
N98-25980

Multi-Viewpoint Clustering Analysis 1

Mala Mehrotra

Vigyan Inc.
30 l_esearch Drive

Hampton, VA 23666-1325

Chris Wild

Dept. of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

Abstract

In this paper, we address the feasibility of

partitioning rule-based systems into a num-

ber of meanin_uI units to enhance the com-

prehensibility, maintainability and reliabil-

ity of e.-vpert systems software. Prelimi-

nary results have shown that no single struc-

turing principle or abstraction hierarchy is

sufficient to understand complex knowledge

bases. We therefore propose the Multi-

View Point - Clustering Analysis (MVP-CA)

methodology to provide multiple views of

the same expert system. We present the re-

sults of using this approach to partition a

deployed knowledge-based system that nav-

igates the Space Shuttle's entry. We also

discuss the impact of this approach on ver-

ification and validation of knowledge-based

systems.

Keywords domain knowledge, primary

view, secondary view, conceptual clustering.

Introduction

Knowledge-based systems owe their appeal

to the promise of utilizing expertise in the

1This research was supported through Phase-I
SBIP_ Grant - NAS9-18706 from NASA Johnson

Space Center, Houston, TX.

domain knowledge for the solution of diffi-

cult, poorly-understood, ill-structured prob-

lems. However, they must be subjected to

rigorous verification and validation (VL:V)

analyses before they can be accepted into

real-world critical applications. Unfortu-

nately, expert systems do not lend them-

selves to the traditional VL=V techniques for

highly reliable software. There is a need to

formulate an acceptable set of V&:V tech-

niques which can assure their quality. Better

knowledge-acquisition techniques as well as

better management, understanding and en-

hancement of the knowledge base is critical

to the success of such VLzV activities.

The difficulty in the V&V of large

knowledge-based systems arises due to a

number of reasons. Firstly, rapid prototyp-

ing and iterative development form key fea-

tures of any expert system development ac-

tivity. This has led to the development of

ad-hoc techniques for expert system design

without any software engineering guidelines.

Moreover, due to the data-driven nature of

expert systems, as the number of rules of an

expert system increase, the number of possi-
ble interactions between the rules increases

exponentially. The complexity of each pat-

tern in a rule compounds the problem of

V&V even further. As a result, large ex-

pert systems tend to be incomprehensible,

217

PRE(_DING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19930016791 2020-03-17T05:34:49+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42807251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

difficult to debug or modify, and almost im-

possible to verify or validate.

Compounding the problem further is the

fact that most expert systems are built with-

out much regard to defining the require-

ments or specifications upfront. As any soft-

ware, conventional or knowledge-based, be-

comes more complex, common errors are

bound to occur through misunderstanding of

specifications and requirements. Therefore,

it is our belief that even if a software life cy-

cle stresses specifications and requirements

upfront, that will not be enough to guarantee

the right product for complicated systems.

There are bound to be ambiguities and in-

terpretational problems. What is needed is a

complementary tool that is capable of expos-

ing such ambiguities and misinterpretations
so that corrective action can be taken be-

fore it is too late in the software life cycle.

Having a semi-automated means for captur-

ing and structuring the meta-knowledge in a

rulebase and cross-checking it with the spec-

ifications and requirements at various stages

of the software life cycle could certainly help
in this effort.

Conventional software yields more easily

to verification efforts because control is ex-

plicitly represented as procedures which can

be structured to encapsulate run-time ab-

stractions. Modules can be designed in con-

ventional software, each consisting of a man-

ageable unit with a well-defined interface.

Furthermore, procedures can be grouped

into packages or objects which share an
internal data structure. These units can

then be subjected to unit/integration test-

ing techniques.

Due to the declarative style of program-

ming in knowledge-based systems, the gen-

eration of clusters to capture significant con-

cepts in the domain seems more feasible than

it would be for procedural software. By

using knowledge-based programming tech-

niques one is much closer to the domain

knowledge of the problem than with pro-

cedural languages. The control aspects of

the problem are abstracted away into the in-

ference engine (or alternatively, the control

rules are explicitly declared). The existence
of a model of the domain would benefit the

analysis of other knowledge-based systems

within that domain by providing seeds for

cluster formation. In addition, the use of a

domain model to assist in the development of

new knowledge-based systems is a promising

research direction.

Existing research indicates that misunder-

standings of the domain are a primary cause

of systems failures [5, 12, 19]. Often small

oversights or misunderstood interactions be-

tween sources of expertise lead to catas-

trophic failures. Techniques, methodologies

and supporting tools are therefore needed

to manage a complex system from multiple

viewpoints and discover subtle interrelating

concepts that are so critical for assuring the

reliability of these systems. Even though

language support for systems structuring has

long been recognized as a key aspect of mod-

ern software and knowledge engineering, it is

our contention that no single structuring can

simultaneously capture all the important con-

cepts in complez knowledge-based systems.

We believe that techniques, methodologies

and supporting tools are needed to manage

a complex system from multiple viewpoints

and that the discovery of subtle interrelating

concepts is critical for assuring the reliability

of these systems.

In this paper, we propose the concept of

Multi-Viewpoint Clustering Analysis (MVP-

CA) and show it as a feasible and effective

technique towards structuring a rulebase for

capturing its explicit as well as its implicit

knowledge. The extraction of implicit, pre-

viously unknown, yet potentially useful in-

218

formation from the rulebasecan have con-
siderable impact on various stages of the life

cycle of knowledge-based systems software.

It can expose various design pitfalls during

construction of the rulebase and the func-

tional limitations of the software during its

operation, as well as the subtle interrelation-

ships between subgroups of rules that could

prove very valuable in the maintenance of

the system. It is our contention that the un-

derstanding of any large knowledge base will

require that it be viewed from several differ-

ent, possibly orthogonal viewpoints. MVP-

CA provides an ability to discover signifi-

cant structures within the rulebase by pro-

viding a mechanism to structure both hierar-

chically (from detail to abstract) and orthog-

onally (from different perspectives). More-

over, transfer of expertise from one prob-

lem domain to another related domain would

be facilitated through the factoring of com-

mon aspects across the domains. Hence soft-

ware reuse can be exploited through multiple

structuring of a knowledge-based system.

First, we give an overview of our approach,

followed by the methodology used to gener-

ate meaningful partitions. Next, we present

the results of applying this methodology to

a deployed expert system for navigation. We

discuss some of the related work in this area

and finally give our conclusions.

MVP-CA Overview

Our research efforts address the feasibility of

automating the identification of rule-groups

in knowledge-based systems software, to re-

flect the underlying subdomains of the prob-

lem. We prove the feasibility of MVP-

CA (Multi-Viewpoint Clustering Analysis)

methodology by building an MVP-CA tool

to structure a few CLIPS 2 [3] knowledge-

based systems along several viewpoints and

showing that no single structuring principle

or abstraction hierarchy is sufficient to un-

derstand complex knowledge bases.

Our approach utilizes clustering analysis

techniques to group rules which share signif-

icant common properties and to identify the

concepts which underlie these groups. Clus-

ter analysis is a kind of unsupervised learn-

ing in which (a potentially large volume of)

information is grouped into a (usually much

smaller) set of clusters. If a simple descrip-

tion of the cluster is possible, then this de-

scription emphasizes critical features com-

mon to the cluster elements while suppress-

ing irrelevant details. Thus, clustering has

the potential to abstract from a large body

of data, a set of underlying principles or con-

cepts which organizes that data into mean-

ingful classes. The knowledge acquisition

process therefore involves "mining" the rule

base for interesting concepts shared among

the rules. The quality of clustering is related

to two competing factors: intra-group cohe-

siveness and inter-group coupling. Infor-

mally, one can say that a group (or a cluster)

is cohesive if all the items clustered together

are somehow related or similar. Two groups

are highly coupled if they share many sim-

ilar properties and they are loosely coupled

(possibly decoupled)if they share few (or no)

similar properties. It is interesting to note

that the qualities which define a good cluster

are precisely those which define a good mod-

ular functional decomposition of a problem.

Preliminary experiments with the MVP-

CA tool exposed significant natural struc-

tures within different knowledge bases. For

example, consider ONAV (Onboard Navi-

gation Expert System) [1], an expert sys-

tem deployed on the shuttle to navigate dur-

2C Language Production System

219

ing re-entry. The file structure of ONAV

provides one partitioning of the whole sys-

tem. Not only did we find this generally

accepted partitioning of ONAV, but we also

found less obvious, more subtle interrelation-

ships that existed across these primary clus-

terings. In this paper we present some of

our results of applying the MVP-CA tool

to ONAV. Misunderstandings of subtle in-

teractions contribute most to the unreliabil-

ity of knowledge-based systems [10]. Hence

any methodology that exposes these rela-

tionships will contribute towards the V&V

of large knowledge-based systems.

To illustrate the need for multiple view-

points, consider an expert system for select-

ing the appropriate wine to complement a
dinner. Even such a relatively small rule-

base can be structured from several differ-

ent viewpoints, as shown in Figure 1. Very

broadly, the knowledge base can be divided

into knowledge about the problem domain

(selecting the appropriate wine) and knowl-

edge about the control domain. The control

knowledge breaks up further into user inter-

face (how to question the user) and over-

all control strategies (balancing user prefer-

ences against experts' opinion through var-

ious phase control rules). Printout state-

ments that ask the user for input or control

the phasing of control rules belong to the

control domain.

Similarly, knowledge about the problem

domain, to aid in the selection of an appro-

priate wine for a meal, can be further sub-

divided into three major subdomains: types

of food, wine properties and varieties, and a

model of the customer's preferences. These

domains are further subdivided into vari-

ous subaspects. All these reflect different

viewpoints of the same rule base. Within

the food subdomain there are partitionings

of taste of food, style of food, ingredients,

etc. This is a hierarchical partitioning under

the food subdomain. An orthogonal view-

point in the wine subdomain is the inter-

action of wine properties with meal qual-

ities. Similarly there are different aspects

of the problem from the customer's view-

point. In addition, there are rules which

overlap subdomains or pass information to

rules in other subdomains (data dependency

relationships). Thus the same rule can be

part of one subdomain and at the same

time create information for use by rules in

other subdomains, such as interface rules

that specifically combine concepts from two

subdomains (e.g., the relationship between

beverage and the style of food.) There is

an added value in using the MVP-CA tool

for exposing substructures within the ab-

stract groups formed, through hierarchical

partitionings generated by it. The hierar-

chies represent viewpoints at different levels

of conceptual abstraction.

MVP-CA Methodology

The methodology used for MVP-CA is sum-

marized graphically in Figure 2. In the Clus-

ter Generation Phase the focus is on gener-

ating meaningful clusters through statistical

and semantics-based measures. In the Clus-

ter Analysis Phase the focus is on performing

a statistical and functional analysis of the

output generated from the previous phase.

Results of a statistical analysis of the out-

put data feed back as better constraints on

the parameters for grouping to improve the

quality of subsequent clusterings. A func-

tional analysis of the clusters captures the

key concepts conveyed by the clusters gen-

erated. Concepts are meaningful patterns

in the rulebase along with their associated

attributes. A set of key concepts consti-

tutes a single viewpoint. Multiple clusterings

present multiple viewpoints on the rule base.

220

PROBLEM DOMAIN CONTROL DOMAIN

Figure i: A Multi View Point of the Wine Rule Base

Cluster Generation Phase

Cluster Analysis Phase

Figure 2: Phase-I Data Flow Diagram

221

A two-step procedure is utilized for ex-
tracting multiple viewpoints of a rulebase.
First, form the best cluster possibleusing
various measures,such as dispersion, cohe-
sion and coupling. The overall dispersion of

a pattern p is

_c

disv(p)= dis; ,(v)
i=1

where nc is the number of groups for clus-

tering C and dispa, (p) = 1 if p e Gi and is

0 otherwise. Coupling is defined in terms of

the inter-group distance, D(i,j) as follows:

D(i,j) = _ _ d(rk,rt)

rkeGi r_eGj rt i * nj

where ni and nj are the number of rules in

groups G_ and Gj, respectively and d(rk, rt)
is the distance between rules rk and rt de-

fined according to a distance metric selected

by taking into account the nature of the rule

base application [15]. For a given clustering,

C, the cohesiveness measure is an index of

the similarity of rules belonging to the same

group. Cohesiveness of a rule rk with respect

to the group Gi that it belongs to is the aver-

age number of concepts(cncp) it shares with

the other rule members in the group Gi.

cohc , ("k) =
[2 * cornm_cncp(rk, rt) [

Our clustering algorithm starts with all

rules in their own clusters. At each step

of the algorithm, the two groups which are

most similar are merged together to form

a new group. This pattern of mergings

forms a hierarchical cluster from the single-

member rule cluster to a cluster containing

all the rules. One can look at this cluster-

ing near the "best" clustering points. De-

ciding which level in the hierarchy forms the

"best" clustering of the rules requires an

analysis of the cohesiveness of each cluster

(the intragroup similarity) versus the cou-

pling between groups (the intergroup sim-

ilarity). When group cohesiveness is plot-

ted against number of groups, plateau re-

gions are generated signifying stable values

for cohesiveness in certain ranges of number

of groups. These regions represent optimal

partitionings for a particular level of concep-

tual abstraction. Insight into concepts dom-

inating the various clusters can be obtained

through an examination of the groups at se-

lect points on the plateau regions. A hierar-

chical view of the rulebase can then be gen-

erated by repeating the above procedure for

different plateau regions on the cohesiveness

plots.

Next, with this "best" cluster, form a con-

cept focus list - to either sharpen a current

viewpoint or expose an alternate viewpoint.

The concept focus list is formed from dis-

persion statistics of patterns. Dispersion is

based on shared concepts - i.e. how a sin-

gle concept is dispersed among the clusters.

Low dispersion concepts are likely to repre-

sent concepts which characterize the clusters

they are in. In fact, high dispersion concepts

may interfere with the generation of highly

cohesive clusters. Removing these concepts

before clustering can help define the clus-

ters more distinctly - a process which we

call "sharpening". However, high dispersion

concepts may also represent legitimate al-

ternate structurings of the knowledge base.

By selectively removing the low dispersion

concepts, it is possible to reveal subtle alter-

nate viewpoints - a concept we have termed

multi-viewpoint clustering analysis [17, 16].

Thus the MVP-CA methodology provides

a mechanism for comprehending complex

knowledge-based systems through structur-

ing them both hierarchically (from detail to

abstract) and orthogonally (from different

perspectives) leading to discovery of signif-

222

icant structures within the rule base.

Experimental Results

In this section we present some of the re-

suits obtained to date with the deployed

knowledge-based system GNAV. Other re-

sults using animal classification and wine se-

lection (available as part of the CLIPS 5.1

release) expert systems have been presented

in [16].
Even with extensive comments and a tool

such as CRSV 3 [2], the conceptual depen-

dencies of rules across files cannot be easily

determined. Not having any experience with

Shuttle mission terminology, the rulenames

were our only guide for understanding the

domain in this knowledge-base. After clus-

tering this rulebase several times using dif-

ferent criteria, we began to understand more

of the subtle interrelationships. A graphical

user interface, currently under development,

would allow us to navigate through the rule-

base and document the insights generated

by the partitioning, thus fully utilizing the

MVP-CA methodology. We document be-

low our understanding of ONAV based on

the natural paxtitionings set up by the devel-

oper as well as different groupings generated

through the MVP-CA tool. We also show

some of the interrelated concepts uncovered

by this tool.

ONAV is an expert system developed at

NASA Johnson to help navigate re-entry of a

space craft. It has 387 rules divided across 16

files reflecting the various stages of naviga-

tion: ascent, entry and landing. The largest

file tacan.r contains 127 rules. Monitoring of

the space shuttle through ONAV entails up-

dating some state vectors in the files state.r,

3CLIPS Cross Reference Style Analysis and Ver-
ification Tool

3state.r and hstd.r. Measurements of veloc-

ity and acceleration are calculated through

sensor readings from various devices such as

the inertial measurement unit (imu), drag

unit(drag), barometer unit(baro), tactical air

navigation unit(tacan) and microwave scan

beam landing system(msbls). The readings

go through a Kalman filter and the state vec-

tor is updated through different types of line

replacement units (Iru) attached to the dif-

ferent devices. The computers onboard per-

form the necessary integrations on the cor-

rected readings to obtain accurate values of

velocity and position.

During landing, readings from different

sources have to be tallied so that the po-

sitioning of the shuttle can be as accurate

as possible before it hits the runway. Dur-

ing ascent the shuttle relies mainly on the

inertial measurement unit readings, since

an accurate positional value is less criti-
cal. All the Irus feed data to both the

primary avionics system software(PASS) as

well as to the backup flight system(BFS).

Each of these systems have different selec-

tion schemes for determining the quality of
data received. Ground-based radar stations

resolve any conflicting values for the position
of the shuttle and are used to aid in isolat-

ing malfunctioning equipment on board. Fi-

delity of the data is monitored through the

status of a number of different flags. Rules in

telemetry.r and operator.r determine which

of the readings and updated state vectors

are reliable at any point in time and give

the operator power to override any decision.

Tables.r provides general information on the

Iru configurations onboard, the fault matrix

to be used for identifying the imu compo-

nent that has failed, and a definition of the

quality ratings to be used for the different

state vectors and data readings. Runway se-

lections are checked out in the file runway.r.

Rules in init.r, control.r, and output.r essen-

223

tially accomplishthe initial set up of global
information during the different stagesof the
navigation by activating the various phase
control rules, and they also handle the user z0
interface issues.

Initial analysisof our resultsindicatesthat 1.5

grouping a rulebase according to control as- _-
pects of the problem is not sufficient for un-

derstanding the problem. The static aspects __ 1.0

of the problem can be understood only if _'

domain knowledge can be separated from

control knowledge [8, 9]. The original par- 0.2

titioning of ONAV into 16 files by the de-

veloper provided only a coarse partitioning

based on the different phase aspects of the

knowledge-based system. When the phase

aspects of the rulebase were excised, it was
found that rules with similar domain infor-

mation were formed into a single group to

give a secondary view. In order to discover

the implicit interconnections between rules

in different files, we combined all the files of

ONAV to form one 387-rule rulebase. Since

ONAV is primarily a monitoring system with

some diagnostic capabilities, more meaning-

ful partitionings were obtained when the an- I.s

tecedent patterns played a major role in de-

termining the distance between rules [15].

Figure 3 shows the cohesion plot for a _ 1.0
primary view of ONAV. The cohesion val- *'

ues beyond 200 groups are not plotted be-
cause there are too many single groups af-

ter that point. Consider some of the inter- _ 0.5

esting plateau regions such as those around

11 and 50 groups. Partitionings generated

with the primary view are more or less in
accordance with the developer's partition- 0.0

ings in the rulebase reflecting various phase

values. At 50 groups, we can see various

subaspects for the tacan subphase - such as,

tacan prediction rules, rules that put tacan

in automatic mode, rules to determine Iru

quality, and so on - grouped in separate

groups. However, at 10 groups, all these

f

I I Z... _ !0.0

0 50 100 150

No. of Groups

ONAV

Figure 3: Cohesiveness Plot: ONAV rule-

base - Primary View

I .. , I , I

20 1GO 120

No. of Groups

Figure 4: Cohesiveness Plot: ONAV rule-

base - Secondary View

2C0

2C0

224

Group no 20:

Total number of rules in group: 15

Distance:: Min: 2.000000 Max: 7.666667

Cohesiveness: 0.429254

130

131

134

135

137

136

140

138

139

132

133

141

142

143

223

Mean: 4.284770

Minimum Membership: 0.033520

init-engaged-system-is-bfs 0.150933

init-engaged-system-is-pass 0.445672

init-sys_em-availability-bfs-only 0.537089

init-system-availability-pass-only 0.566508

init-system-availability-both-pass-avail

init-system-availability-both 0.565853

init-report-major-mode 0.451083

init-wrong-atmosphere 0.399324

init-right-atmosphere 0.371124

Init-enable-msbls-sensor-ligh_s 0.232097

Init-enable-tacan-sensor-lights 0.295337

init-keep-lasz-ops-num 0.362514

init-reporz-abort-mode 0.501832

init-report-ascent-even_s 0.544941

nay-initialize 0.452685

0.561815

Figure 5: Initialization Rules - Primary Clustering

tacan rules come together to form one group

as conceived by the developer. Thus, while

the original partitioning of ONAV into 16

files by the developer provided a coarse par-

titioning based on the different phase as-

pects of the knowledge-based system, there

is added value in using the MVP-CA tool

to expose the substructures within these ab-

stract groups.

In the primary view, some groupings seem

to have been generated based on criteria

other than phase control. Initialization

rules across different files come together in

a group, group 20 in Figure 5, revealing ini-

tialization relationships from various phases.

Initializations from other files, such as nay-

initialize from file state.r, combine with this

group revealing initialization relationships

across files. This is an important revelation

from the point of view of maintenance and
verification.

In order to reveal a secondary view, we

excised the concept of phase and engaged-

system, which had the highest dispersion

values in the primary view. The cohesion

plot for the secondary view is given in Fig-

ure 4. Figures 7 and 8 give cross-sections of

secondary groupings when all phase values

were excised. The rule !abelings generated

in these files are the rulenames given by the

developer originally. The numbers on the

left are the rule numbers; distance between

rule numbers thus gives an indication of the

degree of juxtaposition of the rules in the

combined rule base. Right-hand side num-

bers provide the cohesion value of the rule

with respect to its group.

Once the phase aspect is deleted from the

rulebase, other domain-dependent concepts

start asserting themselves. In fact, in Fig-

ure 7, group 8 rules with similar rulenames

(hstd-same, hstd-bad, hstd-good and hstd-

unavai 0 across different files (hstd.r and op-

225

Group no 6:

Total number of rules in group: 19

Distance:: Min: 2.000000 Max: 6.000000 Mean: 3.688889

Cohesiveness: 0.443354 Minimum Membership: 0.160000

27

194

201

195

196

197

198

199

200

204

202

203

2O5

207

2O6

209

208

210

211

control-kickoff 0.385737

operator-stop 0.526758

operator-uplink-runway 0.454210

operator-delta-state 0.472484

operator-changed-delta-state 0.520917

operator-bfs-no-go 0.398486

operator-bfs-go 0.438764

operator-runvay-selection 0.400035

operator-desired-runway-from-operator 0.443254

operator-atmosphere-change 0.375280

operator-toggle-tacan 0.342885

operator-cant-toggle 0.416190

Endeph-bad 0.443719

Endeph-same 0.490814

Esdeph-good 0.452024

hstd-good 0.451576

hstd-bad 0.481044

hstd-same 0.534733

hstd-unavail 0.394810

Group no 12:

Total number of rules in group: 4

Distance:: Min: 2.333333 Max: 3.250000

Cohesiveness: 1.112825

42 hstd-bad

44 hstd-same

43 hstd-good

45 hstd-unavail

Mean: 2.763889

Minimum Membership: 0.571429

1.229437

0.884921

1.136364

1.200577

Figure 6: Hstd rules - Primary View

226

Group no 8:

Total number of rules in group: 24

Distance:: Min: 2.000000 Max: 9.900000 Mean: 4.437921

Cohesiveness: 0.377193 Minimum Membership: 0.000000

27

211

194

201

210

195

196

197

198

199

200

205

207

202

203

43

206

209

42

2O8

44

138

139

204

control-kickoff 0.351796

hstd-unavail 0.353633

operator-stop 0.479850

operator-uplink-runway 0.414068

hstd-same 0.492559

operator-delta-state 0.459732

operator-changed-delta-state 0.487993

operator-bfs-no-go 0.375855

operator-bfs-go 0.405531

operator-runway-selection 0.355490

operator-desired-runway-from-operator

gndeph-bad 0.440288

gndeph-same 0.446688

operator-toggle-tacan 0.318074

operator-cant-toggle 0.389968

hstd-good 0.294328

gndeph-good 0.444678

hstd-good 0.472972

hstd-bad 0.316276

hsZd-bad 0.487546

hstd-same 0.220726

init-wrong-atmosphere 0.090802

ini_-right-atmosphere 0.148827

operator-atmosphere-change 0.413935

0.391028

Figure 7: Hstd rules - Secondary View

Group no 5:

Total number of rules in group: 4

Distance:: Min: 2.000000 Max: 4.000000 Mean: 3.000000

Cohesiveness: 1.328788 Minimum Membership: 0.013423

20 haro-aif-changed 1.176493

36 drag-aif-changed 1.653500

310 tacan-aif-changed 1.372859

179 msbls-aif-changed 1.112300

Figure 8: Aifrules - Secondary View

227

erator.r) come together because all of these

rules deal with an incorrect input value for

the hstd indicator. However, the hstd indi-

cator is important in two subphases (fact-

assertion and hstd). Once the phase compo-

nent is deleted, the domain information that

determines the hstd status pulls these rules

into the same group. In the primary view

these rules were in separate groups, 6 and

12, as shown in Figure 6.

It is also interesting to note that rules that

share the concept of modifying the auto-

inhibit-force flag (ai]) in different phases all

combine together in group 5, see Figure 8.

This is a functional grouping of rules based
on actions to be taken when there is a dis-

crepancy between the previous and current

values of the air flag in the barometer, drag,

tacan and msbls units. An orthogonal view

of the rulebase comes into perspective with

this grouping.

Such a view may be of immense value to

the maintainer of the rulebase, since func-

tional dependencies like these can be ex-

tremely difficult to locate across files, es-

pecially if the maintainer has not been the

original developer of the system. Thus, our

experimental results with the MVP-CA tool

has demonstrated the feasibility of discover-

ing significant structures within the rulebase

by providing a mechanism to structure both

hierarchically (from detail to abstract) and

orthogonally (from different perspectives).

Related Work

Extraction of meta-knowledge for the pur-

poses of comprehending and maintaining ex-

pert systems has been an accepted norm. In

this section, we examine the role of structur-

ing for this purpose in some well-established

knowledge-based systems.

Systems such as XCON [4, 18] that have

been in development for more than 10 years

had to develop a new rule-based language,

RIME, and rewrite XCON-in-RIME to fa-

cilitate its maintenance. XCON-in-RIME

is supposed to make the domain knowledge

more explicit both in terms of restructuring

the rules and in terms of exposing the con-

trol structure for firing of the rules. Thus the

problem space gets more hierarchically or-

ganized into different functional aspects, the

problem solving method is made more ex-

plicit, a domain-specific classification is im-

posed on the rules and rule templates are

created to serve as guides for rule creation.

Meta-Dendral [6] is a case study in the

area of acquisition of domain knowledge.
Meta-Dendral tries to resolve the bottleneck

of knowledge acquisition through automatic

generation of rule sets so as to aid the pro-
cess of formation of newer scientific theories

in mass spectroscopy.

TEIRESIAS [7] is built upon the MYCIN

system to provide a mechanism for effective

knowledge transfer. TEIRESIAS uses meta-

rules to encode rule-based strategies that

govern the usage of other rules. For this pur-

pose it generates a set of rule models that are

then used to guide this effort by being sug-

gestive of both the content and form of the

rules. These rule models can suggest incom-

plete areas of the knowledge base, provide

summary explanations and help during de-

bugging sessions. TEIRESIAS demonstrates

the power of analyzing rule sets for experts

especially when writing new rules. It is very

helpful to see existing rules that are similar

to a new rule under consideration so as to

set the appropriate certainty factors in the

new rule. Similarity could be suggestive of

similar premises or similar conclusions. By

comparing other evidence and other conclu-

sions, the strength of the proposed rule can

be estimated in the proper context. In fact,

228

eachof the clusteringscarries an extra slot

indicating the context in which the rule set

applies.

Although others [11, 13, 14] have at-

tempted to cluster knowledge bases in or-

der to abstract and structure the knowledge

in them, existing approaches are limited in

two major ways. First, we believe that no

one single structuring viewpoint is sufficient

to comprehend a complez knowledge base.

Second, it is difficult to understand a sin-

gle knowledge base isolated from an under-

standing of the underlying application do-

main. Often clues to the underlying seman-

tic concepts are provided through descriptive

names. Even then, the syntactic structure

Mone is rarely sufficient for managing and

maintaining a complex system.

Clustering analysis can be used to reveal

regularities in the knowledge base which can

suggest possible subdomains of the problem.

This structuring of the knowledge base is in-

tended to capture both the explicit and the

implicit knowledge in the knowledge base.

The point of interest of such an analysis

should not be the clusters themselves, but the

principles and ideas suggested by the clus-

ters. Such groups would allow one to ab-

stract away from the point of view that each

rule is a procedure call and look at the sys-

tem from higher semantic levels. Each such

group or unit can then be viewed as a proce-

dure having a well-defined interface to other

rule-groups. Once a rule base is decomposed

into such "firewalled" units, studying the in-
teractions between rules would become more

tractable.

Due to the declarative style of program-

ming in knowledge-based systems, the gen-

eration of clusters to capture significant con-

cepts in the domain seems more feasible than

it would be for procedural software. By

using knowledge-based programming tech-

niques one is much closer to the domain

knowledge of the problem than with pro-

cedural languages. The control aspects of

the problem are abstracted away into the

inference engine (or alternatively, the con-

trol rules are explicitly declared.) Genera-

tion of a model of the problem domain can

be accomplished through clustering. The ex-
istence of a model of the domain would bene-

fit the analysis of other knowledge-based sys-

tems within that domain by providing seeds

for cluster formation. In addition, the use

of a domain model to assist in the develop-

ment of new knowledge-based systems is a

promising research direction.

Conclusions

Knowledge-based systems have the poten-

tial to greatly increase the capabilities of

many aerospace applications such as Space

Station, manned and unmanned spacecraft

and civilian and military air transport. Au-

tomated systems that are knowledge based

need to be deployed aboard these missions

to reduce manpower support. Failure of

such systems, however, can result in loss of

life and of substantial financial investment.

Hence these systems need to be highly reli-
able. Whereas DOD standards for conven-

tional software have been developed, such as

ADA-9x, a credible development and valida-

tion methodology for knowledge-based sys-

tems is currently lacking. Acceptance of

knowledge-based systems software for crit-

ical missions is very much dependent on de-

velopment of effective software engineering

and validation techniques. A structured ap-

proach to management and maintenance of

such systems would go a long way towards

dispelling the myth that expert systems are

inherently unreliable and that nothing can
be done about it.

229

Expert systems have a wide commercial

applicability. Liability issues arising out of

improper functioning of such systems de-

mand that any risk to life or property be ei-

ther totally eliminated or at least minimized.

Hence, it is imperative to develop rigorous

and automatic testing tools for the verifica-

tion and validation of knowledge-based sys-

tems. An integrated environment for expert

system verification and validation, such as is

proposed by MVP-CA, would overcome this

barrier, opening them up for a broad range

of important applications. An integrated

system for performing V&:V on structured

knowledge bases will enhance the reliability

of knowledge-based software and bridge its

current gap with conventional systems.

References

[1]

[2]

[3]

Knowledge Requirements for the Onboard

Navigation Console Expert/Trainer Sys-

tem. Technical Report JSC-22657, NASA,

Lyndon B. Johnson Space Center, Hous-

ton, TX., September 1988.

CLIPS Reference Manual. Technical

Report JSC-22948, Artificial Intelligence

Center, NASA, Lyndon B. Johnson Space

Center, Houston, TX., June 1989.

CLIPS Basic Programming Guide CLIPS

Version 5.1. Houston, TX., September
1991.

[7]

Is]

[9]

[10]

[11]

[12]

[13]

[4] V. E. Barker and D. E. O'Connor. Ex-

pert Systems for Configuration at Digital:

XCON and beyond. Communications of
the ACM, 32(3), March 1989. [14]

[5] V. R. Basili and B. T. Perricone. Software
Errors and Complexity: An Empirical In-

vestigation. Communications of the A CM,

1(27):42-52, January 1984.

[6] B.G. Buchanan. Issues of llepesentation [15]

in Conveying the Scope and Limitations

of Intelligent Assistant Programs. In J.E.

Hayes, D. Mickie, and L.I. Mikulich, edi-

tors, Machine Intelligence, pages 407-425.

John Wiley & Sons, 1979.

B.G. Buchanan and

E.H. Shortliffe. Knowledge Engineering.
In Rule-Based Ezpert Systems, chapter 7,

pages 149-158. Addison Wesley Publishing
Co., 1985.

B. Chandrasekharan. Generic tasks in

knowledge-based reasoning: High-level

b'Alding blocks for expert systems design.

IEEE Ezpert, Fall 1986.

W. J. Clancey. The advantages of ab-

stract control knowledge in expert system

design. In Proceedings, National Confer-

ence on Artificial Intelligence, pages 74-78,
1983.

D. Hamilton and K.Kelley. State-of-the-

practice in knowledge-based system verifi-

cation and validation. Ezpert Systems with

Applications, 3:403-410, 1991.

K. J. K. Jacob and J. N. Froscher. A Soft-

ware Engineering Methodology for ltule-

based Systems. IEEE Transactions on

Knowledge and Data Engineering, 1990, in

press.

N. Leveson. Software Safety: What, Why

and How. Computing Surveys, 2(18):125-
164, June 1986.

S. LindeU. Keyword Cluster Algorithm for

Expert System ltule Bases. Technical Ke-

port SD-Tlt-87-36, The Aerospace Corpo-

ration, E1 Segundo, CA., June 1987.

K. Lindenmayer, S. Vick, and D. Rosen-

thaL Maintaining an Expert System for

the Hubble Space Telescope Ground Sup-

port. In Proceedings, Goddard Conference

on Space Applications of Artificial Intelli-

gence and Robotics, pages 1-13, May 1987.

M. Mehrotra. Rule Groupings: A Soft-

ware Engineering Approach towards Ver-

230

ificationof ExpertSystems.TechnicalRe-
port NASA CR-4372,NASA LangleyRe-
searchCenter,Hampton,VA.,May 1991.

[16] M. Mehrotra, C. Wild, and D. Rosca.
A SoftwareEngineeringApproachToward
Validation of Knowledge-BasedSystems.
Technicalreport, ViGYAN SBIIt Phase-I
FinalReport,Hampton,VA.,August1992.

[17] M. Mehrotra,C.Wild, andD. Rosca.Role
of clusteringanalysisin the verificationof
expertsystems.In Notes for the AAAI-92

Workshop on Verification, Validation and

Testing of Knowledge-Based Systems, July

1992.

[18]

[19]

E. Soloway, J. Bachant, and K. Jensen.

Assessing the Maintainability of XCON-

in-RIME: Coping with the Problems of a

VERY Large Rulebase. In Proceedings of

AAAI-87, July 1987.

C. Wild, J. Chen, and D. Eckhardt. Rea-

soning about Software Specifications: A

Case Study. Proceedings of AIAA Com-

puters in Aerospace VII Conference, pages

297-306, October 1989.

231

Information Management

233

PRE(_EDING PAGE BLANK NOT FILMED

