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,_ Abstract. Experts usually express their degrees of belief in their statements by

_the words of a natural language (like "maybe", "perhaps", etc.) If an expert system

o contains the degrees of beliefs t(A) and t(B) that correspond to the statements A and

B, and a user asks this expert system whether "AkB" is true, then it is necessary to

come up with a reasonable estimate for the degree of belief of AkB. The operation that

processes t(A) and t(B) into such an estimate t(AkB) is called an k-operation. Many

different k-operations have been proposed. Which of them to choose? This can be (in

principle) done by interviewing experts and eliciting a &:-operation from them, but such

a process is very time-consuming and therefore, not always possible. So, usually, to choose

a k-operation, we extend the finite set of actually possible degrees of belief to an infinite

set (e.g., to an interval [0,1]), define an operation there, and then restrict this operation

to the finite set.

In this paper, we consider only this original finite set. We show that a reasonable

assumption that an k-operation is continuous (i.e., that gradual change in t(A) and t(B)

must lead to a gradual change in t(AkB)), uniquely determines min as an k-operation.

Likewise, max is the only continuous V-operation. These results are in good accordance

with the experimental analysis of "and" and "or" in human beliefs.

1. INTRODUCTION

We must represent uncertainty. When we design an expert system, and place the

experts' knowledge inside the computer, we must somehow describe the fact that experts

may have different degrees of belief in their statements. Some of these statements axe

believed to be absolutely true, some are true to some extent, some are only probably true,

but an expert is not sure about that. Usually, experts describe their degrees of belief by

the words from a natural language (like "for sure", "maybe", "probably", etc.) Since there

are only finitely many words in a language, we have only finitely many different degrees of

belief.

Vv'e must represent these degrees in a computer.

If an expert is absolutely sure about the truth of any statement that he (or anyone else)

pronounces, then we have only two degrees of belief: "absolutely sure" and "absolutely

sure that it is wrong"; these two degrees of belief are just truth values: "true" and "false".

Therefore, in a general case, when different degrees of belief are allowed, these degrees of

belief can be viewed as truth value_ that characterize different statements.

We must operate with uncertainties. Representing the truth values inside a

computer is not all: we must be able to process these values. For example, suppose that
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we know the truth values t(A) and t(B) of two statements A and B, and the user asks

a query "AS:B?". Since we are not sure whether A and B are true, we are also not sure

whether A&B is true or not. Therefore, the only possible answer that we can give to this

query is to describe a (reasonable) degree of belief t(A&B) in A&B. If the only information

that we have about A a_d B consists of their truth values, then we must somehow produce

this reasonable estimate t(A&B) based on the known values t(A) and t(B). In other words,

we must have a function (moreover, an algorithm) that would transform t(A) and t(B) into

t(A&B). If we denote this function by f&, then we can describe the resulting "reasonable"

estimate for t(A&B) as f&(t(A),t(B)).

In case both t(A) and t(B) coincide with "true" or "false", this function must coin-

cide with the usual &-operation that is defined on a classical set of truth values {0, 1}.

Therefore, this function f& is called an &-operation.

Likewise, there must exist a function fv that corresponds to V and is therefore called

an V-operation, and a function f-_ (an _-operation) that generalizes "not" to the bigger

set of truth values.

Conclusion: an ideal representation of degrees of uncertainty is by a finite

logic. A set with logical operations on it ("and", "or", and "not") is usually called a logic.

A logic that is a finite set is called a finite logic. Our finite set of truth values has all these

operations, and is therefore a finite logic.

Therefore, an ideal representation of degrees of uncertainty must form a finite logic.

How to choose &- and V-operations for finite logics: ideal solution. Since

our main objective is to represent experts' beliefs in the most adequate manner, it is

reasonable to choose &- and V-operations so as to provide the best description of the

human reasoning with uncertainty. To do this, we must first ask the experts to estimate

their degrees of belief in different statements and their logical combinations. Then, we

choose a function fa as follows: For every pair of degrees of belief a and b, we find all

the statements in our record for which the degree of belief was a (t(A) = a), and all the

statement B for which t(B) = b. For different A and B, we look for the truth values that

the experts assigned to the statements A&B. For different A and B, these truth values

may be different; we find the "average" one (e.g., the one that is most frequent) and use

it as f_:(a, b).

In a similar way, we can experimentally determine fv(a, b).

This is (in essence) the method that was originally used to choose &- and

V-operations in one the first successful expert systems MYCIN (see, e.g., [BS84]). Re-

cently, a similar method was efficiently used to produce _- and V-operations on finite

logics in a MILORD system ([A92], [PGS92]).

How are S:- and V-operations chosen now, if we cannot afford to elicit

them from the experts? If we can afford to perform the above-described procedure, fine,

this procedure is the ideal solution to the choice problem. However, already the authors
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of MYCIN noticed that it is a very expensive and time-consuming procedure [BS84]. So,

what to do if we cannot afford it, but still have to choose ,_- and V-operations?

In this case, we need to develop theoretical methods to choose these operations. The

authors of MILORD formulated reasonable conditions that K:- and V-operations must

satisfy [A92, PGS92]. I:towever, these are several different operations that satisfy all these

conditions. Hence, the problem of choice remains.

At present, this choice problem is solved in the following manner. In the majority of

actual expert systems the set of possible truth values is infinite (see, e.g., [BS84], [SP90];

MILORD is one of the few exceptions). Usually, the numbers from the interval [0.1] are

used to represent degrees of belief. The reason for choosing this interval is very simple:

inside the computer, "true" is usually represented as 1, and "false" as 0. So, it is reason-

able to represent all intermediate degrees of belief by real numbers that are intermediate

between 0 and 1.

If we assume that all numbers from [0,1] are possible, then we need to define &:-

and V-operations as functions from [0, 1] x [0, 1] to [0,1]. There exist several reasonable

approaches that enable us to make a choice of such a function (see, e.g., our survey [K92]).

Formulation of a problem. These approaches provide us with reasonable 8z-

and V-operations, but they essentially depend on the assumption that all numbers from

the interval [0,1] can be truth values. Strictly speaking, this assumption is not true.

Therefore, it is reasonable to formulate the following problem: if we are unable to elicit

these operations from the experts, can we still choose them using only the actual truth

values?

How we are going to solve this problem. In order to solve this problem, we

will assume that both &- and V-operations fx,(a, b) and fv(a, b) are "continuous" in the

following sense. If we gradually (=without skipping any intermediate values) increase our

degrees of belief a = t(A) and b = t(B), then the resulting degrees of belief t(A&B) =

fsz(a,b) and t(d V B) = fv(a,b) must also change gradually.

It turns out that this reasonable demand is satisfied by only one pair of operations:

min and max, that were originally proposed by L. Zadeh [Z65]. This result is in good

accordance with the known experiments ([HC76], [O77], [Z78]), according to which in

many situations, min and max describe human reasoning better than other possible &-

and V-operations.

2. DEFINITIONS AND THE MAIN RESULTS

Definition 1. By a finite logic, we understand a (partially) ordered finite set L that

contains two elements T and F such that F <_ a < T for every a E L. The elements of L

will be called truth values, or degrees of belief.

Motivation. We consider finitely many truth values, that represent different degrees of

belief. Sometimes, we are certain that belief expressed by a degree a is stronger than the

belief that is expressed by a degree b. For example, a -"for certain" is stronger than



b ="maybe'. We will denote this by a > b. So, on our set of truth values, there is a

ordering relation.

In particular, if we denote the degree of belief that expresses our absolute certainty in

A, by T (T from "true";), and the degree of belief that expresses the absolute belief in --,A

by F (from "false"), then F < a < T for an arbitrary degree of belief a.

It is possible that for some words that describe uncertainty, there is no clear un-

derstanding which of them corresponds to greater belief (e.g., it is difficult to compare

"probable" and "possible"). Therefore, we do not require that this ordering is a total

(linear) order, it can be only partial.

Definition 2. Let L be a finite logic. By an _:-operation on L we mean a function

fs_ • L x L _ L with the following properties:

• fsz(a,b) <_ a;

• fs_(a,b) = fsz(b,a);

• fs_(a,F) - F;

• if a < a' and b < b', then fsz(a,b) < fsz(a',b').

Motivation. The first property is motivated by the following: if we believe in A and B,

then we must believe in both statements A and B; therefore, our belief in A&B is either of

the same strength or less strong than our belief in A. The second property is motivated by

the fact that "A&B" and "B&:A" are equivalent statements, so it is reasonable to demand

that our estimated degree of belief in A&B (= fs_(t(A), t(B))) is the same as the estimated

degree of belief in B&A (= fs_(t(B), t(A))). The third property expresses the following: if

B is false, then "A and B" is false for all A. The fourth means that if the degree of belief

in A and B increases (i.e., if we found additional reasons to believe in A or B), then the

resulting degree of belief in A_zB must either increase, or stay the same.

Comment. This definition is similar to the usual definition of a t-norm (see, e.g., [GN85])

and to the definition of an _-operation on a finite logic from [A92], [PGS92]. The reader

may notice, however, that we do not require some additional properties that are usually

required for a t-norm, like associativity (fx,(a, fs_(b,c)) = fs_(fs_(a,b),c))). The reason is

that in our case, as we will see later, it automatically follows from the other properties.

Definition 3. Let L be a finite logic. By an V-operation on L we mean a function

fv : L x L ---. L with the following properties:

• fv(a,b) > a;

• fv(a,b) -- fv(b,a);

• fv(a,T) = T; "

• if a < a', and b < b', then fv(a,b) < fv(a',b').

Motivations for these demands are similar to the ones given for an _:-operation.

Definition 4. We say that an element a' E L immediately follows a (and denote it by

a << b, or b >> a) ifa < a t , and there exists no csuch that a < c < a _. We say that a

function f : L ---+ L is discontinuous if there exist elements a, a', c such that a << a _, and

either f(a) < c < f(a'), or f(a') < c < f(a).



Motivation. If such values a, a I, c exist, this means that when we gradually increase our

degree of belief from a to a' (gradually in the sense that we do not skip any intermediate

values), then the resulting value of f "jumps" from f(a) to f(a'), skipping an intermediate

value c. So, in this sense, the function f is discontinuous.

We can use the same definition for a function of two variables.

Definition 5. A function f: L x L ---* L is called discontinuous is there exist the values

a, £, b, b', c for which the following three conditions are true:

• a<<a t , a t <<a, or a=at;

• b<<b', bI<<b,or b=b';

• f(a,b) < c < f(a',b'), or f(at,b') < c < f(a,b).

Comment. The first condition means that a gradually changes into a _ (i.e., either a I

immediately follows a, or a immediately follows a _, or a _ equals a). The second condition

means that b gradually changes into b'. The third condition means that there is a "gap"

between f(a,b) and f(a',b').

Definition 6. A function is called continuous if it is not discontinuous.

Comments.

1. If a function f is continuous in the intuitive sense of this word, then it cannot have

discontinuities in the sense of Definitions 4 and 5, and therefore it will be continuous in the

sense of Definition 6. We do not claim, however, that an arbitrary function that satisfies

Definition 6 is intuitively continuous, because there may be other types of discontinuity.

We will prove that this weak continuity is sufficient to select &- and V-operations.

2. It is worth mentioning that usually in mathematics, continuity is understood as continu-

ity with respect to some topology. For finite sets, however, this notion is not applicable: on

a finite set, we either have a discrete topology (in which case all functions are continuous),

or a topology that is reduced to an ordering relation, in which case monotonic functions

and only they are continuous (see, e.g., [B67]). This monotonicity is not enough for us: we

have already included monotonicity in our definitions of &- and V-operations, and we

want to formalize the evident fact that some monotonic operations are "continuous" (in

intuitive sense), and some are not. Hence, we had to use new definitions of continuity.

Now, we are ready to formulate the main results.

THEOREM 1. If f is a continuous &-operation on a finite logic L, then L is linearly

ordered, and f(a,b) _ min(a,b).

Comments.

1. For a linearly ordered set, min(a, b) is defined as the smallest of a and b.

2. For readers' convenience all the proofs are given in Section 4.

THEOREM 2. If f is a continuous V-operation on a finite logic L, then L is linearly

ordered, and f(a,b) - max(a,b).



Ezarnple. Let us give an example of an _z-operation that is different from min, and

show that it is reMly discontinuous. As a finite logic, let us take the set of 11 numbers

{0, 0.1, 0.2, ..., 0.9, 1.0} with natural order. We thus defined L as a subset of the interval

[0,1]. In the same original paper by L. Zadeh [Z65], another operation on the interval [0,1]

has been proposed for:&:: f(a,b) = ab. This operation, unlike rain, cannot be directly

applied to the chosen values, because, e.g., 0.6 • 0.6 = 0.36 and 0.36 does not belong to

the set of 11 chosen values. This difficulty is, however, easy to overcome: we can take as

f(a, b) the number from L that is the closest to a • b (and if there are two closest numbers,

like 0.2 and 0.3 for 0.25 = 0.5 * 0.5, choose the biggest of these two). For this operation,

we will have f(0.6, 0.6) = 0.4, f(0.3,0.5) = 0.2, etc.

Let us now consider the case when we have two statements A and B, and our degree

of belief in each of them is equal to 0.9. Then, our degree of belief in A_cB is equal to

f(0.9, 0.9) = 0.8. In the chosen set L, 1.0 immediately follows 0.9, which means that an

increase in the degree of belief from 0.9 to 1.0 can be called gradual. So, we can consider

the possibility that our degrees of belief in both A and B gradually increase from 0.9 to

1.0. After this increase, the degree of belief in A_:B becomes equal to f(1.0, 1.0) = 1.0.

So, we gradually increased our degrees of belief in A and B, but the resulting degree of

belief in A_B "jumped" from 0.8 to 1.0, skipping the value 0.9. Hence, this function f is
discontinuous.

In Definition 5, we can thus take a = b = 0.9, a _ = bI = 1.0, and c = 0.9.

3. OPERATIONS THAT CORRESPOND TO

NEGATION AND IMPLICATION

In Section 2, we described continuous "and" and "or" operations, and concluded that

L must be linearly ordered. Let us now describe continuous operations with degrees of

belief that correspond to other logical connectives.

Definition 7. By a -,-operation on L we mean a function f • L _ L such that f(T) = F

and f(F) = T.

Motivation. This condition simply means that if A is absolutely true, then --A is absolutely

false, and vice versa.

THEOREM 3. If L = {F = ao < al < a2 < ... < a, = T} is a linearly ordered finite

logic, and f is a continuous ',-operation on L, then f(ai) = an-i.

Comment. We can'represent this result in a manner that is closer to the traditional

representation of uncertainty, if we describe each degree of belief ai by a real number i/n.

Then, for each truth value a, f-,(a) = 1 - a. This is exactly the operation originally

proposed by Zadeh. In other words, not only the &- and V-operations initially proposed

by Zadeh are the only continuous &- and V-operations, but his negation operation is the

only continuous "not"-operation on a finite logic.

Let us now describe the implication operations.

::



Definition 8. Let L be a finite logic. By a ---* -operation on L we mean a function

f_ : L x L _ L with the following properties:

• f_(F, a) = T;
• f_(T,a) = a;

• f__(a, T) = T; :

• f_(a,a)- 1;

• if a _< a', then f_(a,b) >_ f_(a',b).

Motivations. The intended meaning of the function f_,(a, b) is as follows: if we know

the degrees of belief a = t(A) and b = t(B) in some statements A and B, then f_(a, b)

is a reasonable degree of belief in the statement A --_ B ("A implies B"). With this

interpretation in mind, the first of the above properties states that anything follows from a

false statement. The second one states that to believe that A follows from an an absolutely

true statement is the same as to believe that A is true, and therefore, the corresponding

degrees of belief must coincide. The third condition means that a true statement follows

from everything, and the fourth that for any statement A, A follows from A (and therefore,

the degree of belief in A ---* A must be equal to T).

The last condition is related to the third one: Namely, the third one says that if A

is false, then A ---* B is always true. Therefore, if for some reason our degree of belief

in a statement A decreases (from a _ to a), then our belief that A can be false will corre-

spondingly increase. Therefore, our degree of belief that A ---* B is true, will also increase.

Hence, it is reasonable to demand that f_(a',b) <_ f_(a,b).

THEOREM 4. If L = {F = ao < al < ... < an = T} is a linearly ordered finite logic,

and f is a continuou_ ---* -operation on L, then f(ai,aj) = arain(n,n+j--i)"

Comment. If we describe ai by a real number i/n, then this _ -operation turns into

f(a,b) = min(1, 1 + b-a).

4. PROOFS

Proof of Theorem 1.

1 ° Let us first prove that every element a E L can be connected to T by a finite chain

T=a0 >>al >> ... >> ak = a (k > 0).

Indeed, if a = T, then we already have a chain, with k = O.

If a 5A T, then a_ccording to our definition of a finite logic, we have a < T. If a << T,

then we have a chain a0 = T, al = a. If a _ T, then, according to the definition of <<,

it means that there exists a c such that T > c > a. If T >> c, and c >> a, then we have a

desired chain. Else, we can insert additional elements in between them, etc.

On each step of this procedure, we either have a chain, or we can insert more elements

into a sequence T = a0 > al > ... > an = a. Since there are only finitely many elements

in the set L, and all ai are different, this insertion cannot go on forever. Therefore, sooner

or later, it will stop, and we will get the desired chain.



If p= k

If p= k

b, and a > b.

2 °. Let us now prove that f(a, a) = a for every a E L.

Indeed, suppose that a E L is given. According to 1 °, there exists a chain T = a0 >>

al >> ... >> ak -- a that connects T and a.

If k = 0, then a = T, and f(T, T) = T follows from the properties of an &-operation.

So, we can assume that k > 0. We will prove that f(a,a) = a by reduction to a

contradiction. Indeed, suppose that f(a,a) 7£ a. Hence, f(ao,ao ) = ao, and f(ak,ak ) 7£ ak.

Let us denote by p the smallest integer for which f(ap, ap) 7£ ap. From this definition of p

it follows, in particular, that f(ap-1, ap-1) = %-1.

Since f is an &-operation, we can conclude that f(ap,ap) < ap. Since f(ap,ap) 7£ ap

(by the choice of p), we conclude that f(ap, ap) < ap.

Therefore, we have ap << ap-1, and f(ap, ap) < ap < ap-1 = f(ap-1, ap-1), i.e., f is

discontinuous (here, a = b = ap, a _ = b' = ap-1, and c = ap). However, we assumed that

f is continuous.

This contradiction proves that f(a, a) cannot be different from a, so f(a, a) = a for

all a.

3 °. Let us prove that L is linearly ordered, i.e., for every two elements a, b E L, either

a=b, ora<b, orb<a.

Indeed, let us take a, b E L. Following 1 °, we will form chains T = a0 >> al >> ... >>

ak -- a, and T = b0 >> bl >> ... >> bt = b. Let us denote by p the biggest integer for which

ap and bp are both defined and equal to each other (% = bp).

=l, thena=ak = ap = bp =hi = b, i.e., a = b.

7_ l, then a = ak = bp >> bp+l >> ... >> bl = b, therefore a > bp+l > ... > bt =

Likewise, if p = l 7£ k, then b > a.

Let us prove that the remaining case when p < k and p < l, is impossible. In-

deed, in this case, both %+1 and bp+l are defined and different from each other. Since

f is an &-operation, we can conclude that f(ap+l,bp+l) <_ ap+1 and f(ap+l,bp+l) =

f(bp+l, ap+l) <_ bp+l.

The first inequality means that we have two possibilities: f(ap+l, bp+l) = ap+l, and

f(ap+l, bp+l) < ap+l". We will show that in both cases, we have a contradiction.

Suppose first that f(ap+l, bp+l) = ap+l. We already know that f(ap+l, bp+l) <_ bp+l,

so ap+l _< bp+l. We chose p in such a way that ap+l 7£ bp+l (and % = bp), therefore

ap+l < bp+l. So, ap+l < bp+l < bp = ap. The existence of the intermediate value bp+l

contradicts the assumption that ap+l << ap. So, in this case, we have a contradiction.

Let us now consider the case when f(%+l,bp+l) < ap+l. Since % = bp (because

of our choice of p), and f(a,a) = a for all a (this we have proved), we have f(a,,bp) <



ap+x < ap = f(ap,ap) = f(ap, bp). Therefore, in this case, ap+l << ap, bp+l << ap, and

f(ap+l, bp+l) < ap+l < f(ap,bp). Hence, we have a proof that f is discontinuous (with

a _ b_ = c). This contradicts to our assumptiona = ap+l, b = bp+l, = ap, = bp, and ap+l

that f is continuous.

m

Summarizing: in both cases the assumption that p < k and p < I led us to a contra-

diction. So, either p = k, or p = l, in which cases, as we have already proved, either a = b,

or a < b, or b < a. We have thus proved that L is linearly ordered.

4 °. It now remains to prove that f(a, b) = rain(a, b) for all a, b.

Since L is finite and linearly ordered, we can order all its elements into a sequence

F = ao < al < ... < an-1 < an = T. So, each element of L has the form ai, and ai < aj

iffi <j.

In these terms, it is necessary to prove that f(ai,aj) = amin(i,j ). If i = j, this

follows from 2 °. Let us now consider the case, when i < j, and prove that in this case,

f(ai,aj) =ai.

Let us fix j. For every i, the value of f(ai,aj) E L is equal to ak for some k. Let us

denote this k by ¢(i). So, in these denotations, f(ai, aj) -- a¢(i). The desired equality can

be then expressed as ¢(i) = i for all i __<j.

We already know the value of this function ¢(i) for i = 0 and i = j: Indeed, since

f is an &:-operation, we have f(T, aj) = T, i.e., in our notations, f(ao, aj) = ao, hence

¢(0) - 0. From 2 °, it follows that f(aj,aj) = aj, so ¢(j) = j.

Since f is an &:-operation, it is monotonically non-decreasing, hence ¢ is also non-

decreasing: 0 = ¢(0) < ¢(1) <_ ¢(2) < ... _ ¢(j) = j.

Since ai << ai+l, and f is continuous, there cannot be a gap between F(ai) and

F(ai+l). Therefore, for each i, we must either have ¢(i + 1) - ¢(i), or ¢(i + 1) - ¢(i) + 1.

Since j = j - 0 = ¢(j) - ¢(0) = (¢(j) - ¢(j - 1)) + ... + (¢(2) - ¢(1)) + (¢(1) - ¢(0)),

the number j is the sum of j differences, each of which is i 1. If one of these differences

was equal to 1, then the entire sum would be smaller than j. Since this sum is equal to

j, none of these differences can be smaller than 1. Therefore, ¢(i + 1) - ¢(i) = 1 for all i.

This equality is equivalent to ¢(i + 1) = ¢(i) + 1.

So, we have ¢(0) = 0, and ¢(i + 1) = ¢(i)+ 1 for all i < j. From this, we can conclude

(using mathematical induction), that ¢(i) = i for all i < j. By definition of ¢ this means

that f(ai,aj) = as(i ) = ai, i.e., that f(a,b) "- min(a, b).

If i > j, then the desired equality follows from the fact that f is commutative

(f(ai, aj) = f(aj, ai)), and so this case is reduced to the previous one. Q.E.D.

Comment. The ideas of this proof are similar to the proofs from [A92], [PGS92].

Proof of Theorem 2 is similar, with the only difference that we must use F instead

of T, > instead of <, and << instead of >>.



Proof of Theorem 3. For every ai E L, f(ai) = ak for some k. Let us denote this k

by ¢(i). In these terms, f(ai) = a_,(i). The definition of a negation operation means that

¢(0) = n, and ¢(n) = 0. Continuity means that for each i, since ai << hi+l, there cannot

be anything in between a_,(i) = f(ai) and a,#(i+l) = f(ai+l ). In other words, there cannot

be anything in betweerr ¢(i) and ¢(i + 1). So, ¢(i) and _(i + 1) must either coincide, or

be neighbors: ]¢(i + 1) - ¢(i)[ _< 1. In particular, ¢(i + 1) - ¢(i) >_ -1.

Now, the difference ¢(n) - ¢(0) = 0 - n = -n can be represented as -n = ¢(n) -

0(0) = (¢(n)- ¢(n- 1))+... +(¢(2)-¢(1))+(¢(1)-¢(0)). So, -n is represented as the

sum of n terms each of which is > -1. If one of them was greater than -1, then the entire

sum would have been greater than -n. Since this sum is equal to -n, we can conclude

that all the terms in this sum are exactly equal to -1: ¢(i + 1) - _b(i) = -1. Therefore,

¢(0) = n, and ¢(i + 1) = ¢(i)- 1 for all i. From these two conditions, one can easily

conclude that ¢(i) = n - i. Hence, f(ai) = a_ti) = a,-i. Q.E.D.

Proof of Theorem 4. For every i and j, the value f(ai,aj) belongs to L and is,

therefore, equal to ak for some k. Let us denote this k by h(i,j), so that f(ai, aj) = ah(i,j).

We will consider two cases: i < j, and i > j.

Let us first assume that i _<

f(aj, aj) = T = an, and f(F, aj)

h(j, j) = n, and h(O, j) = n. From

that h(O,j) > h(1,j) >_ ... >_ h(j

conclude that all the terms in this

j. According to the definition of an _ -operation,

= f(ao,aj) = T = aT,. In terms of h, it means that

the fifth property of an ---* -operation, we can conclude

- 1,j) >_ h(j,j). Since h(O,j) = h(j,j) = n, we can

inequality are equal to n, i.e., h(i,j) = n if i _< j.

Let us now consider the case, when i > j. According to the definition of a

---, -operation, for every j, we have f(T, aj) = aj, and .f(aj,aj) = 1. In terms of h, this

turns into h(n,j) = j and h(j,j) = n. Since f is continuous, we can conclude (just like we

did in the proofs of Theorems 1 and 3) that Ih(i + 1,j) - h(i,j)l < 1. So, the difference

between h(n,j) and h(j.,j) that is equal to j - n = -(n - j), can be represented as the

sum of n - j differences h(i + 1,j) - h(i,j) (j < i < n), each of which is >_ -1. ff one

of these differences was > -1, then the entire sum would be > -(n - j). Therefore, all

these difference are equal to -1. So, h(j,j) = n, and for i > j, h(i + 1,j) = h(i,j)- 1.

Therefore, for i >_ j, we have h(i, j) = n - (i - j) = n + j - i.

Combining the cases i < j and i > j, we get the desired formula. Q.E.D.

5. CONCLUSIONS

Experts use words from natural languages to describe their degree of belief in their

statements (e.g., "probably", "for sure", etc). If we want to use these degrees of belief

in a computer-based expert system, we must be able to estimate the degree of belief in

A&B based on the known degrees of belief in A and B. The function that performs this

estimate is called an &:-operation. The best way to choose an &-operation is to elicit and

analyze the experts' degrees of belief in statements A&B for different A and B. However,

this ideal procedure is very expensive and time-consuming, and is, therefore, in some cases



not affordable. For such cases, when we cannot make an empirically justified choice of an

&-operation, we need a theoretically justified choice.

In this paper, we formalize the natural demand that gradual changes in t(A) and

t(B) must lead to grad._al changes in our estimate for t(A&B) (we call it continuity). We

show that the only continuous &-operation is rain(a, b). Likewise, the only continuous

V-operation is max(a, b), the only continuous "not"-operation corresponds to f(a) =

1 - a, etc.
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