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ABSTRACT

A data fusion system with artificial neural networks (ANN) is used for fast and accurate
classification of five earth surface conditions and surface changes, based on seven SSMI multi-
channel microwave satellite measurements. The measurements include brightness temperatures at

19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel
measurements are processed through a convolution computation such that all measurements are
located at same grid. Five surface classes including non-scattering surface, precipitation over land,
over ocean, snow, and desert are identified from ground-truth observations. The system processes

sensory data in three consecutive phases" (1) pre-processing to extract feature vectors and enhance
separability among detected classes; (2) preliminary classification of Earth surface patterns using
two separate and parallely acting classifiers: back-propagation neural network and binary decision
tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal

performance in overall classification. Both the binary decision tree classifier and the fusion pro-
cessing centers are implemented by neural network architectures. The fusion system configuration
is a hierarchical neural network architecture, in which each functional neural net will handle different

processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis,
of which 4% are used as the training set and 96% as the testing set. After training, this classification
system is able to bring up the detection accuracy to 94% compared with 88% for back-propagation
artificial neural networks and 80% for binary decision tree classifiers. The neural network data
fusion classification is currently under progress to be integrated in an image processing system at

NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable

Modular Neural Ring (MNR).
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1. INTRODUCTION

Artificial neural networks (ANN) have demonstrated capabilities for robust pattern classi-
fication in the presence of noise and object-to-background sensory uncertainty, and have found
applicafions in environmental monitoring including land cover determination, vegetable mapping,
soil survey, etc., or multichannel satellite imagery. This paper presents a data fusion system with
artificial neural networks which will utilize multichannel SSMI satellite imagery, to combine
supervised trainable and self-organized neural network architectures with specific knowledge-based
classification techniques, with reference to fast and accurate classification of the earth surface. This
neural approach is intended to compensate for different classification techniques by using the data
fusion method and to reduce the lengthy training time required in a supervised learning network.
The overall neural network data fusion system, which will be described in more detail, can also be
seen as a four-layered supervised network which is composed of several modular and hierarchical
networks. In this paper, we wiU start with a background discussion of the measurement used in
this study. The data fusion classification system will be presented. Hardware implementation of
each component in a Modular Parallel Ring (MPR) will also be discussed. Some experimental
results will be presented and a summary will be given.

2. BACKGROUND

The SSMI instrument, flown on _0ard the Defense Meteorological Sateiiite Fkrogram (DMSP)

polar orbiting satellites, is a seven-channel conically-scanning microwave radiometer, measuring
brightness temperatures at 19, 22, 37, and 85 GHz. All measurements are obtained with dual
polarizations (H and V) except for 22 GHz channel. The 19 and 22 GHz channels are mainly
responsive to variations in temperature and water vapor at large spatial scale. The 37 and 85 GHz

channels, due to the scattering effects athigh frequencies, respond to preclpitation at smaller scale.
Polarization measurements have been used to infer the wind speed, precipitation, and snow cover
over the land and ocean. The spatial resolution (field of view) of the different channels decreases

in proportion to the wavelength (inverse with frequency). It provides unique signatures for iden-
tifying surface features and obtaining the temperature and condition of the Earth's atmosphere. In
comparing the measurements at different frequencies, effects due to different spatial resolutions
are minimized by convolving all measurements to the 55-km resolution of the lowest-frequency
channel (Grody, 1991). This enables one to investigate the spectral variations without having to
consider the effects of spatial inhomogeneity on the different channel measurements. The mea-
surements (brightness temperature, sometimes called antenna temperatures) used in this study were
made between November 1988 and January 1989 and covers the entire northern hemisphere. The
data was identified and conf'n-rned by "ground truth" as five different data sets corresponding to
five chTferent surface classes: non-scattering medium (Non-Sm), precipitation over the ocean 0_-
Ocean), snow cover land (Snow), precipitation over the land (R-Land), and the desert (Desert).
Each class has different samples ranging from 445 to 5535 and there is a total of over i 3,034 samples.

Table 1 illustrates some SSMI measurement classification characteristics including SSMI mea-
surements, surface features and their corresponding samples. The brigh_ess-t_mpe_tures are
normalized within the range of (- 1, + 1), denoted as X_, and the desired output classes are represented

by mutually ort_ogonal vectors, denoted as Cj. o

Table 1 SSMI classification characteristics

Channel frequencies and polarizations

SSMI 19 H 19 V

TH(19) Tv(19)

22 V

Tv(22)

37 H 37 V 85 H 85 V

TH(37) Tv(37) Try(85) Tv(85)

Surface features: Non-Sm R-Ocean

Number of samples: 4294 5O5

Snow R-Land Desert

5535 2255 445
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3. DATA FUSION CLASSIFICATION SYSTEM

Xl X2 X3

SSMI Satellite Measurements
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Figure 1. Data Fusion System with Artificial Neural Networks for SSMI Measurements

Although existing neural network paradigms have demonstrated excellent capabilities in
learning and generalization, efficient training and determination of internal topology (such as
number of hidden neurons) still remain challenging tasks. This data fusion classification system
implemented with ANNs provides an alternative approach to attack these problems and can be
easily implemented in hardware. Basically, this system treats each classifier as a different sensor
and fuses each classification result to obtain the optimal or better results. The term "optimal" is
used such that the probability of error is minimized in the likelihood ratio test. The sizes and
connections of intermediate layers (or hidden layers) can be determined based upon the desired data
flow.
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This fusion classificationsystemwill processsensorydatain threeconsecutivephases,as
follows: (1)pre-processing,aimedatextractingfeaturevectorsandatenhancingseparabilityamong
detectedclasses;(2)preliminaryclassificationof Earthsurfacepatternsattwoseparateandparallely
actingclassifiers:back-propagationANN (BP ANN) and a binarydecisiontree(BDT); and(3)
fusionof classificationresultsperformedat globaifusion center(GFC)from different classifiers
andimageryto obtainthe optimal decision, The configurationis a hierarchicalneuralnetwork
architecture,in which eachfunctional neural net will handledifferent processingphasesin a
pipelinedfashion.

3.1 Pre-processing

Pre-processing for SSMI imagery includes mainly the generation of (7 x 7) covariance
matrices from measured brightness temperatures at each pixel. Information about pixel

brightness temperatures, covariance matrix elements, and desired surface class definitions is
collected in a feature vector for the supervised training of a neural network classifier. It has
been demonstrated that increasing the elements of the feature vector by adding more relevant

parameters, derived nonlinearly from original features, can reduce the number and size of hidden
layers, and can also reduce the training time (Marks, et al., 1988). Since the covariance matrix
evaluation involves the manipulation of two matrices, the operations involved are suitable to
neural network implementation by feed-forward topologies, by merely assigning two manip-
ulated matrices to the weights and input vectors of the back propagauon neural architecture, as

has been investigated.

3.2 Preliminary Classification

3.2.1 BP ANN Classifier

A three-layer (one hidden layer) supervised back propagation (BP ANN) algorithm
is used to train the network to become a feed forward pattern recognition engine (Rumelhart
and McClelland, 1991) to learn the input feature vectors corresponding to different output

classes. There are 14 input neurons corresponding to SSMI measurements as well as to their
covariance matrix, 60 hidden neurons, and 5 output neurons representing 5 surface condi-

tions. It takes around 40 and 160 epoches to train the BP ANN classifier to learn up to 90%
and 100% accuracy of the training data set, respectively. With a fully-trained BP ANN, the
classification accuracy can reach up to 88% (Lure, et al., 1992a, 1992b). For the data fusion

classification system, the BP ANN is only trained to a "satisfactory" accuracy (e.g., 75%).
Such a "partially trained ANN only takes around 50% of the training time required in
fully-trained nets. A single fully-trained network can only reach a certain detection accuracy
limit whereas a combination of several networks such as this one can reach even higher

precision since the fusion processor will make an optimal decision based on the statistics of

preliminary classification accuracy.

3.2.2 BDT Classifier

The BDT classifier is constructed to implement Grody's global classification algo-
rithms as in Figure 2 (Grody, 1991). They are designed to analyze global coverage of satellite
data sets and to classify based on the physical characteristics of measurements and on surface

types. This technique performs a hierarchical tree-structured decision procedure through
the evaluation of polynomial functions of input feature elements and through thresholding.

The special topology of BDT classifiers used for surface condition classification based on
SSMI measurements is drawn from the so-called Entropy Net architecture (Sethi, 1990).
This architecture includes a two-layered topology, of which the lower layer performs

arbitrary mapping of thresholding operations, while the upper layer performs logical
operations (e.g. AND, OR) which allow us to convert the hierarchical decision procedure
into a fully parallel process. The weight vectors between the layers are determined from
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thecoefficientsof polynomial functionsof the decision tree functions. The logical oper-
ations, such as AND, OR, NOR, and NAND, are implemented by using a simple BP ANN

architecture with sigmoid transfer functions (Lippmann, 1987). A striking advantage of the
neural implementation architecture is that it allows us to specify the number of neurons
needed in each layer, along with the desired output. This, in turn, leads to an accelerated
progressive training procedure that also allows each layer to be trained separately.

2
XI, X2, X3, X4, X2

+

3 _NO .
Io+T,x_+T2x_+T3x2 +T4x3 > 0 _ -

4, YES YES .
" C2

. _ NO NO

C_

_AZ
I4+T_ox_+Tnx4 > 0 ______>YES ; C4

Figure 2(a)
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Figure 2. (a) BDT Classifier and (b) its Neural Implementation. Xi's denote the SSMI
measurements; T/s denote the higher order polynomial coefficients in (a) and weights

in (b); and Ii's denote constants in (a) and biases in (b), respectively.

There are 5 neurons corresponding to 4 selected SSMI measurements and to one
element of the covariance matrix (Xj, X2, X3, X4, and X22), and 5 output neurons for each
surface class. The individual decision from both BP ANN and BDT modules are sent to the

global fusion center (GFC) for the f'mal decision. The two-trainable-layered BP neural net
for logical operation is trained based upon the data derived from known logic relationships
from the decision tree. As for other neural networks for logic operations, it only takes a few

epoches for them to learn the desired patterns.
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3.3 Fusion Processing

(fromBPANN)
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Figure 3. Data Fusion Center. ci_s denote classification results from preliminary classifi-
cations for class i; b and I denote the weights and bias of an entropy net; and Ci denotes the

optimal decision for class i.

The fusion processing involves global fusion center (GFC) operations, which integrate
results from both BP ANN and BDT classifiers. The GFC is composed of several different data

fusion centers (DFC), each of which corresponds to different types of output classes as in Figure

3. A self-adjusted or serf-trained learning algorithm is used in each DFC to set the optimal
decision rules such that the total probability of detection is maximized. This data fusion scheme,
also called distributed-detection scheme, corresponds to a two-layered network of nonlinear

threshold elements, e.g., binary or sigrnoidal functions (Tenney, 1981). The decision operation,

weights and bias of these elements are obtained as

v i = I z + _ bizuij
j=l

(1 - PM,) (1 _Pp,) )
bi = log( p_, t"u,

and

where n denotes the number of classifiers (n = 2), Pu_ represents missed detection in the ith

classifier, Pp, represents a false alarm in the ith classifier, P (H,) denotes the probability that

the desired class is present, and P (H0) denotes the probability that the desired class is absent.
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The probability functions Ps are obtained during training by comparing individual classification
results with the desired class. The fusion networks are trained by self-adapting off-line sto-
chastical information to form the detection system. The stochastic information including a priori

probability, the probability of false alarm, and of missed detection is obtained by comparing
classification results from individual classifiers with ground-truth data. The approximation
rules are obtained from the nonlinear combination of the statistics of previous classification
results from individual classifiers.

4. HARDWARE IMPLEMENTATION

The neural network data fusion system for real time processing is implemented in a prototype

of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR) architecture
(Ligomenides, et a1., 1991), which is capable of maintaining a high performance for digital and
neural applications. The MNR architecture is composed of multiple primitive processing rings
(pRing) embedded in a global communication structure and is interfaced to a host workstation as
in Figure 4. It is a multiple-SIMD (single instruction multiple data) architecture. Each of the pRings
consists of 40 processing elements (PE) that are capable of mapping any number of neurons. It has
been shown that the MNR provides very highly efficient hardware utilization and very low com-
munication delay overhead. The achieved speed/capacity performance is increased linearly with
the number of processing elements, without upper limit.

MOST
COMPUTER

pR[NG

_2D

EE
BUS

pRING

E

pR NG

r---

E

Figure 4. Bussed-pRing Architecture. PE denotes processing element which is used to imple-
ment operations in neuron(s).

Covariance matrix evaluation, involving the manipulation of two matrices, is performed by
merely assigning two manipulated matrices to the weights and input vectors of the feed forward
neural architecture. Two pilings are used to implement the BP ANN module: one for handling the
16x64 weight matrix of input-hidden connection and one for the 64x16 weight matrix of hidden-
output connections. The third pRing is used for the parallel implementation of the BDT, which
handles a 16x 16 weight matrix. Since some weights are not utilized (for example, the input-hidden
connection in BP ANN only requires a 14x61 weight matrix), they are filled with zero weights to

satisfy hardware implementation requirements. The operation and performance of the hardware-
based networks remain almost unchanged. Once the training is finished, the weights and bias are
then stored in the memory of each PE for future processing. Both BP ANN and DBT operations

are performed at the MNR architecture simultaneously. The individual decision from each operation
is then fed to the data fusion center (DFC) for final optimum decision performed at the host computer.
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5. CLASSIFICATION RESULTS

There are a total of 13,034 samples of data used in this study. Each of five different classes
contains from 400 to 5,000 different samples. We used 500 samples of data as training sets which

represent 3.8% of the total samples. Each training set, obtained randomly from the total data set,
consists of an equal number of samples from five different classes. The rest of the samples (over
96%) are used for testing the network and the classification results are shown in Table 2. Once the
BP ANN is trained either fully or partially, it is used to perform the classification. The classification

accuracies, using the fully-trained BP ANN classifier (i.e., all training patterns are recognized by
this BP ANN), are 82%, 98%, 97%, 78%, and 79% for non-scattering medium, precipitation over
ocean, snow, desert, and precipitation over land, respectively (Lure, et a1., 1992). The classification
accuracies are 99%, 56%, 81%, 57%, and 70% for each surface class. Note that the class of non-

scattering medium represents the surface which can not easily be specifically identified as any of
the other four surfaces. The overall accuracy for BP ANN approach is around 88% whereas it is

around 80% for BDT classifier. The preliminary results show that the neural network data fusion

system improves the classification accuracy for all classes by around 4% from BP ANN's results.
The overall accuracy of neural network data fusion is improved to 94%. Even without fully-trained

being (e.g., 75% of training set are learned correctly by BP ANN) the overall classification accuracy
can still achieve similar classification accuracies. From the coefficients of the data fusion center,

it is also found that the BP ANN plays a more important role in classifying the non-scattering
medium, snow, and desert; whereas the BDT is more dominant in classifying the other two surfaces.
The significance of each SSMI measurement to classification of each of five surface types can also
be obtained through the linearization procedure of the weights described in the previous study.

Table 2. Classification Results from BDT Classifier, BP ANN, and Data Fusion System

Non-sm R-Ocean !Snow Desert R-Land OverallALGORITH
M

BDT 99% 56% 81% 57% 70% 80%

BP ANN 82% 98% 97% 78% 79% 88%

ANN 86% 98% 97% 84% 83% 94%

FUSION

6. SUMMARY

In this research effort, a data fusion System with artificial neural networks is presented to

classify surface types based on the SSMI measurements. Both back propagation ANN (BP ANN)
and binary decision tree (BDT) classifiers are used for this study. Seven SSMI measurements
(brightness temperature at 19, 22, 37, and 85 GHz for H and V polarizations, except V for 37 GHz)
at each image pixel are extracted as an input feature vector. Five surface types including non-
scattering medium, precipitation over the ocean, snow cover land, precipitation over the land, and
the desert are used as target patterns. After training by using less than 4% of the samples, both BP
ANN and BDT are able to perform the classification over 13,000 samples. The training for this
data fusion system is performed progressively. The BP ANN, first module of entropy net, and
logical operation net, are trained seperately. Once these are trained, each data fusion ceter network

is trained seperately. The overall accuracy for the BP ANN and the BDT approaches 88% and 80%,
respectively. The neural network data fusion system which fused the individual decision from the
BP ANN and the BDT improved the overall accuracy to 94%. The significance of the contribution
from either approach is determined based on the coefficients of the data fusion center. The fusion
system is currently implemented in a massively parallel and dynamically reconfigurable hardware
neural network (Modular Neural Ring) for real time parallel processing and integrated in an image

processing system at NOAA/NESDIS. The data fusion classification system not only preserves
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the advantages of both BP ANN and BDT classifiers (for example, the capability of physical
interpretation of input feature space from the BDT classifier and robust classification from the BP
ANN), but also reduce the pitfall of individual classifiers (for example, brute-force training of the
BP ANN module and sensitivity to noise of the BDT module).
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