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Abstract

Thispapergivesa simpleway ofcheckingthestabil-

itywithrespectto an arbitrarystabilityregionofa

familyofpolynomialscontaininga vectorofparame-

tersvaryingwithinprescribedintervals.Itisassumed

thattheparametersappearaffinemultilinearlyinthe
characteristicpolynomialcoefficients.The condition

proposedhereissimplytocheckthephasedifference
of the vertexpolynomials.This testbased on the

mapping theoremsignificantlyreducescomputational

complexity.We omit mathematicalproofsin this
version.The resultscan be usedto determinevar-

iousstabilitymarginsof controlsystemscontaining
interconnectedintervalsubsystems.These include

the gain, phase, time-delay, H_ and nonlinear sec-
tor bounded stability margins of multilinear interval
systems.

1. INTRODUCTION

The problemofdeterminingwhethera controlsystem
remainsstableor not when some of itsparameters

undergoperturbationswithinprescribedintervalsis
one ofthecentralproblemsinrobustparametricsta-

bility.The casewhere theparametersappearaffine

linearlyinthe coefficientsofthecharacteristicpoly-
nomialhas been solvedeffectivelyby the Edge The-

orem [I] and the Box Theorem [2,3] The case where
the coefficients are affine multilinear functions of the

parameters is of current interest (see [4] - [9]). This
case arises in control systems where transfer function
coefficients perturb or state space parameters perturb
or matrix fraction factors perturb. The present paper
deals with the multilinear case also and shows that a

sufficient condition for the stability of such systems

is that the phase difference between various vertex
polynomials evaluated along the stability boundary
be less than 180". This is an "image set" approach
using the convex hull property of multilinear image

set [10,11,12]. We show how this result can be used
in conjunction with the multilinear version of the Box

Theorem [5] to develop a highly efficient phase test
forstabilitywhere onlythe Kharitonovverticesare

tested.These conditionswhich are sufficientcondi-

tionscan be tightenedby increasingthe number of
verticesand thiseventuallyleadsto necessaryand

sufficientconditions.Using theseresultswe show

how variousworstcasestabilitymarginssuchasgain,

phase,time-delay,]/ooand sectorbounded nonlinear

stabilitymarginsformultilinearintervalsystemscan
be found.

2. NOTATION AND MAIN RESULTS

Let p = [Pl,/_,"",/_]denotea vectorofrealparam-
eters.Considerthepolynomial

6(s, p) :: 6o(p)+61(p)s+62(p)s2+ "" .+6,,(p)s". (1)

wherein the coefficients 61(p) are o_ne multilinear
functions of p, i = 0, 1,-..n. The vector p lies in
an uncertainty set

II:={plp_-_<p__<p +, /=1,2,...,1). (2)

The corresponding set of polynomials is denoted by

A := {6(s,p) IP E If}. (3)

LetV denotetheverticesofIf,i.e.,

V := {p I = or Pi = pi-, i = 1, 2,..., 1) (4)

and

A V :: {6(s,p) [p E V}. (5)

denotesthe setofvertexpolynomials.

Fixings = s*,we letA(s*) denotetheactofpoints

6(s*,p) in the complex planeobtainedby lettingp
rangeoverH:

A(s*) := {6(s*,p)IP EII}. (6)

Likewise

AV(S* ) :-- {6(s*,p) I P E V}. (7)

The convex hull of a set of points P in the complex
planeisco7).Denotethesetofconvexcombinations

ofthevertexpolynomiMsby

E := {A,,6,(s)+ (1- x,j)6j(s) IA,jE [0,t] and

6,(s),6j(s)EZ v}. (8)
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Let 8 C (rdenote an open stabilityregion and 08

the boundary of S. Let A(A) denote the image set

evaluatedat s = A of the set of polynomials A. We

"can now state a firstresultbased on the Mapping

Theorem of [13].

Theorem 1. The set of polynomials A i$ stable

with respect to 8 if it has at least one stable poly-

nomial and i) 0 _ A(A) for some A E Oa ii) the set

of polynomials E is stable _ith respect to 3.

The problem ofchecking the stabilityofthe set E can

be solvedcomputationally relativelyeasilyinview if

the factthat E()0 consistsofstraightlineswhose end

pointsare contained in the set AV(A ).To formalize

thislet6(a)be a polynomial and s --A a point inthe

complex plane. Let Ca(A) denote the argument ofthe

complex number 6(_):

:= (9)

For a given set ofpolynomials T let

CI'T(A) := sup - ¢,,(_) I. (10)
6",,6"2ET

We can now statethe followingusefulcorollary.

Corollary 1. (Theorem 1) The set of polynomials

A is stable with respect to 8 if it contains one stable

polynomial:

a) o ¢

b) supxeoS_AV(_ ) < x where 08 denotes the

boundary of the region 8.

The above resultstatesthat A isstableifthe net

phase differenceof the vertexpolynomials evaluated

along the stabilityboundary islessthan 180°. We

shall refer to this as the Phase Condition. The

Phase Condition can be easilyverifiedby the Seg-

ment Lemma [13]without sweeping over frequency.

3. CALCULATION OF STABILITY MAR-

GINS

Exact calculation of stability margins for a multilin-

ear interval control system is computationally diffi-

cult. In this section, we give simple techniques to Ulin-

earize" the problem so that the Phase Condition can

be used to estimate various stability margins without
excessive calculations.

m

Figure 1. Unity Feedback System

3.1. Gain Margin

Consider the familyoffeedback systems as above with

M(s,p,q) N(s,p) (11)
:= D(s, q)

where At(s, p) and Dis, q) are multilinear functions

of p and q and (p,q) varies in a polytope P with

vertex set P¢. The upper gain margin of the family
of the family of feedback systems with M is defined

as the largest value L* >_ 0 of L so that

Dis, q) + (1+ L)N(s, p) (12)

remains FIurwitz for all/; • [0, L*) and for all (p, q) •
P. The lower gain margin of the family may be sim-

ilarly defined by replacing (1 + L) by (1 - £). Let us

first define the following sets corresponding to each
fixed real value of L:

2"L(w) :'- {D(jw, q) + (I+ L)N(jw, p)l

(p,q) • 73}. (13)

:= co {D(jw,q) + (1+ L)N(jw, p)i

(p, q) • 73v}. (14)

Now let

L(w) := inf(L J 0 C Z_(w)} (15)

and similarly,

L(w) := inf{L I 0 • _(_)}. (16)

The corresponding gain margins are:

L* := infL(,#) (17)

£" := infi,(_) (18)

Theorem 2. The gain margin L*

bounded from below by L*.
4 M(s) is

The point here is that lower bound L* can of course
be found from the Phase condition, since it involves

only the vertices.



3.2. Phase Margin

SimilaHy, the phase margin of the family with M(s)

"is defined as the largest value 0* _> 0 of 0 so that

D(s, q) + eJ°N(s, p) (19)

is Hurwitz for all 8 6 [0, 0*) and for all (p, q) 6 7_.

Consequently, we define the sets corresponding to
each fixed value of 8:

and define

T(w) := inf{T I 0 6IT(W)} (28)

_'(w) := inf{T [ 0 6_T(W)}. (29)

The corresponding maximum time delays are:

T* := infT(w) (30)

:= inf _(_) (31)

I_(w) := {D(jw,q)+ei°N(jw,p)l
(p,q)6 jo} (20)

I÷(w) := co {D(jw,q)+d°N(iv,p)]
(p,q) 6 Pv}. (21)

Theorem 4. The time delay margin T* of M(s) is

bounded from below by _'*.

As before _'* can be found from the Phase Condition.

And let

¢(w) := inf{¢ I 0 ez_(_)} (22)

¢(w) := inf{¢ I 0 e_(_)}. (23)

The corresponding phase margins are:

4" := inf¢(w) (24)

¢" :- inf¢(w) (25)

Theorem 3. The phase margin ¢* of M(s) is

bounded from below by ¢*.

Again this lower bound can be found using the Phase
Condition.

3.3. Time-Delay Margin

3.4. H _ Stability Margin

Consider the following configuration with Q(s) fixed

M(s,p,q) as before and AM representing an un-

structured perturbation. Let

Figure 3. Additive Perturbations

Figure 2. Time-Delay System

Consider the system with the time delay T. The time

delay margin of the system is the maximum allow-

able time delay preserving closed loop stability. It
can be calculated as before from the convex hull of

the corresponding image sets. Let us define the sets

corresponding to each fixed real value of T:

ZT(W) := {D(iw,q) 4-e-J'_TN(jw,p) ]

(p, q) 6 P} (26)

_T(0;) :---_ {D(jw,q) +e-JWTN(j_,p) ]

(p,q) 6 7:_,} (27)

Q(s) _ (32)
= Q2Cs)

then the H _ stability margin of the system is defined
as follows:

1

N(_,P) _ 1
suPcp, q)e_, [ Q(s)[l + Q(s) D0,q)] oo

1

II Q,(.)-(.,_ I "
sup(P'q)e_ II Q'(s)[Do'q)+Q_(s)N("P)] ]

From the Lemma in [14], we have

1

Vfl> 0, IIQ(s)[l + M(s,p,q)Q(s)]-_ll_,, < -_

for all M(s, p, q) iff

Q2(s)DCs, q) + Qt (s)N(s, p) + flvi°Q, (s)D(s, q)

= [Q2Cs) + _ei°Q_(s)]D(s, q) + QtCs)N(s, p)



isHurwitz for all0 6 [0,2_r),and (p,q) E P. Now

letus definethe setscorresponding to each fixedreal

value of a and 8:

{[Q2(jw)+ 1_eJSQ1(jw)]D(jw,q)T

Ql(jW)N(jw,p)I(P,q)6 _} (33)
co{[Q2(jw)+ BeiaQ1(jw)]D(jw,q)+

Qx(jw)N(jw, p) [ (p,q) 6 T)v}. (34)

If we let

_(_) .=
$(_) :=

The corresponding stabilitymargins are"

/Y = _ff_(w) and /_*= inf,(w).

inf{fl I 0 6 27a,0(w) for some 0} (35)

inf(fl I 0 6:2a,0(w) for some 0} (36)

(37)

Theorem 5. The H _ stability margin _* of the

configuration in Figure 3 is bounded from below by
_*.

The bound/_* can be found from the Phase Condi-
tion.

3.5. Nonlinear Sector Bounded Margin

u(,)

Figure 4. LqardProblem

Now letus considerLurd problem. According to [15],

ifg(s) isa stabletransferfunction and _ belongs to

the sector[0,k],then a sufficientconditionfor abso-

lutestability is

Re{_+g(jw)}>0, V w6R. (38)

In this problem we want to find the maximum value
k* of k so that

Re{l+M(j_,p,q)}>O, V _aER (39)

for all M(s,p,q).

From the theorem given in [15], we know that g(s) =

_-_is SPR iff the three conditions sat-following are

isfied:

I)Re{9(0)}> 0

2) n(s) isIIurwitzstable

3) d(s)+ jan(s) isIiurwitsstablefor alla 6 R.

Consider

1

-_ + M(jw, p, q)
1 N(s, p)

: _ + D(:,q)

D(s,q) + klV(s,p) (40)
= kD(s,q) "

Suppose the transfer function satisfies the above two
conditions:

1) Re Sv(°'q)+kN(°'P)'[kD(O,q) J > 0 for all k • [0, k*] and

for (p, q) • "P

2) D(s, q) + kN(s, p) • 7g forallk • [0,k'] and for

(p,q) • 9.

Let us define the following setscorresponding to each
fixed value of k and a:

_'a,,,(w) := {kD(jw,q)+j_[D(jw,q)

+kN(jw, p)] I(P, q)• 7)}
= {k[D(jw,q)+ ]o_N(jw,p)]

+jaD(flo, q) [ (p, q) • "P} (41)
Ik,,,(o;) := co {k[D(j_,q)+ jaN(jw,p)]

+j_D(jw, q) I (P,q) • Pv}(42)

If we let

k(w) := inf{k I o 62"k,,,Cw),for some a} (43)

k(w) := inf{k ] 0 62"t,,,(w),for some a},(44)

the corresponding nonlinear sector bounded margins
are:

k* = inf k(w) and ;2 = inf k(w). (45)

Theorem 6. The nonlinear sector bounded margin

k* of M(s) is bounded from below by k*.

4. CONCLUDING REMARKS

We have given a simple computational method to

check the stability and compute various stability mar-

gins of polynomial families containing parameters

which appear afflne multilinearly in the character-

istic polynomial coefficients and which vary in pre-

scribed intervals. Furthermore, the proposed method

completely eliminates frequency sweeping. Although

the testisonly a sufficientconditionwe expect it to

be usefulespeciallyin view ofthe practicalnecessity



of maintaining adequate margins of stability. Addi-

tionedly the bounds obtained on the stability margins
can be made as exact as desired by introducing addi-

¢ional vertices. Finally it is worth emphasizing that

the computations given here avoid construction of im-

age sets,a task which isenormously unwieldy from a

computational standpoint.
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