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Abstract

This paper gives a simple way of checking the stabil-
ity with respect to an arbitrary stability region of a
family of polynomials containing a vector of parame-
ters varying within prescribed intervals. It is assumed
that the parameters appear affine multilinearly in the
characteristic polynomial coefficients. The condition
proposed here is simply to check the phase difference
of the vertex polynomials. This test based on the
mapping theorem significantly reduces computational
complexity. We omit mathematical proofs in this
version. The results can be used to determine var-
jous stability margins of control systems containing
interconnected interval subsystems. These include
the gain, phase, time-delay, H* and nonlinear sec-
tor bounded stability margins of multilinear interval
systems.

1. INTRODUCTION

The problem of determining whether a control system
remains stable or not when some of its parameters
undergo perturbations within prescribed intervals is
one of the central problems in robust parametric sta-
bility. The case where the parameters appear affine
linearly in the coefficients of the characteristic poly-
nomial has been solved effectively by the Edge The-
orem [1] and the Box Theorem [2,3] The case where
the coefficients are affine multilinear functions of the
parameters is of current interest (see [4] - [9]). This
case arises in control systems where transfer function
coefficients perturb or state space parameters perturb
or matrix fraction factors perturb. The present paper
deals with the multilinear case also and shows that a
sufficient condition for the stability of such systems
is that the phase difference between various vertex
polynomials evaluated along the stability boundary
be less than 180°. This is an “image set” approach
using the convex hull property of multilinear image
set [10,11,12]. We show how this result can be used
in conjunction with the multilinear version of the Box
Theorem [5] to develop a highly efficient phase test

for stability where only the Kharitonov vertices are
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tested. These conditions which are sufficient condi-
tions can be tightened by increasing the number of
vertices and this eventually leads to necessary and
sufficient conditions. Using these results we show
how various worst case stability margins such as gain,
phase, time-delay, H> and sector bounded nonlinear
stability margins for multilinear interval systems can
be found.

2. NOTATION AND MAIN RESULTS

Let p = [p1,P2, -+ ;1] denote a vector of real param-
cters. Consider the polynomial

8(s, p) := bo(p)+61(p)s+62(p)s*+- - +6a(p)s™. (1)
wherein the coefficients 6;(p) are affine multilinear

functions of p, + = 0,1,---n. The vector p lies in
an uncertainty set

O:={plp; <m<p}, i=12--,0} (2
The corresponding set of polynomials is denoted by
A :={§(s,p) | p€T}. (3)

Let V denote the vertices of I, i.e.,
Vi={p|p=p or m=p7, i=12,,1} (4

and
Ay :={6(s,p) [ PE V}. (5)

denotes the set of vertex polynomials.

Fixing s = 5", we let A(s*) denote the set of points
6(s*,p) in the complex plane obtained by letting p
range over II:

A(s*) := {6(s",p) | p €I} (6)
Likewise
Avy(s'):={6(s",p) | PE V} )

The convex hull of a set of points P in the complex
plane is co P. Denote the set of convex combinations
of the vertex polynomials by

y N ~63-ER

E = {/\,-,-6.-(3)+(1—A,-,-)55(3)IA;,-E[O,I] and
8i(s),6;(s) € Ay} (8)
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Let S C € denote an open stability region and 9§
the boundary of §. Let A(A) denote the image set
evaluated at s = A of the set of polynomials A. We
‘can now state a first result based on the Mapping

Theorem of [13].

Theorem 1. The sei of polynomials A is stable
with respect to S if it has at least one stable poly-
nomial and i) 0 ¢ A(X) for some X € S i) the set
of polynomials E is stable with respect to S.

The problem of checking the stability of the set E can
be solved computationally relatively easily in view if
the fact that E()) consists of straight lines whose end
points are contained in the set Ay (). To formalize
this let 6(s) be a polynomial and s = A a point in the
complex plane. Let ¢5() denote the argument of the
complex number 6(A):

§(A) = |6(N)|e®eN), (9)
For a given set of polynomials T let

&p(A):= sup  [45,(2) — ¢s:(2) |- (10)

51,62€

We can now state the following useful corollary.

Corollary 1. (Theorem 1) The set of polynomials
A is stable with respect to S if il contains one stable
polynomial:

a) 0 ¢ A(})

b) supycos AL, (A) < 7 where OS denotes the
boundary of the region S.

The above result states that A is stable if the net
phase difference of the vertex polynomials evaluated
along the stability boundary is less than 180°. We
shall refer to this as the Phase Condition. The
Phase Condition can be easily verified by the Seg-
ment Lemma [13] without sweeping over frequency.

3. CALCULATION OF STABILITY MAR-
GINS

Exact calculation of stability margins for a multilin-
ear interval control system is computationally diffi-
cult. In this section, we give simple techniques to “lin-
earize” the problem so that the Phase Condition can
be used to estimate various stability margins without
excessive calculations.

M(s)

Figure 1. Unity Feedback System

3.1. Gain Margin

Consider the family of feedback systems as above with

= N(sp)

M(s,p,q) = D(s, q) (11)
where N(s,p) and D(s,q) are multilinear functions
of p and q and (p,q) varies in a polytope P with
vertex set Py. The upper gain margin of the family
of the family of feedback systems with M is defined
as the largest value L* > 0 of L so that

D(s,q) + (1+ L)N(s,p) (12)

remains Hurwitz for all L € [0, L*) and for all (p,q) €
P. The lower gain margin of the family may be sim-
ilarly defined by replacing (1 + L) by (1 — L). Let us
first define the following sets corresponding to each
fixed real value of L:

I (w) = {D(jw,a)+(1+L)N(jw,p)|

(p,q) € P}. (13)
Let
I (w) = co{D(jw,q)+ (1+ L)N(jw,p)]
(p,q) €Pv} (14)
Now let
L(w) := inf{L | 0 € I (w)} (15)
and similarly,
L(w) :=inf{L | 0 € I (w)}. (16)
The corresponding gain margins are:
L = iBf L(w) (17
' = inf L(w) (18)

Theorem 2. The gain margin L* of M(s) is
bounded from below by L*.

The point here is that lower bound L* can of course
be found from the Phase condition. since it involves
only the vertices.



3.2. Phase Margin

Similaily, the phase margin of the family with M(s)
‘is defined as the largest value 6* > 0 of 8 so that
D(s,q) + ¢ N(s,p) (19)

is Hurwitz for all 8 € [0,6*) and for all (p,q) € P.
Consequently, we define the sets corresponding to
each fixed value of §:

Ip(w) = {D(jw,q)+¢°N(jw,p)|
(pa) €P} (20)
Iy(w) := co{D(jw,q)+ &° N(jw,p)
(p,q) € Pv}. (21)
And let
$(w) := inf{g|0€ZT4(w)} (22)
Fw) = nf{p|0eT,@)  (29)
The corresponding phase margins are:
# = infé(w) (24)
¢t = igfq?(w) (25)

Theorem 3. The phase margin ¢* of M(s) is
bounded from below by ¢*.

Again this lower bound can be found using the Phase
Condition.

3.3. Time-Delay Margin

e=*T [+ M(s)

Figure 2. Time-Delay System

Consider the systemn with the time delay T. The time
delay margin of the system is the maximum allow-
able time delay preserving closed loop stability. It
can be calculated as before from the convex hull of
the corresponding image sets. Let us define the sets
corresponding to each fixed real value of T

Ir(w) = {D(jw,q)+e T N(jw,p) |
(p,q) € P} (26)
j_:T(“") = {D(jw1Q) +e-jUTN(jw)p) I

(p,q) € Pv} (27)

and define

T(w) = inf{T|0€Ir(w)} (28)
T(w) = inf{T|0€Ir(w)}. (29)
The corresponding maximum time delays are:
T = igf T(w) (30)
T = inf T(w) (31)

Theorem 4. The time delay margin T* of M(s) is
bounded from below by T*.

As before T can be found from the Phase Condition.

3.4. H™ Stability Margin

Consider the following configuration with Q(s) fixed
M(s,p,q) as before and AM representing an un-
structured perturbation. Let

AM

Figure 3. Additive Perturbations

Qs) = %E—j% (32)

then the H™ stability margin of the system is defined
as follows:

. 1
ﬂ = N(.P)
supp, qyer [|Q(8)[1 + Q(")D(,:q)] N
_ 1
T s 91()D(s.q)
P(p.@e? || 020D 0 @+ QNP || o
From the Lemma in {14], we have
1

VE>0, Q)1+ M(s,p,a)Q)] Ml < 5

for all M(s,p,q) iff

Q:2(s)D(s,9) + Q1(s)N(s,p) + Be’° Q1 (s) D(s, q)
= [Q2(s) + Be??Q1(s)] D(s,q) + Q1(s) N (s, p)



is Hurwitz for all 8 € [0,2x), and (p,q) € P. Now
let us define the sets corresponding to each fixed real
value of a and 4:

Toow) = {[Qa(ju) +B*Qu(w)Dliw,q) +
Q:(jw)N(jw,p) | (Pa) €P}  (33)
Ips(w) = co{(Q(jw) +PBe*Qu(jw)ID(jw,q) +
Q:(jw)N(jw,p) | (p,a) € Pr}. (34)
If we let
B(w) := inf{B |0 € Ipe(w) for some 8} (35)
B(w) := inf{B |0 € Ige(w) for some 8} (36)

The corresponding stability margins are:

g = inufﬂ(w) and f*'= igfﬂ-(w). (37

Theorem 5. The H™ stability margin B* of the
configuration in Figure 3 is bounded from below by

[

The bound 3* can be found from the Phase Condi-
tion.

3.5. Nonlinear Sector Bounded Margin

0 M(s) .

¢

Figure 4. Luré Problem

Now let us consider Luré problem. According to [15],
if g(s) is a stable transfer function and ¢ belongs to
the sector [0, k], then a sufficient condition for abso-
lute stability is

Re {% 4 g(jw)} >0, VweR (3

In this problem we want to find the maximum value
k* of k so that

Re{%-&-M(jw,p,q)} >0, VweR (39)

for all M(s,p,q).

From the theorem given in [15], we know that g(s) =
%8» is SPR iff the following three conditions are sat-
isfied:

1) Re{g(0)} > 0
2) n(s) is Hurwitz stable
3) d(s) + jan(s) is Hurwits stable for all a € R.

Consider
1 ‘ _ 1 N(-’y p)
§ T MGe.pa) = 15650
_ D(a’q)-{'—kN(")p)
= IO I

Suppose the transfer function satisfies the above two
conditions:

1) Re { 2OQLNORIL > 0 for all k € [0,k°] and

for (p,q) € P
2) D(s,q) + kN(s,p) € K for all k € [0, k] and for
(p.q) €P.

Let us define the following sets corresponding to each
fixed value of k and a:

Ta(w) {kD(jw,q) + ja[D(jw,q)
+kN(jw,p)] | (P,q) € P}
= {k[D(jw,q) + jaN(jw,p)]
+jaD(jw,q) | (p,q) € P} (41)
Iy a(w) = co {k[D(jw,q)+ jaN(jw,p)]
+jaD(jw,q) | (P,q) € Pv }{42)

If we let
k(w) := inf{k |0 € I} a(w),for some a} (43)
k(w) := inf{k |0 € Zy a(w),for some a},(44)

the corresponding nonlinear sector bounded margins
are:

k* =infk(w) and  k* =infk(w).  (45)

Theorem 6. The nonlinear sector bounded margin
k* of M(s) is bounded from below by k*.

4. CONCLUDING REMARKS

We have given a simple computational method to
check the stability and compute various stability mar-
gins of polynomial families containing parameters
which appear affine multilinearly in the character-
istic polynomial coefficients and which vary in pre-
scribed intervals. Furthermore, the proposed method
completely eliminates frequency sweeping. Although
the test is only a sufficient condition we expect it to
be useful especially in view of the practical necessity



of maintaining adequate margins of stability. Addi-
tionally the bounds obtained on the stability margins
can be made as exact as desired by introducing addi-
tional vertices. Finally it is worth emphasizing that
the computations given here avoid construction of im-
age sets, a task which is enormously unwieldy from a
computational standpoint.
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