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Summary

Climate changes traditionally have been detected from long series of observations and long after

they happened. The "inverse sequential" monitoring procedure is designed to detect changes as soon as

they occur. Frequency distribution parameters(s) are estimated both from the most recent existing set of
observations and from the same set augmented by 1,2,. • • j new observations. Individual-value probabil-

ity products ("likelihoods") are then calculated which yield probabilities for erroneously accepting the

existing parameter(s) as valid for the augmented data set and vice versa. A parameter change is signaled
when these probabilities (or a more convenient and robust compound "no change" probability) show a

progressive decrease. New parameters are then estimated from the new observations alone to restart the

procedure. The detailed algebra is developed and tested for Gaussian means and variances, Poisson and

chi-square means, and linear or exponential trends; a comprehensive and interactive Fortran program is

provided in the appendix.
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1. Introduction

The detection of changes in a developing time series requires some idea of what form the changes

are likely to take. When the nature of the forcing is known, filters can be designed that will show their

effects most clearly (Kim and North, 1991), but that knowledge is often not available in the geophysical

sciences. However, many time series are made up of irregular-length sections each of which differs from

its neighbors in one or more of the parameters that define its signal and noise characteristics. As long as

its parameters remain unchanged, an individual section can then be said to be in "statistical control"

(Shewhart, 1939).

There exists considerable evidence that this concept is realistic in many geophysical contexts.

Examples are variables exhibiting the "Hurst phenomenon" much discussed in hydrology (e.g., Klemes,

1974), and atmospheric circulation patterns (Toth, 1992). With its minimum of arbitrary assumptions, the

concept of statistical control suggests a general monitoring approach that registers the length and end of

each controlled "regime", together with the new parameter values. The magnitude of changes in geophy-

sical parameters cannot be anticipated, but their surveillance might use a probability for regarding the

parameters established from existing observations as significantly changed by the addition of one or more

new observations.

Such a "sequential" use of accruing information was pioneered by Wald (1947) and has developed

into a large special field of statistics (c.f.e.g., Gosh, 1988) which includes a range of procedures utilizing

cumulative sums ("cusum" techniques; e.g., Goel, 1982). The typical outcome in the simplest situation is

a decision, with prescribed error probabilities, to accept one of two specified parameter values, or to con-

tinue sampling.

The "inverse" sequential approach here presented instead progressively determines "no change" pro-

babilities for parameter estimates based, respectively, on the accrued data and on the same data aug-

mented by one or several new observations. A parameter change is then signaled when these probabilities

begin decreasing to small values.
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Thebasicapproachis developed in the next section and formulated in Section 3 for the parameters

of Gaussian, Poisson, and chi-square distributions, as well as for linear and exponential trends. The tech-

nique is illustrated there with constructed examples, and is described as a systematic and comprehensive

procedure in Section 4 with reference to an interactive Fortran program, reproduced as code in the

appendix.

2. Theory

Consider a series of m observations x i, i = 1,2" • • m, to which further j observations are added

(j = 1,2," • • ). For a parameter 0 (such as mean, variance, trend, etc.) the first m values yield an optimum

estimate 0m which the augmented set of observations changes to 0m+j. Writing the corresponding proba-

bilities of individual x i as p (xi ; 0), the likelihood function of n observations is

L(n; O)=p(xl; O)'p(x2; O) "'' p(xn; O). (1)

With n = morm +j and 0 = 0,, or 0m+j we have four different likelihoods:

L l=L(m;0 m);L2=L(m +j;0m+j);L3=L(m +j;0m);L4=L(m;0m+j). (2)

Now the form of L shows that the likelihoods decrease systematically with increasing sample size.

Those for the initial data can be made comparable to those for the augmented data by multiplying the

L (m ; 0) by some factor c (m) and the L (m + j ; 0) by c (m + j). Furthermore the sum of the adjusted

likelihoods, c (m)Ll + c (m + j )L3 represents the probability that 0m is valid for either the initial m data

or the augmented set of m + j. Since these are taken to be the only choices, that probability is one; the

same applies to the sum c (m + j)L 2 + c (m)L4. Denoting c (m + j)L3 by a and c (m)L4 by _, the other

adjusted probabilities become c (m)L1 = 1 - a and c (m + j )L 2 = 1 - I_.

(In the terminology of the theory of hypotheses (e.g. Hoel, 1966), ct represents the "type I error"

probability for not accepting 0m, even though true, for the augmented sample. The probability 13is that of

rejecting 0m+j though true for the initial data; alternatively, it is the "type II" error probability of prefer-

ring 0m, though false, for the initial sample).
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The probabilities Ix and [3 are calculated from the factor-free likelihood ratios."

q(m)- --- ; (3a)
L l 1 -ix

L2 1-_
q (m + j ) - - (3b)

L 3 Ix

Solving for Ix and 13yields

(1--qm) . (4a)
(qm +j - qm ) '

(qm+j qm - qm )
[3 : (4b)

(qm +) - qm )

With a definite change of control from 0m to 0,n+j, both probabilities in due course decrease to small

values. While the existing regime continues, the variability of the likelihood function and rounding errors

can raise the likelihood ratio q (m) to unrealistic values larger than unity and similarly reduce q (m +j ) to

values below one. To avoid probabilities that are negative or larger than 1, such q values must be

replaced by l, implying equality of the likelihoods involved.

For the inverse sequential monitoring operation, several combined quantities suggest themselves as

more stable than Ix and [3:

i) Ix + [_, the probability that either O(m ) is valid for the sample of m + j or O(rn + j ) for the sample

of m;

ii) Ix- [3, the probability that both these statements are true;

iii) a compound "no-change" probability 7 which will be used for the illustrations in Section 3, and is

defined by writing

so that

LIL2 (1 - Ix)(l -13) (1 -7) 2
q(m +j) =Q _ _ =_ (5)

q(m ) L 3L4 IX_ ,_2 '
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y=(l + -4"0-)-n (6)

The probability y falls between 0 and 0.5 as long as q (m +j ) > q (m) and lies between the arithmetic

and geometric averages of czand 13,as can be shown by alternatively substituting these averages for cz and

[3 in the original form of (5), i.e. in

Q = [1- + c 13] (7)

When o_= 13= (o_+ [3)/'2, equation (7) becomes

| _ + + 52 + [32
(5 13) +

2 J
Q l = (8a)

[o0+ 1
This shows that the numerator N and the denominator D of Q both have been increased by

e=(ot 2+132)/2>0. Since Q >t (i.e., N >D), then Q =N/D >Q j= (N+e)/(D+E) since

ND +Ne > ND +DE, orN > D, the initial condition.

Again with ot = [3= (or[3)'/2,equation (7) becomes

[1- 2(0c13)'/2+ 0c13]
Q2 = (8b)

o_13

so that Q2 - Q = - 2(_[3) '/2+ (cz + 13)> 0 since o_+ [3 > 2(cz13)_; this can be seen by squaring both sides

giving

(_ + 13)2+ 0_2+ [32+ 2a[3 > 40t[3, or (CZ- 13)2> 0 .

Finally, with Q2 > Q > Q n,

(9)

(Equations (3a) and (3b) have the form of the decision limits of Wald's (1947) "sequential probabil-

ity ratio test (SPRT)". Loge Q can then be interpreted as the logarithmic width of the indecision region of

a SPRT in which loge q (m + j) defines the upper decision limit, and log eq (m) the lower decision limit,
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respectively).

A change in parameter(s) lowers 7 at a rate that increases with the change magnitude but decreases

with an increase in the number of observations before the change. This is further discussed and illustrated

in Section 3,1; it suggests using a moving base period, or restarting the procedure with new base values

after some interval in which y shows no clear descending trend.

3. Formulae and examples

The formulae give the basic probability p in the likelihood functions for m and m +j observations,

and the likelihood ratios q (m) and q (m +j ) used to calculate the probabilities o_, _, and y from equations

(4) and (6) in Section 2. For simplicity, subscripts will be used to indicate the number of values used for

parameter estimates, and bracketed symbols for the numbers used to calculate the likelihoods and their

ratios. ThusL(m; 0,n)=Ll becomes L,n (m ), L (m +j,Om)=L3=Lm(m +j), etc.

The examples in this section use constructed data with known properties and illustrate how the

detailed properties of the inverse sequential procedure will be established by more extensive calculations

using different base lengths and magnitudes of parameter changes.

3.1 Poisson mean (= variance)

This case is rather simple because the basic probability

_x
X

p - , (3.1.1)
x !exp (£)

has only a single parameter, the mean number _- of occurrences. The logarithmic likelihood functions are

t'?l

loge Lm (m) = rift,, loge £,n - ]_ loge x! -aft. ; (3.1.2a)
!

trl

Ioge L,n +)(m) = rn_m loge x-m+i - ]_ loge x ! - mx-m+j ;
I

(3.1.2b)



Table 1: Detection of change in Poisson mean (= variance).

The 5 base values are drawn at random from a Poisson population with mean 5. These and
another 10 values from the same population are used in test III. Test I and test II each use the

same base values as in test I/I and 10 values from Poisson populations with means 3 and 7,

respectively. Base values used are 6, 1, 6, 6, 4 and have a sample mean of 4.6.

Test I Test I/ Test III

no-change

probability

2 0.47

1 0.36

6 0.43

1 0.33

2 0.25

2

5

2
1

0

0.18

0.22

0.16

0.09

0.04

no-change

probability

5 0.50

6 0.49

9 0.40

4 0.43

9 0.32

1 0.43
6 0.41

10 0.28

5 0.29

13 0.11

no-change

probability

3 0.49

2 0.44

4 0.43

6 0.47

5 0.48

6 0.50

7 0.50

1 0.49

8 0.50

5 0.50
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,n+j
logeLm+j(rn+ j ) = (rn +j )_m+j logex-,n+) - _ logex !- (m + j )Xm+:

I

(3.1.2c)

m+j
logeL,n(m +j) = (m+j)xm+j loge._m - _ Iogex ! - (m + J)-_,n ,

I

(3.1.2d)

resulting in the likelihood ratios

q(m)=exp[m{_m
log_ x,_ +: _ (3.1.3)

so that

q (m +j ) = exp (m + j ) +J l°ge Xm+j _ - x,,t (3.1.4)

f ) tQ=exp (m+j);m+j--nffm Ioge x'n+j -
_,, J(;m+) --_,n

(3.1.5)

Examples

Three tests were conducted to demonstrate how the no-change probability is used to detect changes

in Poisson mean. Table 1 lists three series each containing ten values drawn at random from Poisson

populations with means of 3, 7, and 5 respectively. All three tests use the same five base values, which

have a sample mean of 4.6. In tests I and H, progressive decreases occur in the no-change probability

suggesting a change in the Poisson mean. This is expected since the values in each series were drawn

from different population means than those of the base period. In test HI, the no-change probability does

not steadily decrease indicating that the series mean is not significantly different from the base period

mean. This too is expected since the series values and the base values were drawn from the same popula-

tion.

The relatively simple form of equation (3.1.5) makes it possible to explore the dependence of the

no-change probability on change magnitude and base length for an average Poisson sample. Let x,,



Figure I. No-change probabilities for change in Poisson mean at m=5 or 10.
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i = 1,2- ' • m now represent the average of many samples drawn from a Poisson distribution with mean

£, so that each xi equals _-, and add further j values each equal to J-' from a Poisson distribution with

mean £'. With 2ff = _-' -_-, Equation (3.1.5) can be modified to read

[{J _m} [ "_-ml Ax-]. (3.1.6)loge Qt, = x-m + (m + j) z_ loge 1 + z_S _ j X-m

Now the mean 2 m is simply equal to J-, while

rax + j_' (m +j )Xm + jXm (X' - X ) I_
x'-m+s- m+j = m+j (3.1.7)

With (_-' - J- )Ix- = g and _/x'm = Jg I(m +j ) = v, say, (3.1.6) becomes

logeQp = x-m[{J +(m +j)@loge(l +v)-jv 1 ,

which together with equation (6) leads to the no-change probability

-I
as function of x, m, j, and g = _/x-m

(3.1.8)

(3.1.9)

Equations (3.1.8) and (3.1.9) have been evaluated for three different x = x,,, and five different values

The results are shown in Figure la for three different J-' and in Figure lb for a single value _- = 5,of g.

forj = 1 through I0.

The two broken lines in Figure lb show that a longer base (larger m ) will slow the response of the

no-change probability to the change in mean, but leaves the curves essentially unaltered in shape. The

decline in the no-change probability starts at the change of mean and accelerates down to values of the

order of 0.3-0.2 before becoming more and more gradual as small probabilities are approached. Beyond

this general feature, the simple argument here used reveals little about the rate of decline except that it

changes markedly with both the base mean and the means ratio g. More specific features remain to be

established by numerical experimentation.
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3.2 Inverse sequential formulae for Gaussian means and variances

The basic probability for the Gaussian distribution,

p = (2/to'2) -1/2 exp[-- (x - tl.)2 ]2_ 2 'j . (3.2.1)

involves two parameters, Ix and 0 2, which can only be tested jointly since in the present context neither is

known a priori. We use the sample mean as an estimate for the population mean Ix, and

_" = [(n/(n - 1)Is 2, where s 2 is the sample variance and n (= m or m +j ) is the number of values used.

The likelihood products (equation 1) are converted to sums by taking logarithms; thus,

", (x - Ix,,,)2

m rn logeO 2 _ _ 202 ' (3.2.2)loge Lm (m) = - -_- log e 2n - -_- I

m

with Y.(x - Ix)2 __ (m - 1)o 2, the last term reduces to [-(m - 1)/2].
l

Proceeding in the same way for L 4 = Lm +j (m) leads to

m

m loge 2re - m log e 02+) _loge Lm+j(m ) =- -f T 2o2+j

(X -- Ixm +j )2
(3.2.3a)

with Ix,n+/- Ix,,, = Ag, the numerator of the last term can be written as

m m m

-- _(X -- (ixm + AIX)) 2 = - _(X - Ixm )2 _ _(_ 2X All, + 2g,n Ag + A_t 2)

1 1 i

= - (m - 1)O2 - 2m g,. AIX+ 2m IxmAIX- m (AIX)2 ,

so that equation (3.2.3a) becomes

m m log e02 +Jl°geLm÷j(m) =- T log2_- T

(m - 1)o2 m (AIx) 2

202+j 202.
(3.2.3b)

Finally, subtracting equation (3.2.2) from equation (3.2.3b) gives the log likelihood ratio
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C2 m -1 I 02
log e q (m) = log e Lm+j (m) _ m log e + 1

t m(m) 2 a_+j 2 [ _2+j

m (Ait) 2

2o2+j
(3.2.4)

Proceeding the same way for the augmented set of m +j values yields first

loge Lm+j(m + j)=
,.+J(x - It,.+j)2

m2+j l°ge2x m2+j l°geO2+J- ]_1 202+j

where the last term, with
m_
Y_(x - lain+j) 2 = (m+j - 1) o2+j, reduces to - (m +j - 1)/'2. Next,

1

m+j loge2rC - m+j iogeO 2 _n_j (x-(ltm+i-Ait)) 2
log eL m (m +j ) = - _ 2 l 202m

(3.2.5)

(3.2.6a)

Expanding the last term as before yields

m +j loge 2_ - --
l°geLm (m +J ) =- ---2--

(m+j - l)o2+j (m +j)A_ 2
m +j log e O2 _

2 O2 202
(3.2.6b)

Subtracting equation (3.2.6b) from equation (3.2.5) we obtain the second log likelihood ratio

m+j o2
-- log e _ +

log eq (m +j ) = 2 Om+j

m +j - 1 Om2+j

2 O2

1] + (m +j)(Ait) 2

J 2o2
(3.2.7)

The final formulae therefore are

Om m-I [q(m)=exp mlog e --Ora+j +_ 1--- o2+j m2o2+ j (itm+) - Itm )
(3.2.8a)

and

Om m+j - 1q (m +j ) = exp (m +j )log e +
Om +1 2 o2 1 + 2° 2 (itm+j-it,,,) •

(3.2.8b)

The first two exponents in each formula reflect solely changes in variance, while the third exponent

depends primarily on changes in the mean.



Table2:Detectionof changeinGaussianmeanandvariance.

The5 basevaluesfor testsI andII aredrawnfromaGaussianpopulationwithmean5 (sample
mean:3.64)andvariance25(samplevariance:71.74).The5basevaluesfortestIII comefrom
aGaussianpopulationwith mean7.5(samplemean:8.02)andvariance6.25(samplevariance:
4.20). TestI uses3 valuesfromthefirst seriesfollowedby 7 valuesfromthesecond.The10
valuesfor testII allcomefromthefirstseries,andthosefortestIII fromthesecondseries.

-5.0
-1.3
10.2
14.9
-0.6

2.6
6.6
2.5

10.2
9.2

6.8
8.8
5.1
6.7
6.9

TestI TestII TestIII
basevalues basevalues basevalues

no-change
probability

0.49
0.46
0.41
0.39
0.35

0.29
0.24
0.19
0.14
0.10

-5.0
-1.3
10.2
14.9
-0.6

no-change
probability

2.6 0.49
6.6 0.46
2.5 0.41

12.4 0.41
10.5 0.37

8.9 0.32
8.7 0.27
7.7 0.21
8.6 0.17
8.8 0.12

10.2
9.2
6.8
8.8
5.1

no-change
probability

6.7 0.49
6.9 0.45
5.1 0.40
9.7 0.46

14.0 0.35

10.4 0.33
6.1 0.36
6.5 0.39
8.6 0.42
6.8 0.44
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Examples

Table 2 uses values drawn at random from two Gaussian populations with different means and vari-

ances (p, = 5, o`2= .25, and g = 7.5, _2 = 6.25, respectively). Test I uses the first 5 values of the first series

as base and continues with the next three values of the same series before introducing those of the second

series. A steady decrease in the no-change probabilities starts with the third value after the change. By

contrast in test ITI, the second series without major change provides a definite no-change signal.

In test II a regime change is suggested even though the series used was designed without such a

change. The mean of the initial 5 "base" values (3.64) is considerably smaller than the population mean

(5.0) while the entire series of 15 values has a mean (6.37) that is considerably larger than the population

mean. Acting on the sample information alone (all the inverse sequential procedure is designed to do),

the test therefore quite properly suggested a significant change from the base parameter.

3.3 Trends (least.square regression)

Observations made at equally spaced times t = 1,2. • • n (n = m or m + j ) are represented by

y =A +Bt +e (3.3.1)

This also covers the case of exponential regression when y = log x. The residuals e are assumed to be

normally distributed with zero mean and variance 0"2. Sample estimates of the regression coefficients A

and B satisfying least-square requirements are

where

tl

Z(Y - Y )(t - r)
l (3.3.2)

a =y-+bT;b = n

Z(t -- t-) 2

1

T= (n + 1) n n(n 2- 1)
-- 2 ;_(t-T) 2= 12

I

The regression estimate 3_' for a given t' is then :" = y- + b (t' - T), and the corresponding residual

et = Y 't -:'t has a Gaussian distribution with zero mean and variance (see e.g., Anderson and Bancroft,
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1952,Section12.2)

i n(n 2- 1)]_,__ ! :_cy,-_,)_-b_
n 2 =1

I 121(n + 1)
t _--

n+l+ __ . (3.3.3)

The general form of the likelihood functions defined by the n residuals e_,

t = 1,2,'" n(=m orm +j)is

PI

L = exp
t--I

(Yt --Y_t) 2

2St2
(3.3.4)

For the inverse sequential detection of trend changes equation (3.3.4) takes the following forms:

loge Lm = loge L 1 = -
m-2

2[SS(m)-b2d(m)]

m

Z
t=l

(y-y.)?

12m+l.
2

d(m)

(3.3.5)

logeLm+J (m +j)=log, L2= - [ m +] -2
2[SS(m + j)-b2+jd(m +j)]

m+j
Y_,
t=l

(y-:,.+j)?

m+j+lm+j

_m+j+l
2

+

d(m + j)

(3.3.6)

logeLm(m + j)=logeL3 =- [ m + j -2
2[SS(m + j)-b2d(m +j);

m+j
Z

t=l

<y-;_)?

m+j+lm+j
+

m+j+l]22

d(m + j)

(3.3.7)
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logeLm+j (m) = loge L 4 = -
m-2

2 [SS (m )- b2÷jd (m )1

m

Z
t=l

(y - :m+j)?

m+l

m

[ 12m+l
t 2

d(m)

;(3.3.8)

with

Finally as before

n

SS(n) = Z(Y _y)2 ;
t--!

Yn =an + bn t d(n)- n (n2-1)i-2 ;1
n =m orm +j (3.3.9)

q (m) = exp(log, L 4 - loge L 1) ,

and (3.3.10)

q (m + j ) = exp(loge L 2 - loge L3) .

Examples

Table 3 gives the results of four tests to demonstrate the inverse sequential detection of changes in

linear trend (regression coefficient b in y = a + bt). The test III series from Table 2 is used. This series

starts with declining values but settles down to a negligible trend for the entire sample 15 values

(b =-0.02; variance s z = 5.88). Positive and negative trends of b =+s/6 and b =+s/3 are then

imposed on the last ten y -values in the series.

The no-change probability starts decreasing in each case as soon as the imposed trend produces a

distinct change from that of the base series. By contrast, when the last 10 values of the base series are

tested unchanged all the no-change probabilities (not shown) remain above 0.45.

3.4 Chi-square

The variances s 2 of samples from a Gaussian population with variance o"2define a chi-square variate

X2= hs2
, (3.4.1)



Table3: Detectionof changesin lineartrend

Baseseriesusedis thatof testIII in table2,withthefollowingsample
parameters:mean8.10;variance= 5.88;regression

coefficientsa= 8.27,b=- 0.021

1) trendb= + 0.4 imposed on the 10 y -values from test III, table 2

positive trend

y b no-change y

(progressive) probability

negative trend
b no-change

(progressive) probability

7.1 -0.04 0,50

7.7 -0.04 0.50

6.6 -0.06 0.49
11.3 0.00 0.50

16.3 0.12 0.38

12.8 0.16 0.29

8.9 0.14 0.30
9.7 0.13 0.29

12.2 0.15 0.23

10.8 0.15 0.20

6.3 -0.06 0.49

6.1 -0.08 0.48

4.2 -0.14 0.42

8.1 -0.11 0.45

12.3 -0.03 0.50

8.0 -0.02 0.50

3.3 -0.07 0.48

3.3 -0.11 0.44

5.0 -0.13 0.4 t
2.8 -0.15 0.35

2) trend b = + 0.8 imposed on the 10 y-values from test III, table 2

positive trend

y b no-change y

(progressive) probability

negative trend

b no-change

(progressive) probability

7.5 -0.03 0.50

8.5 -0.02 0.50

7.8 -0.02 0.50

12.9 0.06 0.45

18.3 0.19 0.23

15.2 0.25 0.10

11.7 0.25 0.09

12.0 0.25 0.08

15.8 0.28 0.03

14.8 0.30 0.02

5.9 -0.07 0.49

5.3 -0.11 0.45

3.0 -0.17 0.34

6.5 -0.17 0.35

10.3 -0.10 0.44

5.6 -0.11 0.42

1.0 -0.18 0.30
O.1 -0.23 0.17

1.4 -0.26 0.10

-1.2 -0.30 0.04
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where h is the number of values in each sample. If these values are independent of one another, _2 has

h-1 degrees of freedom (d.f.). For "coherent" (autocorrelated) series the d.f. number (which also

represents the mean of the chi-square distribution as well as one half its variance) is reduced to

_2 =v = h - 8(h), (3.4.2)

(Radok, 1992) where

e(h
2(h - 2) 2

=1+ 2(h-l) rl+ r2+ .... +_rh-i • (3.4.3)h h '

Here the ri are the autocorrelations of observations i values apart, and h-e(h) represents the

number of independent observations in each section, which equals h-1 when all autocorrelations are

zero.

The basic probability for the chi-square distribution is

(3.4.4)

Here v is the number of degrees of freedom which equals the mean as well as half the variance of the dis-

tribution. Then the logarithmic likelihood functions take the form

logLm (m) = - 2 vm l°ge 2 - m Ioge F + - 1 ]_logel _2 _ ._. EX21ml ;
(3.4.5a)

V1loge Lm+) (m) = - m vm+) loge 2 - ! +2 t'?l

1 -_"Jog eX 2- 1 m (3.4.5b)

I- 3logeLm+j( m +j)= m +j vm+yloge2_( m +J)logeF2

+ • 1m+) 1 m+j

Vm+J 1 Y. lOgeX2_ _2. (3.4.5c)
2 I
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'O eLm m ):mVm'O e2+j,,ogeF2

+

(3.4.5d)

The likelihood ratios become

and

m

q(m ) = 2 T(v" - v,._)

m

exPI  vm t (3.4.6)

q(m +j)=2 m +22"(v"-v,.i)

'm+j

exp Vm+j - Vra 1o , (3.4.7)

so that

loge Q = exp
Vm+ 2- V m m+j+ _ loge X2

m+l
(3.4.8)

The gamma functions are evaluated with the Euler relation

where

F(z )-1 = (z )e cz I + e-Z/i (3.4.9)

c=lim [1+ 1 1 --1 i1i_*,, 2"-+ 3 + ..... + l°ge =0.5772156649' • •l (3.4.10)
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Examples

Tests of the inverse sequential procedure for detecting changes in coherence use three series of

values drawn from a random independent Gaussian data set. As described by Radok (1992), these data

were rendered coherent by applying 3-term and 7-term moving averages that produced for different lags _.

autocorrelations of magnitude r x = (M - _.)/M, where M is the length of the moving average. According

to equations (3.4.2) and (3.4.3), the chi-square distributions of sample variances computed from sets of 5

successive values should have 2.53 and 1.14 degrees of freedom (d.f.), respectively, compared with 4 for

the 5-term sample variances from the original series.

Table 4 shows the chi-square values used for testing the ability of the inverse sequential procedure

to detect changes in coherence. Test I uses the first 5 values of the series with 2.53 d.f. as base and con-

tinues with the chi-square values of the non-coherent series; this implies a nominal change from 2.53 to 4

degrees of freedom. Test II after the same 5 initial values, continues with the chi-square values derived

from the series of 7-term moving averages, implying a nominal change from 2.53 to 1.14 degrees of free-

dom. Finally test III uses the chi-square values of the 2.53 d.f. series throughout.

In test I the loss of coherence (increase in degrees of freedom) is shown by a slow but ultimately

clear decrease in the no-change probability. In test II the increase in coherence does not lower most of

the no-change probabilities below 0.40; a larger base period might have rendered the test more sensitive

for this small signal. The probabilities of test II are similar to those of test 1II in which only one series of

chi-square values was used to simulate absence of change.

4. Implementation

The inverse sequential procedure is designed to detect changes in statistical control from a few new

observations added progressively to a representative sample drawn from the most recent controlled data

regime. As an initialization (which also establishes the presence or absence of such regimes in the exist-

ing data) the procedure is applied to the full available data set. For this, progressive means, variances,



Table 4: Detection of a change in chi-square degrees of freedom

(d.f. = mean = one half variance)

All tests use as base the following 5 values drawn from a chi-square series constructed with 2.53

degrees of freedom (for details of. section 3.4):

2.72, 3.88, 2.12, 0.18, 1.27 sample mean (d.f.) 2.034

Another 15 values drawn from the same series are used for test III. Test I uses 15 values from a

chi-square series constructed to have 4 d.f., while the data for Test II come from a series con-
structed to have 1.14 d.f.

4.31

5.33

1.07

5.03

3.21

0.57
3.08

1.54

3.19
0.35

1.70
2.35

3.85

14.1

12.3

Test I Test II Test HI

no-change no-change no-change

probability probability probability

0.47
0.39

0.42

0.34

0.30

0.37

0.34

0.35

0.32

0.38

0.39

0.37

0.33

0.18

0.I0

0.40 0.48

5.00 0.50

0.10 0.49

0.69 0.47

0.08 0.40

1.11 0.39

0.84 0.38

3.03 0.42

1.02 0.42

1.20 0.43

2.35 0.45

1.80 0.47
0.50 0.45

0.44 0.44

0.42 0.42

0.79 0.50

4.04 0.50

1.36 0.50

4.67 0.42

2.03 0.47

2.14 0.46

3.16 0.42

0.59 0.46

2.26 0.45

2.96 0.43

3.86 0.39

1.27 0.40

1.49 0.41

8.74 0.29

3.37 0.26
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andbothlinear and exponential regression coefficients are calculated as basic information. In addition,

the data are divided into successive small subsamples; their means and variances, apart from being used

for determining changes in coherence (c.f. Section 3.4) provide indications of the underlying probability

distribution. For Gaussian data these means and variances are independent of one another; a linear depen-

dence of sample variance on sample mean can be removed (and hence normality created) by taking the

square root of each observed value, and a dependence of both mean and variance on the sample size is

eliminated by a logarithmic transformation (for details see Kendall and Stuart, 1966, Chapter 37).

The Fortran program in the appendix has been designed interactive to allow for the fact that in prac-

tice some parameters may not have to be considered. For instance, no stationary mean can exist in the

presence of a clear linear or exponential growth; for discrete rate events a Poisson rather than a normal

mean is alone relevant, and only a chi-square variable is involved in the test of variance and coherence

changes described in Section 3.4.

In order to establish base values of the parameters that do describe the current data and their varia-

tion, the inverse sequential procedure is applied backward from the most recent observation to find the

most recent time interval within which the no-change probability remains high. Questions concerning the

optimum length of such a "base period", and the efficiency of the inverse sequential procedure in detect-

ing a given parameter change magnitude, will be addressed in systematic experiments with constructed

sample series during the remainder of the project, together with real-time tests of some of the GEDEX

data (Olsen and Warnock, 1992; Schiffer and Unimayar, 1992).

When several parameters are tested they will in general not lose control at or even near the same

time. The successive no-change probabilities of a single parameter, as well as concurrent probabilities for

several different parameters and/or separate series, can be combined, following Fisher (1941, Section

21.1) as a "fingerprint" of change in the form of a chi-square variate with 2k degrees of freedom
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k

Z_,f, = _(- 21oge 7k )
1

where k is the number of probabilities thus combined.

Finally, it must be emphasized that the inverse sequential algorithm is intended for the exploration,

rather than a confirmation, of parameter changes. Flueck and Brown (1993) have shown that an explora-

tion can be carried out without the panoply of rigorous statistical procedures needed for a confirmation.

Even so the full properties of exploratory parameters such as the no-change probability 7 deserve to be

clarified with numerical experiments planned for the remainder of this project.

Acknowledgement: Support for this work has been provided by NASA Grant NAGW-2706. Partial sup-

port for the second author was provided by NOAA's Climate and Global Change Program.
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Appendix

Program "SEQUITOR" is designed to be an interactive program for analysis of Gaussian

mean and variance, Poisson mean, chi-square .(coherence), and linear (or exponential) trend

changes in a sequential time series. The user typically will receive FORTRAN source code,

providing an opportunity to make code changes as desired. For example, in the original code, data

input is assumed to be free format. However, the user may desire to change this to a specific

format. It may also be desirable for the user to add write statements that exclude headings, such

that the results can then be easily imported into a graphics package.

An input/output flowchart is included in this appendix. Each square box represents an

input step by the user, and an oval represents results output. A brief description of the input steps

follows:

Enter input f'dename: This is the input data filename up to 80 characters.

Enter descriptive title: This a descriptive header of the data and/or the analysis up to 80 characters.

Enter number of values in series: This is the total number of rows in the input data file. It is
assumed that the input data file contains a column of x-values (column 1) which represent an index
or year for example, followed by n columns of y-values containing the actual series for analysis.

Enter missing value: This program allows for missing values. Enter a unique number (e.g., -999.)
to represent missing values.

Enter column number: Input data files may contain multiple y-value columns. This entry should be
from 1 to n depending upon which y-value column is desired for analysis. The very first column
in the input data file is considered column 0.

Enter 0=continue, l=reverse data input order: Often it is desirable to do the sequential monitoring
analysis beginning with the most recent value and working backwards. This helps identify
"regimes" in the time series. Enter either a 0 or 1.

nter beginning and ending x-range values: Enter values separated by a comma. This range
corresponds to the x-values in the very first column of the input data file. Since the x-values might
represent an index or year, examples would be 10,18 or 1985,1992. Note that these values can
represent a sub-set of the input data file.

Enter window size for sub-samples: In determining a regime, it is useful to examine smaller sub-
sets of values. A typical sub-sample might contain 5 values. If the total number of cases in the
series is not evenly divisible by the window size, the remaining values will be ignored in only the
sub-sample analysis.

Enter analysis type: Here there are several options. Entering 1 through 4 places the user in the
desired sequential analysis routine. Other options include changing the sub-sample size, changing



thecolumnnumber,changingthedatarange,reversingthedataorder, or simply quitting the
program.

Enter number of base period values: Within each analysis routine, the user is prompted for the
number of base period values. These should typically be small, say 5 to 15 or so. Base period
results is ouput at this point.

Enter 0=continue, l=change number of base values: Upon examining the base period results, the
user is given the option to change the base period size, or continue with the final analysis.

This program was written interactively because it is intended to be exploratory in nature.

An attempt was made to allow the user to make changes during the analysis, instead of having to

restart the program several times. Results are output to the screen and to a file named

"sequitor.out", which is replaced each time the program is run.

The program contains minimal comments, but variables are defined at the beginning of each

subroutine to help the user understand the program. It is intended to use the program in

conjunction with this progress report, and some attempt at consistency of variable names in relation

to the formulae has been made. However, it is possible that updates or changes to program will

occur after this initial release. Hence, users may want to contact the authors for additional

information.

Output from a sample analysis is included in this appendix. It is test I from Section 3.2 in

the progress report. The associated input data are also included.



Flowchart of input/output for program SEQUITOR

_ Sequitor

i
I Enter input fileneme: I

i
I Enter descriptive title: J

i
I Enter number of values in series:

i
I Enter missing value:

+
v"- I Enter column number: I

i
Enter 0=continue, 1=reverse data input order: I

i
-_ Enter beginning and ending x-range values: ]

-Ip,,--

+
_'-u,I sample output_

i
Enter window size for sub-samples: i

i
_b-sample outp utt_

i
Enter analysis type

1:Gauss, 2=Poisson, 3=chi-square, 4=linear,

0=change sub-sample size, 6=change column number,
7=change data range, 8=reverse data order, 9=quit:

i
End program ]

Ir_ Enler number of base period values:

i
--_se period ouput_

i
._ Enter 0=continue, 1=change number Iof base values:

i
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1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

-5.0-5.0 10.2

-1.3-1.3 9.2

10.2 10.2 6.8

14.9 14.9 8.8

-0.6 -0.6 5.1

2.6 2.6 6.7

6.6 6.6 6.9

2.5 2.5 5.1

20.2 12.4 9.7

9.2 10.5 14.0

6.8 8.9 10.4

8.8 8.7 6.1

5.1 7.7 6.5

6.7 8.6 8.6

6.9 8.8 6.8



ENTERINPUTFILE NAME:
gauss,dat
ENTERDESCRIPTIVETITLE:

Detection of change in Gaussian meanand variance, Test I
INVERSESEQUENTIALMONITORING(PROGRAM<SEQUITOR>)
ENTERNUMBEROFVALUESIN SERIES:

15
ENTERMISSINGVALUE:

-999
ENTERCOLUMNNUMBER:

1
ENTER0=CONTINUE,1=REVERSEDATAINPUTORDER:

0
ENTERBEGINNINGANDENDINGX-RANGEVALUES:

1978,1992

FULLSAMPLEUNIVARIATESTATISTICS:
X-VAI//E RANGE= 1978.-1992.
NUMBEROFVALUES= 15
NUMBEROFMISSINGVALUES= 0
SAMPLEMEAN= 6.240
SAMPLEVARIANCE= 40.034
SAMPLESLOPE= 0. 466

ENTERWINDOWSIZE FORSUB-SAMPLES:
5

SUB-SAMPLEPARAMETERS:
INDEX X-VALUE
RANGE RANGE

NUMBEROF MISSING
VALUES VALUES MEAN VARIANCECHI-SQUARE

I- 5 1978.-1982. 5 0 3.640
6- i0 1983.-1987. 5 0 8.220

II- 15 1988.-1992. 5 0 6.860

71.713 7.165
52.852 5.281
1.723 0.172

ENTERANALYSISTYPE
1=GAUSS,2=POISSON,3=CHI-SQUAKE,4=LINEAR,
0=CHANGESUB-SAMPLESIZE, 6=CHANGECOLUMNNUMBER,
7=CHANGEDATARANGE,8=REVERSEDATAORDER,9=QUIT:

1

I TEST FOR CHANGE IN GAUSSIAN MEAN AND VARIANCE I

+ ........................ +

ENTER NUMBER OF VALUES IN BASE PERIOD:

5

BASE PERIOD PARAMETERS:

X-VALUE RANGE = 1978.-1982.

NUMBER OF VALUES = 5

NUMBER OF MISSING VALUES =

BASE MEAN = 3. 640

BASE VARIANCE = 71. 713

0

ENTER 0:CONTINUE, 1:CHANGE NUMBER OF BASE VALUES:

0

PROGRESSIVE PARAMETERS:

X Y

INDEX OBSERVATIONS MEAN VARIANCE GAMMA

DELTA

GAMMA

MacX Clipboard Page 1 Wed, Apr 28, 1993



6 1983.000 2.60 3.467
7 1984.000 6.60 3.914
8 1985.000 2.50 3.737
9 1986.000 20.20 5.567

I0 1987.000 9.20 5.930
ii 1988.000 6.80 6.009
12 1989.000 8.80 6.242
13 1990.000 5.10 6.154
14 1991.000 6.70 6.193
15 1992.000 6.90 6.240

57.551
49.361
42.560
67.353
61 189
55 139
50 775
46 644
43 078
40 034

0.486
0 456
0 410
0 453
0 422
0 394
0 351
0 322
0 280
0 236

ENTER0=CONTINUE,1=CHANGENUMBEROFBASEVALUES:
0

ENTERANALYSISTYPE
1=GAUSS,2=POISSON,3=CHI-SQUARE,4=LINEAR,
0=CHANGESUB-SAMPLESIZE, 6=CHANGECOLUMNNUMBER,
7=CHANGEDATARANGE,8=REVERSEDATAORDER,9=QUIT:

9

0.030
0 047

-0 044
0 031
0 028
0 043
0 029
0 042
0 044

ENDOF SEQUITORRUN

MacX Clipboard Page 2 Wed, Apr 28, 1993
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PROGRAMSEQUITOR

C AUTHOR:TIMOTHYJ. BRO_
C
C INVERSESEQUENTIALPROGRAM
C
C REVISIONHISTORY
C LEVELAUTHORDATE DESCRIPTION
C
C .01A. TJB 93/04/28. ORIGINAL VERSION.

C

C

C

C

C

C

C

C

C

C

C

C

C

SIX SUBROUTINES ARE ATTACHED TO THE MAIN PROGRAM:

'SGAUSS" COMPUTES CHANGE IN GAUSSIAN MEAN AND VARIANCE.

'SPOISS' COMPUTES CHANGE IN POISSION MEAN.

'SCHI" COMPUTES CHANGE IN CHI-SQUARE DEGREES OF FREEDOM.

'SLINEAR' COMPUTES CHANGE IN LINEAR TREND.

"UNIVAR' COMPUTES UNIVARIATE STATISTICS MEAN, VARIANCE, AND SUM.

'RCOEFF' COMPUTES LLS REGRESSION B0 AND B1 COEFFICIENTS.

INPUT IS ASSUMED TO BE FREE-FORMAT, BUT USER CAN CHANGE AS DESIRED.

C THE PARAMETER STATEMENT AND COMMON BLOCK IS LOCATED IN ALL SUBROUTINES.

C THE USER SHOULD CHANGE 'NDIM" AS REQUIRED.

C

C THE FOLLOWING ARRAYS AND VARIABLES ARE USED IN THE CON_4ON BLOCK:

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

•FCHI2'

•FINDEX'

•FXVAL"

•FYVAL '

•XDATA '

•YDATA'

CHI-SQUARE VALUE FOR EACH SUB-SAMPLE.

INDEX VALUE (I, 2,...N) ASSOCIATED WITH EACH Y-VALUE.

INPUT X-VALUES.

INPUT Y-VALUES.

WORK ARRAY FOR X-VALUES.

WORK ARRAY FOR Y-VALUES.

'FMISS'

'NDIM'

"NCASE'

'OUNIT"

NUMBER REPRESENTING MISSING VALUES.

DIMENSION SIZE FOR DATA AND WORK ARRAYS.

NUMBER OF FULL SAMPLE VALUES WITHIN INDEX RANGE.

OUTPUT UNIT NUMBER.

THE FOLLOWING ARRAYS AND VARIABLES ARE USED IN THE MAIN PROGRAM:

'FDATA' HOLDS THE Y-VALUES WHEN THEY ARE INPUT; SHOULD BE

•FXDATA"

• FYDATA'

• XWORK '

• YWORK '

DIMENSIONED >= _ER OF COLUMNS IN INPUT FILE.

HOLDS THE ORIGINAL X-VALUES OR REVERSED ORDER VALUES.

HOLDS THE ORIGINAL Y-VALUES OR REVERSED ORDER VALUES.

WORK ARBAY FOR X-VALUES.

WORK ARRAY FOR Y-VALUES.

"B0'

"BI'

• CFILE'

• CTITLE"

"H"

"I'

'II"

' IBEG'

•IEND'

INTERCEPT FROM LLS REGRESSION.

SLOPE FROM LLS REGRESSION.

INPUT DATA FILE NAME.

DESCRIPTIVE TITLE.

NUMBER OF VALUES WITHIN EACH SUB-SAMPLE.

DO LOOP COUNTER.

INDEX COUNTER.

INDEX COUNTER.

INDEX COUNTER.
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C ' IDIR"
C ' ITYPE"
C ' IUNIT"
C 'J'
C 'K"
C 'N'
C ' NBEG'
C ' NEND'
C 'NN'
C "NCOL'
C
C
C ' NMISS'
C "NPOP"
C "NVALS"
C ' POPVAR'
C "$2"
C ' XBEG'
C "XEND'
C ' YBAR'
C ' YSUM'
C ' YVAR"
C

C-

DATA DIRECTION FLAG (1=REVERSE DATA ORDER, 0=CONTINUE).

ANALYSIS TYPE.

INPUT UNIT NUMBER.

DO LOOP COUNTER.

COUNTER.

DO LOOP COUNTER.

BEGINNING INDEX NUMBER FOR INDEX RANGE.

ENDING INDEX RANGE FOR INDEX RANGE.

COUNTER.

COLUMN NUMBER OF Y-VALUES TO BE ANALYZED.

THIS IS USEFUL FOR FILES CONTAINING MULTIPLE COLUMNS OF DATA.

X-VALUES ARE ASSUMED TO BE IN COLUMN ONE.

NUMBER OF MISSING VALUES.

NUMBER OF POPULATION VALUES.

NUMBER OF NON-MISSING VALUES.

POPULATION VARIANCE FROM FULL SAMPLE.

SUM OF SQUARES IN CHI-SQUARE CALCULATION.

BEGINNING VALUE OF X-RANGE.

ENDING VALUE OF X-RANGE.

MEAN OF Y-VALUES.

SUM OF Y-VALUES.

VARIANCE OF Y-VALUES.

P_TER (NDIM=150)

COMMON /WORK/ FXVAL (NDIM), FYVAL (NDIM), XDATA (NDIM),

YDATA(NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,

OUNIT, FMISS

REAL FDATA (15)

REAL FXDATA (NDIM), FYDATA (NDIM), XWORK (NDIM), YWORK (NDIM)

INTEGER H, OUNIT

CHARACTER*80 CTITLE, CFILE

DATA IUNIT, OUNIT / i, 2 /

C

C THIS SECTION REQUESTS THE INPUT INFORMATION, OPENS FILES, INPUTS

C THE DATA, AND COMPUTES FULL SAMPLE UNIVARIATE STATISTICS.

C

W_ITE (*, 801)

READ(*, I01) CFILE

OPEN (IUNIT, FILE=CFILE, STATUS=' OLD' )

OPEN (OUNIT, FILE=' sequitor, out' )

WRITE(*,802)

READ(*,101) CTITLE

WRITE (OUNIT, 900)

Wq_ITE (*, 900)

WRITE(OUNIT, 901) CTITLE

WRITE(*, 803)

READ(*,*) NPOP

WRITE(*, 804)

READ(*,*) FMISS
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3 CONTINUE

_qRITE(*, 805)
READ(*,*) NCOL
REWINDIUNIT

INPUTTHEDATAANDFILL WORKARRAYS.REVERSEDATAORDERIF REQUESTED.

C ........

DO 13 I = I, NPOP

READ (IUNIT, *) FXDATA(I), (FDATA(J),J=I,NCOL)

FINDEX(I) = FLOAT(I)

FYDATA (I) = FDATA (NCOL)

13 CONTINUE

C

5 CONTINUE

_rRITE (*, 806)

READ(*,*) IDIR

C ........

IF( IDIR .EQ. 1 ) THEN

K = 0

DO 14 I = NPOP, i, -I

K = K + 1

XWORK (K) = FXDATA (I)

YWORK (K) = FYDATA (I)

14

C

C

CONTINUE

DO 15 I = i, NPOP

FXDATA(I) = XWORK(I)

FYDATA(I) = YWORK(I)

15 CONTINUE

C

END IF

C ........

C

C FILL WORK ARRAYS WITH DATA WITHIN SELECTED INDEX RANGE AND COLUMN.
C

4 CONTINUE

WRITE(*, 807)

READ(*,*) XBEG, XEND

C ........

DO 18 I = I, NPOP

IF( FXDATA(I) .EQ. XBEG ) NBEG = I
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IF( FXDATA(I) .EQ. XEND) NEND= I

18

C

C-

CONTINUE

IF( NBEG .LT. 1 ) THEN

WRITE(*,810)

GOTO 4

C ........

C

END IF

IF( NEND .GT. NPOP ) THEN

_ITE(*,810)

GOTO 4

C-

C-

C-

END IF

NCASE = 0

DO 16 I = I, NPOP

IF( I .GE. NBEG .AND. I .LE. NEND ) THEN

NCASE = NCASE + 1

FXVAL (NCASE) = FXDATA (I)

FYVAL (NCASE) = FYDATA (I)

XDATA (NCASE) = FINDEX (I)

YDATA (NCASE) = FYVAL (NCASE)

C-

16

C

C

C

C

END IF

CONTINUE

COMPUTE FULL SAMPLE STATISTICS AND OUTPUT RESULTS

CALL UNIVAR( NCASE, NVALS, NMISS, YBAR, YVAR, YSUM )

CALL RCOEFF( NCASE, B0, B1 )

IRANGE = NEND - NBEG + 1

WRITE (OUNIT, 902) FXVAL (I), FXVAL (IRANGE), NVALS, NMISS, YBAR,

+ YVAR, B1

WRITE (*, 902) FXVAL (I), FXVAL (IRANGE), NVALS, NMISS, YBAR,

+ YVAR, B1

1 CONTINUE

WRITE (*, 808)

READ (*, *) H

WRITE (0UNIT, 903)
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W-RITE(*, 903)

COMPUTESUB-SAMPLESTATISTICS.

POPVAR= YVAR

NN = 0

K = 0

N = 0

IBEG = -(H) + 1

C ........

DO 17 I = NBEG, NEND

K = K + 1

IBEG = IBEG + 1

N=N + 1

IF( FYVAL(N) .GT. FMISS ) THEN

NN=NN+ 1

YDATA (NN) = FYVAL (N)

END IF

IF( K .EQ. H ) THEN

C

C

C

C

CALL UNIVAR( NN, NVALS, NMISS, YBAR, YVAR, YSUM )

COMPUTE CHI-SQUARE VALUES.

IF( NVALS .GT. 0 ) THEN

C ¸

$2 = 0.

DO 19 M = I, NN

IF(YDATA(M) .NE. FMISS )

S2 = $2 + (YDATA(M) - YBAR)**2

19

C

CONTINUE

FCHI2 (N) = S2 / POPVAR

ELSE

FCHI2(N) = FMISS

END IF

OUTPUT SUB-SAMPLE STATISTICS.

II = (I-H) + I

IEND = IBEG + H - 1
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+

+

WRITE(OUNIT,904) II, I, FXVAL(IBEG),FXVAL(IEND),NVALS,
NMISS,YBAR,YVAR,FCHI2(N)

Zq_ITE(*, 904) II, I, FXVAL(IBEG),FXVAL(IEND),NVALS,NMISS,
YBAR,YVAR,FCHI2(N)

NN= 0
K = 0

ENDIF
C ............

17 CONTINUE

C

C

C

C

C

C

C

2

BRANCH OFF TO APPROPRIATE SUBROUTINE, CHANGE SUB-SAMPLE SIZE,

CHANGE COLUMN NUMBER, OR STOP PROGRAM.

IF CHOOSING CHI-SQUARE, THE NUMBER OF CASES BECOMES THE NUMBER

OF SUB-SAMPLE INTERVALS.

CONTINUE

WRITE(*, 809)

READ(*,*) ITYPE

IF( ITYPE .EQ. 0 ) THEN

GOTO 1

ELSE IF( ITYPE .EQ. 1 ) THEN

_TRITE (OUNIT, I001)

ZrRITE (*, i001)

CALL SGAUSS

ELSE IF( ITYPE .EQ. 2 ) THEN

WRITE (OUNIT, 1002)

WRITE(*,1002)

CALL SPOISS

ELSE IF( ITYPE .EQ. 3 ) THEN

WRITE (OUNIT, 1003)

WRITE (*, 1003)

NCASE = INTERVL

CALL SCHI

ELSE IF( ITYPE .EQ. 4 ) THEN

WRITE (OUNIT, 1004)

WRITE (*, 1004)

CALL SLINEAR



Apr 28 16:35 1993 sequitor.f Page 7

ELSEIF( ITYPE .EQ. 6 ) THEN

GOTO3

ELSEIF( ITYPE .EQ. 7 ) THEN

GOT04

ELSEIF( ITYPE .EQ. 8 ) THEN

GOTO5

ELSEIF( ITYPE .EQ. 9 ) THEN

ELSE

W'RITE(OUNIT,907)
W-RITE(*, 907)

GOTO999

WRITE(*,905)
GOTO2

ENDIF

GOTO2

I01 FORM.AT(A)

801
802
803
8O4
8O5
8O6
8O7
8O8
809

+
+
+

810

900

901

902
+
+
+
+
+
+

FORMAT('ENTERINPUTFILE NAME:')
FORMAT('ENTERDESCRIPTIVETITLE:')
FORMAT('ENTERNUMBEROFVALUESIN SERIES:')
FORMAT('ENTERMISSINGVALUE:')
FORMAT(' ENTERCOLUMNNUMBER:" )
FORMAT(' ENTER0=CONTINUE,1=REVERSEDATAINPUTORDER:" )
FORMAT('ENTERBEGINNINGANDENDINGX-RANGEVALUES:')
FORMAT(/,• ENTERWINDOWSIZE FORSUB-SAMPLES:')
FORMAT(/'ENTERANALYSISTYPE',/,

• 1=GAUSS,2=POISSON,3=CHI-SQUARE,4=LINEAR,', /,

• 0=CHANGE SUB-SAMPLE SIZE, 6=CHANGE COLUMN NUMBER, ", /,

• 7=CHANGE DATA RANGE, 8=REVERSE DATA ORDER, 9=QUIT: ' )

FORMAT(/'RANGE EXCEEDS TOTAL NUMBER OF CASES')

FORMAT('INVERSE SEQUENTIAL MONITORING (PROGRAM <SEQUITOR>)')

FORMAT (//, A)

FORMAT(/, 'FULL SAMPLE UNIVARIATE STATISTICS:',/,

•X-VALUE RANGE = ',F5.0,'-',F5.0, /,

•NUMBER OF VALUES = ',I3, /,

'NUMBER OF MISSING VALUES = ' , I3,/,

'SAMPLE MEAN = ',F8.3,/,

•SAMPLE VARIANCE = ' ,FS. 3, /,

'SAMPLE SLOPE = ',F8.3)
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903 FORMAT(/," SUB-SAMPLEPARAMETERS:',/,

+ ' INDEX X-VALUE NUMBER OF MISSING',/,

+ ' RANGE RANGE VALUES VALUES MEAN

+ " CHI-SQUARE", /,

+

+ ............ )

VARIANCE',

904 FORMAT (I3, '-', I3, 2X, F5.0, '-', F5.0, 2X, I9, 2X, I7,2 (2X, FS. 3),

+ 2X, FI0.3)

905 FORMAT(/,'>>> NOT A VALID SELECTION <<<',/)

907 FOBMAT(//'END OF SEQUITOR RUN')

I001 FORMAT(/,'+

+ /,'l

+ /,'+

TEST FOR CHANGE IN GAUSSIAN MEAN AND VARIANCE I',

_')

1002 FORMAT (/, ' + +",

+ /," i TEST FOR CHANGE IN POISSON M/EAN l'

+ /,'+ +'_

1003 FORMAT(

+ /,'_

+ /,'i

+ /,'_

TEST FOR CHANGE IN CHI-SQUARE DEGREES OF FREEDOM i',

+')

1004 FORMAT (/, ' + +',

+ /, ' I TEST FOR CHANGE IN LINEAR TREND I',

+ /,'+ +')

999 STOP

END

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SUBROUTINE SGAUSS

C

C

C

C

C 'BARM'

C "BARMJ'

C 'DGAMMA'

C 'GAMMA'

C "GAMOLD'

C 'J'

C 'JJ"

C 'Jl"

C "J2"

C 'M'

C "MBASE"

C "Q'

C 'QM'

C 'QMJ'

C ' SDM'

C " SDM2 '

SUBROUTINE TO COMPUTE CHANGE IN GAUSSIAN MEAN AND VARIANCE.

VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

MEAN OF BASE PERIOD VALUES.

PROGRESSIVE MEAN.

CHANGE IN GAMMA FROM PREVIOUS VALUE.

GAMMA VALUE.

PREVIOUS VALUE OF GAMMA.

PROGRESSIVE VALUE INDEX.

DO LOOP COUNTER.

STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

REAL VALUE OF NUMBER OF BASE VALUES.

NUMBER OF BASE PERIOD VALUES.

RATIO OF QMJ/QM.

BASE PERIOD LIKELIHOOD RATIO.

PROGRESSIVE PERIOD LIKELIHOOD RATIO.

STANDARD DEVIATION OF BASE PERIOD VARIANCE.

BASE PERIOD VARIANCE.
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C ' SDMJ'
C ' SDMJ2'
C 'TI"

C 'T2'

C 'T3'

C

C

C

C

C

1

PROGRESSIVE STANDARD DEVIATION.

PROGRESSIVE VARIANCE.

WORK VARIABLE; FIRST TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.

WORK VARIABLE; SECOND TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.

WORK VARIABLE; THIRD TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.

+

+

PARAMETER (NDIM=I50)

COMMON /WORK/ FXVAL (NDIM), FYVAL (NDIM), XDATA (NDIM),

YDATA(NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,

OUNIT, FMISS

REAL J, M

INTEGER 0UNIT

FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD

STATISTICS, AND OUTPUT RESULTS.

CONTINUE

C .........

_q_ITE (*, 801)

READ(*,*) MBASE

DO 20 I = i, MBASE

XDATA(1) = FINDEX(I)

YDATA(I) = FYVAL(I)

2O

C

C .........

CONTINUE

CALL UNIVAR( MBASE, NVALS, NMISS, YBAR, YVAR, YSUM )

+

+

IF( NVALS .GT. 0 ) THEN

W'RITE(OUNIT, 1001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS, YBAR,

YVAR

kq_ITE(*,1001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS, YBAR,

YVAR

ELSE

WRITE (*, I000)

RETURN

END IF

C ........

WRITE (*, 802)

READ (*, *) ITYPE

IF( ITYPE .EQ. 1 ) GOTO 1

C

C

C

WRITE (OUNIT, 1002 )

WRITE (*, 1002)

INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.

BARM = YBAR

SDM = SQRT (YVAR)

SDM2 = YVAR
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M = FLOAT (MBASE)

GAMOLD = FMISS

Jl = MBASE + 1

J2 = NCASE

C

C FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND

C OUTPUT RESULTS.

C

C--

DO 22 JJ = Jl, J2

XDATA (JJ) = FINDEX (JJ)

YDATA (JJ) = FYVAL (JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YBAR, YVAR, YSUM )

COMPUTE GAMMA. SEE TEXT FOR EQUATION DETAILS.

IF( NVALS .GT. 0 ) THEN

BARMJ = YBAR

SDMJ = SQRT (YVAR)

SDMJ2 -- YVAR

J = FLOAT(JJ) - M

T1 = M * ALOG(SDM / SDMJ )

T2 = ((M- I.) / 2.) * (I. - (SDM2 / SDMJ2))

T3 = (M / (2. * SDM2)) * (BARMJ- BARM)**2

QM = EXP(TI + T2 - T3)

T1 = (M + J)* ALOG(SDM / SDMJ )

T2 = ((M + J - I.) / 2.) * ((SDMJ2 / SDM2) - i.)

T3 = ((M + J) / (2. * SDM2)) * (BARMJ- BARM)**2

QMJ = EXP(TI + T2 + T3)

C m-

Q = QMJ / QM

GAMMA = i. / (I. + SQRT(Q))

DGAMMA = GAMOLD - GAMMA

IF( GAMOLD .EQ. FMISS ) THEN

WRITE (OUNIT, 1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,

GAMMA, CFLAG

WRITE(*,1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,

GAMMA, CFLAG

ELSE

WRITE (OUNIT, 1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,

GAMMA, CFLAG, DGAMMA

WRITE(*,1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,

GAMMA, CFLAG, DGAMMA

C .......

END IF



Apr 28 16:35 1993 sequitor.f Page II

GAMOLD= GAMMA

ELSE

WRITE(OUNIT,1004) JJ, FXVAL(JJ), YDATA(JJ)
WRITE(*,1004) JJ, FXVAL(JJ), YDATA(JJ)
GAMOLD= FMISS

END IF

C

22 CONTINUE

C ........

WRITE (*, 802)

READ(*,*) ITYPE

IF( ITYPE .EQ. 1 ) GOTO 1

801

8O2

FORMAT(/,' ENTER NUMBER OF VALUES IN BASE PERIOD:')

FORMAT(/,' ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:')

I000 FORMAT(' ALL VALUES IN BASE PERIOD MISSING')

I001 FORMAT(/, 'BASE PERIOD PARAMETERS:', /,

+ 'X-VALUE RANGE = ",F5.0,'-',F5.0,/,

+ 'NUMBER OF VALUES = ', I3,/,

+ 'NUMBER OF MISSING VALUES = •, I3, /,

+ 'BASE MEAN = ",F8.3, /,

+ 'BASE VARIANCE = ',F8.3,/)

1002

+

+

+

FORMAT(/,'PROGRESSIVE PARAMETERS:',/,

• X Y

"INDEX OBSERVATIONS MEAN VARIANCE
i .....

GAMMA

DELTA • , /,

GAMMA', ,

,)

1003 FORMAT (15, 2X, FS. 3, IX, F7 .2, 2 (2X, F8 .3) ,2X, F6.3, 2X, F6.3)

1004 FORMAT (15, 2X, F8 .3, iX, F7 .2)

RE TURN

END

C .....

SUBROUTINE SPOISS

SUBROUTINE TO COMPUTE CHANGE IN POISSON MEAN.

VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

•BARM'

'BARMJ"

•DGAMMA"

•GAMMA'

•GAMOLD'

• j,

• jj,

• Jl'

• J2'

• M •

'MBASE'

MEAN OF BASE PERIOD VALUES.

PROGRESSIVE MEAN.

CHANGE IN GAMMA FROM PREVIOUS VALUE.

GAMMA VALUE.

PREVIOUS VALUE OF GAMMA.

PROGRESSIVE VALUE INDEX.

DO LOOP COUNTER.

STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

REAL VALUE OF NUMBER OF BASE VALUES.

NUMBER OF BASE PERIOD VALUES.
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C 'Q'
C 'TI'
C " T2'
C ' T3"
C

C
C
C
C
1

COMBINEDLIKELIHOODRATIOS.
WORKVARIABLE;FIRSTTERMIN EITHERQ EQUATION.
WORKVARIABLE;SECONDTERMIN EITHERQ EQUATION.
WORKVARIABLE;THIRDTERMIN EITHERQ EQUATION.

PARAMETER(NDIM=I50)
COMMON/WORK/ FXVAL (NDIM), FYVAL (NDIM), XDATA (NDIM),

YDATA (NDIM), FINDEX (NDIM), FCHI2 (NDIM), NCASE,

OUNIT, FMISS

REAL J, M

INTEGER 0UNIT

FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD

STATISTICS, AND OUTPUT RESULTS.

CONTINUE

C .........

WRITE (*, 801)

READ(*,*) MBASE

DO 20 I = I, MBASE

XDATA(I) = FINDEX(I)

YDATA(I) = FYVAL(I)

20

C

C"

CONTINUE

CALL UNIVAR( MBASE, NVALS, NMISS, YBAR, YVAR, YSUM )

IF( NVALS .GT. 0 ) THEN

+

+

WRITE(OUNIT, 2001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS,

YBAR, YVAR, YSUM

WRITE (*, 2001) FXVAL (I) , FXVAL (MBASE) , NVALS, NMISS, YBAR,

YVAR, YSUM

ELSE

WRITE (*, 2000)

RE TURN

END IF

C ........

WRITE (*,802)

READ(*,*) ITYPE

IF( ITYPE .EQ. 1 ) GOTO 1

C

C

C

WRITE (OUNIT, 2002)

WRITE (*, 2002)

INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.

BARM = YBAR

M = FLOAT (MBASE)

GAMOLD = FMISS

Jl = MBASE + 1
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J2 = NCASE
C
C FILL PROGRESSIVEWORKARRAYS,COMPUTEPROGRESSIVESTATISTICS,AND
C OUTPUTRESULTS.
C
C

DO22 JJ = Jl, J2

XDATA(JJ) = FINDEX(JJ)
YDATA(JJ) = FYVAL(JJ)

CALLUNIVAR(JJ, NVALS,}/MISS, YBAR,YVAR,YSUM)

COMPUTEGAMMJ_.SEETEXTFOREQUATIONDETAILS.

IF( NVALS.GT. 0 ) THEN

BARMJ= YBAR
J = FLOAT(JJ) - M

T1 = (BARMJ * (M + J)) - (BARM * M)

T2 = ALOG (BARMJ / BARM)

T3 = (BARMJ - BARM) * J

Q = EXP(TI * T2 - T3)

G_/MMA = I. / (i. + SQRT(Q))

DGAMMA = GAMOLD - GAMMA

IF( GAMOLD .EQ. FMISS ) THEN

+

+

WRITE(OUNIT, 2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,

YSUM, GAMMA, CFLAG

W'RITE (*, 2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,

YSUM, GAMMA, CFLAG

ELSE

+

+

kqRITE(OUNIT, 2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,

YSUM, GAMMA, CFLAG, DGAMMA

W_RITE (*, 2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,

YSUM, GAMMA, CFLAG, DGAMMA

C

END IF

GAMOLD = GAMMA

ELSE

WRITE(OUNIT, 2004) JJ, FXVAL(JJ), YDATA(JJ)

WRITE (*, 2004) JJ, FXVAL (JJ), YDATA (JJ)

GAMOLD = FMISS

C ¸

22

C

END IF

CONTINUE
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WRITE(*, 802)
READ(*, *) ITYPE

IF( ITYPE .EQ. I ) GOTO 1

801

802

FORMAT(/,' ENTER NUMBER OF VALUES IN BASE PERIOD:')

FORMAT(/,' ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:')

2000 FORMAT(" ALL VALUES IN BASE PERIOD MISSING')

2001

+

+

+

+

+

+

FORMAT (/, 'BASE PERIOD PARAMETERS :',/,

'X-VALUE RANGE = ',F5.0,'-',F5.0,/,

'NUMBER OF VALUES = ', I3,/,

'NUMBER OF MISSING VALUES = ',I3,/,

'BASE MEAN = ",F8.3,/,

'BASE VARIANCE = ",F8.3,/,

•BASE SUM = ',F6.0,/)

2002

+

+

+

+

+

+

FORMAT (/, 'PROGRESSIVE PARAMETERS :' ,/,

' X Y

' DELTA' ,/,

' INDEX OBSERVATIONS MEAN

• GAMMA', /,

• ...... • )

' ¢

VARIANCE SUM

2003 FORMAT (I5, 2X, FS. 3, IX, F7 .0, 2 (2X, FS. 3) , 2X, f6.0, 2X, F6.3, 2X, F6.3)

2004 FORMAT (I5, 2X, F8 .3, IX, F7 .0)

RETURN

END

C ....................................

SUBROUTINE SCHI

C

C SUBROUTINE TO COMPUTE CHANGE IN CHI-SQUARE DEGREES OF FREEDOM.

C

C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

C ' CHANGE'

C 'D'

C 'DGAMMA'

C ' GAMMA'

C "GAMNUM'

C 'GAMOLD"

C " J"

C ' JJ"

C ' Jl'

C ' J2'

C "M'

C 'MBASE '

C "NUM"

C 'NUMJ'

C

C

C

C

C

PERCENT CHANGE OF 'OLDPROD" TO 'PRODZ'.

GAMMA FUNCTION CONSTANT.

CHANGE IN GAMMA FROM PREVIOUS VALUE.

GAMMA VALUE.

VALUE OF THE GAMMA FUNCTION.

PREVIOUS VALUE OF GAMMA.

PROGRESSIVE VALUE INDEX.

DO LOOP COUNTER.

STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

REAL VALUE OF NUMBER OF BASE VALUES.

NUMBER OF BASE PERIOD VALUES.

BASE PERIOD MEAN.

PROGRESSIVE MEAN.

"OLDPROD' PREVIOUS VALUE OF 'PRODZ'.

'PRODZ' PRODUCT OF GAMMA FUNCTION EULER RELATION.

'Q' COMBINED LIKELIHOOD RATIOS.

'SUMCHI2' PROGRESSIVE SUM OF CHI-SQUARE VALUES.

'TI' WORK VARIABLE; FIRST TERM IN EITHER Q EQUATION.
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C
C
C
C
C
C

• T2"

• T3'
• Z I

FIRST TERM IN GAMMA FUNCTION EULER RELATION.

WORK VARIABLE; SECOND TERM IN EITHER Q EQUATION.

SECOND TERM IN GAMMA FUNCTION EULER RELATION.

WORK VARIABLE; THIRD TERM IN EITHER Q EQUATION.

VALUE USED IN GAMMA FUNCTION EULER RELATION.

+

+

PA_TER (NDIM=I50)

COMMON /WORK/ FXVAL (NDIM), FYVAL (NDIM), XDATA (NDIM),

YDATA (NDIM), FINDEX (NDIM), FCHI2 (NDIM), NCASE,

OUNIT, FMISS

REAL J, M, NUM, NUMJ

INTEGER OUNIT

D = .5772156649

C

C FILL WORK ARRAYS WITH BASE PERIOD VALUES• COMPUTE BASE PERIOD

C STATISTICS• AND OUTPUT RESULTS.

C

1 CONTINUE

C"

WRITE(*,801)

READ(*,*) MBASE

DO 20 I = i, MBASE

XDATA(I) = FLOAT(I)

YDATA(I) = FCHI2(I)

20

C

CONTINUE

CALL UNIVAR( MBASE, NVALS, NMISS, YBAR, YVAR, YSUM )

IF( NVALS .GT. 0 ) THEN

WRITE(OUNIT, 3001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS, YBAR

W'RITE (*, 3001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS, YBAR

ELSE

W'RITE (*, 3000)

RETURN

END IF

C ........

WRITE(*,802)

READ(*,*) ITYPE

IF( ITYPE .EQ. 1 ) GOTO 1

WRITE(OUNIT, 3002)

WRITE(*,3002)

C

C COMPUTE GAMMA FUNCTION FOR THE BASE PERIOD.

C I0,000 ITERATIONS OF THE LOOP IS ARBITRARY, BUT DOES SEEM TO ALLOW

C FOR REASONABLE CONVERGENCE OF THE FUNCTION. 'CHANGE' IS USED TO

C COMPUTE THE PERCENT CHANGE FROM THE PREVIOUS FUNCTION VALUE.
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C THUS,IT CANBE USEDTOEXIT FROMA LARGEITERATIONLOOP.
C HOWEVER,WEHAVENOTUSEDTHIS CRITERIACONSISTENTLYTHUSFAR, BUT
C WILL LEAVEIT BUILT INTOTHECODEFORNOW.
C

C .........

NUM = YBAR

PRODZ = i.

Z = NUM / 2.

DO 26 I = I, I0000

T1 = I. + Z / FLOAT(I)

T2 = EXP(-Z / FLOAT(I))

PRODZ = PRODZ * T1 * T2

IF( I .GT. 1 ) CHANGE = ABS((OLDPROD - PRODZ) / OLDPROD)

C IF( CHANGE .LE. I.E-5 ) GOTO 27

C OLDPROD = PRODZ

26 CONTINUE

C ........

27 CONTINUE

C

C

C

C

C

C

C

C .........

GAMNUM = I. / (Z * EXP(D * Z) * PRODZ)

INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.

Jl = MBASE + 1

J2 = NCASE

M = FLOAT (MBASE)

GAMOLD = FMISS

SUMCHI2 = 0.

FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND

OUTPUT RESULTS.

DO 22 JJ = Jl, J2

SUMCHI2 = SUMCHI2 + ALOG(FCHI2(JJ))

XDATA (JJ) = FLOAT (JJ)

YDATA (JJ) = FCHI2 (JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YBAR, YVAR, YSUM )

C ............

IF( NVALS .GT. 0 ) THEN

C

C COMPUTE GAMMA FUNCTION FOR PROGRESSIVE VALUES.

C SEE FURTHER DESCRIPTION ABOVE.

C

NUMJ -- YBAR

J = FLOAT(JJ) - M

PRODZ = i.

Z = NUMJ / 2.

C ¸
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DO 28 I = I, i0000

T1 = I. + Z / FLOAT(I)

T2 = EXP(-Z / FLOAT(I))

PRODZ = PRODZ * T1 * T2

IF( I .GT. 1 ) CHANGE = ABS((OLDPROD - PRODZ)

/ OLDPROD)

IF( CHANGE .LE. I.E-5 ) GOTO 29

OLDPROD = PRODZ

28 CONTINUE

C

29 CONTINUE

C

C

C

C ....

GAMNUMJ = i. / (Z * EXP(D * Z) * PRODZ)

COMPUTE GAMMA. SEE TEXT FOR EQUATION DETAILS.

T1 = (J * (NUM - NUMJ) * ALOG(2.)) / 2.

T2 = J * ALOG(GAMNUM / GAMNUMJ)

T3 = ((NUMJ- NUM) / 2.) * SUMCHI2

Q = EXP(TI + T2 + T3)

GAMMA = I. / (I. + SQRT(Q))

DGAMMA = GAMOLD - GAMMA

IF( GAMOLD .EQ. FMISS ) THEN

WRITE(OUNIT, 3003) JJ, YDATA(JJ), NUMJ, GAMMA, CFLAG

ELSE

+

WRITE (OUNIT, 3003) JJ, YDATA (JJ) , NUMJ, GAMMA, CFLAG,

DGAMMA

C ....

END IF

GAMOLD = GAMMA

ELSE

WRITE (OUNIT, 3004) JJ, YDATA (JJ)

WRITE(*,3004) JJ, YDATA(JJ)

GAMOLD = FMISS

C .....

22

C-

END IF

CONTINUE

WRITE(*,802)

READ(*,*) ITYPE

IF( ITYPE .EQ. 1 ) GOTO 1
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801
802

3000

3001
+
+
+
+

3002
+
+
+

3003

3004

FORMAT(/,' ENTERNUMBEROFVALUESIN BASEPERIOD:')
FORMAT(/,"ENTER0=CONTINUE,1=CHANGENUMBEROFBASEVALUES:')

FORMAT('ALL VALUESIN BASEPERIODMISSING')

FORMAT(/, "BASEPERIODPARAMETERS: ' , /,
'X-VALUE RANGE = ',F5.0,'-',F5.0,/,

'NUMBER OF VALUES = ',I3,/,

'NUMBER OF MISSING VALUES = ' , I3, /,

'BASE DEGREES OF FREEDOM = ',F8.3,/)

FORMAT(/,'PROGRESSIVE PARAMETERS:',/,

• CHI-SQUARE

"INDEX OBSERVATIONS MEAN GAMMA
DELTA" , /,

GAMMA",/,

,)

FORMAT (15, 2X, FI0 .3, 2X, F8 .3, 2X, F6.3, 2X, F6 .3)

FORMAT (15, 2X, FI0.3)

RETURN

END

SUBROUTINE SLINEAR

SUBROUTINE TO COMPUTE CHANGE IN LINEAR TREND.

C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

C 'AM" BASE PERIOD INTERCEPT FROM LLS REGRESSION.

C 'BM" BASE PERIOD SLOPE FROM LLS REGRESSION.

C 'DM" CONSTANT USED IN Q(M) LIKELIHOOD RATIO.

C 'DMJ" CONSTANT USED IN Q(M+J) LIKELIHOOD RATIO.

C 'DENOM" DENOMINATOR IN "T21' AND 'T22" TERMS.

C 'DGAMMA' CHANGE IN GAMMA FROM PREVIOUS VALUE.

C 'GAMMA" GAMMA VALUE.

C 'GAMOLD' PREVIOUS VALUE OF GAMMA.

C ' I' DO LOOP COUNTER.

C 'J" PROGRESSIVE VALUE INDEX.

C ' JJ" DO LOOP COUNTER.

C 'Jl" STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

C 'J2" ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.

C 'LNLI' NATURAL LOG LIKELIHOOD I.

C 'LNL2' NATURAL LOG LIKELIHOOD 2.

C 'LNL3" NATURAL LOG LIKELIHOOD 3.

C 'LNL4' NATURAL LOG LIKELIHOOD 4.

C 'M" REAL VALUE OF NUMBER OF BASE VALUES.

C 'MBASE' NUMBER OF BASE PERIOD VALUES.

C 'PREDM' PREDICTED VALUES FROM REGRESSION EQUATION USING 'M" VALUES.

C 'PREDMJ' PREDICTED VALUES FROM REGRESSION EQUATION USING 'M+J' VALUES.

C 'Q' RATIO OF QMJ/QM.

C 'QM' BASE PERIOD LIKELIHOOD RATIO.

C 'QMJ' PROGRESSIVE PERIOD LIKELIHOOD RATIO.

C "RESIDM' ARRAY OF BASE PERIOD RESIDUALS FROM LLS REGRESSION.

C 'RESIDMJ' ARRAY OF PROGRESSIVE VALUE RESIDUALS FROM LLS REGRESSION.

C 'SSM' SUM OF SQUARES FOR BASE PERIOD.

C 'SSMJ' SUM OF SQUARES FOR 'M+J" VALUES.
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C ' SUMT2'
C ' SUMT2I'
C ' SUMT22'
C 'T'
C "Tl'
C "T2'
C "TII"

C "TI2"

C 'T21'

C 'T22'

C

C

C

C

C

1

SUM OF "T2' TERM IN "LNLI' AND "LNL4" FORMULAE.

SUM OF 'T2' TERM IN "LNL2' FORMULAE.

SUM OF 'T2' TERM IN 'LNL3' FORMULAE.

REAL VALUE OF BASE PERIOD LOOP INDEX.

WORK VARIABLE FOR FIRST TERM IN 'LNLI' AND 'LNL4' FORMULAE.

WORK VARIABLE FOR SECOND TERM IN 'LNLI" AND 'LNL4' FORMULAE.

WORK VARIABLE FOR FIRST TERM IN "LNL2" FORMULAE.

WORK VARIABLE FOR FIRST TERM IN 'LNL3' FORMULAE.

WORK VARIABLE FOR SECOND TERM IN "LNL2" FOR/VfOLAE.

WORK VARIABLE FOR SECOND TERM IN 'LNL3' FORMULAE.

PARAMETER (NDIM=I50)

COMMON /WORK/ FXVAL (NDIM), FYVAL (NDIM), XDATA (NDIM),

YDATA (NDIM) , FINDEX (NDIM) , FCHI2 (NDIM) , NCASE,

OUNIT, FMISS

REAL RESIDM(NDIM), RESIDMJ(NDIM), PREDM(NDIM), PREDMJ(NDIM)

REAL M, J, LNLI, LNL2, LNL3, LNL4

INTEGER OUNIT

FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD

STATISTICS, AND OUTPUT RESULTS.

CONTINUE

_TRITE (*, 801)

READ(*,*) MBASE

DO 20 I = i, NCASE

XDATA(I) = FINDEX(I)

YDATA(I) = FYVAL(I)

CONTINUE

CALL UNIVAR( MBASE, NVALS, NMISS, YBAR, YVAR, YSUM )

IF( NVALS .GT. 0 ) THEN

CALL RCOEFF( MBASE, AM, BM )

+

+

WRITE(OUNIT, 4001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS,

YBAR, YVAR, BM

WRITE(*,4001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS, YBAR,

YVAR, BM

ELSE

WRITE (*, 4000)

RE TURN

C ........

END IF

WRITE (*, 802)

READ(*,*) ITYPE

IF( ITYPE .EQ. 1 ) GOTO 1
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_rRITE(OUNIT,4002)
WRITE(*, 4002)

C"

C-°

M = FLOAT (MBASE)

DM = (M * (M**2 - i.)) / 12.

SSM = 0.

DO 22 I = I, MBASE

IF( YDATA(I) .NE. FMISS ) THEN

SSM = SSM + (YDATA(I) - YBAR)**2

C--"

22

C-"

C-

C-

END IF

CONTINUE

DO 23 I = i, NCASE

IF( YDATA(I) .NE. FMISS ) THEN

PREDM(I) = (XDATA(I) * BM + AM)

RESIDM(I) = (YDATA(I) - PREDM(I))

ELSE

PREDM(I) = FMISS

RESIDM(I) = FMISS

C w

23

C-

C ........

C-

END IF

CONTINUE

SUMT2 = 0.

T1 = (-i.) * (M- 2.) / (2. * (SSM- (BM**2 * DM)))

DO 24 I = I, MBASE

IF( YDATA(I) .NE. FMISS ) THEN

T = FLOAT(1)

T2 = RESIDM(I)**2 / (((M + i.) / M)

+ (T - ((M + I.) / 2.))**2 / DM)

SUMT2 = SUMT2 + T2

C-

24

END IF

CONTINUE

C-

C

C

LNLI = T1 * SUMT2

INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.
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C
C

C

C

GAMOLD = FMISS

Jl = MBASE + 1

J2 = NCASE

FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND

OUTPUT RESULTS.

C ........

DO 26 JJ = Jl, J2

XDATA (JJ) = FINDEX (JJ)

YDATA (JJ) = FYVAL (JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YBAR, YVAR, YSUM )

IF(YDATA(JJ) .EQ. FMISS ) NVALS = 0

C

C COMPUTE EQUATION TERMS AND GAMMA. SEE TEXT FOR EQUATION DETAILS.

C

C

IF( NVALS .GT. 0 ) THEN

CALL RCOEFF ( JJ, AMJ, BMJ )

SSMJ = 0.

J = FLOAT(JJ) - M

DMJ = ((M + J) * ((M + J)**2 - i.)) / 12.

DO 30 I = I, JJ

SSMJ = SSMJ + (YDATA(I) - YBAR)**2

PREDMJ(I) = (XDATA(I) * BMJ + AMJ)

RESIDMJ(I) = (YDATA(I) - PREDMJ(I))

3O

C

CONTINUE

SUMT2 = 0.

T1 = (-I.) * (M - 2.) / (2. * (SSM - (BMJ**2 * DM)))

DO 32 I = i, MBASE

T = FLOAT(I)

+

T2 = RESIDMJ(I)**2 / (((M + i) / M) +

(T- ((M + I.) / 2.))**2 / DM)

SUMT2 = SUMT2 + T2

32 CONTINUE

C ..............

LNL4 = T1 * SUMT2

SUMT21 = 0.

SUMT22 = 0.
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CB--_

+

+

TII = (-i.) * (M + J- 2.)

/ (2. * (SSMJ- (BMJ**2 * DMJ)))

TI2 = (-i.) * (M + J- 2.)

/ (2. * (SSMJ- (BM**2 * DMJ)))

DO 34 I = I, JJ

T = FLOAT(I)

+

DENOM = ((M + J + i.) / (M + J))

+ ((T - ((M + J + i.) / 2.))**2 / DMJ)

T21 = RESIDMJ(I)**2 / DENOM

T22 = RESIDM(I)**2 / DENOM

SUMT21 = SUMT21 + T21

SUMT22 = SUMT22 + T22

CONTINUE

LNL2 = TII * SUMT21

LNL3 = TI2 * SUMT22

C B-_

QM = EXP(LNL4 - LNLI)

QMJ = EXP(LNL2 - LNL3)

Q = QMJ / QM

GAMMA = i. / (i. + SQRT(Q))

DGAMMA = GAMOLD - GAMMA

IF( GAMOLD .EQ. FMISS ) THEN

WRITE (OUNIT, 4003) JJ, FXVAL (JJ) , YDATA (JJ) , YBAR, YVAR,

BMJ, GAMMA

WRITE(*,4003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,

BMJ, GAMMA

ELSE

WRITE(OUNIT, 4003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,

BMJ, GAMMA, DGAMMA

WRITE(*,4003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,

BMJ, GAMMA, DGAMMA

END IF

GAMOLD = GAMMA

ELSE

WRITE (OUNIT, 4004) JJ, FXVAL (JJ), YDATA(JJ)

WRITE (*, 4004) JJ, FXVAL(JJ) , YDATA (JJ)

Crow-

26

C .........

END IF

CONTINUE
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801
8O2

4OOO

4001
+
+
+
+
+
+

4002
+
+
+
+
+
+

4003

4004

C--

WRITE (*, 802)

READ(* *) ITYPE

IF( ITYPE .EQ. 1 ) GOTO 1

FORMAT (/,' ENTER NUMBER OF VALUES IN BASE PERIOD: ')

FORMAT(/,' ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:')

FORMAT(' ALL VALUES IN BASE PERIOD MISSING')

FORMAT (/, 'BASE PERIOD PARAMETERS :' , /,

'X-VALUE RANGE = ',F5.0,'-',F5.0,/,

'NUMBER OF VALUES = ', I3,/,

'NUMBER OF MISSING VALUES = ' ,I3, /,

'BASE MEAN = ',F8.3,/,

'BASE VARIANCE = ',F8.3, /,

'BASE SLOPE = ",F6.3, /)

FORMAT (/, 'PROGRESSIVE PARAMETERS :' , /,

• X Y

• DELTA • , /,

• INDEX OBSERVATIONS MEAN VARIANCE

• GAMMA', /,

SLOPE

r

GAMMA',

f

t ...... I )

FORMAT (I5, 2X, F8 .3, IX, F7 .2, 2 (2X, F8 .3) ,2 (2X, F6.3) , 2X, F6.3)

FORMAT (I5, 2X, F8 .3, IX, F7 .2)

RETURN

END

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE RCOEFF( N, B0, BI )

SUBROUTINE TO COMPUTE LINEAR LEAST SQUARES (LLS) INTERCEPT AND SLOPE.

VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

'I' DO LOOP COUNTER.

'N' NUMBER OF VALUES.

'NN' COUNTER FOR NON-MISSING VALUES.

'SX2" SUMS OF SQUARED DEVIATIONS FROM THE MEAN X-VALUE.

'SXY' SUM OF THE CROSS PRODUCTS OF DEVIATIONS.

'SUMX' SUM OF NON-MISSING X-VALUES.

'SUMY' SUM OF NON-MISSING Y-VALUES.

'SUMSX2' SUM OF X-VALUES SQUARED.

'SUMSXY" SUM OF X TIMES Y SQUARED.

' )(BAR'

•XBAR2"

'XWORK"

•XYN'

'YBAR'

•YWORK'

MEAN OF NON-MISSING X-VALUES.

NUMBER OF NON-MISSING VALUES TIMES 'XBAR' SQUARED.

WORK ARRAY FOR X-VALUES.

"XBAR' TIMES 'YBAR' TIMES NUMBER OF NON-MISSING VALUES.

MEAN OF NON-MISSING Y-VALUES.

WORK ARRAY FOR Y-VALUES.

+

PARAMETER (NDIM=I50)

COMMON /WORK/ FXVAL (NDIM) , FYVAL (NDIM) , XDATA (NDIM) ,

YDATA(NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,
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OUNIT,FMISS
REALXWORK(NDIM), YWORK(NDIM)
INTEGEROUNIT

SUMX= 0.
SUMY= 0.
NN= 0

FILL WORKARRAYSWITHNON-MISSINGVALUES.

C ........

DO 15 I -- I, N

C ............

IF(YDATA(I) .GT. FMISS ) THEN

NN=NN+ 1

XWORK (NN) = XDATA (I)

YWORK (NN) = YDATA (I)

END IF

C ....

15 CONTINUE

C .........

C

C COMPUTE SUMS OF X- AND Y-VALUES.

C

C ........

DO 20 I = I, NN

SUM)( = SUMX + XWORK(I)

SUMY = SUMY + YWORK (I)

20 CONTINUE

C ........

C

C COMPUTE _!EANS OF X- AND Y-VALUES.

C

XBAR = SUMX / FLOAT(NN)

YBAR = SUMY / FLOAT(N-N)

SUMSX2 = 0.

SUMSXY = 0.

C

C COMPUTE SUMS OF SQUARED DEVIATIONS AND CROSS PRODUCTS.

C

C .........

DO 22 I = I, NN

SUMSX2 = SUMSX2 + XWORK(1)**2

SUMSXY = SUMSXY + (XWORK(I) * YWORK(I))

CONTINUE

XBAK2 = XBAR**2 * FLOAT(NN)

XYN = XBAR * YBAR * FLOAT(NN)



Apr 28 16:35 1993 sequitor.f Page 25

C

SX2= SUMSX2- XBAR2
SXY= SUMSXY - XYN

COMPUTE COEFFICIENTS.

B1 = SXY / SX2

B0 = YBAR - B1 * XBAR

RETURN

END

SUBROUTINE UNIVAR( N, NVALS, NMISS, YBAR, YVAR, YSUM )

C

C SUBROUTINE TO COMPUTE LINEAR LEAST SQUARES (LLS) INTERCEPT AND SLOPE.

C

C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

C " I" DO LOOP COUNTER.

C "N' NUMBER OF VALUES.

C 'SUMS2" SUM OF SQUARED DIFFERENCES.

C 'YWORK' WORK ARRAY FOR NON-MISSING Y-VALUES.

C

PARAMETER (NDIM=I50)

COMMON /WORK/ FXVAL (NDIM) , FYVAL (NDIM) , XDATA (NDIM) ,

YDATA (NDIM) , FINDEX (NDIM) , FCHI2 (NDIM) , NCASE,

OUNIT, FMISS

REAL YWORK (NDIM)

INTEGER OUNIT

YSUM = 0.

NVALS = 0

NMISS = 0

FILL WORK ARRAY WITH NON-MISSING VALUES.

DO 15 I = I, N

IF( YDATA(I) .GT. FMISS ) THEN

NVALS = NVALS + 1

YWORK(NVALS) = YDATA(I)

ELSE

NMISS = NMISS + 1

C

15

C

C

C

C

C

END IF

CONTINUE

COMPUTE SUM OF Y-VALUES.

DO 20 I = I, NVALS
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YSUM= YSUM+ YWORK(I)

20 CONTINUE
C
C
C
C

C .........

COMPUTE MEAN OF Y-VALUES.

YBAR = YSUM / FLOAT(NVALS)

COMPUTE SUM OF SQUARED DIFFERENCES.

SUMS2 = 0.

DO 22 I = i, NVALS

SUMS2 = SUMS2 + (YWORK(I) - YBAR)**2

22 CONTINUE

C ........

C

C COMPUTE VARIANCE OF Y-VALUES.

C

YVAR = SUMS2 / (FLOAT(NVALS) - I)

RETURN

END

C ....


