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Summary
Climate changes traditionally have been detected from long series of observations and long after
they happened. The "inverse sequential” monitoring procedure is designed to detect changes as soon as
they occur. Frequency distribution parameters(s) are estimated both from the most recent existing set of
observations and from the same set augmented by 1,2, -+ j new observations. Individual-value probabil-
ity products ("likelihoods") are then calculated which yield probabilities for erroneously accepting the
existing parameter(s) as valid for the augmented data set and vice versa. A parameter change is signaled
when these probabilities (or a more convenient and robust compound "no change” probability) show a
progressive decrease. New parameters are then estimated from the new observations alone to restart the
procedure. The detailed algebra is developed and tested for Gaussian means and variances, Poisson and
chi-square means, and linear or exponential trends; a comprehensive and interactive Fortran program is
provided in the appendix.
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1. Introduction

The detection of changes in a developing time series requires some idea of what form the changes
are likely to take. When the nature of the forcing is known, filters can be designed that will show their
effects most clearly (Kim and North, 1991), but that knowledge is often not available in the geophysical
sciences. However, many time series are made up of irregular-length sections each of which differs from
its neighbors in one or more of the parameters that define its signal and noise characteristics. As long as
its parameters remain unchanged, an individual section can then be said to be in "statistical control”

(Shewhart, 1939).

There exists considerable evidence that this concept is realistic in many geophysical contexts.
Examples are variables exhibiting the "Hurst phenomenon” much discussed in hydrology (e.g., Klemes,
1974), and atmospheric circulation patterns (Toth, 1992). With its minimum of arbitrary assumptions, the
concept of statistical control suggests a general monitoring approach that registers the length and end of
each controlled "regime”, together with the new parameter values. The magnitude of changes in geophy-
sical parameters cannot be anticipated, but their surveillance might use a probability for regarding the
parameters established from existing observations as significantly changed by the addition of one or more

new observations.

Such a "sequential” use of accruing information was pioneered by Wald (1947) and has developed
into a large special field of statistics (c.f. e.g., Gosh, 1988) which includes a range of procedures utilizing
cumulative sums ("cusum” techniques; e.g., Goel, 1982). The typical outcome in the simplest situation is
a decision, with prescribed error probabilities, to accept one of two specified parameter values, or to con-
tinue sampling.

The "inverse" sequential approach here presented instead progressively determines "no change” pro-
babilities for parameter estimates based, respectively, on the accrued data and on the same data aug-
mented by one or several new observations. A parameter change is then signaled when these probabilities

begin decreasing to small values.
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The basic approach is developed in the next section and formulated in Section 3 for the parameters
of Gaussian, Poisson, and chi-square distributions, as well as for linear and exponential trends. The tech-
nique is illustrated there with constructed examples, and is described as a systematic and comprehensive
procedure in Section 4 with reference to an interactive Fortran program, reproduced as code in the

appendix.

2. Theory

Consider a series of m observations x;, i =1,2- -+ m, to which further j observations are added
(j =1,2,- ). For a parameter 8 (such as mean, variance, trend, etc.) the first m values yield an optimum
estimate 6,, which the augmented set of observations changes to 6,,,;. Writing the corresponding proba-

bilities of individual x; as p (x;; 6), the likelihood function of n observations is
L(n;0)=p(x;0)p(x20) - p(x,;0). ()
Withn =m orm + j and 8 =8, or 8,,,; we have four different likelihoods:
Li=L(m;8,);Lo=L(m+j;6p4)iL3=L(m+j;08,);La=L(m;0,.;). 2

Now the form of L shows that the likelihoods decrease systematically with increasing sample size.
Those for the initial data can be made comparable to those for the augmented data by multiplying the
L(m; 8) by some factor c(m) and the L(m +j;8) by c(m +j). Furthermore the sum of the adjusted
likelihoods, ¢ (m)L | + ¢ (m + j )L represents the probability that 8,, is valid for either the initial m data
or the augmented set of m + j. Since these are taken to be the only choices, that probability is one; the
same applies to the sum c(m + j)L, +c(m)L4. Denoting ¢ (m + j)L3 by o and ¢ (m)L 4 by B, the other
adjusted probabilities become c(m)L;=1-0and c(m +j)L, = 1-B.

(In the terminology of the theory of hypotheses (e.g. Hoel, 1966), o represents the "type I error”
probability for not accepting 6,,, even though true, for the augmented sample. The probability B is that of
rejecting 0,,; though true for the initial data; alternatively, it is the "type II" error probability of prefer-

ring 8,,, though false, for the initial sample).



-4-

The probabilities o and [ are calculated from the factor-free likelihood ratios:

_Ls_ B
L2 1-B
qg(m +J)—L3— P (3b)
Solving for o and B yields
1-
a=—(—ﬂ; (4a)
(qm+j _qm)
B= (Qm«o-qu = qm) ' (4b)

@Gm+j —9m)

With a definite change of control from 8, to 8,,,,, both probabilities in due course decrease to small
values. While the existing regime continues, the variability of the likelihood function and rounding errors
can raise the likelihood ratio g (m) to unrealistic values larger than unity and similarly reduce g (m+j) to
values below one. To avoid probabilities that are negative or larger than 1, such g values must be

replaced by 1, implying equality of the likelihoods involved.
For the inverse sequential monitoring operation, several combined quantities suggest themselves as
more stable than o and B:
i) o+, the probability that either 8(m) is valid for the sample of m + j or 6(m + j) for the sample
of m;
ii) - P, the probability that both these statements are true;

iii) a compound "no-change" probability Y which will be used for the illustrations in Section 3, and is

defined by writing

R 2
g(m +j) Q=L1Lz_(1—a)(1—ﬁ)=(1—v) )

g(m) LiL, of I

so that



-5-

y=(1+v0)" . (6)

The probability ¥ falls between O and 0.5 as long as g (m+j ) > g (m) and lies between the arithmetic
and geometric averages of & and P, as can be shown by alternatively substituting these averages for o and

B in the original form of (5), i.e. in

_ [1 - (o+P) + af]

When o = 3 = (0. + B)2, equation (7) becomes

o? + B?

[1 -(a+p)+of+
Q= 2, Q2
- 57

 U—

(8a)

2

This shows that the numerator N and the denominator D of ( both have been increased by
£=(a2+[32)/2>0. Since Q >1 (ie., N>D), then Q=N/D >Q,= (N +&/(D +¢) since

ND + Ne > ND + Dg, or N > D, the initial condition.

Again with & = B = (ap)”, equation (7) becomes

1-2(aB)” + of
B |

2= aB ’ (8b)

so that 0, — @ =—2(aP)” + (o.+B) > 0 since & + B > 2(of)”; this can be seen by squaring both sides
giving
(@+PB)?+0?+B%+20B > 40B,0r (@ —-B)*>0 .
Finally, with 0, > Q > Q,,

[1 + \fQ_z] e Yeeometric < Y= [l + ‘16}—] < Yarithmetic = [1 + \fQ_l]—l . 9

(Equations (3a) and (3b) have the form of the decision limits of Wald’s (1947) "sequential probabil-
ity ratio test (SPRT)". Log, Q can then be interpreted as the logarithmic width of the indecision region of

a SPRT in which log, g (m + j) defines the upper decision limit, and log, g (m ) the lower decision limit,



respectively).

A change in parameter(s) lowers Y at a rate that increases with the change magnitude but decreases
with an increase in the number of observations before the change. This is further discussed and illustrated
in Section 3.1; it suggests using a moving base period, or restarting the procedure with new base values

after some interval in which y shows no clear descending trend.

3. Formulae and examples

The formulae give the basic probability p in the likelihood functions for m and m+;j observations,
and the likelihood ratios g (m) and g (m+j) used to calculate the probabilities o, B, and y from equations
(4) and (6) in Section 2. For simplicity, subscripts will be used to indicate the number of values used for
parameter estimates, and bracketed symbols for the numbers used to calculate the likelihoods and their
ratios. Thus L(m;6,,) =L, becomes L, (m),L(m +j,8,)=Lj =L,(m +j), etc.

The examples in this section use constructed data with known properties and illustrate how the
detailed properties of the inverse sequential procedure will be established by more extensive calculations

using different base lengths and magnitudes of parameter changes.

3.1 Poisson mean (= variance)

This case is rather simple because the basic probability

-X
=— 3.1.1)
xlexp (x)

has only a single parameter, the mean number ¥ of occurrences. The logarithmic likelihood functions are

m
log, L, (m) = mX,, log, X, — 3, 10g.x P —mx, . (3.1.2a)
1

m
l0ge L+ (m) = mxp, l0g, Xm+; = 2, 108 x! —MXpyj s (3.1.2b)
1



Table 1: Detection of change in Poisson mean (= variance).

The 5 base values are drawn at random from a Poisson population with mean 5. These and
another 10 values from the same population are used in test ITI. Test I and test II each use the
same base values as in test III and 10 values from Poisson populations with means 3 and 7,
respectively. Base values used are 6, 1, 6, 6, 4 and have a sample mean of 4.6.

Test I Test II Test III
no-change no-change no-change
probability probability probability

2 047 5 0.50 3 0.49

1 0.36 6 049 2 0.44

6 043 9 0.40 4 043

1 0.33 4 043 6 047

2 0.25 9 0.32 5 048

2 0.18 1 043 6 0.50

5 0.22 6 041 7 0.50

2 0.16 10 0.28 1 0.49

1 0.09 5 0.29 8 0.50

0 0.04 13 0.11 5 0.50



. L _ m+j L
loge Lysj(m +j)=(m+j)xp,j l0g, Xpmsj — 3 108 x! = (m +j)Xpyy (3.1.20)
!
. _ _ m+j _
log, Lyy(m +j) =(m+j)xpy,; log, X, — Y log.x!=(m + j)xy, , (3.1.2d)
1
resulting in the likelihood ratios
- i-m-o—_[ - _
g(m)=exp\m<xy, log, —— = (Xpmsj —Xm)p| 5 (3.1.3)
xm
. oy = if—m+j - -
‘1(m+])=exp{(m +J ){xnwj log, T — (Xm+; "xm)}} ’ (3.1.4)
m
so that
= — Em+j .- -
o =exp[{(m+] )xm+j —mxm} loge F -](xm+j —Xm )] . (3.1.5)
m
Examples

Three tests were conducted to demonstrate how the no-change probability is used to detect changes
in Poisson mean. Table 1 lists three series each containing ten values drawn at random from Poisson
populations with means of 3, 7, and 5 respectively. All three tests use the same five base values, which
have a sample mean of 4.6. In tests I and II, progressive decreases occur in the no-change probability
suggesting a change in the Poisson mean. This is expected since the values in each series were drawn
from different population means than those of the base period. In test III, the no-change probability does
not steadily decrease indicating that the series mean is not significantly different from the base period
mean. This too is expected since the series values and the base values were drawn from the same popula-

tion.

The relatively simple form of equation (3.1.5) makes it possible to explore the dependence of the

no-change probability on change magnitude and base length for an average Poisson sample. Let x;,



Figure 1. No-change probabilities for change in Poisson mean at m=5 or 10.
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i =1,2- - m now represent the average of many samples drawn from a Poisson distribution with mean
X, so that each x; equals X, and add further j values each equal to x’ from a Poisson distribution with

mean x’. With Ax =Xx" - x, Equation (3.1.5) can be modified to read

- . . Ax Ax| . Ax
log, Qp = Xp {J +(m +J).—'}103e[1+_—} -j = (3.1.6)
xm X X
Now the mean x,, is simply equal to x, while
- _miagp (A + En G- X)X
Xpij = mi e . 3.1.7
With (x"—x)/x =g and Ax/X,, = jg /(m+j)=v, say, (3.1.6) becomes
log,Qp =X, H_} +(m +j)v}log,(1+v)-jv} , (3.1.8)

which together with equation (6) leads to the no-change probability

Y= [l +\/Q,T]_l : (3.1.9)

as functionof x, m, j, and g = Ax/x,
Equations (3.1.8) and (3.1.9) have been evaluated for three different x = x,, and five different values
of g. The results are shown in Figure 1a for three different x” and in Figure 1b for a single value x =5,

for j =1 through 10.

The two broken lines in Figure 1b show that a longer base (larger m) will slow the response of the
no-change probability to the change in mean, but leaves the curves essentially unaltered in shape. The
decline in the no-change probability starts at the change of mean and accelerates down to values of the
order of 0.3~0.2 before becoming more and more gradual as small probabilities are approached. Beyond
this general feature, the simple argument here used reveals little about the rate of decline except that it
changes markedly with both the base mean and the means ratio g. More specific features remain to be

established by numerical experimentation.
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3.2 Inverse sequential formulae for Gaussian means and variances

The basic probability for the Gaussian distribution,

2
p = (2rno?) V2 exp{%} .

(3.2.1)

involves two parameters, 1 and 62, which can only be tested jointly since in the present context neither is

known a priori. We use the sample mean as an estimate for the population mean M, and

62=[(n/(n - 1)]s2, where s is the sample variance and n(=m or m + j) is the number of values used.

The likelihood products (equation 1) are converted to sums by taking logarithms; thus,

m m mo(x = Wy )
log, L,,(m)=~— EX log, 2n - > log, 02 —zl: To,ﬁm_
m
with ¥ (x - p)z =(m - l)o,f,, the last term reduces to [-(m - 1Y 2].
1
Proceeding in the same way for Ly=L,, , ;(m) leads to
m m 5 m (X = Py )
log, Lm+j(m) =- '2_ log, 2m - 7 log, Om+j — Z T L2

with [+ — Wn = AW, the numerator of the last term can be written as

3 = (g + AP = = FE — )2 = T 25 AR + 2, A + ApD)
I 1 1

=—(m - 1)O2 = 2m i, Al + 2m i, AL — m (Ap)

so that equation (3.2.3a) becomes

, _m-10n  m@w?

log, Gy
m (2. —
202, 2054,

2

m

log2r — >

log, Lm+j (m)=-

Finally, subtracting equation (3.2.2) from equation (3.2.3b) gives the log likelihood ratio

3.22)

(3.2.3a)

(3.2.3b)
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Lyyj(m) o2 - o2 2
log, g (m) =log, —"——== 7" log, —5— + = 1 {1 - |- ”;_;AZ“) . (324)
’ ‘ m+j m+j

Proceeding the same way for the augmented set of m+j values yields first

. m+j m+j M (X = Py )
108, Lyysj(m +j) =~ —Ei log, 2~ = L log,02,; - E—Ta% , (3.2.5)
1 m+j
m+j
where the last term, with Y (x — u,,H.j)2 = (m+j—-1) o,f,ﬂ, reducesto — (m + j — 1)/2. Next,
1
N ma m+j me (6 = (Unay = AW
log, L, (m+j) =~ —2—1 log, 27 — Tf log, 62 — zl‘, ’;;’3' : (3.2.6a)
Expanding the last term as before yields
m+j m+j ,  m4j =10y, (m+j)Ap>
log,L,,(m+j)=—-—"log,2n — — log, G, — 5 - 5 . (3.2.6b)
2 2 o} 202
Subtracting equation (3.2.6b) from equation (3.2.5) we obtain the second log likelihood ratio
2 2
1 Cm P G2, ; 2
log, g (m+j) = m+j log, S m+j —1 my ol 4 (m+j }(Ap) . (327
2 Orsj 2 oA 207
The final formulae therefore are
Cpm m-—1 031 m )
q(m)=exp |mlog, + 1-— - (Hmyj -Un)| . (3.2.8a)
Om+j 2 Omsj | 20msj

and

2
. . S +j — 1| Om+j +j
q(m+j)=exp [(mﬂ )log, m_,m 12 [ m2+.l _ 1] + _’?_21 (M _um)zl . (3.2.8b)
Om +1 Om 20,

The first two exponents in each formula reflect solely changes in variance, while the third exponent

depends primarily on changes in the mean.



Table 2: Detection of change in Gaussian mean and variance.

The 5 base values for tests I and II are drawn from a Gaussian population with mean 5 (sample
mean: 3.64) and variance 25 (sample variance: 71.74). The 5 base values for test ITII come from
a Gaussian population with mean 7.5 (sample mean: 8.02) and variance 6.25 (sample variance:
4.20). Test I uses 3 values from the first series followed by 7 values from the second. The 10
values for test I all come from the first series, and those for test III from the second series.

Test 1 Test 11 Test III
-5.0 basevalues | -5.0 basevalues | 10.2  base values
-13 -1.3 9.2
10.2 10.2 6.8
149 14.9 8.8
-0.6 -0.6 5.1
no-change no-change no-change
probability probability probability
2.6 0.49 2.6 0.49 6.7 0.49
6.6 0.46 6.6 0.46 6.9 0.45
25 0.41 25 041 5.1 0.40
10.2 0.39 12.4 041 9.7 0.46
9.2 0.35 10.5 0.37 14.0 0.35
6.8 0.29 8.9 0.32 104 0.33
8.8 0.24 8.7 027 | 61 0.36
5.1 0.19 77 0.21 6.5 0.39
6.7 0.14 8.6 0.17 8.6 042
6.9 0.10 8.8 0.12 6.8 0.44
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Examples

Table 2 uses values drawn at random from two Gaussian populations with different means and vani-
ances (L = 5, 6°=.25, and u = 7.5, 6% = 6.25, respectively). Test I uses the first 5 values of the first series
as base and continues with the next three values of the same series before introducing those of the second
series. A steady decrease in the no-change probabilities starts with the third value after the change. By

contrast in test ITI, the second series without major change provides a definite no-change signal.

In test II a regime change is suggested even though the series used was designed without such a
change. The mean of the initial 5 "base” values (3.64) is considerably smaller than the population mean
(5.0) while the entire series of 15 values has a mean (6.37) that is considerably larger than the population
mean. Acting on the sample information alone (all the inverse sequential procedure is designed to do),

the test therefore quite properly suggested a significant change from the base parameter.

3.3 Trends (least-square regression)

Observations made at equally spaced times t = 1,2+ n (n =m orm + j) are represented by
y=A+Bt +e . (3.3.1)

This also covers the case of exponential regression when y =logx. The residuals e are assumed to be
normally distributed with zero mean and variance 0. Sample estimates of the regression coefficients A

and B satisfying least-square requirements are

YO -yNe-t)
a=y+biib=— , (3.3.2)

n

> -1

1

where

(n+l) & —,_n@ri-1
y XemrrETIT

1

=

The regression estimate y’ for a given ¢’ is then ¥’ =y + b (¢’ -7 ), and the corresponding residual

e, =y’, —y’, has a Gaussian distribution with zero mean and variance (see e.g., Anderson and Bancroft,
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1952, Section 12.2)

1
s = n-2

(3.3.3)

[t_(n+l)]2
2—1)} ntl 2

12 n n(n?-1)
12

T 5, 5 - b2 2
i=]

The general form of the likelihood functions defined by the n residuals ¢,
t=12,---n(=morm+j)is

3.34
252 (3:34)

L=exp) |-
t=1

For the inverse sequential detection of trend changes equation (3.3.4) takes the following forms:

- m —Ym 2
log, L, =log,L,=- m=2 . O —Ym)i  ass)
2[5S(m)—b,3d(m)] t=1 - [ m+1}2
t..
m+1 + 2
m d(m)
f — m+j - Vm _)2
log,L,,,+j(m +j)=10g¢L2=— m+) 22 (y Ym+j i 2
Z[SS(m +j)=byyd(m +j)] ] t=1 { mt i+
m+j+1 2
m+j dim+j)
(3.3.6)
f — m+j - ‘m)2
logeLm(m +j)=10g¢L3=— m+ )] 2 . (}’ YmMh - :
f—-—l
m+j+1 2
m+j dm +J)

3.3.7
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m—2 - O = Ym ')2
log,Lyj(m)=log.Ly=— 5> +j 1
Z[SS(m)—b,3+jd(m)] (=1 [ .
t —
m+1 2
m d(m)
with
‘ - 2
SS(n)=Y 0o -5)?; d(n)= nne-1)
1=l 12 7
Yn =an + byt n=morm+j
Finally as before
q(m)=exp(log,L4—log.L,) ,
and
g(m + j)=exp(log,L,—log,Lj) .
Examples

; (3.3.8)

(3.3.9)

(3.3.10)

Table 3 gives the results of four tests to demonstrate the inverse sequential detection of changes in

linear trend (regression coefficient b iny =a + bt). The test III series from Table 2 is used. This series

starts with declining values but settles down to a negligible trend for the entire sample 15 values

(b =-0.02; variance s = 5.88). Positive and negative trends of b =+ 5/6 and b =% s/3 are then

imposed on the last ten y -values in the series.

The no-change probability starts decreasing in each case as soon as the imposed trend produces a

distinct change from that of the base series. By contrast, when the last 10 values of the base series are

tested unchanged all the no-change probabilities (not shown) remain above 0.45.

3.4 Chi-square

The variances 52 of samples from a Gaussian population with variance o? define a chi-square variate

hs2
2_ 0
="

(3.4.1)



Table 3: Detection of changes in linear trend

Base series used is that of test IIl in table 2, with the following sample
parameters: mean 8.10; variance = 5.88; regression
coefficients a = 8.27, b=-0.021

1) trend b = 2 0.4 imposed on the 10 y -values from test II1, table 2

positive trend negative trend
y b no-change y b no-change
(progressive)  probability (progressive)  probability
7.1 -0.04 0.50 6.3 -0.06 0.49
77 -0.04 0.50 6.1 -0.08 0.48
6.6 -0.06 0.49 42 -0.14 042
11.3 0.00 0.50 8.1 -0.11 045
16.3 0.12 0.38 12.3 -0.03 0.50
12.8 0.16 029 | 80 -0.02 0.50
8.9 0.14 0.30 33 -0.07 0.48
9.7 0.13 0.29 33 -0.11 0.44
12.2 0.15 023 5.0 -0.13 0.41
10.8 0.15 0.20 2.8 -0.15 0.35

2) trend b = £ 0.8 imposed on the 10 y -values from test III, table 2

positive trend negative trend
y b no-change y b no-change
(progressive)  probability (progressive)  probability
7.5 -0.03 0.50 59 -0.07 0.49
8.5 -0.02 0.50 53 -0.11 0.45
78 -0.02 0.50 3.0 -0.17 0.34
129 0.06 0.45 6.5 -0.17 0.35
183 0.19 0.23 10.3 -0.10 0.44
15.2 0.25 0.10 5.6 -0.11 0.42
11.7 0.25 0.09 1.0 -0.18 0.30
12.0 0.25 0.08 0.1 -0.23 0.17
15.8 0.28 0.03 1.4 -0.26 0.10
14.8 0.30 0.02 -1.2 -0.30 0.04
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where A is the number of values in each sample. If these values are independent of one another, x* has
h-1 degrees of freedom (d.f.). For "coherent” (autocorrelated) series the d.f. number (which also

represents the mean of the chi-square distribution as well as one half its variance) is reduced to
X =v=h-gkh), (3.4.2)

(Radok, 1992) where

2h-1)  2An=2)

2
h ! h I A gl ¢ W I (34.3)

eh)=1+ p

Here the r; are the autocorrelations of observations i values apart, and h—g(h) represents the
number of independent observations in each section, which equals #—1 when all autocorrelations are

Zero.

The basic probability for the chi-square distribution is

3

Here v is the number of degrees of freedom which equals the mean as well as half the variance of the dis-

-1 2

(H)V-! exp[-x—] _ (3.4.4)

Y2 r
2

p:

tribution. Then the logarithmic likelihood functions take the form

v A% m m
logL,,(m)= — n vy log,2 - mlog, T’ = -1 Zloge)(2 _1 Y x? (3.4.52)
2 2 2 1 2 4
Vi Vo +f m 1 m
logeLmﬂ(m):-%vm+jloge2—mloger[ 2*’] +[ "'2*’ -1J —Zlogexz—z Y (3.4.5b)
1 1

. m+j . Vim +j
log,Lyyjim +j) =~ _2—!' Vm+j log,2 —(m +])10ger[ m2+} }

m+j

Vo, | mti
+{ = -1} Slog - 3 S (3.4.5¢)
1 1
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v
m2+j Vnlog,2 —(m +j)log, T [—;—}

log, L, (m+))=—

AY) m+j m+j
+ [—2'"— —l] Y log, 2—%—2)(2 .
1 1

The likelihood ratios become

m
v
m r|—=
"i"(vm —Vmﬂ) 2 1 m 2
gim)=2 exp| 2 (Vs; — V) Thogr?| .
r Vm+j 1
2
and
[ Am+j
Vm
. m + '%'(Vm _Vm+j) F T 1 m 2
q(m +j)=2 exp| 5 (Vm+j = Vm)XlogX?|
vm+j 2 1
r
2
so that
v
| G
]ogf Q =exp _% (Vi — Vm«i—j) log, 2 +jloge + m+12 z
I Vm+j
2
The gamma functions are evaluated with the Euler relation
Iz)! = (z)e® nlrl + _z_} e
i=l t

where

c =lim
{ —poo

1+%+%+, e +%logei] =0.5772156649 - - -

(3.4.5d)

(3.4.6)

347

(3.4.8)

3.4.9)

(3.4.10)
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Examples

Tests of the inverse sequential procedure for detecting changes in coherence use three series of
values drawn from a random independent Gaussian data set. As described by Radok (1992), these data
were rendered coherent by applying 3-term and 7-term moving averages that produced for different lags A
autocorrelations of magnitude r = (M — A)YM, where M is the length of the moving average. According
to equations (3.4.2) and (3.4.3), the chi-square distributions of sample variances computed from sets of 5
successive values should have 2.53 and 1.14 degrees of freedom (d.f.), respectively, compared with 4 for

the 5-term sample variances from the original series.

Table 4 shows the chi-square values used for testing the ability of the inverse sequential procedure
to detect changes in coherence. Test I uses the first 5 values of the series with 2.53 d.f. as base and con-
tinues with the chi-square values of the non-coherent series; this implies a nominal change from 2.53 to 4
degrees of freedom. Test II after the same 5 initial values, continues with the chi-square values derived
from the series of 7-term moving averages, implying a nominal change from 2.53 to 1.14 degrees of free-

dom. Finally test III uses the chi-square values of the 2.53 d.f. series throughout.

In test I the loss of coherence (increase in degrees of freedom) is shown by a slow but ultimately
clear decrease in the no-change probability. In test II the increase in coherence does not lower most of
the no-change probabilities below 0.40; a larger base period might have rendered the test more sensitive
for this small signal. The probabilities of test II are similar to those of test III in which only one series of

chi-square values was used to simulate absence of change.

4. Implementation

The inverse sequential procedure is designed to detect changes in statistical control from a few new
observations added progressively to a representative sample drawn from the most recent controlled data
regime. As an initialization (which also establishes the presence or absence of such regimes in the exist-

ing data) the procedure is applied to the full available data set. For this, progressive means, variances,



Table 4: Detection of a change in chi-square degrees of freedom -
(d.f. = mean = one half variance)

All tests use as base the following 5 values drawn from a chi-square series constructed with 2.53
degrees of freedom (for details cf. section 3.4):

2.72, 3.88, 2.12, 0.18, 1.27 sample mean (d.f.) 2.034

Another 15 values drawn from the same series are used for test ITI. Test I uses 15 values from a
chi-square series constructed to have 4 d.f., while the data for Test I come from a series con-
structed to have 1.14 d f.

Test I Test 11 Test ITI
no-change no-change no-change
probability probability probability
431 0.47 0.40 0.48 0.79 0.50
5.33 0.39 5.00 0.50 4.04 0.50
1.07 0.42 0.10 0.49 1.36 0.50
5.03 0.34 0.69 0.47 4.67 042
3.21 030 | 0.08 0.40 2.03 0.47
0.57 0.37 1.11 0.39 2.14 0.46
3.08 0.34 0.84 0.38 3.16 0.42
1.54 0.35 3.03 0.42 0.59 0.46
3.19 0.32 1.02 0.42 2.26 0.45
0.35 0.38 1.20 0.43 2.96 0.43
1.70 0.39 2.35 0.45 3.86 0.39
2.35 0.37 1.80 0.47 1.27 0.40
3.85 0.33 0.50 0.45 1.49 041
14.1 0.18 0.44 0.44 8.74 0.29
12.3 0.10 042 042 3.37 0.26
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and both linear and exponential regression coefficients are calculated as basic information. In addition,
the data are divided into successive small subsamples; their means and variances, apart from being used
for determining changes in coherence (c.f. Section 3.4) provide indications of the underlying probability
distribution. For Gaussian data these means and variances are independent of one another; a linear depen-
dence of sample variance on sample mean can be removed (and hence normality created) by taking the
square root of each observed value, and a dependence of both mean and variance on the sample size is

eliminated by a logarithmic transformation (for details see Kendall and Stuart, 1966, Chapter 37).

The Fortran program in the appendix has been designed interactive to allow for the fact that in prac-
tice some parameters may not have to be considered. For instance, no stationary mean can exist in the
presence of a clear linear or exponential growth; for discrete rate events a Poisson rather than a normal
mean is alone relevant, and only a chi-square variable is involved in the test of variance and coherence

changes described in Section 3.4.

In order to establish base values of the parameters that do describe the current data and their varia-
tion, the inverse sequential procedure is applied backward from the most recent observation to find the
most recent time interval within which the no-change probability remains high. Questions concerning the
optimum length of such a "base period”, and the efficiency of the inverse sequential procedure in detect-
ing a given parameter change magnitude, will be addressed in systematic experiments with constructed
sample series during the remainder of the project, together with real-time tests of some of the GEDEX

data (Olsen and Warnock, 1992; Schiffer and Unimayar, 1992).

When several parameters are tested they will in general not lose control at or even near the same
time. The successive no-change probabilities of a single parameter, as well as concurrent probabilities for
several different parameters and/or separate series, can be combined, following Fisher (1941, Section

21.1) as a "fingerprint” of change in the form of a chi-square variate with 2k degrees of freedom
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k
X2y = Y~ 2log, 1)
1

where k is the number of probabilities thus combined.

Finally, it must be emphasized that the inverse sequential algorithm is intended for the exploration ,
rather than a confirmation , of parameter changes. Flueck and Brown (1993) have shown that an explora-
tion can be carried out without the panoply of rigorous statistical procedures needed for a confirmation.
Even so the full properties of exploratory parameters such as the no-change probability Y deserve to be

clarified with numerical experiments planned for the remainder of this project.

Acknowledgement: Support for this work has been provided by NASA Grant NAGW-2706. Partial sup-

port for the second author was provided by NOAA’s Climate and Global Change Program.
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Appendix

Program "SEQUITOR" is designed to be an interactive program for analysis of Gaussian
mean and variance, Poisson mean, chi-square (coherence), and linear (or exponential) trend
changes in a sequential time series. The user typically will receive FORTRAN source code,
providing an opportunity to make code changes as desired. For example, in the original code, data
input is assumed to be free format. However, the user may desire to change this to a specific
format. It may also be desirable for the user to add write statements that exclude headings, such
that the results can then be easily imported into a graphics package.

An input/output flowchart is included in this appendix. Each square box represents an
input step by the user, and an oval represents results output. A brief description of the input steps

follows:

Enter input filename: This is the input data filename up to 80 characters.
Enter descriptive title: This a descriptive header of the data and/or the analysis up to 80 characters.

Enter number of values in series: This is the total number of rows in the input data file. It is
assumed that the input data file contains a column of x-values (column 1) which represent an index
or year for example, followed by n columns of y-values containing the actual series for analysis.

Enter missing value: This program allows for missing values. Enter a unique number (e.g., -999.)
to represent missing values.

Enter column number: Input data files may contain multiple y-value columns. This entry should be
from 1 to n depending upon which y-value column is desired for analysis. The very first column
in the input data file is considered column 0.

Enter O=continue, 1=reverse data input order: Often it is desirable to do the sequential monitoring
analysis beginning with the most recent value and working backwards. This helps identify
"regimes” in the time series. Enter either a 0 or 1.

Enter beginning and ending x-range values: Enter values separated by a comma. This range
corresponds to the x-values in the very first column of the input data file. Since the x-values might
represent an index or year, examples would be 10,18 or 1985,1992. Note that these values can
represent a sub-set of the input data file.

Enter window size for sub-samples: In determining a regime, it is useful to examine smaller sub-
sets of values. A typical sub-sample might contain 5 values. If the total number of cases in the
series is not evenly divisible by the window size, the remaining values will be ignored in only the
sub-sample analysis.

Enter analysis type: Here there are several options. Entering 1 through 4 places the user in the
desired sequential analysis routine. Other options include changing the sub-sample size, changing



the column number, changing the data range, reversing the data order, or simply quitting the
program.

Enter number of base period values: Within each analysis routine, the user is prompted for the
number of base period values. These should typically be small, say 5 to 15 or so. Base period
results is ouput at this point.

Enter O=continue, 1=change number of base values: Upon examining the base period results, the
user is given the option to change the base period size, or continue with the final analysis.

This program was written interactively because it is intended to be exploratory in nature.
An attempt was made to allow the user to make changes during the analysis, instead of having to
restart the program several times. Results are output to the screen and to a file named
"sequitor.out”, which is replaced each time the program is run.

The program contains minimal comments, but variables are defined at the beginning of each
subroutine to help the user understand the program. It is intended to use the program in
conjunction with this progress report, and some attempt at consistency of variable names in relation
to the formulae has been made. However, it is possible that updates or changes to program will
occur after this initial release. Hence, users may want to contact the authors for additional
information.

Output from a sample analysis is included in this appendix. It is test I from Section 3.2 in

the progress report. The associated input data are also included.



——— Enter column number:

F—®| Enter O=continue, 1=reverse data input order:

————| Enter window size for sub-samples:

Flowchart of input/output for program SEQUITOR

Enter input filename:

Y

Enter descriptive title:

Y

Enter number of values in series:

Y

Enter missing value:

Y

Y

Y

Enter beginning and ending x-range values:

Y

Full sample output

Enter number of base period values:

Base period ouput

Y

Sub-sample output

Enter O=continue, 1=change number
of base values:

Enter analysis type = *

1=Gauss, 2=Poisson, 3=chi-square, 4=linear, G Poi hi-squa
O=change sub-sample size, 6=change column number, | -gf— aussl,. ° 8:0"’; : :q R re,
7=change data range, B=reverse data order, 9=quit: orfinear trend outpu

\

End program
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ENTER INPUT FILE NAME:
gauss.dat

ENTER DESCRIPTIVE TITLE:
Detection of change in Gaussian mean and variance, Test I
INVERSE SEQUENTIAIL MONITORING (PROGRAM <SEQUITOR>)
ENTER NUMBER OF VALUES IN SERIES:

15

ENTER MISSING VALUE:

-999

ENTER COLUMN NUMBER:

1

ENTER 0=CONTINUE, 1=REVERSE DATA INPUT ORDER:

0

ENTER BEGINNING AND ENDING X-RANGE VALUES:

1978, 1992

FULL SAMPLE UNIVARIATE STATISTICS:
X-VALUE RANGE = 1978.-1992.
NUMBER OF VALUES = 15

NUMBER OF MISSING VALUES = 0
SAMPLE MEAN = 6.240
SAMPLE VARIANCE = 40.034
SAMPLE SLOPE = 0.466
ENTER WINDOW SIZE FOR SUB-SAMPLES:
5
SUB-SAMPLE PARAMETERS:
INDEX X-VALUE NUMBER OF MISSING
RANGE RANGE VALUES VALUES MEAN VARIANCE CHI-SQUARE
1- 5 1978.-1982. 5 0 3.640 71.713 7.165
6- 10 1983.-1987. 5 0 8.220 52.852 5.281
11- 15 1988.-1992. 5 0 6.860 1.723 0.172

ENTER ANALYSIS TYPE

1=GAUSS, 2=POISSON, 3=CHI-SQUARE, 4=LINEAR,
0=CHANGE SUB-SAMPLE SIZE, 6=CHANGE COLUMN NUMBER,
7=CHANGE DATA RANGE, 8=REVERSE DATA ORDER, 9=QUIT:

1

D i L L T b +
|  TEST FOR CHANGE IN GAUSSIAN MEAN AND VARIANCE |
T T e e e e e +

ENTER NUMBER OF VALUES IN BASE PERIOD:
5

BASE PERIOD PARAMETERS:
X-VALUE RANGE = 1978.-1982.
NUMBER OF VALUES = 5

NUMBER OF MISSING VALUES = 0
BASE MEAN = 3.640

BASE VARIANCE = 71.713

ENTER O=CONTINUE, 1=CHANGE NUMBER OF BRASE VALUES:

0
PROGRESSIVE PARAMETERS:

X Y DELTA
INDEX OBSERVATIONS MEAN VARIANCE GAMMA GAMMA
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6 1983.000 2.60 3.467 57.551 0.486

7 1984.000 6.60 3.914 49.361 0.456 0.030
8 1985.000 2.50 3.737 42.560 0.410 0.047
9 1986.000 20.20 5.567 67.353 0.453 -0.044
10 1987.000 9.20 5.930 61.189 0.422 0.031
11 1988.000 6.80 6.009 55.139 0.394 0.028
12 1989.000 8.80 6.242 50.775 0.351 0.043
13 19590.000 5.10 6.154 46.644 0.322 0.029
14 1991.000 6.70 6.193 43.078 0.280 0.042
15 1992.000 6.90 6.240 40.034 0.236 0.044

ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:
0

ENTER ANALYSIS TYPE

1=GAUSS, 2=POISSON, 3=CHI-SQUARE, 4=LINEAR,
0=CHANGE SUB-SAMPLE SIZE, 6=CHANGE COLUMN NUMBER,
7=CHANGE DATA RANGE, 8=REVERSE DATA ORDER, 9=QUIT:
9

END OF SEQUITOR RUN

MacX Clipboard Page 2 wWed, Apr 28, 1993
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PROGRAM - SEQUITOR

C .0lA. TJB 93/04/28. ORIGINAL VERSION.

I )
C AUTHOR: TIMOTHY J. BROWN |
C |
C INVERSE SEQUENTIAL PROGRAM |
C |
Cmmmmm o REVISION HISTORY-———-—-—-—— |
C LEVEL AUTHOR DATE DESCRIPTION |
C =D D==ESSE SEESSSSSSS S mmer———mmmmme—— e I

!

|

|
1
|
|
1
l
I
|
|
|
!
l
|
|
I
|
|
|
|
|
|
—

SIX SUBROUTINES ARE ATTACHED TO THE MAIN PROGRAM:

" SGAUSS’ COMPUTES CHANGE IN GAUSSIAN MEAN AND VARIANCE.

SPOISS’ COMPUTES CHANGE IN POISSICN MEAN.

"SCHI" COMPUTES CHANGE IN CHI-SQUARE DEGREES OF FREEDOM.

" SLINEAR’ COMPUTES CHANGE IN LINEAR TREND.

"UNIVAR’ COMPUTES UNIVARIATE STATISTICS MEAN, VARIANCE, AND SUM.
"RCOEFF" COMPUTES LLS REGRESSION B0 AND Bl COEFFICIENTS.

INPUT IS ASSUMED TO BE FREE-FORMAT, BUT USER CAN CHANGE AS DESIRED.

THE PARAMETER STATEMENT AND COMMON BLOCK IS LOCATED IN ALL SUBROUTINES.
THE USER SHOULD CHANGE ’NDIM’ AS REQUIRED.

THE FOLLOWING ARRAYS AND VARIABLES ARE USED IN THE COMMON BLOCK:
"FCHIZ2’ CHI-SQUARE VALUE FOR EACH SUB-SAMPLE.

"FINDEX” INDEX VALUE (1, 2,...N) ASSOCIATED WITH EACH Y-VALUE.
"FXVAL’ INPUT X-VALUES.

"FYVAL' INPUT Y-VALUES.

" XDATA’ WORK ARRAY FOR X-VALUES.

" YDATA' WORK ARRAY FOR Y-VALUES.

"FMISS’ NUMBER REPRESENTING MISSING VALUES.

"NDIM’ DIMENSION SIZE FOR DATA AND WORK ARRAYS.

"NCASE'’ NUMBER OF FULL SAMPLE VALUES WITHIN INDEX RANGE.
" OUNIT’ OUTPUT UNIT NUMBER.

THE FOLLOWING ARRAYS AND VARIABLES ARE USED IN THE MAIN PROGRAM:

"FDATA’ HOLDS THE Y-VALUES WHEN THEY ARE INPUT; SHOULD BE
DIMENSIONED >= NUMBER OF COLUMNS IN INPUT FILE.

"FXDATA’ HOLDS THE ORIGINAL X-VALUES OR REVERSED ORDER VALUES.

"FYDATA” HOLDS THE ORIGINAL Y-VALUES OR REVERSED ORDER VALUES.

" XWORK'’ WORK ARRAY FOR X-VALUES.

" YWORK' WORK ARRAY FOR Y-VALUES.

B0’ INTERCEPT FROM LLS REGRESSION.

"Bl’ SLOPE FROM LLS REGRESSION.

’CFILE’ INPUT DATA FILE NAME.

"CTITLE" DESCRIPTIVE TITLE.

"R’ NUMBER OF VALUES WITHIN EACH SUB-SAMPLE.
'’ DO LOOP COUNTER.

rII’ INDEX COUNTER.

" IBEG’ INDEX COUNTER.

QOO0 000000000000000000000000000000O0000000O0

" TEND’ INDEX COUNTER.
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C 'IDIR’ DATA DIRECTION FLAG (1=REVERSE DATA ORDER, 0=CONTINUE).
C '"ITYPE' ANALYSIS TYPE.

C "IUNIT’ INPUT UNIT NUMBER.
c 'J DO LOOP COUNTER.
c 'K’ COUNTER.
Cc 'N’ DO LOOP COUNTER.
C "NBEG’ BEGINNING INDEX NUMBER FOR INDEX RANGE.
C 'NEND’ ENDING INDEX RANGE FOR INDEX RANGE.
C NN’ COUNTER.
C ’'NCOL’ COLUMN NUMBER OF Y-VALUES TO BE ANALYZED.
C THIS IS USEFUL FOR FILES CONTAINING MULTIPLE COLUMNS OF DATA.
C X-VALUES ARE ASSUMED TO BE IN COLUMN ONE.
C ’'NMISS’ NUMBER OF MISSING VALUES.
C ’NPOP’ NUMBER OF POPULATION VALUES.
C 'NVALS’ NUMBER OF NON-MISSING VALUES.
C 'POPVAR’ POPULATION VARIANCE FROM FULL SAMPLE.
c 82’ SUM OF SQUARES IN CHI-SQUARE CALCULATION.
C 'XBEG’ BEGINNING VALUE OF X-RANGE.
C ’XEND’ ENDING VALUE OF X-RANGE.
C 'YBAR' MEAN OF Y-VALUES.
Cc rysuM’ SUM OF Y-VALUES.
C ’YVAR' VARIANCE OF Y-VALUES.
C
PARAMETER (NDIM=150)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),
+ YDATA (NDIM), FINDEX(NDIM), FCHIZ2(NDIM), NCASE,
+ OUNIT, FMISS
REAL FDATA (15)
REAL FXDATA (NDIM), FYDATA(NDIM), XWORK(NDIM), YWORK (NDIM)
INTEGER H, OUNIT
CHARACTER*80 CTITLE, CFILE
DATA IUNIT, OUNIT / 1, 2 /
c._ e e S T e o e e
C

C THIS SECTION REQUESTS THE INPUT INFORMATION, OPENS FILES, INPUTS
C THE DATA, AND COMPUTES FULL SAMPLE UNIVARIATE STATISTICS.
C

WRITE (*, 801)

READ (*,101) CFILE

OPEN (IUNIT, FILE=CFILE, STATUS=’OLD’)
OPEN (OUNIT,FILE=’'’sequitor.out’)

WRITE (*,802)
READ(*,101) CTITLE

WRITE (OUNIT, 900)
WRITE (*, 900)
WRITE (OUNIT, 901) CTITLE

WRITE (*, 803)
READ (*, *) NPOP
WRITE (*, 804)
READ (*, *) FMISS
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3 CONTINUE

WRITE (*, 805)
READ (*, *) NCOL
REWIND IUNIT

C
C INPUT THE DATA AND FILL WORK ARRAYS. REVERSE DATA ORDER IF REQUESTED.
C
Cm—mm e
DO 13 I = 1, NPOP
READ (IUNIT, *) FXDATA(I), (FDATA(J),J=1,NCOL)
FINDEX(I) = FLOAT(I)
FYDATA (I) = FDATA (NCOL)
13 CONTINUE
C ________
5 CONTINUE
WRITE (*, 806)
READ(*, *) IDIR
o R —
IF( IDIR .EQ. 1 ) THEN
K=20
Cmmm oo
DO 14 I = NPOP, 1, -1
K=K+ 1
XWORK (K) = FXDATA(I)
YWORK (K) = FYDATA (I)
14 CONTINUE
G
@
DO 15 I = 1, NPOP
FXDATA(I) = XWORK(I)
FYDATA (I} = YWORK(I)
15 CONTINUE
Cmmm
END IF
Cm——
C
C FILL WORK ARRAYS WITH DATA WITHIN SELECTED INDEX RANGE AND COLUMN.
C
4 CONTINUE
WRITE (*, 807)
READ (*, *) XBEG, XEND
o ——

DO 18 I = 1, NPOP

IF( FXDATA(I) .EQ. XBEG ) NBEG = I
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IF{ FXDATA(I) .EQ. XEND ) NEND = I

18 CONTINUE

IF( NBEG .LT. 1 ) THEN

WRITE(*, 810)

GOTO 4
END IF
QP ——
C ________
IF( NEND .GT. NPOP ) THEN
WRITE (*, 810)
GOTO 4
END IF
C ________
NCASE = 0
C ________
DO 16 I = 1, NPOP
C ____________
IF( I .GE. NBEG .AND. I .LE. NEND ) THEN
NCASE = NCASE + 1
FXVAL (NCASE) = FXDATA(I)
FYVAL (NCASE) = FYDATA(I)
XDATA (NCASE) = FINDEX(I}
YDATA (NCASE) = FYVAL (NCASE)
END IF
C ___________
16 CONTINUE
C ________
C

C COMPUTE FULL SAMPLE STATISTICS AND OUTPUT RESULTS

C
CALL UNIVAR( NCASE, NVALS, NMISS, YBAR, YVAR, YSUM )
CALL RCOEFF ( NCASE, BO, Bl )

IRANGE = NEND — NBEG + 1

WRITE (OUNIT, 902) FXVAL(1l), FXVAL(IRANGE), NVALS, NMISS, YBAR,

+ YVAR, Bl
WRITE (*, 902) FXVAL(l), FXVAL(IRANGE), NVALS, NMISS, YBAR,
+ YVAR, Bl
1 CONTINUE

WRITE (*, 808)
READ (*,*) H

WRITE (OUNIT, 903)



Apr 28 16:35 1993 sequitor.f Page 5

WRITE (*, 903)

C
C COMPUTE SUB-SAMPLE STATISTICS.
C
POPVAR = YVAR
NN =0
K=20
N=20
IBEG = -(H) + 1
C ________
DO 17 I = NBEG, NEND
K=K+ 1
IBEG = IBEG + 1
N=N+1
C ___________
IF( FYVAL(N) .GT. FMISS ) THEN
NN = NN + 1
YDATA (NN) = FYVAL(N)
END IF
c ___________
oD ——
IF( K .EQ. H ) THEN
CALL UNIVAR( NN, NVALS, NMISS, YBAR, YVAR, YSUM )
C
C COMPUTE CHI-SQUARE VALUES.
c
Cm e
IF( NVALS .GT. O ) THEN
$2 =0
Cm— e
DO 19 M =1, NN
IF ( YDATA(M) .NE. FMISS )
+ 52 = 82 + (YDATA (M) - YBAR) **2
19 CONTINUE
C
FCHIZ(N) = S2 / POPVAR
ELSE
FCHI2 (N) = FMISS
END IF
C
C
C OUTPUT SUB-SAMPLE STATISTICS.
C

II = (I-H) + 1
IEND = IBEG + B - 1
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WRITE (OUNIT, 904) II, I, FXVAL(IBEG), FXVAL(IEND), NVALS,
NMISS, YBAR, YVAR, FCHIZ(N)
WRITE (*, 904) II, I, FXVAL(IBEG), FXVAL(IEND), NVALS, NMISS,
YBAR, YVAR, FCHI2(N)

BRANCH OFF TO APPROPRIATE SUBROUTINE, CHANGE SUB-SAMPLE SIZE,
CHANGE COLUMN NUMBER, OR STOP PROGRAM.

IF CHOOSING CHI-SQUARE, THE NUMBER OF CASES BECOMES THE NUMBER
OF SUB-SAMPLE INTERVALS.

CONTINUE

WRITE(*,809)
READ (*,*) ITYPE

IF( ITYPE .EQ. 0 ) THEN
GOTO 1
ELSE IF( ITYPE .EQ. 1 ) THEN

WRITE (OUNIT, 1001)
WRITE(*,1001)

CALL SGAUSS
ELSE IF( ITYPE .EQ. 2 ) THEN

WRITE (OUNIT, 1002)
WRITE(*,1002)

CALL SPOISS
ELSE IF( ITYPE .EQ. 3 ) THEN

WRITE (OUNIT, 1003)
WRITE (*,1003)

NCASE = INTERVL
CALL SCHI
ELSE IF( ITYPE .EQ. 4 ) THEN

WRITE (OUNIT, 1004)
WRITE (*,1004)

CALL SLINEAR
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101

801
802
803
804
805
806
807
808
809

810

900

501

902

+ 4+ + + + +

ELSE IF( ITYPE .EQ. 6 ) THEN
GOTO 3

ELSE IF( ITYPE .EQ. 7 ) THEN
GOTO 4

ELSE IF( ITYPE .EQ. 8 ) THEN
GOTO 5

ELSE IF( ITYPE .EQ. 9 ) THEN

WRITE (OUNIT, 807)
WRITE (*, 307)

GOTO 999
ELSE

WRITE (*, 905)

GOTO 2
END IF
GOTO 2
FORMAT (A)

FORMAT (* ENTER INPUT FILE NAME:')
FORMAT (* ENTER DESCRIPTIVE TITLE:')
FORMAT (* ENTER NUMBER OF VALUES IN SERIES:’)
FORMAT (* ENTER MISSING VALUE:’)
FORMAT (* ENTER COLUMN NUMBER:')
FORMAT (* ENTER 0=CONTINUE, 1=REVERSE DATA INPUT ORDER:’)
FORMAT (* ENTER BEGINNING AND ENDING X-RANGE VALUES:')
FORMAT (/,” ENTER WINDOW SIZE FOR SUB-SAMPLES:’)
FORMAT (/* ENTER ANALYSIS TYPE’,/,
’ 1=GAUSS, 2=POISSON, 3=CHI-SQUARE, 4=LINEAR,’,/,
" 0=CHANGE SUB-SAMPLE SIZE, 6=CHANGE COLUMN NUMBER,’, /,
’ 7=CHANGE DATA RANGE, 8=REVERSE DATA ORDER, 9=QUIT:’)
FORMAT (/' RANGE EXCEEDS TOTAL NUMBER OF CASES’)

FORMAT (* INVERSE SEQUENTIAL MONITORING (PROGRAM <SEQUITOR>)’)
FORMAT (//,A)

FORMAT (/, ' FULL SAMPLE UNIVARIATE STATISTICS:’,/,
’X-VALUE RANGE = ' ,F5.0,'-’,F5.0,/,
NUMBER OF VALUES = ’,I3,/,

"NUMBER OF MISSING VALUES = ‘,1I3,/,
"SAMPLE MEAN = ’,F8.3,/,

SAMPLE VARIANCE = ’,F8.3,/,
SAMPLE SLOPE = ’,F8.3)
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903 FORMAT (/,’ SUB-SAMPLE PARAMETERS:', /,

+ * INDEX X-VALUE NUMBER OF MISSING’,/, '

+ ’ RANGE RANGE VALUES VALUES MEAN VARIANCE',
+ *  CHI-SQUARE’,/,

+ ! —mm==== =========== ========= ====s=== ======== ========',
+ ’ ==========l )

904 FORMAT (I3,’-',13,2X,F5.0,"~",F5.0,2X%,19,2X,17,2(2X,F8.3),
+ 2X,F10.3)

905 FORMAT(/,’>>> NOT A VALID SELECTION <<<’,/)

907 FORMAT(//’END OF SEQUITOR RUN’)

1001 FORMAT (/, @ === e e e e +,
+ /,” | TEST FOR CHANGE IN GAUSSIAN MEAN AND VARIANCE |’,
+ T Attt +7)
1002  FORMAT(/,’ 4=————=—==m——m———————— oo +7,
+ /,’ | TEST FOR CHANGE IN POISSON MEAN |',
+ P e +7)

+ F A et +7,
+ /,’| TEST FOR CHANGE IN CHI-SQUARE DEGREES OF FREEDOM |’,
+ R ——————————e - +7)
1004  FORMAT (/,’ +———==——— e oo +,
+ /,” | TEST FOR CHANGE IN LINEAR TREND |’,
+ /o H———— ——— —————————— +7)
999  STOP
END

C555555555555555555S555555585555555555555555555555555555555555555S5555588S
SUBROUTINE SGAUSS '

SUBRQUTINE TO COMPUTE CHANGE IN GAUSSIAN MEAN AND VARIANCE.

VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
" BARM’ MEAN OF BASE PERIOD VALUES.

 BARMJ’ PROGRESSIVE MEAN.

‘DGAMMA’ CHANGE IN GAMMA FROM PREVIOUS VALUE.

" GAMMA' GAMMA VALUE.

GAMOLD’ PREVIOUS VALUE OF GAMMA.

QOO0 000000000n0

g’ PROGRESSIVE VALUE INDEX.

rJJ’ DO LOOP COUNTER.

rJ1’ STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
rJ2’ ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
oy REAL VALUE OF NUMBER OF BASE VALUES.

’ MBASE’ NUMBER OF BASE PERIOD VALUES.

Qf RATIO OF QMJ/QM.

QM BASE PERIOD LIKELIHOOD RATIO.

’QMJ’ PROGRESSIVE PERIOD LIKELIHOOD RATIO.

" SDM’ STANDARD DEVIATION OF BASE PERIOD VARIANCE.

" SDM2’ BASE PERIOD VARIANCE.
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OO0 00

[eNoNeNe]

OO0

' SDMJ’
" SDMJ2’
ITl'
’T2I
IT3I

PROGRESSIVE STANDARD DEVIATION.

PROGRESSIVE VARIANCE.

WORK VARIABLE; FIRST TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.
WORK VARIABLE; SECOND TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.
WORK VARIABLE; THIRD TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.

PARAMETER (NDIM=150)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA (NDIM),

YDATA (NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,
OUNIT, FMISS

REAL J, M
INTEGER OUNIT

FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
STATISTICS, AND OUTPUT RESULTS.

CONTINUE

WRITE (*, 801)
READ (*, *) MBASE

DO 20 I = 1, MBASE

XDATA(I) = FINDEX(I)
YDATA (I) = FYVAL(I)
CONTINUE

IF( NVALS .GT. 0 ) THEN

WRITE (OUNIT, 1001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS, YBAR,
YVAR
WRITE(*,1001) FXVAL(1l), FXVAL(MBASE), NVALS, NMISS, YBAR,
YVAR

ELSE

WRITE(*,1000)
RETURN

WRITE (*, 802)
READ(*, *) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

WRITE (OUNIT, 1002)
WRITE (*,1002)

INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOCP.

BARM = YBAR
SDM = SQRT (YVAR)
SDM2 = YVAR
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[eNONSNONS]

OO0

M =

FLOAT (MBASE)

GAMOLD = FMISS

Jl =
J2

0

MBASE + 1
NCASE

FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND
OUTPUT RESULTS.

DO 22 JJ = J1, J2

XDATA (JJ) = FINDEX(JJ)

YDATA (JJ)

FYVAL (JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YBAR, YVAR, YSUM )

COMPUTE GAMMA. SEE TEXT FOR EQUATION DETAILS.

IF( NVALS .GT. 0 ) THEN

BARMJ = YBAR
SDMJ = SQRT (YVAR)
SDMJ2 = YVAR
J = FLOAT(JJ) — M

Tl = M * ALOG(SDM / SDMJ )
T2 = ((M-1.) / 2.) * (1. - (SDM2 / SDMJ2))
T3 = (M / (2. * SDM2)) * (BARMJ — BARM) **2

QM = EXP (T1 + T2 - T3)

Tl = (M + J)* ALOG(SDM / SDMJ )
T2 = ((M + J —1.) / 2.) * ((SDMJ2 / SDM2) - 1.)
T3 = ((M + J) / (2. * SDM2)) * (BARMJ — BARM)**2

QMJ = EXP(T1 + T2 + T3)

Q=QMJ / QM
GAMMA = 1. / (1. + SQRT(Q))
DGAMMA = GAMOLD - GAMMA

IF{( GAMOLD .EQ. FMISS ) THEN

WRITE (OUNIT, 1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
GAMMA, CFLAG
WRITE(*,1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
GAMMA, CFLAG

ELSE

WRITE (OUNIT,1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
GAMMA, CFLAG, DGAMMA
WRITE (*,1003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
GAMMA, CFLAG, DGAMMA
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OO0 0O000000000

GAMOLD = GAMMA
ELSE

WRITE (OUNIT,1004) JJ, FXVAL(JJ), YDATA(JJ)
WRITE (*,1004) JJ, FXVAL(JJ), YDATA(JJ)
GAMOLD = FMISS

WRITE (*, 802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

801 FORMAT (/,’ ENTER NUMBER OF VALUES IN BASE PERIOD:’)
802 FORMAT (/,’ ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:’)

1000 FORMAT (* ALL VALUES IN BASE PERIOD MISSING')

1001 FORMAT (/, ' BASE PERIOD PARAMETERS:’,/,
*X-VALUE RANGE = ’,F5.0,"'-",F5.0,/,
NUMBER OF VALUES = ’,I3,/,

NUMBER OF MISSING VALUES = ’,1I13,/,
‘BASE MEAN = " ,F¥8.3,/,

‘BASE VARIANCE = ’,F8.3,/)

+ + + + +

1002 FORMAT(/, ' PROGRESSIVE PARAMETERS:’, /,
‘ X Y DELTA’, /,
+ " INDEX OBSERVATIONS MEAN VARIANCE GAMMA GAMMA’ , /,

+

1003 FORMAT (I5,2X,F8.3,1X,F7.2,2(2X,F8.3),2X,F6.3,2X,F6.3)
1004 FORMAT (I5,2X,F8.3,1X,F7.2)

RETURN
END

SUBROUTINE SPOISS

SUBROUTINE TO COMPUTE CHANGE IN POISSON MEAN.

VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

' BARM’ MEAN OF BASE PERIOD VALUES.

' BARMJ' PROGRESSIVE MEAN.

"DGAMMA’ CHANGE IN GAMMA FROM PREVIOUS VALUE.

" GAMMA' GAMMA VALUE.

GAMOLD’ PREVIOUS VALUE OF GAMMA.

"3’ PROGRESSIVE VALUE INDEX.

r3J3’ DO LOOP COUNTER.

rJ1’ STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
rJa’ ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
M’ REAL VALUE OF NUMBER OF BASE VALUES.

" MBASE’ NUMBER OF BASE PERIOD VALUES.
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oNeNONGNS]

[oEeNeNe!

IQI

ITll
’ TZI
IT3I

COMBINED LIKELIHOOD RATIOS.

WORK VARIABLE; FIRST TERM IN EITHER Q EQUATION.

WORK VARIABLE; SECOND TERM IN EITHER Q EQUATION.
WORK VARIABLE; THIRD TERM IN EITHER Q EQUATION.

PARAMETER (NDIM=150)

COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),
YDATA (NDIM), FINDEX(NDIM), FCHIZ(NDIM), NCASE,
OUNIT, FMISS

REAL J, M

INTEGER OUNIT

FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
STATISTICS, AND OUTPUT RESULTS.

CONTINUE

WRITE (*, 801)
READ(*, *) MBASE

DO 20 I = 1, MBASE
XDATA(I) = FINDEX(I)
YDATA(I) = FYVAL(I)

CONTINUE

IF( NVALS .GT. 0 ) THEN

WRITE (OUNIT, 2001) FXVAL(1l), FXVAL(MBASE), NVALS, NMISS,
YBAR, YVAR, YSUM
WRITE (*,2001) FXVAL(l), FXVAL(MBASE), NVALS, NMISS, YBAR,
YVAR, YSUM

ELSE

WRITE (*,2000)
RETURN

WRITE (*, 802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

WRITE (OUNIT, 2002)
WRITE (*,2002)

INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.

BARM = YBAR

M = FLOAT (MBASE)
GAMOLD = FMISS
Jl = MBASE + 1
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J2 = NCASE
C FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND

C OUTPUT RESULTS.

DO 22 JJ = J1, J2

XDATA (JJ)
YDATA (JJ)

FINDEX (JJ)
FYVAL(JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YBAR, YVAR, YSUM )

COMPUTE GAMMA. SEE TEXT FOR EQUATION DETAILS.

[N NONS]

IF( NVALS .GT. 0 ) THEN

BARMJ = YBAR

J = FLOAT(JJ) - M
T1 (BARMJ * (M + J)) - (BARM * M)
T2 ALOG (BARMJ / BARM)

T3 (BARMJ - BARM) * J

Q = EXP(T1 * T2 — T3)

GAMMA = 1. / (1. + SQRT(Q))

DGAMMA = GAMOLD - GAMMA

IF ( GAMOLD .EQ. FMISS ) THEN

WRITE (OUNIT, 2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA, CFLAG

WRITE (*,2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA, CFLAG

ELSE
WRITE (OUNIT,2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA, CFLAG, DGAMMA

WRITE (*,2003) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA, CFLAG, DGAMMA

GAMOLD = GAMMA
ELSE
WRITE (OUNIT, 2004) JJ, FXVAL(JJ), YDATA(JJ)

WRITE (*,2004) JJ, FXVAL(JJ), YDATA(JJ)
GAMOLD = FMISS
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WRITE (*, 802)
READ (*, *) ITYPE

IF( ITYPE .EQ.

o+ o+ + o+ o+

’

’

+ 4+ + + + +

FORMAT(/, "’
FORMAT (/,’

FORMAT ('

1) GOTO 1

ENTER NUMBER OF VALUES IN BASE PERIOD:’)
ENTER O=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:’)

ALL VALUES IN BASE PERICD MISSING')

FORMAT (/,’BASE PERIOD PARAMETERS:', /,

’X-VALUE RANGE = ’,F5.0,’-',F5.0,/,
NUMBER OF VALUES = ’,13,/,
"NUMBER OF MISSING VALUES =
‘BASE MEAN = ’,F8.3,/,
‘BASE VARIANCE = ’,F8.3,/,
"BASE SUM = ‘,F6.0,/)

',I3,/,

FORMAT (/, ' PROGRESSIVE PARAMETERS:',/,

X Y .,

DELTA’, /,
 INDEX
GAMMA’, /,

OESERVATIONS VARIANCE SUM

FORMAT (I5,2X,F8.3,1X,F7.0,2(2X,F8.3),2X,£6.0,2X,F6.3,2X,F6.3)

FORMAT (I5,2X,F8.3,1X,F7.0)

RETURN

END

SUBROUTINE SCHI

SUBROUTINE TO COMPUTE CHANGE IN CHI-SQUARE DEGREES OF FREEDOM.

VARIABLES
* CHANGE'
IDI

” DGAMMA
’ GAMMA’

’ GAMNUM’
* GAMOLD’
IJI

IJJ’

lJl'

IJ2I

IMI

* MBASE’
IN'UMI

’ NUMJ’

’ OLDPROD’
’ PRODZ’
’Q’

’ SUMCHI2’
’ Tll

USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
PERCENT CHANGE OF ‘OLDPROD’ TO ’'PRODZ’.

GAMMA FUNCTION CONSTANT.

CHANGE IN GAMMA FROM PREVIOUS VALUE.

GAMMA VALUE.

VALUE OF THE GAMMA FUNCTION.

PREVIQUS VALUE OF GAMMA.

PROGRESSIVE VALUE INDEX.

DO LOOP COUNTER.

STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
REAL VALUE OF NUMBER OF BASE VALUES.

NUMBER OF BASE PERIOD VALUES.

BASE PERIOD MEAN.

PROGRESSIVE MEAN.

PREVIOUS VALUE OF ’PRODZ’.

PRODUCT OF GAMMA FUNCTION EULER RELATION.

COMBINED LIKELIHOOD RATIOS.

PROGRESSIVE SUM OF CHI-SQUARE VALUES.

WORK VARIABLE; FIRST TERM IN EITHER Q EQUATION.
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[oNONONORSNS!

[oNeNeNe!

OO0

IT21

IT3I
IZI

FIRST TERM IN GAMMA FUNCTION EULER RELATION.
WORK VARIABLE; SECOND TERM IN EITHER Q EQUATION.

SECOND TERM IN GAMMA FUNCTION EULER RELATION.
WORK VARIABLE; THIRD TERM IN EITHER Q EQUATION.
VALUE USED IN GAMMA FUNCTION EULER RELATION.

PARAMETER (NDIM=150)

COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),
YDATA(NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,
OUNIT, FMISS

REAL J, M, NUM, NUMJ

INTEGER OQOUNIT

D = .5772156649

FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
STATISTICS, AND OUTPUT RESULTS.

CONTINUE

WRITE (*, 801)
READ (*, *) MBASE

DO 20 I = 1, MBASE

XDATA(I) = FLOAT(I)
YDATA(I) = FCHI2(I)
CONTINUE

CALL UNIVAR( MBASE, NVALS, NMISS, YBAR, YVAR, YSUM )
IF( NVALS .GT. 0 ) THEN

WRITE (OUNIT, 3001) FXVAL(1l), FXVAL(MBASE), NVALS, NMISS, YBAR
WRITE (*,3001) FXVAL(1l), FXVAL(MBASE), NVALS, NMISS, YBAR

ELSE

WRITE (*, 3000)
RETURN

WRITE (*, 802)
READ (*, *) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

WRITE (OUNIT, 3002)
WRITE (*, 3002)

COMPUTE GAMMA FUNCTION FOR THE BASE PERIOD.

10,000 ITERATIONS OF THE LOOP IS ARBITRARY, BUT DOES SEEM TO ALLOW
FOR REASONABLE CONVERGENCE OF THE FUNCTION. ‘CHANGE’ IS USED TO
COMPUTE THE PERCENT CHANGE FROM THE PREVIOUS FUNCTION VALUE.
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€ THUS, IT CAN BE USED TO EXIT FROM A LARGE ITERATION LOOP.
C HOWEVER, WE HAVE NOT USED THIS CRITERIA CONSISTENTLY THUS FAR, BUT
¢ WILL LEAVE IT BUILT INTO THE CODE FOR NOW.

NUM = YBAR
PRODZ = 1.
Z = NUM / 2.

DO 26 1 1, 10000

Tl = 1. + 2 / FLOAT(I)

T2 = EXP(-Z / FLOAT(I))

PRODZ = PRODZ * Tl * T2
C IF( I .GT. 1 ) CHANGE = ABS((OLDPROD - PRODZ) / OLDPROD)
c IF( CHANGE .LE. 1.E-5 ) GOTO 27
C OLDPROD = PRODZ
26 CONTINUE
27 CONTINUE

GAMNUM = 1. / (2 * EXP(D * Z) * PRODZ)

INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.

[eNeXe®]

J1 = MBASE + 1
J2 = NCASE

M = FLOAT (MBASE)
GAMOLD = FMISS
SUMCHIZ = 0.

FILL PRCGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND
OUTPUT RESULTS.

DC 22 JJ = Ji, J2

OO0

SUMCHI2 = SUMCHIZ + ALOG(FCHIZ2(JJ))
XDATA (JJ) = FLOAT (JJ)
YDATA (JJ) FCHIZ (JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YBAR, YVAR, YSUM )

IF( NVALS .GT. 0 ) THEN

(@]

COMPUTE GAMMA FUNCTION FOR PROGRESSIVE VALUES.
SEE FURTHER DESCRIPTION ABOVE.

[eNeNe NS

NUMJ = YBAR

J = FLOAT(JJ) - M
PRODZ = 1.

2 = NUMJ / 2.
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DO 28 I =1, 10000

Tl 1. + Z / FLOAT(I)
T2 = EXP (-2 / FLOAT(I))
PRODZ = PRODZ * T1 * T2

c IF( I .GT. 1 ) CHANGE = ABS((OLDPROD - PRODZ)
C + / OLDPROD)
C IF( CHANGE .LE. 1.E-5 ) GOTO 29
C OLDPROD = PRODZ
28 CONTINUE
C;;__-___——__—EONTINUE

GAMNUMJ = 1. / (Z * EXP(D * Z) * PRODZ)

C COMPUTE GAMMA . SEE TEXT FOR EQUATION DETAILS.
C
Tl = (J * (NUM — NUMJ) * ALOG(2.)) / 2.
T2 J * ALOG(GAMNUM / GAMNUMJ)
T3 ((NUMJ — NUM) / 2.) * SUMCHIZ2
Q = EXP(T1 + T2 + T3)

GAMMA = 1. / (1. + SQRT(Q))
DGAMMA = GAMOLD - GAMMA

IF ( GAMOLD .EQ. FMISS ) THEN
WRITE (OUNIT, 3003) JJ, YDATA(JJ), NUMJ, GAMMA, CFLAG
ELSE

WRITE (OUNIT, 3003) JJ, YDATA(JJ), NUMJ, GAMMA, CFLAG,
+ DGAMMA

END IF

GAMOLD = GAMMA
ELSE

WRITE (OUNIT, 3004) JJ, YDATA(JJ)
WRITE (*, 3004) JJ, YDATA(JJ)
GAMOLD = FMISS

WRITE (*, 802)
READ (*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1
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801 FORMAT(/," ENTER NUMBER OF VALUES IN BASE PERIOD:’)
802 FORMAT (/,’ ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:’)
3000 FORMAT (’ ALL VALUES IN BASE PERIOD MISSING’)
3001 FORMAT (/,’ BASE PERIOD PARAMETERS:', /,
+ "X-VALUE RANGE = ’',F5.0,’-',F5.0,/,
+ ‘NUMBER OF VALUES = ',13,/,
+ "NUMBER OF MISSING VALUES = ’,1I3,/,
+ "BASE DEGREES OF FREEDOM = ’,F8.3,/)
3002 FORMAT (/, ' PROGRESSIVE PARAMETERS:’, /,
+ 7 CHI-SQUARE DELTA’, /,
+ “INDEX OBSERVATIONS MEAN GAMMA GAMMA', /,
+ ’ ==== ===zsomz= 2 =o=—==== @ =m=——= ’ )
3003 FORMAT (I5,2X,F10.3,2X,F8.3,2X%X,F6.3,2X,F6.3)
3004 FORMAT (I5,2X,F10.3)
RETURN
END

SUBROUTINE SLINEAR

SUBROUTINE TO COMPUTE CHANGE IN LINEAR TREND.

VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

IAMI
IBM’

’ DMI
"DMJ’

’ DENOM'’
"DGAMMA’
’ GAMMA’
’ GAMOLD’
r Il

’ Jl

’ JJ'

’ Jll

’ J21
’LNL1’
’LNL2’
fLNL3’

’ LNL4’
IMI
MBASE’
" PREDM’
" PREDMJ’
IQI

'QMI

’ QMJI
"RESIDM’
RESIDMJ’
f SSM’

" S8MJ’

BASE PERIOD INTERCEPT FROM LLS REGRESSION.

BASE PERIOD SLOPE FROM LLS REGRESSION.

CONSTANT USED IN Q(M) LIKELIHOOD RATIO.

CONSTANT USED IN Q(M+J) LIKELIHOOD RATIO.

DENOMINATOR IN ’T21’ AND ‘T22° TERMS.

CHANGE IN GAMMA FROM PREVIOUS VALUE.

GAMMA VALUE.

PREVIOUS VALUE OF GAMMA.

DO LOOP COUNTER.

PROGRESSIVE VALUE INDEX.

DO LOOP COUNTER.

STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
NATURAL LOG LIKELIHROOD 1.

NATURAL LOG LIKELIHOOD 2.

NATURAL LOG LIKELIHOOD 3.

NATURAL LOG LIKELIHOOD 4.

REAL VALUE OF NUMBER OF BASE VALUES.

NUMBER OF BASE PERIOD VALUES.

PREDICTED VALUES FROM REGRESSION EQUATION USING ’M’
PREDICTED VALUES FROM REGRESSION EQUATION USING ‘M+J’
RATIO OF QMJ/QM.

BASE PERIOD LIKELIHOOD RATIO.

PROGRESSIVE PERIOD LIKELIHOOD RATIO.

ARRAY OF BASE PERIOD RESIDUALS FROM LLS REGRESSION.
ARRAY OF PROGRESSIVE VALUE RESIDUALS FROM LLS REGRESSION.
SUM OF SQUARES FOR BASE PERIOD.

SUM OF SQUARES FOR ‘M+J’ VALUES.

VALUES.
VALUES.
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C ' SUMT2’ SUM OF ‘T2’ TERM IN ‘LNL1’ AND ’LNL4’ FORMULAE.
C ’SUMT21’ SUM OF ’'T2’ TERM IN ’LNLZ’ FORMULAE.
C ’SUMT22’ SUM OF ’'T2’ TERM IN ’LNL3’ FORMULAE.
c T REAL VALUE OF BASE PERIOD LOOP INDEX.
c ’Tl’ WORK VARIABLE FOR FIRST TERM IN ‘LNL1‘’ AND ' LNL4’ FORMULAE.
c T2’ WORK VARIABLE FOR SECOND TERM IN ’LNL1’ AND ‘LNL4’ FORMULAE.
c 'Til’ WORK VARIABLE FOR FIRST TERM IN ‘LNL2‘ FORMULAE.
c r'Tlz2’ WORK VARIABLE FOR FIRST TERM IN ‘LNL3’ FORMULAE.
c ’'T21’ WORK VARIABLE FOR SECOND TERM IN ’‘LNL2Z" FORMULAE.
c rT22’ WORK VARIABLE FOR SECOND TERM IN ‘LNL3" FORMULAE.
C
PARAMETER (NDIM=150)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA (NDIM),
+ YDATA (NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,
+ OUNIT, FMISS
REAL RESIDM(NDIM), RESIDMJ(NDIM), PREDM(NDIM), PREDMJ(NDIM)
REAL M, J, LNL1l, LNL2, LNL3, LNL4
INTEGER OUNIT
C
C FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
C STATISTICS, AND OUTPUT RESULTS.
C
1 CONTINUE
WRITE (*, 801)
READ (*, *) MBASE
c ________
DO 20 I = 1, NCASE
XDATA(I) = FINDEX(I)
YDATA (I) = FYVAL(I)
20 CONTINUE
C ________
CALL UNIVAR( MBASE, NVALS, NMISS, YBAR, YVAR, YSUM )
o ——
IF( NVALS .GT. 0 ) THEN
CALL RCOEFF( MBASE, AM, BM )
WRITE (OUNIT, 4001) FXVAL(1), FXVAL(MBASE), NVALS, NMISS,
+ YBAR, YVAR, BM
WRITE (*, 4001) FXVAL(1l), FXVAL(MBASE), NVALS, NMISS, YBAR,
+ YVAR, BM
ELSE
WRITE (*, 4000)
RETURN
END IF
o —

WRITE (*, 802)
READ (*, *) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1
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WRITE (OUNIT, 4002)
WRITE (*, 4002)

M = FLOAT (MBASE)
DM = (M * (M**2 - 1.)) / 12.

SSM = 0
C ________
DO 22 I = 1, MBASE
C ___________
IF{( YDATA(I) .NE. FMISS ) THEN
SSM = SSM + (YDATA(I) -~ YBAR)**2
END IF
C ___________
22 CONTINUE
C ________
C ________
DO 23 I = 1, NCASE
C ___________
IF( YDATA(I) .NE. FMISS ) THEN
PREDM(I) = (XDATA(I) * BM + AM)
RESIDM(I) = (YDATA(I) - PREDM(I))
ELSE
PREDM(I) = FMISS
RESIDM(I) = FMISS
END IF
Cmm -
23 CONTINUE
C ________
SUMT2 = 0.
Tl = (-1.) * (M~ 2.) / (2. * (SSM —~ (BM**2 * DM)))
C ________
DO 24 I = 1, MBASE
O —
IF( YDATA(I) .NE. FMISS ) THEN
T = FLOAT(I)
T2 = RESIDM(I)**2 / (((M + 1.) / M)
+ + (T - (M + 1.) / 2.))**2 / DM)
SUMT2 = SUMTZ + T2
END IF
C—m——————_ e
24 CONTINUE
LNL1 = T1 * SUMT2
C ________
o

C INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.
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GAMOLD = FMISS
Jl = MBASE + 1
J2 NCASE

OUTPUT RESULTS.

DO 26 JJ = J1, J2

OO0 0an

XDATA (JJ)
YDATA (JJ)

FINDEX (JJ)
FYVAL (JJ)

FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND

CALL UNIVAR( JJ, NVALS, NMISS, YBAR, YVAR, YSUM )

IF( YDATA(JJ) .EQ. FMISS ) NVALS = 0
C

C COMPUTE EQUATION TERMS AND GAMMA. SEE TEXT FOR EQUATION DETAILS.

IF( NVALS .GT. 0 ) THEN
CALL RCOEFF( JJ, AMJ, BMJ )
SSMJ = 0.

J = FLOAT(JJ) — M
DMJT = ((M + J) * ((M + J)**2 - 1.)) / 12.

SSMJ = SSMJ + (YDATA(I) - YBAR)**2
PREDMJ(I) = (XDATA(I) * BMJ + AMJ)
RESIDMJ(I) = (YDATA(I) — PREDMJ(I))

30 CONTINUE

Tl = (—l.i * (M- 2.) / (2. * (SSM - (BMJ**2 * DM)))

DO 32 I = 1, MBASE
T = FLOAT(I)

T2 = RESIDMJ(I)**2 / (((M + 1) / M) +
+ (T - ((M+1.) / 2.))**2 / DM)

SUMT2 = SUMT2 + T2

32 CONTINUE

LNL4 = T1 * SUMTZ2

SUMT21
SUMT22

0.
0
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M+ J-2.)
(SSMJ - (BMJ**2 * DMJ)))
M+ 3J-2.)
(SSMJ - (BM**2 * DMJ)))

~
e R .
* ok 4 *

DO 34 I =1, JJ
T = FLOAT(I)

DENOM = (M + J +1.) / (M + D))
+ ((T - ((M+ J+ 1.) / 2.))**2 / DMJ)

T21 = RESIDMJ(I)**2 / DENOM
T22 RESIDM(I)**2 / DENOM

SUMT21 SUMT21 + T21
SUMT22 = SUMT22 + T22

CONTINUE

T1ll * SUMT21
T12 * SUMT22

[

4

=

w
nn

QM = EXP (LNL4 - LNL1)

QMJ = EXP (LNL2 - LNL3)

Q =QMJ / QM

GAMMA = 1. / (1. + SQRT(Q))
DGAMMA = GAMOLD -~ GAMMA

IF ( GAMOLD .EQ. FMISS ) THEN

WRITE (OUNIT, 4003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
BMJ, GAMMA
WRITE(*,4003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
BMJ, GAMMA

ELSE

WRITE (OUNIT, 4003) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
BMJ, GAMMA, DGAMMA
WRITE(*,4003) JJ, FXVAL(JJ), YDATA{(JJ), YBAR, YVAR,
BMJ, GAMMA, DGAMMA

END IF

GAMOLD = GAMMA

ELSE

WRITE (OUNIT, 4004) JJ, FXVAL(JJ), YDATA(JJ)
WRITE (*,4004) JJ, FXVAL(JJ), YDATA(JJ)




Apr 28 16:35 1993 sequitor.f Page 23

WRITE (*, 802)
READ (*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

801 FORMAT (/,’ ENTER NUMBER OF VALUES IN BASE PERIOD:')
802 FORMAT(/,’ ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:’)

4000 FORMAT (* ALL VALUES IN BASE PERIOD MISSING’)

4001 FORMAT (/, ' BASE PERIOD PARAMETERS:’,/,

+ ' X-VALUE RANGE = ’,F5.0,'-',F5.0,/,
+ NUMBER OF VALUES = ’,1I3,/,

+ *NUMBER OF MISSING VALUES = ‘,I3,/,
+ *BASE MEAN = ' ,F8.3,/,

+ ‘BASE VARIANCE = ’,F8.3,/,

+

‘BASE SLOPE = ’,F6.3,/)

4002 FORMAT (/, ' PROGRESSIVE PARAMETERS:’,/,

X Y ",
! DELTA’, /,
’ INDEX OBSERVATIONS MEAN VARIANCE SLOPE GAMMA' ,

’ GAMMA’, /,

+ 4+ + 4+ + +

4003 FORMAT(I5,2X,F8.3,1X,F7.2,2(2X,F8.3),2(2X,F6.3),2X%,F6.3)

4004 FORMAT (15,2X,F8.3,1X,F7.2)

RETURN
END
C _____ e e e e e e e o e T o . . . o e i e S i P s T e e e e
SUBROUTINE RCOEFF( N, BO, Bl )
C
C SUBROUTINE TO COMPUTE LINEAR LEAST SQUARES (LLS) INTERCEPT AND SLOPE.
C
¢ VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
c '1’ DO LOOP COUNTER.
c ’'N’ NUMBER OF VALUES.
C 'NN’ COUNTER FOR NON-MISSING VALUES.
C rsxz’ SUMS OF SQUARED DEVIATIONS FROM THE MEAN X-VALUE.
C 78Xy’ SUM OF THE CROSS PRODUCTS OF DEVIATIONS.
c ’SsuMx’ SUM OF NON-MISSING X-VALUES.
c ‘SsumMy’ SUM OF NON-MISSING Y-VALUES.
C ’SUMSX2’ SUM OF X~-VALUES SQUARED.
C ’'SUMSXY’ SUM OF X TIMES Y SQUARED.
C 'XBAR’' MEAN OF NON-MISSING X-VALUES.
C ’XBAR2‘ NUMBER OF NON-MISSING VALUES TIMES "XBAR’ SQUARED.
C ‘XWORK’ WORK ARRAY FOR X-VALUES.
C “XYN’ ’¥BAR’ TIMES ‘YBAR’ TIMES NUMBER OF NON-MISSING VALUES.
C 'YBAR' MEAN OF NON-MISSING Y-VALUES.
C ’YWORK’ WORK ARRAY FOR Y-VALUES.
o

PARAMETER (NDIM=150)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),
+ YDATA (NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,
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+ OUNIT, FMISS
REAL XWORK(NDIM), YWORK (NDIM)
INTEGER OUNIT

SUMX
SUMY
NN = 0

0.
0.

C
C FILL WORK ARRAYS WITH NON-MISSING VALUES.
C

C ________
DO 15 I =1, N
C ___________
IF( YDATA(I) .GT. FMISS ) THEN
NN = NN + 1
XWORK (NN) = XDATA (I)
YWORK (NN) = YDATA(I)
END IF
C ____________
15 CONTINUE
C ________
C
C COMPUTE SUMS OF X- AND Y-VALUES.
C
C ________
DO 20 I =1, NN
SUMX = SUMX + XWORK(I)
SUMY = SUMY + YWORK (I)
20 CONTINUE
C ________
C
C COMPUTE MEANS OF X- AND Y-VALUES.
C
XBAR = SUMX / FLOAT (NN)
YBAR = SUMY / FLOAT (NN)
SUMSX2 = 0.
SUMSXY = 0
o
C COMPUTE SUMS OF SQUARED DEVIATIONS AND CROSS PRODUCTS.
o
C ________
DO 22 I =1, NN
SUMSX2 = SUMSX2 + XWORK(I) **2
SUMSXY = SUMSXY + (XWORK(I) * YWORK(I))
22 CONTINUE
C ________

XBAR2 = XBAR**2 * FLOAT (NN)
XYN = XBAR * YBAR * FLOAT (NN)
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SX2 = SUMSXZ - XBAR2

SXY = SUMSXY - XYN
COMPUTE COEFFICIENTS.
Bl = SXY / SX2
BO = YBAR - Bl * XBAR
RETURN
END
SUBROUTINE UNIVAR( N, NVALS, NMISS, YBAR, YVAR, YSUM )
SUBROUTINE TO COMPUTE LINEAR LEAST SQUARES (LLS) INTERCEPT AND SLOPE.
VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
rI’ DO LOOP COUNTER.
N’ NUMBER OF VALUES.
SUMS2’ SUM OF SQUARED DIFFERENCES.
 YWORK’ WORK ARRAY FOR NON-MISSING Y~VALUES.
PARAMETER (NDIM=150)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),
+ YDATA (NDIM), FINDEX(NDIM), FCHI2(NDIM), NCASE,
+ OUNIT, FMISS
REAL YWORK (NDIM)
INTEGER OUNIT
YSUM = 0.
NVALS = 0
NMISS = 0
FILL WORK ARRAY WITH NON-MISSING VALUES.
DO 151 =1, N
IF( YDATA(I) .GT. FMISS ) THEN
NVALS = NVALS + 1
YWORK (NVALS) = YDATA (I)
ELSE
NMISS = NMISS + 1
END IF
15 CONTINUE
COMPUTE SUM OF Y-VALUES.



Apr 28 16:35 1993 sequitor.f Page 26

YSUM = YSUM + YWORK(I)

20 CONTINUE

C
C
C COMPUTE MEAN OF Y-VALUES.
C
YBAR = YSUM / FLOAT (NVALS)

C
C COMPUTE SUM OF SQUARED DIFFERENCES.
c

SUMS2 = 0
C ________
DO 22 I = 1, NVALS
SUMS2 = SUMS2 + (YWORK(I) - YBAR)**2
22 CONTINUE
C ________
c
C COMPUTE VARIANCE OF Y-VALUES.
C
YVAR = SUMS2 / (FLOAT(NVALS) - 1)
RETURN
END




