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Summary

As microprocessors increase in power, the economics of

centralized computing has changed dramatically. At the

beginning of the 1980s, mainframes and supercomputers
were often considered to be cost-effective machines for

scalar computing. Today, microprocessor-based RISC

(reduced-instruction-set computer) systems have displaced

many uses of mainframes and supercomputers. Supercom-

puters are still cost competitive when processing jobs that

require both large memory size and high memory band-

width. One such application is array processing. Certain

numerical operations are appropriate to use in a Remote

Procedure Call (RPC)-based environment. Matrix multipli-

cation is an example of an operation that can have a suffi-

cient number of arithmetic operations to amortize the cost

of an RPC call. This paper describes an experiment which
demonstrates that matrix multiplication can be executed

remotely on a large system to speed the execution over that

experienced on a workstation.

Introduction

The title of this paper was chosen deliberately to be provoc-

ative. To many people familiar with traditional supercom-

puting, it sounds ludicrous. To others who are more

familiar with distributed processing, it is a natural exten-

sion of current techniques to permit easier access to, and

more efficient use of, unfamiliar and potentially hard-to-

program supercomputers. This paper is a description of a

reasonably successful attempt to split off the numerically
intensive array-oriented operations from the largely scalar

parts of application code.

The economic viability of current supercomputing practice

is under assault by "killer micros." Microprocessor-based

RISC (reduced-instruction-set computer) systems are now

within a factor of four in speed on scalar code relative to far

more expensive supercomputers. In some cases, the scalar

speed of the supercomputer is roughly equal to that of the

microprocessor-based system. Many programs are only

partially vectorizable. A supercomputer user with a par-

tially vectorizable, numerically intensive code is faced with
a dilemma. The user can run the program locally on a

workstation or server and wait a long time for an answer, or

the user can run it on a supercomputer, such as the Cray

Y-MP, and get the answer back faster but "waste" many far
more valuable Cray CPU cycles. Supercomputers are

designed to overcome the memory-bandwidth bottleneck

that prevents large array-oriented programs from running

fast on less expensive machines. But scalar code does not

make use of that expensive memory bandwidth during
most of its execution time. This situation motivated an

experiment to develop an application in which the scalar

and vector parts could be conveniently split apart.

The ideal for a distributed system is to run the scalar parts

of a program on a low-cost workstation or server and to run

the vector, or parallel, part on a suitable minisupercom-

puter, supercomputer, or massively parallel computer. Such

computers are optimized for high speed on large-memory,

numerically intensive tasks. With the current state of the

art, it is very costly and time consuming to do this for indi-

vidual applications. The cost of developing the code to split

an existing application into scalar and vector parts is still

very high. For this experiment, a different approach was
chosen. A standard subroutine library, Level 3 Basic Lin-

ear Algebra Subprograms (BLAS3) (ref. 1), was chosen as
the user interface. This is the natural choice, since many

users already have calls to BLAS3 routines, in particular

SGEMM, for which optimized versions exist on Cray, Con-
vex, and other vector machines.

This paper describes a distributed application and the

results of running it on various processors; the paper will
show that it is feasible to split off large-array operations to

another machine and perform the operations via RPC

(Remote Procedure Call). Then, it will describe the limita-
tions which apply to the current Cray system that restrict

use of the technique to large problems.

The authors gratefully acknowledge the many constructive

comments made by the reviewers.

1. Description of the Experiment

1.1 Motivation

The purpose of this experiment was to demonstrate the fea-

sibility of developing a distributed application in which the

compute-intensive part of the code could be conveniently

separated from the scalar, or less compute-intensive, com-

putations. The distributed application could then use net-

work services to allow the partitioning of different parts of

the application to separate and diverse computing

resources that are best suited for the particular task.

This application demonstrates a distributed application that

provides a user-level, FORTRAN-type subroutine call

interface to the server process. The server was written to
utilize a standard matrix multiplication subroutine,

SGEMM. This subroutine was chosen because many users

already have calls to SGEMM in their codes and because
SGEMM is a standard routine for multiplying large arrays

of data and is readily available in optimized form on many

computer systems.

With the distributed-application approach used here, it is

not necessary for the user to program the remote machine

or convert any code. Instead, a library is linked to an exist-

ing program, and the computation takes place remotely

with only limited involvement of the user.



1.2 Description of Application Design

The application created for this experiment is divided into

two logical pieces, a client process and a sewer process.

The client process contains the scalar code and initiates

requests to the server process to perform some action (in

this case, the compute-intensive process of matrix multipli-
cation). The server process waits for a request to be made

by the client and then performs the requested action. The

client and server processes may run on the same computer

system, or the sewer may run remotely on an independent
system that is connected by a communication network to

the client system.

The remote-procedure call model is similar to the usual

local-procedure call model in that a single thread of control

logically winds through the client (caller) process and

through the server process. The caller process sends a mes-

sage to the sewer process and waits for a reply. The mes-

sage contains the parameters to bc passed to the rcmotc

procedure. The reply contains the procedure's results.

When the reply is received, the results arc madc available
to the caller and the caller's execution is resumed.

The server is normally waiting for the arrival of a message

from a caller. When a message arrives, the server process

extracts the parameters for the remote procedure, calls a

dispatch routine, performs the requested service, sends
back a reply to the cailcr, and then waits for the next

message.

To create the client/server interface code, networking ser-

vices developed by Sun Mierosystems were used (refs. 2
and 3). The Sun Remote Procedure Call (RPC) facility is a

library of procedures that implement the logical client-to-
server communications to support network applications.

Sun RPC was used because it is implemented on a variety

of operating systems, including Cray Unicos, SGI Irix,
SunOS, Convex OS, and DEC Ultrix (Ultrix was lacking

the RPC protocol compile=; rpcgen).

The details of programming applications to use RPC can be

tedious. One of the more difficult areas is passing data in a

portable format betwccn diffcrent computer architectures.

The eXternal Data Representation (XDR) is a standard for

the description and encoding of data. XDR uses a language

to describe data formats in a concise manner. XDR library

routines may bc used to encode data from the local machine

representation into a standard machine-independent for-
mat. The machine that receives the data uses XDR to

decode the data from the standard representation to its own

internal format. XDR relies heavily on the IEEE standard

for floating-point data representation and is implemented

most efficiently on architectures that use the IEEE
standard.

The use of RPC procedures and the writing of XDR rou-

tines to convert procedure arguments and results into XDR

network format, and vice versa, are facilitated by using

rpcge,, rpcgen accepts a remote program interface defini-

tion written in the RPC language, it produces a C-language

output for RPC programs. The output includes skeleton
versions of the client and the server routines, XDR routines

to handle both the parameters and results of the procedure,
and a header file that contains common definitions. The cli-

ent and server skeletons contain calls to RPC library proce-
dures to handle the network communication. The developer

writes the server procedure and links it with the sewer skel-

eton to produce an executable server program. The user

(client) program that makes local procedure calls is linked
with the client skeleton.

1.3 Application Code

The protocol specification for our remote program is writ-

ten in the RPC language and defines the names of the pro-

cedures, the data types of their input parameters and output

results, the name of the remote program, and its version

name. Each procedure name, program name, and version

name is assigned a number. A remote procedure is uniquely

identified by its program number, version number, and pro-
cedure number.

The code labeled proto, x (listed in the Appendix) shows

the protocol specification for our remote program that con-

tains one version, and has six procedure definitions. The

program name isREMOTE_MATRIX_PROG.The program

number is selected arbitrarily from the range of numbers

defined by the RPC protocol for user-defined services. The

version name is REMOTE MATRIX_VERS (with version

no. 1). Six procedure names and numbers are specified with
definitions of their input parameters and output results. For

example, "int R_SMATRIXALLOC (int) = 1;"

specifics a procedure named R_SMATRIXALLOC with an

integer input parameter and an integer output result (the

procedure number is l). "ainglep_matrix R_SGEMM

( sgemm_arffs ) = 5;" specifies a procedure named

R._SGEMH (with procedure no. 5). The procedure's input
parameters are defined by the previously declared structure

sgemm_args, sgemm args contains the parameters
necessary for calling the matrix multiplication routine

SGEMM.The remote-procedure output results are

defined by the structure singlep_matrix.

singlep matrix declares an array of floats that will
contain the results of the matrix multiplication.

The sewer program is designed to utilize the BLAS3 rou-

tines SGEMM, single-precision matrix multiplication, and

DGEMM,double-precision matrix multiplication.Theserver

program contains six remote procedures, two of which

allocate space for the single- or double-precision result

matrix, two of which release the allocated space, and one
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each to call SGEHM and DGEHH.The code labeled

server, c (listed in the Appendix) shows the six

procedures that are linked with the sewer skeleton code

(generated by rpcgen) to produce the running server pro-

gram. server, c contains the procedures that do the

"real work" of the sewer program, such as allocating space

for the result matrix, calling the matrix multiplication rou-
tine SGEHR or DGEHM, and freeing the allocated memory
after the result matrix has been returned to the client.

server, c contains the code that corresponds to the six

procedures defined in proto, x. The procedure-naming
convention is to use the remote-procedure name declared in

the prototype definition (e.g., R_SGEHH), convert it to

lower-case letters, append an underline _(...._ ,,'_and add

the version number (here ]) to produce the name

r_sgemm 1. Note that remote procedures always use a

pointer to their arguments and a Pointer to their results
since these data will be processed by the appropriate XDR
routines.

SGEMM and DGEMM perform the matrix-matrix opera-

tion C - oAB + _C where a and I_ are scalars and A,

B, and C are matrices. They also perform the same basic

operation with either matrix A or B transposed.

The code labeled sgemm, c (listed in the Appendix) shows

one of the client-side procedures (there is another one for

using DGEHH) that is linked with the client skeleton code

(generated by rpcgen) to produce the user-callable inter-
face to the remote procedure sewer, sgemm, c defines the

standard user interface to SGEHH.The first part of the code

is concerned with checking the validity of the input param-

eters, if the input parameters are valid, the procedure uses

an environment variable to obtain the name of the system

on which the remote sewer is running. Then, a data struc-

ture known as a "client handle" is created to be passed to

the skeleton client routines that will call the remote proce-

dure. The skeleton routines are called the same way as the

remote procedures are defined in server, c except that

the client handle is inserted as a second argument. After

executing a call to a remote procedure, the result Pointer is
checked to determine if there was an error resulting from a

failure of the RPC mechanism, if not, the results are avail-

able for use by the caller.

1.4 Network and Operating System Environment

The main network at Ames Research Center (ARC) is

referred to as ARCLAN. ARCLAN is largely Ethernet

based. Ethernet physical media are coaxial cable, optical

fiber, unshielded twisted pair, and some microwave links.

Link level routers, network level routers, and other hosts

and IP gateways provide connectivity over the campus.

Some systems are connected via Fiber Distributed Data

Interface (FDDI), although most systems are connected

directly to Ethernet. There are also additional networks

using UltraNet and Hyperchannel, although they are not

part of ARCLAN and were not used for this experiment.

Although a faster medium than Ethernet would have

improved effectiveness, Ethernet was fast enough to carry
out the described experiment.

2. Performance Results

2.1 Server Times on Various Machines

The results shown in table 1 are the total user time con-

sumed by the server. This time includes XDR overhead
and the time for the multiplication of two square matrices

using SGEMM. In some cases, the machines were idle. In

others (Convex, Cray) the machines were fully loaded and

100% busy. These results are not intended to be an accurate
benchmark of these machines under controlled conditions.

The purpose is to characterize the conditions under which

the computation can be effectively distributed. Several ver-
sionsof SGEMM were tried in order to get the be.stpossible

times. The rows noted "orig" in table 1 are the original
SGEMM in BLAS3. The rows denoted "rood" are for a

version modified by the authors to be cache-contained in

small, nonvector, RISC workstations. The "lib" version is

the one supplied by the system vendor, if available. For the

Cray, this is the Cray-supplied, multitasked, parallel ver-
sion. All client matrix elements arc 32 bits. All sewer

matrix multiplies arc 32 bits, except the Cray Y-MP matrix

multiply, which is 64 bits, although the RPC is done in
32 bits.

2.2 Effectiveness Comparisons

The previous results tell only part of the story. In order to

compare the effectiveness of distributed computation
versus local computation, and the effectiveness of distrib-

uted computation on different systems, several cases will
be scrutinized more closely. A sample N = 800 case was

compared between two machines in order to examine the
overhead.

Based on an analysis of current production and research

codes being run at ARC, and considering the relative costs

and capabilities of RISC workstations and the Cray, a goal
of achieving 50 MFLOPS on the Cray was established for

this experiment.

For the N = 800 case, the following data were gathered for
the situation where the local workstation was a Sun 4/75

and the remote server was on a Cray Y-MP8/864:

Elapsed time on server: 64.4 seconds
Total CPU time on server (including system time):

26.4 seconds

User CPU time on server: 20.9 seconds



Table1. UserCPUsecondsforanN x N matrix multiply Including XDR overhead

Array dimension N ..... >
100 200 400 600 800 1000

machine ........ v

Sun 4/490 - orig 0.9 7.0 55.4 185.4 436.6 846.9

Sun 4/490 - rood 0.4 3.2 25.6 80.5 198.1 388.0

Sun 4/75 - orig 0.7 5.5 42.4 140.5 332.3 645.7

Sun 4/75 - rood 0.4 2.9 21.4 70.2 165.8 321.2

SGI 4I)/30 - orig 0.6 4.4 34.3 112.4 265.7 514.2

SGI 4D/30 - rood 0.3 2.8 22.6 73.4 175.8 334.4
i

DEC DS/5500 - orig 0.4 4.4 33.1 110.9 261.5 512.5

DEC DS/5500 - rood 0.4 2.8 22.9 76.7 186.6 366.8

IBM 320 - orig 0.6 3.4 21.1 63.8 145.2 276.8

IBM 320 - rood 0.5 2.7 17.7 52.4 121.9 229.0

IBM 320- lib 0.4 1.7 8.8 23.5 48.9 86.9

Convex C210 - mod 0.8 3.9 19.1 51.3 106.6 N/A

Convex C210 - orig 0.8 3.7 18.0 47.7 98.6 NIA

Convex C210- lib 0.8 3.2 14.4 35.0 68.6 N/A

Cray Y-MPS/864 - lib 0.3 1.2 5.1 12.0 20.9 35.7

User CPU time on server to do only the multiply:
3.45 seconds

Rate on server while doing only the multiply:
296.8 MFLOPS

Rate on server (user time only): 49.0 MFLOPS
User-visible rate of server over network: 15.9 MFLOPS

User CPU time to do the multiply on local machine:
157.7 seconds

Rate on local machine while doing the multiply:
6.5 MFLOPS

in this case, accessing the remote server achieved an

elapsed time speedup of 2.4 over doing the calculation

locally on the Sun 4/75. This is less than the 4X speedup,

which is generally considered necessary to interest a user in

a significantly different e0mpiiting method. For smaller

arrays, the benefits are less, or even negative. However, on

the plus side, the rate on the Cray is close to the established

goal of 50 MFLOPS.

On further analysis, the Cray is unusual when compared
with other machines: the XDR overhead is relatively much

greater. For example, the XDR conversion of the input

matrices costs 5.1 seconds on the Sun 4/75, while on the

Cray, the time is 10.5 seconds. When the approximate

4X scalar speedup of the Cray is considered, it appears that

the Cray is about eight times slower doing data "conver-

sion." No doubt this is due to the (]ray's non-IEEE floating-

point format. The Convex supports IEEE in hardware, but

had the same problem as the Cray. This is because the Con-

vex was lacking IEEE RPC libraries.

Therefore, while the method is effective, the RPC/XDR

overhead on the Cray and Convex is far greater than it
should be, and the realized benefit is significantly less than

it should be. It is unknown at this time whether significant

improvements are possible in the efficiency of the Cray

XDR routines, but clearly the most desirable approach

from the standpoint of distributed computation is for Cray

to support IEEE floating-point arithmetic in hardware and
software.

2.3 Which Operations Arc Potential Candidates?

Dcnse arrays have order O(N 2) elements whcre N is the

dimension of the array. Calculations that are suitable can-

didates have > O(N 2) operations. For example, matrix



multiplyusingSGEMM,usedin this paper, has O(N 3)

operations. We will examine this case using the number of

CPU clock ticks per operation. Assume that the number of

clock ticks per floating-point operation is roughly constant.

We will denote clock ticks per operation as K 1. Also

assume that the system overhead of transmitting and con-

vetting an element is roughly constant. This constant, in

clock ticks per element, is denoted K 2 below. Note that

SGEMM uses three input matrices and one output matrix,

requiring the transmission via RPC of four matrices.
SGEMM actually requires2Na+3N 2 arithmetic operations.

Ignoring the N 2 portion of the work, the ratio of work per-

formed to overhead is approximately:

2Kl N3 1 {5'_N

4K2N2 2 [K2J

When this ratio is large enough, the operation will be feasi-

ble. The measured speed for SGEMM on the Cray when
N = 800 is about 297 MFLOPS. To achieve the goal of

50 MFLOPS for the remote server, no more than about

5/6 the total work can be overhead. So, the above ratio can

be no more than 1/6. By measurement on the Cray, K I is

about 0.5618 clock ticks per operation, and K 2 is about

1134 clock ticks per element, considering user time only.

Considering both user time and system time, K 2 is about
1497. Hence, N must be approximately 897 in order to

achieve the 50-MFLOPS goal. This is a large matrix for the

workstation to handle locally, and would take several hun-
dred seconds on most current workstations.

If the Cray RPC/XDR conversion were about eight times

faster, as would be expected if the Cray were to use IEEE

floating-point arithmetic, then K 2 would drop to about 708

(including system overhead), and the feasible size would

drop to N = 424. This assumes that the "system" time is

due to network activity that is independent of floating-point

format. However, if the non-XDR user and system over-

head (assumed to be due to network overhead) could be
reduced to be more in line with the network overhead of a

typical workstation, then considering the relative scalar
speeds of the Cray and workstation, the Cray network over-
head would be about 1/3 of its current value, Then K 2

would drop to 311, and the feasible matrix size would drop
to about 186. This size matrix could easily be handled

locally on a workstation. A production client/server imple-

mentation would normally be written to do the multiplica-

tion of small matrices locally.

Table 2 and figure 1 show the observed MFLOPS for vari-

ous cases with the remote server running on a Sun 4/75 and

on a Cray Y-MP8/864. The version of SGEMM optimized

for workstations by the authors was used on the Sun, and

the vendor-supplied library version was used on the Cray.

The interesting thing about these timing results is that RPC
overhead is small in the case of the Sun; there is little

change in the overall efficiency over the range of array

sizes. Conversely, on the Cray, there is a great deal of RPC

overhead, and consequently there is a large increase in

performance as array sizes increase. It is inefficient to
remotely process small arrays on the Cray because of the

large RPC overhead. On the other hand, there is a large per-

formance advantage to be gained by using the Cray on

large, dense arrays. Figure 1 illustrates this.

Returning to the question of which operations are eco-

nomic, we are looking for functions, such as matrix multi-

ply, in which the Operation/Transmission ratio is greater

than 0(I). For example, matrix multiplication and standard
LU decomposition for dense matrices require O(N 3) oper-

ations and require transmission of O(N 2) elements. In con-

trast, matrix vector operations require O(N 2) operations

and transmission of O(N 2) elements. Hence, matrix vector

operations are not normally suitable for this type of distrib-

uted application. Other candidates include Fast Fourier
Transforms (FFTs), since an FFT requires transmission of

O(N) elements, while requiring O(Nlog2N) operations.

However, for a single FFT, it is unlikely that the overhead

would be low enough because log2N grows very slowly

with N. Computational chemistry is an area with excellent

prospects for distributed applications since some algo-
rithms are O(N4), or even O(N 5) or greater (ref. 4).

3. CONCLUSIONS

The experiment demonstrated that using a distributed
client-server approach between a workstation and a

Table 2. Comparison of Clay Y-MP and Sun workstation user MFLOPS

Array size ................. > 100 200 400 600 800 1000
machine---v

Sun 4/75 - rood 5.0 5.52 5.98 6.15 6.18 6.23

Cray Y-MP8/864 - lib 6.7 13.33 25.1 36.00 46.54 56.02
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Figure I. MFLOPS vs N for Cray and Sun sewers.

supereomputer can work today on some array-oriented

operations, such as matrix multiply, when applied to large,

dense problems. The inefficiencies of translating between

IEEE and Cray native format restrict the method to large

arrays of order N = 900 or greater, if the supereomputer in
question were to use 1EEE floating-point format and had

networking efficiency comparable to the best performance

available today in workstations, then the client-server

approach could be practical for much smaller problems,

and also a wider variety of problems. It is likely, however,

that for the foreseeable future, only functions in which the

ratio of the number of operations to the number of elements

is at least O(N) will be economic.

Finally, the results suggest that it might make sense in

some cases to dedicate a special-purpose computing node

in a network to function as an array-processor server for
client machines in the same network. This could be the

ideal use for a massively parallel machine that might other-

wise be difficult to use efficiently in a general way with cur-

rent compilers. With the distributed-application approach
used here, it would not be necessary for the user to program

the remote machine or convert any code. Instead, a library

could be developed such that the user could link the library

to an existing program, and then the remote computation

would take place transparently to the user.

REFERENCES

1. Dongarra, J. J.; Du Croz, J.; Hammarling, S.; and

Duff, !.: A Set of Level 3 Basic Linear Algebra

Subprograms. ACM Trans. Math. Softw., vol. 16,

no. 1, 1990, pp. 1-17.

2. Bloomer, J.: Power Programming with RPC O'Reilly
& Associates, Inc., Sebastopol, Ca., 1991.

3. Network Programming Guide, Sun Microsystems, Inc.,
Rev. A 27, March 1990.

4. Arnold, J. O.: Computational Chemistry. Supercomput-

ing in Aerospace (conference proceedings),

Paul Kutler, ed., NASA CP-2454, March 1987,

pp. 299-305.

6



APPENDIX

proto.x

* proto.x -- remote matrix procedure protocol description *

struct sge__args {

char transa;

char transb;

int m;

int n;

int k;

float alpha;

float a<>;

int ida;

float b<>;

int l_b;

float beta;

float c<>;

int idc;

};

/* input matrix a "/

/* input matrix b "/

/* input matrix c */

struct singlep_matrix {

float c<>;

};

/* output matrix c */

struct dge_n_args {

char transa;

char transb;

int m;

int n;

int k;

double alpha;

double a<>;

int ida;

double b<>;

int Idb;

double beta;

double c<>;

int idc;

};

/* input matrix a */

/* input matrix b */

/* input matrix c */

struct doublep_matrix {

double c<>;

};

/* output matrix c */

/*

program REMOTE_MATRIX_PROG {

version REMOTE_MATRIXVERS {

} - 1;

} ffi536870912;

program definition

int R SMATRIXALLOC ( int ) - I;

int R SMATRIXFREE ( int ) - 2;

int R DMATRIXALLOC ( int ) - 3;

int R DMATRIXFREE ( int ) - 4;

singlep_matrix R SGEMM ( sge_u args ) - 5;

doublep_matrix R_DGEMM ( dge__args ) - 6;

/* version number */

/* program number 0x20000000 */

./



server.c

• •

• server.c - remote procedure that calls Level 3 BLAS *

#include <rpc/rpc.h>

#include "proto.h" I* generated by rpcgen */

#ifndef _CRAY

# define SGEMM sgemm_

# define DGEMM dge__

#endif

#ifdef CRAY

# define DGEMM SGEMM

#endif

I* fix-up function names */

static float *smatrix;

static in* ssize;

static double *dmatrix;

static in* dsize;

/* ptr to a single precision matrix */

/* number of elements in smatrix */

/* ptr to a double precision matrix */

/* number of elements in dmatrix */

/******** Allocate memory for a single precision result matrix ***************/

in* *

r_smatrixalloc I ( dimension )

in* *dimension;

{
static int status; /* Must be static! */

ssize - •dimension;

smatrix - (float *)malloc( (unsigned)(ssize * sizeof(float)) );

if( smatrix -= 0 )

status - 0; /* not O.K. */

else

status - I; /• O.K, */

return(&status);

)

/******** Allocate memory for a double precision result matrix ***************/

in* •

r_dmatrixalloc_l ( dimension )

in* *dimension;

{
static in* status; /* Must be static! */

dsize - *dimension;

dmacrix _ (double •)malloc(

if( dmatrix -- 0 )

status _ 0; /* not O.K.

else

status _ i; /* O.K. */

(unsigned)(dsize • sizeof(double)) );

*I

return(&status);

}

/***** Free allocated memory for a single precision result matrix ************/



int *
r_smatrixfree_l ( argp )

int *argp;

{
static int status; /* Must be staticl */

free( (char *)smatrix );

status - i; /* O.K. */

return(&status);

}

/***** Free allocated memory for a double precision result matrix ************/

int *

r_dmatrixfree_1 ( argp )

int *argp;

{
static int status; /* Must be staticl */

free( (char *)dmatrix );

status - I; /* O.K. */

return(&status);

}

******************************* Call SGEMM ***********************************

struct singlep_matrix *

r_sgemm_l ( args )

struct sgemm_args *args;

{

static struct singlep_matrix out; /* Must be staticl */

int i;

for( i - 0; i < ssaze," • i++ ) smatrix[i] - args->c.c_val[i];

SGEMM( &args->transa, &args->transb, &args->m, &args->n,

&args->alpha, args->a.aval, &args->Ida,

args->b.b_val, &args->Idb,

&args->beta, smatrix, &args->idc );

&args->k,

out.c.c fen - ssize;

out.c.c val = smatrix;

return(&out);

}

******************************* Call DGEMM ***********************************

struct doublep_matrix *

r_dgemm_l ( args )

struct dgemm_args *args;

{

static struct doublep matrix out; /* Must be static! */

int i;

for( i - 0; i < dsize; i++ ) dmatrix[i] - args->c.c val[i];

DGEMM( &args->transa, &args->transb, &args->m, &args->n, &args->k,



&args->alpha,

&args->beta,

out.c.c fen - dsize;

out.c.c val - dmatrix;

return(&out);

args->a.a_val, &args->ida,

args->b.b_val, &args->ldb,

dmatrix, &args->Idc );

I0



sgemm, c

sgemm.c

sgemm_ - procedure to do remote matrix multiplication using SGEMM

from Level 3 BLAS.

C :- alpha*op( A ) * op( B ) + beta*C,

where op( X ) is one of

op( X ) - X or op( X ) - X',

and

alpha and beta are scalars, and A, B, and C are matrices, with op( A )

an m by k matrix, op( B ) a k by n matrix, and C an m by n matrix.

#include <stdio.h>

#include <rpc/rpc.h>

#include "proto.h"

#ifndef CRAY

# define XERBLA xerbla

#endif

#ifdef CRAY

# define sgemm_ SGEMM

#endif

#ifdef ultrix

# include <time.h>

#endif

#ifdef sgi

# include <sys/time.h>

#endif

#define MAX(a,b) (((a)>(b))?(a)z(b))

#define MIN(a,b) (((a)<(b))?(a):(b))

void sgemm_ ( transa, transb, m, n, k, alpha, a, ida, b, Idb, beta, c, idc )

char *transa;

char *transb;

int *m;

int *n;

int *k;

float *alpha;

float *a;

int *ida;

float *b;

int *idb;

float *beta;

float *c;

/*addr of form option for matrix op(A)

/*addr of form option for matrix op(B)

/*addr of number of rows of op(A) and C

/*addr of number of columns in op(B) and C

/*addr of number of columns of op(A) and rows of op(B)

/*addr of scalar alpha

/*addr of array A

A(lda, k) if transa-'N' or 'n'

A(lda, m) if transa I- 'N' or 'n'

/*addr of first dimension of A

/*addr of array B

B(idb, n) if transb-'N' or 'n'

B(ldb, k) if transb i- 'N' or 'n'

/*addr of first dimension of B

/*addr of scalar beta

/*addr of array C

C(ldc, n)

*/

*/

*/

*/

*/

*/

*/

*/

*I

*I

*I

*/
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int *Idc; /*addr of first dimension of C */

static CLIENT "cl - NULL; /* client handle */

static char *mptr - NULL; /* pointer to env. variable "MATRIX_SERVER" */

static char machine[256]; /* name of server machine */

static struct timeval tv - { 0, 0 };/. structure to define timeout value */

static char proc name[7] - "SGEMM ";

int i;

int nora, notb, _rowa, nrowb;

int *status;

int dummy;

int csize;

struct sgemm args args;

struct singlep_matrix *matrix_out;

char *getenv(};

CLIENT *clnt_create();

void timeproc();

/******************* Check input parameters **********************************

if((strncmp(transa,"N",l)--0) II (strncmp(transa,"n",l)--0))

nota- TRUE;

else

note - FALSE;

if((strncmp(transb,"N",l)--0)

notb - TRUE;

else

notb - FALSE;

II (strncmp(transb,"n",l)--O))

if( nota==TRUE ) nrowa - *m;

else nrowa - *k;

if( notb--TRUE ) nrowb - *k;

else nrowb - *n;

i - 0;

if ( Inota

&& (strncmp(transa,"T",l)l-0) && (strncmp(transa,"t",l)1-0)

&& (strncmp(transa,"C",1)l-0) && (strncmp(transa,"c",l)l-0))

i = I;

else if ( |notb

&& (strncmp(transb,"T",l)i-0) && (strncmp(transb,"t',l)1-0)

&& (strncmp(transb,'C",l)i-0) && (strncmp(transb,"c',l)l-0))

i - 2;

else if ( *m < 0 )

1- 3;

else if ( *n < 0 )

I-4;

else if ( *k < 0 )

i - 5;

else if ( *1de < MAX(l,nrowa) )

i - 8;

else if ( *ldb < MAX(l,nrowb) )

i - 10;

else if ( *ldc < MAX(1,*m) )

I - 13;
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if ( i I-0 ) {

XERBLA ( proc_name, &i );

return;

)

/* call the Level 2 BLAS error routine */

********************** Quick return if possible. ****************************

if( ( *m==O ) II ( *n-=O ) I I
( ( ( *alpha--0.0 ) II ( *k--0 ) ) && ( *beta--l.0 ) ) ) return;

/****************** Get the remote server machine ***************************

mptr - getenv( "MATRIX_SERVER" );

if( mptr I- NULL ) {

strcpy( machine, mptr );

)
else {

fprintf(stderr, "Error: environment variable MATRIX_SERVER is not set to\

the name of the server machine.kn");

exit(l);

}

/***** Create client handle for calling REMOTE_MATRIX PROG using "tcp" *****/

if( cl -- NULL ) {

cl = clntcreate( machine, REMOTE MATRIX_PROG, REMOTE_MATRIX_VERS,

"tcp" );

if( cl -= NULL ) { /* Couldn't establish server connection */

clnt_pcreateerror( machine );

exit(1);

}
}

/************** Allocate space in server for result matrix: *****************/

tv.tv sec - 25; /* timeout in seconds */

clnt_control( cl, CLSET_TIMEOUT, &tv ); /* set client timeout value */

csize = *idc * *n ;

status - r smatrixalloc_l( &csize, cl ); /* allocate space in server */

if ( status -= NULL ) {

clnt_perror(cl, "RPC error from calling r_smatrixalloc_1");

exit(1);

)
if ( *status -- 0 ) {

fprintf(stderr,

"Error: Could not allocate memory for result matrix on %s.\n",

machine);

exit(l);

}

/************** Call remote procedure to multiply matrices: *****************/

tv.tv sec - 2 * (25. + I.E-6 * (2. * *m * *k * *n)); /* timeout in secs */

clnt control( cl, CLSET_TIMEOUT, &tv ); /* set client timaout value */

args.transa = *transa;

args.transb - *transb;

args.m - *m;

args.n = *n;

args.k = *k;

args.alpha - *alpha;

if (nota -- TRUE )
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args.a.a len - *1de * *k;

else

args.a.a_len - *ida * *m;

args.a.a_val - a;

args.lda - *1de;

if ( notb -- TRUE )

args.b.b len = *idb * *n;

else

args.b.b_len " *idb * *k;

args.b.b_vel = b;

args.ldb - *idb;

args.beta - *beta;

args.c.c len - csize;

args.c.c_val - c;

args.ldc - *idc;

/* op( A ) = A */

/* op( A ) - A' */

/* op( B ) = B */

I* op( B ) = B' *I

matrix out - r sgen__1( &args, cl ); /*

if( matrix_out -= NULL ) {

clnt_/0error( cl, "RPC error from calling r_sgemm 1" );

exit(l);

}

for( i - 0; i < matrix_out->c.c fen; i++ ) {

c[i]- matrix_out->c.c_val[i];

>

multiply matrices */

********************** Free allocated server mamoryz *************************

tv.tv sec - 25; /* tim, out in seconds */

clntcontrol( cl, CLSET_TIMEOUT, &tv ); /* set client tim.out value */

status = r_smatrixfree_1( &dummy, cl ); /* free allocated space

if( *status -- NULL ) {

clnt_perror(cl, "RPC error from ceiling r_smatrixfree_Z");

exit(1);

}

.!

return;

>
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