((dat (read-file str)(read-file str)))

((null dat) desc)
(serf desc (format 0 "-A -A" desc dat))))))

(clear-prompt))

(defun enter-error-message (self)
"Prompts the user to enter the error message of a new technique into a file.
Then reads it from the file into the error.merssage slot of ADD.TECHNIQUES."

(declare (ignore self))
(my-documentation-print "Complete the description of the error message.

Save the file and exit the editor to save the error message.")

(sleep 1)
(when (equal (get.value 'add.techniques'error.message))

(with-open-file (str "temp-error" :direction :output :if-exists :supersede)
(princ (format 0 "Technique -A " (get.value 'add.techniques 'tech.name))

str)))
(lcl::shell "textedit temp-error")

(put.value 'add .techniques 'error.message
(with-open-file (str "temp-error" :direction :input)

(let ((desc))
(do ((dat (read-fie str)(read-file str)))

((null dat) desc)
(serf desc (format 0 "-A -A" desc dat))))))

(clear-prompt))

(defun enter-functions(self)
"Enter the functions required by the new technique."

(declare (ignore self))
(let ((tech-name (get.value 'add.techniques 'tech.name)))

(cond (tech-name
(when (get.value 'add.techniques 'initialized.function)

(with-open-file (str "temp.lisp" :direction :output
:if-exists :supersede)

(princ (format ()
";;; Templates for adding technique -A

(in-package 'kee)

;;; Replace the body of this example function with the correct function for
;;; the new technique. The function checks whether the technique is suitable
,;; for the sample. Here the sample is the wavelength level unit. The
;;; function should return t if the technique is suitable for the sample and

;;; nil otherwise.
(defun ~A (sample)
V'Checks the suitability of the function ~A for the sample.V'

(= (get.value sample 'number.view.angles) 1))

+ + +

2

W

m

La

i

J

w

m

h

7..--

SYSTEM5 INI::

;;; Replace the body of this example function with the technique function for
;;; the new technique. In this function the arguments are the sample unit at
;;; the wavelength level and the vector of coefficients, if any. The function
;;; should return a number which is the result of applying the technique to the

;;; sample.
(defun -A (thisunit coeffs)

V'Applies the function -A to the sample.\"
(declare (ignore coeffs)) ;Remove this line if technique uses coefficients
(third (first (get.value thisunit 'reflectance.data))))

;;; If the technique uses coefficients, replace the body of this example
;;; function with the coefficient function. Otherwise delete the template.
;;; In this function the argument is the list of restricted historical data
;;; units to be used for calculating the coefficients. The function should
;;; return the vector of coefficients of the correct length for the technique.

(defun -A (data)
V'Calculates the coefficients for the technique -AN'

(declare (ignore data)) ;Replace these lines with the new function body
nil)-%"

tech-name

(get.value 'add.techniques 'ok.to.use) tech-name
(get.value 'add.techniques 'technique.method) tech-name
(get.value 'add.techniques 'coeffs.method) tech-name)
str))

(put.value 'add.techniques 'initialized.function nil))
(my-documentation-print

"Edit the file. Then save the file and exit the editor.")

(sleep 1)
(lcl::shell "textedit temp.lisp")
(clear-prompt))

(t (my-documentation-print
"Enter technique name before entering the functions")))))

(defun compile-functions (self)
"Compiles the functions for the new technique."

(declare (ignore self))
(when (not (probe-file "temp.lisp"))

(my-documentation-print
"Functions not found - enter them before compiling")

(return-from compile-functions nil))
(my-documentation-print "Compiling the new functions")
(when (probe-file "temp.sbin")

(lcl::shell "rm temp.sbin"))
(compile-file "temp.lisp" :messages nil :file-messages nil)

(my-documentation-print "Finished compilation"))

(defun compiled-ok ()
"Returns t if the function complied correctly and nil otherwise."

(when (probe-file "temp.sbin")
(with-open-file (str "temp.sbin" :direction :input)

(let ((len (file-length str)))
(and (numberp len)

(> len 0))))))

C931021 -U-2R07

Page A-6

_L

r

u

i

!

!

1

u

!

5Yr-TEM5 INC

C931021-U-2R07

Page A-7

(defun enter-rule (self)
"Sets up a file to temporarily store the new rule. Prompts the user to enter
the rule. Attempts to parse it. If parsing fails, prompts the user to correct
the rule until it parses correctly."

(declare (ignore self))
(put.value 'add.techniques 'rule.parsed nil)
(let ((tech-name (get.value 'add.techniques 'tech.name)))

(cond (tech-name
(when (get.value 'add.techniques 'initialized.rule)

(with-open-file (strl "temp-rule" :direction :output
:if-exists :supersede)

(princ (format 0
";;; Template for rule for selecting technique -A

;;; Edit the leflhand side of this example rule to create the required rule
(IF (THE CURRENT.SAMPLE.WAVELENGTHS OF

ESTIMATE.HEMISPHERICAL.REFLECTANCE IS ?X)

(THE NUMBER.VIEW.ANGLES OF ?X IS 1)
THEN (LISP (ADD.VALUE ?X (QUOTE TECHNIQUES)

(QUOTE ~A))))"
tech-name tech-name)

strl))

(my-documentation-print
"Edit the file. Then save the file and exit the editor.")

(put.value 'add.techniques 'initialized.rule nil))
(sleep 1)
(lcl::shell "textedit temp-rule"))

(t (my-documentation-print
"Enter technique name before entering the rule")))))

(defun parse-rule (self)
"Returns t if the rule parses correctly and nil otherwise. Note that parsing
is not a complete test of correctness for a rule."

(declare (ignore self))
(my-documentation-print "Parsing rule")
(when (not (probe-file "temp-rule"))

(my-documentation-print
"Rule not found - enter it before parsing")

(put.value 'add.techniques 'rule.parsed nil)
(return-from parse-rule nil))

(with-open-file (svl "temp-rule" :direction :input)
(cond ((not (patens-ok strl))

(my-documentation-print
"Rule has unequal number of left and right parens - edit again")
(put.value 'add.techniques 'rule.parsed nil))

((test-rule-parses strl)
(my-documentation-print "Rule parsed OK")
(put.value 'add.techniques 'rule.parsed t))

(t
(my-documentation-print
"Rule does not parse correctly - edit again.")
(put.value 'add.techniques 'rule.parsed nil)))))

m

IL 1

SYSTEMS INI_

(defun test-rule-parses (strl)
"Sets up a temporary unit to hold the new rule. Attempts to parse it. Deletes
the temporary rule unit. Returns t if the rule parsed OK and nil otherwise."

(let ((new-rule-unit
(create.unit 'TEMP 'veg nil 'vegrules)))

(put.value new-rule-unit 'extemal.forrn (read-file strl))
(prog2 (unitmsg new-rule-unit 'parse)

(not (get.value new-rule-unit 'parse.errors))
(delete.unit new-rule-unit))))

C931021-U-2R07

Page A-8

U

m

w

w

(defun store-data 0
"Stores the data about the new technique in the file."

(let ((goal (get.value 'add.techniques 'goals))
(tech-name (get.value 'add.techniques 'tech.name))
(description (get.value 'add.techniques 'description))
(error-message (get.value 'add.techniques 'error.message)))

(cond ((not tech-name)
(my-documentanon-pnnt
"Technique name not found - data not stored"))

((not goal)
(my-documentation-pnnt
"Goal not found - data not stored"))

((eq goal 'total.hemispherical.reflectance)
(my-documentation-pnnt
"Techniques for this goal are not yet implemented - not stored"))

((equal description)
(my-documentanon-pnnt
"Description not found - data not stored"))

((equal error-message)
(my-documentanon-pnnt
"Error message not found - data not stored"))

((not (compiled-ok))
(my-documentation-pnnt
"Functions not correctly compiled - data not stored"))

((not (probe-file "temp-rule"))
(my-documentanon-pnnt "Rule not found - data not stored"))
((not (get.value 'add.techniques 'rule.parsed))
(my-documentation-print
"Rule not successfully parsed - data not stored"))

(t (store-data-on-file goal tech-name description error-message)))))

(defun store-data-on-file (goal tech-name description error-message)
"Stores the technique data in the file new-tech-data. Calls the function to
store the technique functions."

(my-documentation-print "Saving the new technique")
(with-open-file (str "new-tech-data" :direction :output :if-exists :append

:if-does-not-exist :create)

(princ (format 0
"-A-%-A-%\"-A\"-%k"-Ak"~%-A-%-A-%-A-%-A-%-A-%~A-%"

goal
tech-name

description
error-mes sage
(get.value 'add.techniques 'technique.method)

|i
i

L

w

m

m

SYSTEMS INC

(get.value 'add.techniques 'interpolate .extrapolate?)
(get.value 'add.techniques 'coeffs.p)
(get.value 'add.techniques 'coeffs.method)
(get.value 'add.techniques 'ok.to.use)
(get.value 'add.techniques 'weight))

str)
(add.value 'add.techniques 'previous.techs tech-name)
(store-functions str)))

(defun store-functions (str)

"Adds the function for the new technique to the file new-tech.lisp. Compiles
the file. Adds the new rule to the file new-tech-data."

(Ich:shell "cat new-tech.lisp temp.lisp > templ")
(lcl::shell "mv tempi new-tech.lisp")
(compile-file "new-tech.lisp" :messages nil :file-messages nil :warnings nil)
(with-open-file (strl "temp-rule" :direction :input)

(princ (read-file strl) str) ; Read the rule from the temporary file and
(terpri str)) ; store it in the file new-tech-data

(clear-prompt)
(remove.all.values 'add.techniques 'tech.name)
(initialize-add-techniques)
(close-new-tech-windows)

(my-documentation-print "Enter the name of the new technique")
(put.value 'add.techniques 'new.tech.options 'enter.technique))

(defun abandon-data 0

"Initializes the values in the add.techniques unit. Deletes any recently
entered but not yet stored functions or rules.""
stored."

(remove.all.values 'add.techniques 'tech.name)
(initialize-add-techniques)
(close-new-tech-windows)
(my-documentation-print "Enter the name of the new technique")
(put.value 'add.techniques 'new.tech.options 'enter.technique))

(defun read-char-file (str)
"Reads a charcter from a file. Returns the character read, or nil if the end
of the file has been reached."

(tier ((eof-p (obj)
(eq obj '*eof*)))

(let ((obj (read-char str 0 '*eof* 0)))
(if (eof-p obj)

nil

obj))))

(defun parens-ok (str)
"Returns t if the file contains the same number of left and right parens and
nil oIherwise."

(let ((left 0)

(right 0))
(do ((char (read-char-file str)(read-char-file str)))

((null char) (if (zerop (- left right))
t

nil))

C931021-U-2R07

Page A-9

m

; 7.,.d
m

w

= = .

SYSTEMS INC

C931021-U-2R07

Page A-10

(case char
(#k) (incf fight))
(#x((incf left))))))

(defun purge-previously-defined-techniques 0
"Opens the required subwindows ready to remove all previously defined
new techniques from the files."

(remove. all. v al ues 'add. technique s 'yes.no)
(put.value 'add.techniques 'message

"Are you sure you want to permanently delete all previously defined new techniques?")
(unitmsg 'windowpane-message-of-add.techniques. 2 'open-panel!)
(unitmsg 'windowpane-yes.no-of-add.techniques.3 'open-panel!))

(defun purge-techniques0
"Removes all previously defined new techniques from the files so they are no
longer available to be added to VEG."

(when (probe-file "new-tech-data")
(lcl::shell "rm new-tech-data"))

(with-open-file (str "new-tech.lisp" :direction :output
:if-exists :supersede)

(princ (format 0
"-'" tech lisp,,, ncw-

;;; Holds Functions Required by Newly Defined Techniques
;;; Functions are entered through the Define New Technique Interface

") str)))

! L

=..=

-" L

m

I. Reporl No

12

4. Title and Subtitle

Report Documentation Page

'2'." Government Accession No.

An Expert System Shell for Inferring Vegetation Characteristics -
Interface for the Addition of Techniques (Task H)

7. Author(s]

P. Ann Harrison

9 Performing Organization Name'an'd Address

JJM Systems, Inc.
One Ivybrook Blvd., Suite 190
Ivyland, PA 18974

Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

3. RecipienI's Catalog No.

5, Report Dale

April 1993

6. Performing Organizalion Code

8. Performing Organization Report No

C931021 -U-2R07

10. Work Unit No

462-61-14

11. Contract or Grant No

NAS5-30127

13 Type of R_oort and ,_erio._ C_vedgd
lask Keport lor IasK 1-1

March - April 1993

14. Sponsoring Agency Code

15. Supplementary Notes

The Lisp and KEE code for this work is available on a Sun Cartridge Tape.

16 Abstract

VEG is an expert system that infers vegetation characteristics from reflectance data. VEG provides the
scientist with several different analysis techniques which are stored in the knowledge base. When VEC
is run, rules assist the scientist in selecting the best of the available techniques to apply to the sample ol

cover type data being studied. In the previous version of VEG, the addition of a new technique was
complex process. A new interface that enables the scientist to add techniques to VEG without assistance
from the developer has been designed and implemented. It guides the scientist through entering the data
Common Lisp functions and the rule required by the new technique. Once the technique has beer
defined, adding it to VEG requires only the selection of the appropriate menu option. The Adc
Techniques System was tested using both valid and invalid data. The tests were designed to test the

typical range of user behavior. They confirmed that the interface was operating correctly.

17 Key Words {Suggested by Author(s)l

EXPERT SYSTEM, ARTIFICIAL
INTELLIGENCE, REMOTE SENSING

18 Dislribution Statement

UNCLASSIFIED - UNLIMITED

19 Securlly ClassH (of this report) 20 Security Class;f. (of this pagel 21. No of pages

UNCLASSIFIED UNCLASSIFIED 33

NASA FORM 1626 OC'r I_,

For sale by the National Technical Information Service, Springfield, VA 22161-2171

22 Price

