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Abstract. An image compression system recently developed for compression of digital i l-na~es 
dominated by point sources is presented. Encoding consists of minimum-mean removal, vector 
quantization, adaptive threshold truncation, and modified Huffman encoding. Simulations art: 
presented showing that the peaks corresponding to point sources can be transmitted losslessly for 
low signal-to-noise ratios (SNR) and high point source densities while maintaining a reduced 
output bit rate. Encoding and decoding hardware has been built and tested which processes 
552,960 12-bit pixels per second at compression rates of 10:l and 4:l .  Simulation results are 
presented for the 10: 1 case only. 

1. Introduction 

Infrared images of space can be characterized by point sources such as stars and galasies. sp:ttiall!/ 
structured sources from galactic matter, moving objects such as planets and asteroids, :inti  tile 

background due to the zodiacal dust in the solar system [ I ] .  We present a data conipr-ession 
algorithm tailored to this type of image when point sources and/or sniall moving ob-jects are rlle 
primary features of interest. 

The compression algorithm involves a combination of a the lossy algorithm, mean-residi~al vector- 
quantization (MRVQ) [2,3,41, and the lossless algorithms run-length encoding and tIuffm;iii 
encoding [5,6]. While moderate-sized MRVQ encodes many scenes very well, including space 
backgrounds of low spatial frequency, MRVQ is not efficient for encoding point sources, sirice 
they are characterized by very high spatial frequencies. Thus the intent of the lossless stage is to 
encode the largest of the MRVQ errors and transmit as many of them as possible from the spacc 
platform using the telemetry bandwidth not needed by the MRVQ. 

Section 2 discusses the compression algorithm. Section 3 describes the scene and insr rumen r 
models used for the experiments of Section 4. Section 5 is a summary and conclusioii. 

2. A Multi-Rate Hybrid Algorithm 

The descriptions of the algorithm given in this section includes some implementation details 
specific to the system built at the Space Dynamics Laboratory (SD) in Logan, Utah. for the Spirit 3 
infrared radiometer. Some hardware trade-off issues for this algorithm are discussed in  17 1 .  W h ilc 
hardware details are distinct from the algorithm itself, they may help the reader to vis~~;ilize ~i ic  
encoding process. Refer to Figures 1 and 2 for a block diagram of the following erlcodiii? 
algorithm steps: 

1) Minimum-Mean Removal. The mean background level is estin-rated and s~~btrnctcd ~ ' I -OIU 

the original image. The estimate is made by con~puting the sample means of four 10-pixel 
blocks (vectors) and choosing the minimum. The minimum mean is subtracted from all t i ) ~ ~ r  
vectors, resulting in the mean residual. The mean value is passed to the data mill tiplexor (Step 
7) via a f i r s t -  first-out (FIFO) buffer, along with a small amount of side information w hicii 
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IMinimum of four vector sample means is recomputed every fourth vector. 
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Figure I. Block diagram of lossy encoding section, steps 1 through 3. 
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Figure 2. Block diagram of lossless stage, steps 4 through 7. 



includes some key housekeeping words. From the side information the decoder dererrnrneb 
whether the data is being compressed at a ratio of 4:l or 10:l and adjusts itself accordingly. 

Vector Quantization (VQ). Each vector of mean residual is quantized to one of 256 
codebook vectors. The codebook is structured as a 2-level tree with 16 vectors on the top Ie\/ci 
and 256 vectors on the bottom level. The codebook is searched real-time using a custom V L S I  
chip developed at Utah State University (USU) for VQ applications. The 13-bit mean sesiili~~il 
pixels are converted to 9-bit values prior to VQ to accolnrnodate the codebook processor chip: 
This is done by scaling the magnitude logarithmically using a look-up table. The magnitude of 
all values in the encoding codebook are also scaled in the same way (off-line). The address of 
the codebook vector with the least absolute difference from the residual vector is given to the 
data multiplexor (Step 7) via a FIFO buffer. 

Residual Formation. The residual is the difference between the input vector and the h4 R V Q  
result. It is formed by an inverse VQ process and subtraction from the mearl residunl. 'I'he 
inverse VQ process involves accessing the decoding codebook memory to look up the 12-l31t 
(magnitude not scaled) vector corresponding to the codebook vector chosen in Step 2. 

Adaptive Tkreshojd Truncation. The residual is compared pixel-by-pisel agaiiisz a 
threshold which depends on the instantaneous fullness level of the buffer of lossless data (see 
Step 5). If the threshold is exceeded, the residual value is sent to the nest encoding step, 
otherwise 0 is sent to the next step. The image formed by these values is callel3 the rrri~zcrrri!ii 
residual. 

Pixel-Based Huffman Encoding (PSYCHE). The truncated resicrluul 1s encocled 
losslessly by a combination of run-length and constrained Huffman coding The codeuoidj 
are precomputed off-line using an algorithm for constructing codewords of limi red m,lsli?iiirn 

length [6]. A special "header" codeword is reserved to prefix very large or verk i i i~ l lhe i>  

residual values. This reduces the amount of memory recluired to store trle c o d e w o ~ ~ l \  
Encoding involves grouping the zeroes into runs and retrieving variable-length cotie\tol ci$  
from memory to represent runs and residual values. Codewords are packed end-to-ciici , i l l t i  

placed in a FIFO buffer. The buffer is also accessed by the data multiplesor (Step 7) ,  \ v i i ~ c I ~  
empties it at a constant rate that depends on the selected compression ratio. The buffe1- fuliilc\\ 
level is used to establish the adaptive threshold of Step 4. 

Synchronization and Error Detection. At the end of each frame a synchroi~izalioi~ 
codeword is transmitted, followed by a frame count. The synchronization codewor-d is such 
that it cannot be confused with any possible concatenations of codewords. The franie coil112 is 
used by the decoder in the event of a loss of synchronization to correctly associate rhe lossless 
data frame with the MRVQ data frame. A 16-bit cyclic redundancy check (CRC) is inserrecl by 
the data multiplexor (Step 7). If the CRC computed by the decoder does not niiitch, ilie 
lossless frame is not decoded. This feature prevents the large errors that would occur- if n m is- 
aligned truncated residual were summed with the decoded MRVQ image. 

Data Multiplexing. A predefined telemetry frame format is i~nderstood by both encoder a i l d  
decoder. This format specifies the number of bits of mean, VQ, and lossless data sent i n  each 
telemetry frame. Mean values, VQ addresses and lossless data are drawn from their i-espeurivc 
FIFO buffers according to the telemetry frame format and transmitted to Earth. The ovu1-:111 
compression ratio is determined by the number of bits per frame into the compressor divideti 
by the number of bits in the telemetry frame. Therefore adjustments can be ii~acit .  to iilc 
compression ratio by adjusting either the input data rate and/or the telemetry fs:+n~e itself. I'\Yo 
modes are defined in the Spirit 3 compressor with compression ratios of 10: 1 and 1: I .  ' 1 ~ 1 1 ~  

difference between the two modes is that the 4: 1 mode has a slower input sate and ;i rele~ncir.~, 
frame with a higher proportion of lossless data. This ~iiultiple-rate capability is nec.cssi1i.y 



desirable in many image compression systems, particularly for sensors which have the 
capability of sampling at various rates but transmit their data through a telemetry ch:innel of 
fixed Ijandwidth. 

8) Estab~lisfhment of E r r o r  Bounds. Post processing can optionally be done to generate 
intervals that bound the true input signal. Whenever a non-zero residual value was transmitted 
Iosslessly the error is zero, thus the algorithm provides a subsampled image that is trarls~ilitred 
Iosslessly. Pixels where the residual was truncated by the adaptive threshold are in el-1-0s by '11 

most plus or minus the value of the threshold. Since the lossless buffer level c~t11 ht: 
deternnined by the delay between the MRVQ data and corresponding lossless data, the 
threshold can also be determined after encoding without sending side information i f  the 
threshold dependence on buffer level is known. In order to do this to full advantage, the 
hardware should be designed so that the signals which fill and empty the lossless FIFO ;~rc' 
derived from the same clock, so they can be simulated exactly. 

The decoding algorithm is simply the inverse of the encoding algorithm and will not be e1abor:tted 
upon here, 

3. Scene and Sensor R4odel 

The hardware compression system is part of the Spirit 3 infrared radiometer built by the Space 
Dynamics Laboratory (SD) in Logan, Utah. This radiometer acquires data in five spectral bands 
from 2 to 26 microns in wavelength. An image is scanned across long rectangular focal plant: 
arrays VPAs) to form the scene. Some of the instru~llent parameters rind perfomlance esti~ilare\ 
used in modelling the radiometer are given in Table 1. The data compressor provides quick-look 
capability to the instrument but is not the critical path for the data. 

'Pable 1. Parameters used for simulating the SPIRIT 3 I-adionieter 

SPECTRAL BAND 
NAME -- Units - A - B - C - D - t.: 

Center Wavelength P-Lm 8.5 4.4 12 15 2 3 
Bandwidth Pm 5 0.2 2.1 2 .5  9.0 
Integration Time ms 2.8 2.8 2.8 2.8 2. S 
Detector ;Field of View s r 8.1E-09 8.1E-09 8.1E-09 8.1 E-09 8. I LO9 
Noise-Equivalent Radiance w/cm2-sr 3.1E- 10 1.8E-09 2.2E- 1 0  1.7E- 10 I .8E- I0 

One s f  the missions of the instrument is to resolve natural and artificial point sources. To evaluate 
the performance of the algorithm under worst case conditions for point source scenes wc i~\t.d a 
scene generated by a state-of-the-art infrared scene generator, the Strategic Scene Gener:ttor Motiel 
(SSGM) version 2.3. In particular, we generated a scene of the galactic center where the  mint 
source derlsity is the greatest. SSGM 2.3 documentation states that space scenes are s~b~ jec t  to 
undercounting in the galactic plane, so the scene we generated is somewhere between the typical 
scene and the worst case. 

In addition to the starfield and background, the sensor characteristics provide structure to the 
scene. In this system the data is delivered to the compressor uncalibrated, i.e. the measurelnents 
have not &en corrected for the non-uniformity of response of the individ~~al detectors in the assay. 
Due to hardware constraints the image blocks are formed as 16x1 vectors with each pixel wit ti in a 
vector receiving data from the same spectral band, but from a different detector. Such non- 



uniformity translates into higher entropy for the data stream and increases the importance of 
accurate sensor simulation when attempting to evaluate algorithm performance. 

In our simulations we model the detector input, x, as 

where L is the radiant flux value generated by the scene generator model (in ~cm-'s.r- ') ,  iir is the 
nominal radiance responsivity (with units of counts per Wcm-2sr-1) that converts rad iancc !o 
counts, N is a zero-mean unity-variance Gaussian random variable, and pi is a detector coefficiei~r 
to model the photon noise. Photon noise is a signal-dependent noise source that increases i n  direct 
proportion to the square root of the flux. Photon noise is caused by fluctuations i n  :~rr-iv:il I-:ire of 
incident photons and ultimately limits the SNR [8]. 

We model the detector output as 

where a;, bi and ci are coefficients for offset, gain, and non-linearity that approsin~aic i l~e  
responsivity curve for each detector, and di is the standard deviation of the dark noise for each 
detector. The detector outputs are then uniformly quantized to obtain the 12-bit integer that  is the 
input to the data compressor. 

4. Experimental Results 

Several experiments were performed to evaluate the performance of the algorithm. As noted in  191, 
average RMS error is statistically precise, but not always appropriate. In particular, large locniizeti 
errors can occur with lossy compression techniques which do not increase the average crror- very 
much, but drastically diminish the quality of the compressed image by other standards. The1-efo1.e. 
in these simulations the distortion (in terms of RMS error) was tracked for pixels correspi~nriin~ lo 
point source peaks and reported separately from the distortion to pixels corre:spoiltiirlg~ig to 
background. All simulations were of the mode in which the compression ratio is 10: 1 (1 .2  bits per- 
pixel). 

3 .  Simulation #I included preliminary estimates of focal plane coefficients. A 1 deg- ~nfi-at-eti 
background scene for Simulation #1 was generated internally before the SSGM became nvaiX;~ble at  
SD. 

For Simulations #2 and #3 the focal plane coefficients were based upon noise and responsivity 
tests performed by the focal plane vendors. Compared to the estimates of Simul~~tion # 1 thc offset 
coefficients were less uniform, but the gain coefficients were more ~lnifor-m. The i n f r ; ~ ~ - ~ t l  
background scene generated by the SSGM was used for these simulations. 

4.1 Simulation #I. 

In this simulation the sensor coefficients were based on preliminary estim:ited v:~lue:; wit11 tlic :I,. 
bi, and ci uniformly distributed over the intervals [lo, 201, [0.8, 1.21, and I - 10-", 01, scspeciivzl~~. 
The dark noise, d., was modelled as uniform and equal to 1. The photon noise was :iiso i ~ i i  i t i)rr)i  

1 

across the detectors. 



The detector non-uniformities effectively increased the noise sigma at the input to the data  
compressasr from 1.0 to 5.5 counts. For this reason the point source SNR was referenced to the 
latter noise level. Point sources were positioned randomly and uniformly throughout the Image. 
Their amplitude at the detector output divided by the noise sigma was considered to be the peak 
SNR of the point source. 

Pse-processing consisted of generating an MRVQ codebook and PSYCHE codewords, which 
were shared by encoder and decoder. The residual codebook was generated using the LBG 
algofithm 14-1 from a training set consisting of the mean residual of a different background image. 
The PSYlCI31E codewords were based on codeword probabilities which were the average of 
probabilities estimated during preliminary runs of a different image with 12,000 and 24,000 point 
source pixels and SNR ranging from 5 to 30. The codeword lengths were computed using a 
modified :Fom of the Huffman algorithm of Murakami, et. al. 161. 

Root-mean-square (RMS) error in background pixels was nearly constant over the entire ensemble 
of simulation images as shown in Figure 3. Error in the point-source pixels is shown in  Figure 4. 
No enor occuned to point sources for SNR greater than 7 and number less than 24,000. Since the 
Spirit 3 ra&ometer scans a scene with four samples per dwell, and each point source is seen by all 
8 FPA columns that are compressed, 24,000 point source pixels corresponds to point source 
density of 750 per deg2. For SNR less than 7, error in point source pixels and backg~-ou~id pixels 
was cornpaable. As the number of point sources increased beyond 750 per deg2, a s~rbst:~nti;~l 
increase in error occurred which became higher with SNR (Figure 4). At such h i g h  densities 
PSYCHE was unable to encode all of the point source pixels with the allocated bandw~dth. 'I'hose 
which weire transmitted were still error-free. 

In this sinlulation the sensor coefficients were based on roughly measured values (the cfata used ro 
charactefize the focal plane was not intended for calibration), but were probably closer to rcitl~ty 
than in Simulation #I. The estimated means and standard deviations for the nominal detectors of 
the five focal plane arrays corresponding to the 5 spectral bands are given i n  Table 2. Where d:tti~ 
was not available (indicated by n/a) a uniform focal plane was assumed (standard deviation of 0) 
and an average of available data was used for the mean. 

Table 2. Sensor Parameters for Simulation #2 

ai Mean: 
S td: 

b i Mean: 
S td: 

'i Mean: 
S td: 

CB i Mean: 
Std: 

Pi Mean: 
S td: 

SPECTRAL BAND 
B - - c - D - UNITS E 
135 107 84 84 cnt 
n/a 19 23 17 cnt 
1.0 1.0 1 .0  1.0 cntlcnt 
n/a .015 .020 .017 
- - - - 1 0-5 cnt/sqrt(cnt) 
n/a n/a n/d n/a 
0.6 0.9 0.9 0.9 cnt mis 
n/a 0.17 0.22 0.21 
n/a . I28 . I23  . I22 cnt/sclrt(cnt) 
n/a .009 .008 .008 



RMS Error to Background 

Figure 3. Background error for varying SNR and number of sources, Simulation #I. 

RMS Error to Point Sources 

Figure 4. Point source error for varying SNR and number of sources, Simul;ition #I. 
24,000 point source pixels corresponds to 750 sources per deg2. 

13 1 



Separate images from the SSGM were used to train the compressor from those used to obtain 
performance results. As in Simulation #1, additional point sources of constant SNR were 
positioned randomly to evaluate how algorithm performance varied with point source density. 
Figure 5 shows the RMS error due to compression as a function of point soilrce SNR and nun~ber 
density. 'These indicate that most of the point source radiance peaks are encoded losslessly for 
SNW above about 60 and point source density below about 300 per deg2. We believe the reason 
the average error in this region is non-zero is due to the few bad detectors in the focal plant: assays. 
The compression error to the background remained nearly constant at 4.6 counts until point source 
density became very high. 

Note that in this simulation and the next, the definition of SNR was changed. The SNR was 
defined as the peak point source radiance in counts divided by the RMS dark noise, di. In  other 
words we used the detector SNR and did not include the pseudo-noise at the compressor input due 
to non-uniformity as we did in Simulation #I. 

Figure 6 shows the result when the simulation was repeated for a more ideal case. The dark noise 
was made equal for all spectral bands to 1 count rms, and the focal planes were assumed ro be 
perfecrly uniform (coefficients were set to the mean value for the nominal detectors). A significant 
improvement resulted. The point source peak radiance was encoded losslessly for SNR :\hove 
about 8 and point source density below about 1000 per deg2. The background was encoded with 
RMS error of about 0.9 counts in this region. 

4-3 Simulation #3. 

In this simulation the sensor coefficients were the same as in Simi~lation #2. The original SSGM 
scene of the galactic center was compressed with and without non-uniformities. As an add-hoc 
method of compensating for the point source undercounting in our version of SSGM, we doitblect 
the radiance of the SSGM scene. This gave a point source density of about 188 per deg2 for 
sources with an SNR of 3 and greater. 

Figure 7 shows the RMS error to point sources when FPA non-uniformity was included. In t h 1s 

case point source peaks were transmitted losslessly for sources of SNR greater t i i i ln  36. 
Background error was 4.5 counts rms. 

Figure 8 shows the RMS error to point sources for the same scene imaged with uniform detector 
arrays and dark noise of I count rms. This caused the threshold above which point source peaks 
were uansmitted losslessly to be reduced to 7. Background error in this case was reduced to 0.84 
counts rms. 

5. Summary and Conclusion 

A hybrid lossy/lossless algorithm for compression of space images dominated by point sources 
was described. State of the art simulation software was used to niodel the infrared sky for t i l t :  

spectral bands of the radiometer. The model used to simulate some of the ciorninant senxor 
characteristics was described. The data derived from these models fed several data compression 
experime~lts in which the images were segmented into pixels corresponding to point sources and 
pixels corresponding to background. Errors caused by the compressiori algorithm operating at u 
compression ration of 10: 1 were tracked separately for point sources and background. 

The simulations showed that background was encoded quite well, but that focal plane ilnifonnity 
could sigrlificantly reduce the errors due to the compression algorithm. A conclusion tha t  ci111 bt: 
drawn from this is that it is desirable to compress calibrated data when this is feasible. 



RMS E r r o r  t o  Po i n  t S o u r c e s  

Figure 5. Simulation #2. RMS error (in counts) to point source peak values due to 10:l 
compression. SNR was defined as the point source peak magnitude divided by the 
focal plane array dark noise coefficients. Non-uniformity of FPAs was simulated 
based on measured data. Background error was nearly constant at about 4.6 counts. 

RMS E r r o r  t o  Po i n  t S o u r c e s  

Figure 6. Simulation #2. RMS error (in counts) to point source peak values due 1:o 10:1 
compression. SNR was defined as the point source peak magnitude divided by the 
focal plane array dark noise. The mean offset and gain coefficients were used for 
all detectors of an array, thus simulating perfect uniformity. The background error 
was nearly constant at about 0.9 counts for the region plotted. 



ERROR TO POINT SOURCES FOR GALACTIC CENTER 
NON-UNIFORM FOCAL PLANE SIMULATION 

0 
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Figure '7. Simulation #3. RMS error to point sources in the galactic scene imaged onto 
non-unil'orrm focal plane arrays. Background error was 4.5 counts rms. 

ERROR TO POINT SOURCES FOR GALACTIC CENTER 
IDEAL FOCAL PLANE SIMULATION 
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Figure 8. Simulation #3. RMS error to point sources in the galactic scene imaged onto 
perfectly uniform focal plane arrays. Background error was 0.84 counts rms. 



The simulations also showed that no error occurred to peaks of point sources over a wick riirige of  
point source densities and relatively low SNR. The trends of the graphs generated i n  Si~liiiii~rioris 
#1 and #2 held in Simulation #3, namely low average error to background arid lossiess 
transmission of point source peaks detected with sufficient SNR. Excellent peri-'orrna:~ce i n  riiae 
simulation indicates that the compressor should perform well when the sensor is sampling scenes 
that are dominated by point sources, such as those simulated. Reduction of simulated pei?'ou?i~:i~;ce 
is expected due to optical blurring which was not simulated. Bluning will reduce the point soill-ce 
peak SNR and effectively increase the point source density. 

Further research is needed to investigate the bounded error property of this algorithm and diiiign 
enhancements and new algorithms that use this property to increase coding efi 'acl i~r:~y 
Additionally, scientific algorithms for data reduction that use the time-varying compsejsnon cr-P 171 

bound could be designed. 
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