
NASA-CR-192920

UNIVERSITY OF CENTRAL FLORIDA

DEPARTMENT

OF

INDUSTRIAL ENGINEERING

AND

MANAGEMENT SYSTEMS

,.,2'

i:_L.

FINAL REPORT

ON

NASA GRANT NUMBER NAG2-625

Design of an

Air Traffic Computer Simulation System to
Support Investigation of Civil Tiltrotor Aircraft Operations

I

March 15, 1993

Ralph X_Rogers,Ph.D. (3

Principal Investigator

Department of Industrial Engineering and Management Systems

University of Central Florida
P.O. Box 25000

Orlando, FL

32816

U t._',
C ,-4

0

_3

https://ntrs.nasa.gov/search.jsp?R=19930016863 2020-03-17T05:32:33+00:00Z

TABLE OF CONTENTS

INTRODUCTION ... I

TATSS PROJECT MODEL OBJECTIVES ... 2

TATSS PROJECT ACHIEVEMENTS .. 3

THE UNDERLYING AIR TRAFFIC SIMULATION ISSUES .. 4

PARADIGMS .. 6

KNOWLEDGE .. 8

AUTONOMY ..9

DISCUSSION OF THE SIMULATION PROBLEM ... 15

GENERAL APPROACH TO SIMULATION PROBLEM ... 21

MODSIM II ... 22

CLIPS .. 23

AUTONOMY .. 24

CONCEPTUAL FRAMEWORK OF TATSS ... 32

TATSS OBJECT OVERVIEW .. 35

MOVING OBJECT .. 36

STATIONARY OBJECT .. 36

SPATIAL TEMPLATE OBJECT ... 36

CONFLICT IDENTIFIER OBJECT ... 37

CONFLICT RESOLVER OBJECT ... 38

SPATIAL TEMPLATE DATA STRUCTURE .. 39

INTERSECTION IDENTIFICATION ... 41

SOFTWARE OBJECTS USED TO IMPLEMENT THE MODEL OBJECTS 43

PLANE OBJECT ... 44

ChangeStatus ... 45

DelayMove .. 45

Direction :. .. 45

InitPlaneFields ... 2... 46

NameMover .. 46

NewArrive ... 46

NewMove ... 46

°i-

NewTime ..47

STATIONARY OBJECTS .. 47

InitStationaryFidds .. 47

SPATIAL TEMPLATE OBJECT ... 48

GenSeetors ... 49

InformPotentialCon£. .. 49

ReportPosition ... 50

Report StationaryPosition .. 50

SPcheckupdate ... 50

SECTOR MANAGER OBJECT .. 50

Checkupdate ... 51

InitSectorQueue ... 51

Set StationaryEnvSectors .. 52

UpdateEnvelope ... 52

UpdateEnvSectors .. 52

UpdateSectors .. 54

SECTOROBJECTS ... 54

ChangeSectorStatus ... 55
MonitorSector ... 55

SetBorders ... 55

SetObjectID .. 56

SECTOR QUEUE ... 57

LogicaIAdd ..57

CONFLICT IDENTIFIER OBJECT .. 57

Nocortflict .. 58

ReportPC58

CONFLICT RESOLVER OBJECT .. 58

Resolve .. 58

REFERENCES .. 60

APPENDIX A .. A-I

-ii-

TATSS FINAL REPORT

INTRODUCTION

The potential introduction into the National Airspace System (NAS) of common carrier

commercial operations using high speed, heavy lift vertical flight aircraft such as the civil version

of the V-22 Osprey tiltrotor created a need for computer simulation models to investigate the

impacts of such technologies on the existing and proposed air transportation infrastructure.

However, the fundamental paradigms and methodologies of the current air traffic simulation

models clo not directly support the broad range of operational options and environments necessary

to study the issues associated with the tiltrotor's and other vertical flight aircraft's potential

introduction. As a result, the National Aeronautical and Space Administration (NASA) and the

Federal Aviation Administration (FAA) awarded the Department of' Industrial Engineering and

Management Systems of the University of Central Florida (UCF) a research grant (NASA Grant

No. NAG2-625) to develop a software design for computer simulation models with which to

investigate tiltrotor aircraft operation impacts on existing and proposed air transportation

infi'astructures. The subsequent research project was begun in May 1990 at UCF under .the

name Tiltrotor Air Traffic Simulation System (TATSS) Project. Funding for the TATSS Project

ended August 30, 1992. This document is the Final Report for the TATSS Project.

-1-

TATSS FINAL REPORT

TATSS PROJECT MODEL OBJECTIVES

The TATSS Project's goal was to develop a design for computer sol, ware that would support the

attainment of the following objectives for the air traffic simulation model:

Full freedom of movement for each aircraR object in the simulation model.

Each aircraft object may follow any designated flight plan or flight path

necessary as required by the experiment under consideration.

• Object position precision up to _.+3 meters vertically and _+ 15 meters

horizontally.

• Aircraft maneuvering in three space with the object position precision
identified above.

• Air traffic control operations and procedures.

• Radar, communication, navaid, and landing aid performance.

• Weather.

• Ground obstructions and terrain.

• Detection and recording of separation violations.

Measures of performance including deviations from flight plans, air space
violations, air traffic control messages per aircraft, and traditional temporal
based measures.

-2-

TATSS FINAL REPORT

TATSS PROJECT ACHIEVEMENTS

The major achievements of the TATSS Project were:

• Identified the underlying paradigmatic and technical software implementation

issues inhibiting current air traffic simulation modeling paradigms and methods.

Identified simulation modeling paradigms and strategies as well as software

development environments which support attainment of the TATSS Project air

traffic simulation model objectives.

Developed a conceptual software design to support the air traffic simulation

model objectives based on the modeling paradigms and development

environments identified by the TATSS Project.

• Implemented prototype constructs of the TATSS conceptual software design.

• Implemented simple, abstracted air traffic simulation model and situation

scenario with TATSS prototype simulation constructs.

• Demonstrated proof of concept for TATSS conceptual software design.

These achievements are discussed in further detail in the following sections.

-3-

TATSS FINAL REPORT

THE UNDERLYING AIR TRAFFIC SIMULATION ISSUES

The activity of simulation involves the creation of a model to serve as a behavioral analog for

phenomena under consideration. Specifically, simulation attempts to unfold the state changes of

a system over time. In this sense, simulation is not a particular kind of model. Simulation is more

accurately and usefully considered as way of using a model. The popular term "simulation model"

reflects any model designed for use in this way [Rothenberg, et al, 1989]. Thus, in principle,

simulation (or simulation modeling) represent a broad-based systems analysis philosophy and

methodology capable of supporting diverse inquiry goals.

In practice, unfortunately, the analyst's traditional view of what constitutes the simulation activity

is severely limited. This traditional view sees simulation as the process of building behavioral

models, setting up some initial configuration, and then exercising the model to see what happens

[Rothenberg, et al, 1989]. Simulation so viewed is valued for its ability to address the question

"What if... ?" What would happen/fa system having the given behavior were to proceed from

the given initial state. This provides the appealing quality of showing how a system evolves under

certain assumptions and conditions. Rothenberg refers to this approach as the "toy duck"

approach ("wind it up and see where it goes"). Such an approach is most appropriate when

applied to situations requiring a choice of one of a small number of alternatives.

Traditional simulation modeling specifies only what actions to take, based on the current situation.

They contain no explicit description of why the actions are necessary. Perhaps most significantly,

they contain no depiction of the reasoning process that leads to an action and no explicit notions

of causality or other relationships among events [gothenberg, et.al., 1989]. As a consequence,

these simulations cannot answer questions that require interpreting or reasoning about knowledge.

For example, traditional simulations are generally incapable of explaining why a given sequence of

-4-

TATSS FINAL REPORT

events occurred. Additionally, they cannot answer definitive questions such as "Can this event

ever happen?"

To illustrate the limitations of traditional simulation, consider the following scenario: New

tiltrotor aircraft are entering the US. commercial air carrier fleet. This new class of aircraft is

opening air service to many heavily congested as well as isolated areas. New satellite navigation

systems are also becoming available for aircraft use. Their coverage is to the surface world-wide.

The accuracy and precision of this system are high and well established. Several airlines and some

private aircraft are equipped with the new system. All the new vertical flight aircraft are equipped

with this new navigational technology. Additionally, current VOR/DME/ILS systems are still the

primary approved air navigation systems in effect and used on all IFR aircraft even those with the

new satellite navigation system. The general accuracy and precision of these systems are also well

known as well as their areas of coverage. Other sensors such as radar and secondary radar (e.g

mode S) are available to the air traffic controller. These sensors' areas of coverage and accuracy

are also known. Additionally, the pilot of each aircraft can report their position as they

understand it to the controller. The controller, likewise, can report the location of the aircraft to

the pilot as the controller understands it. The question of interest is: For a given operational

environment, what mix of circumstances including weather, aircraft, navigation equipment, and air

traffic loads can give rise to collision between aircraft and between aircraft and ground

obstructions such as terrain? Associated with this question are the goals of establishing the air

space policies for mixing vertical flight and fixed wing IFR operations and for establishing

rules/procedures for information fusion from all the possible sources of information for both

pilot and controller.

Implementing this illustrative scenario using the approaches of traditional simulation practice,

especially discrete-event approaches, would be very difficult if not impossible. Reasons for the

difficulty of current simulation approaches to support implementing phenomena and inquiry goals

-5-

TATSS FINAL REPORT

represented in the scenarios above are found in the major demands such phenomena make on the

basic modeling philosophies of traditional simulation. These major modeling demands are:

• Paradigms other than networks.

• Explicit knowledge representation.

• Autonomy.

These demands reflect the problems facing simulation modeling in general and air traffic

simulation, in particular. The following sections further define the concepts of paradigms,

knowledge, and autonomy as they pertain to simulation and their importance to air traffic

simulation modeling.

PARADIGMS.

Intrinsic in the traditional modeling paradigms of simulation and modeling is the abstraction

rop_LO_g_. Process may be simply defined as the transformation of input into output. The

transformation typically concerns matter, energy, or information. Simulation's most fundamental

modeling paradigm is a further specialization of the process paradigm. This further specialization

is the network or graph theoretic models of systems including digraphs, directed graphs, Gert

networks, decision trees, petri nets, neural networks, etc. Still further specialization is reflected in

classical discrete-event simulation models such as those used in typical ATC simulation models

(e.g. SIMMOD, NASPAC, etc.). In such traditional discrete-event simulation, the underlying

modeling paradigm is queuing networks based on the concept of queuing processes (i.e. waiting

for service).

This concern for the underlying modeling paradigms in simulation is an important consideration to

simulation efforts because the attributes of the primitive constructs of the underlying system

paradigm are the basis for representing all modeled phenomena. All higher ordered modeling

constructs must eventually be based on the underlying paradigm's primitive constructs. Therefore,

the choice of the basic paradigm and its primitive construct strongly affect the expressive power

-6-

TATSS FINAL REPORT

of the simulation modeling scheme and any software products based upon that scheme. Any

attempt to model the phenomena such as that described in the previous illustrative scenario must

begin with the basic paradigm of the modeling perspective. To illustrate the effects of the

underlying paradigm on phenomena modeling, confider the following description of the

SIMMOD airspacemodel (emphasisadded):

"S1MPt40D airspace is composed of an interrelated network of aircraft routes.

These routes are defined by the analyst as a series of node and links. When two

or more routes converge, some node and links will be held in common; that is to

say, they will appear in the definition of more than one route.

All aircraft move in the airspace along these routes, and every flight entering the

simulation must be assigned to a route in the input data. As an aircraft moves

through the airspace, separation requirements are checked between it and other

aircraft on the same path, merging paths, and crossing paths.

Unlike actual flights, aircraft in the simulation cannot deviate from their

designated paths. This being the case, vertical and lateral separation are not

checked by the simulation. These separatiotts requirements are maintained

insofar as routes are correctly defined by the user with vertical and lateral

separation.

Each node on a path is given an altitude by definition; the simulation uses the

altitude to calculate fuel consumption and speeds not given as true airspeed.

Altitude is not checked or adjusted by the simulation to resolve conflicts.

[SIMMOD: The Airport and Airspace Simulation Model

REFERENCE MODEL

September, 1989]

In the above reference, one can readily see the impact of networks and queuing theory on

SIMMOD's airspace simulation models. Similar effects may be seen in other simulation languages

and environments (e.g. SIMON, SLAM, GPSS, etc.). Much of the phenomena of interest

identified in the earlier illustrative scenario (e.g. deviation from flight paths due to navigation/pilot

errors and possibility of collisions due to faculty policies) and the goals for the TATSS project

simply cannot be represented using queuing networks or their derivative simulation environments.

-7-

TATSS FINAL REPORT

This is not to say that airspace and air traffic simulation models based on the queuing network

paradigm are not useful or that SIMMOD is not a useful and powerful tool. Such approaches

have proved extremely useful for aiding decision making associated with many of the issues of air

transportation. However, the increased complexity in the issues resulting from new aviation

technologies such as satellite navigation and vertical flight cannot be adequately represented with

only network based modeling paradigms and methodologies. The functional primitives of the

network approach cannot reflect all the concepts and phenomena required to meet TATSS

project goals as represented in the illustrative scenario. The network based paradigms reflect a

too narrow a view of air traffic operations. Airspace and air traffic simulation requires the

integration of more diverse modeling paradigms into its interpretation of phenomena.

Specifically, paradigms are required which are capable of representing phenomena such as sensor

detection, collisions, terrain, weather, human decision making, modularity, decomposability, and

autonomy.

KNOWLEDGE

A major part of the simulation model development process is identification of operational and

decision-based knowledge. However, discrete-event simulation has only been effective when

"what shall we do next'" can be reduced to some simple rule that can be easily embodied in the

simulation software model. For example, in air traffic modeling, a simple rule would be "wait at

intersection node until airway link is not occupied." The modeler may typically identify more

complex and realistic decision rules during his model development than those that actually find

their way into the simulation model. Such knowledge is typically omitted because traditional

simulation models and environments are not able use it. Much of the acquired knowledge which

does find its way into the lumped model (see Ziegler, 1976) is represented only implicitly. This

implicit representation is eventually reflected in the decision rules programmed into the simulation

soRware model.

-8-

TATSS FINAL REPORT

Countering this practice requires explicitly representing the knowledge bases of the elements of

the decision model itself. For example, the information fusion processes of the pilots and the

controllers of the illustrative scenario represent independent knowledge bases. In these instances,

pilots and controllers (even individual pilots and controllers with differing competency levels) may

operate under their own direct knowledge bases within a single model. Explicit representation of

modeling and phenomena knowledge increases the modularity and decomposability of the

resulting model. Modularity increases by separating the knowledge base associated with the

model and the model's phenomena (e.g. pilots) decisions from the modeled systems structure. For

example, the rules which constitute the knowledge base for data fusion by pilots could be treated

separately from the airspace model of pilots flying aircraft and fusing data. If new knowledge

base rules are required, no change is necessary in the airspace model structure or to the he

associated airspace model element, only in the knowledge base.

AUTONOMY.

Within the domain of interest, atitonomy is associated with phenomena which possess full

independence of movement and decision making. Autonomous phenomena may alter their

temporal and spatial goal trajectories conditional upon their evaluation of their own current state

and the state of the rest of the system as they b_ow it. Autonomous phenomena includes the

concepts of state variables continuously changing with time. In simulation modeling, the

functional primitive construct autonomous objects embodies the concept of autonomous

phenomena. This fundamental concept of autonomy as well as the autonomous object construct

are missing from most discrete-event simulation models and environments. The reasons for the

absence of autonomy is due to both the underlying network modeling paradigms and the related

issues associated with implementing simulation models via computer software.

-9-

TATSS FINAL REPORT

Typical implementations of airspace and air traffic simulation modeling use the asynchronous (i.e.

event driven) discrete-event simulation strategy. In the asynchronous simulation implementation

strategy, the next scheduled event (i.e. state change) defines the next increment of time that

advances the simulation clock (i.e. simulation time). Events may occur at anytime. Thus, objects

(or phenomena) may have their states updated at different times and the resulting increments

between time advances may vary widely through the course of a simulation exercise. However, a

common reference is still required to identify and resolve resource conflicts and other interactions

between entities. Such coordination of object interactions and dependencies in an asynchronous

based modeled system requires specific operational decision points.

The network modeling paradigm readily correlates with this implementation strategy. Nodes

represent decision points and arcs represent specific distances and/or times. Conflicts are resolved

at the nodes. Thus, the frame of reference for asynchronous modeling is the fixed network or

similar simulation construct. The specific operational decision points in this frame of reference

are network nodes or similar simulation constructs corresponding to fixed points in model space.

That is, the asynchronous solution to phenomena synchronization is to fix the decision points in

model space thereby fixing the spatial increments of the model. Conditional decision are normally

triggered by the arrival of objects or entities to some point in the model space (i.e. they are

spatially or position triggered). However, conditions referenced to simulated time may be difficult

or impossible to implement correctly in an asynchronous model because the model may not

recognize that the condition is true until the next event occurs. By that time, the condition may be

false again.

Figure ! provides a graphical illustration of the corresponding asynchronous simulation of two

objects moving on a two-dimensional plane. Note that the trajectory paths are explicitly defined

as pan of the model. The coordination point for the two objects is point Xs,Ys of X-Y plane. In

-10-

TATSS FINAL REPORT

¥

(X2' Y2)

(X 1

(X4' Y4)

X 5 , ¥ 5) I

/- t_.y--"
,......'.'.-..i.........I."..--

X

Figure 1. Asynchronous simulation of two moving objects.

this case, the decision or control logic must only consider the objects and interactions associated

with and prior to events e_a and _2.

Figure 1 also illustrates the difficulty confronting autonomous object implementation in

asynchronous simulation. Autonomous objects by definition must have the freedom to modify

their trajectory through model space, to go where their goals and operational rules specify.

However, to synchronize the actions of these or any objects, some common reference frame must

-11-

TATS$ FINAL REPORT

Y

(x2,Y2)
OBJECT 1

• Y4)

h

X

Figure 2. Two autonomous objects in event driven simulation.

be established. Figure 2 illustrates this problem for autonomous objects in an event driven

simulation. In this example the objects schedule their next event (i.e. an arrival) some time in the

future (h and t4). However, with no common points defined for them in the model in either time

or space, there is no mechanism for synchronization.

To escape the limitations of fixed spatial increments associated with asynchronous simulation and

in attempts to obtain more autonomy, discrete-event simulationist have often tried the

-12-

TATSS FINAL REPORT

synchronous (i.e. time driven) simulation implementation strategy. In the synchronous simulation

implementation strategy, time is advanced in fixed increments. The model is examined only at

regular intervals defined by the time increment used. At every advance of the clock, the state of

each object, entity and process in the simulation must be updated. Conflicts and resolution must

be identified and actions implemented. Conditional operational decisions are made (and

synchronized) at these fixed time intervals. The reference for synchronization of actions is the

common time defined by the time increment. Synchronous modeling is an advantageous approach

when it is desired for a certain event to occur when a particular condition is satisfied (or

identified)[Bratley, et al, 1987]. Figure 3 provides a graphical illustration of the synchronous

approach for two autonomous objects moving through a plane. Notice that each object must

evaluate its relationship to the other object at each clock increment At.

Synchronous modeling has four major disadvantages. First, such models are hard to implement in

software. Second, non simultaneous events may be treated as simultaneous causing priority and

sequencing problems. Third, to obtain sufficiently accurate performance measures, it may be

necessary to make At very small. As At decreases, the number of times the model must be updated

(and objects synchronized) increases. This increased updating also increases the computational

resources and time required to exercise the model. Fourth, results may vary depending on the At

time increment.

-13-

TATSS FINAL REPORT

Y

(X2' Y2)

OBJECT 1

OBJECT 2

Y4)'

X

Figure 3. Synchronous simulation of two moving objects.

i i

To include autonomy or autonomous like behavior in simulation models requires elaborate and

sometimes clumsy workarounds in most simulation environments. For example, to obtain an

apparent autonomous behavior, a scheduler asks each movable object to move each time the

simulation clock advances. If interaction events between objects such as collisions, intersections,

and detection by sensors are important (e.g. aircraft in the illustrative scenario) then movements

and event detection must be made against some common frame of reference. To achieve true

-14-

TATSS FINAL REPORT

autonomy of movement, this typically requires using a fixed-time advance approach for the

simulation clock (i.e. synchronous simulation). The synchronous simulation necessitates the

evaluation of each entity's relationship to every other entity at every time advance of the

simulation dock. The resultant computational and modeling complexity severely restricts the

simulation modding domains where autonomy my be used efficiently and effectively.

While conceptually desirable, implementing autonomy in system models compatible with

traditional discrete-event simulation environments has been difficult to achieve. As previously

discussed, what is desired is to allow each autonomous object to schedule its next event anywhere

in the model space its operational rules permit, determine if there are any conflicts with any other

objects in the model in achieving that next event, and implement conflict resolutions strategies

among objects when necessary. Clearly, how objects efficiently and effectively recognize and

resolve conflicts are the basic issues of hindering implementing autonomous objects in discrete-

event simulation models.

DISCUSSION OF THE SIMULATION PROBLEM

Researchers and simulation vendors have addressed aspects of the paradigms and knowledge

demands identified previously. The availability and popularity of object-oriented programming

languages have provided some movement on the consideration of modeling paradigms other than

networks. The arrival of simulation environments such as MODSIM II from the CACI

Corporation as well as the wide availability of languages such as C++ and Smalltalk has facilitated

the development of object-oriented simulation. However, the full impact of the object-oriented

paradigm on modeling, in general, has yet to appear.

To date, most uses of the object-oriented paradigm has been in the implementation of traditional

network models in object-oriented languages and simulation environments. The underlying or

-15-

TATSS FINAL REPORT

base model still remains the queuing network. However, the availability of object-oriented

simulation languages such as MODSIM II does provide the capability to consider more

encompassing modeling paradigms other than queuing networks. Indeed, it is perhaps the

evolving impact of the object-oriented paradigm on base and lumped modeling which has

potential to provide a larger impact on simulation than any single software modeling approach.

The knowledge-based modeling approach offers a new perspective for simulation by merging

traditional modeling with knowledge-based expert system technologies such as knowledge

representation and automated inferencing. The use of knowledge-based models permits

simulation to go beyond "What/f.,. ?" and explore more open-ended questions, such as, finding

optimal solutions, formulating new policy, explaining why a given sequence of events occurred,

providing answers to "Can this event ever happen?", or to the question "Which events might lead

to this event?" These types of questions can only be answered by integrating descriptive

declarative components (i.e. knowledge bases) into model domains as well as providing the

inferencing mechanism needed for planning and problem solving.

Not surprisingly, knowledge-based simulation has also been the focus of much research and

development in the past decade. In these efforts, knowledge-based simulation tools have been

typically developed on top of artificial intelligence languages such as LISP or PROLOG.

Examples include ROSS [Rothenberg, et al, 1989] and BLOBS [Middleton and Zanconato,

1986]. This approach has been extended for practical reason to using an expert system

development environments on dedicated LISP machines [O_Keefe, 1989]. Examples cited by

O1_eefe ofthis approach include:

SimKit, a product of Intellicorp, developed using the Knowledge Engineering

Environment (KEE) ;

-16-

TATSS FINAL REPORT

Knowledge-Based Simulation system (KBS), developed at Carnegie-Mellon, which uses

the facilities of Knowledge-Craft; and

Rule-Oriented Simulation System (ROSS) developed at the RAND Corporation and

implemented on top of ART.

These approaches tO simulation have come mostly from the AI community where a simulation

model is used to aid the reasoning process in decision making. The modeling emphasis is on

decision making and declarative knowledge representation. Such approaches have developed

simulation models as sets of conditional events expressed as rules [O_eefe, 1989]. Additionally,

under these approaches, the simulation management and overhead functions (e.g. event calendar

and data collection) are written based on rules or in the underlying AI language (i.e. LISP or

PROLOG). Perhaps just as important, the base model constructs often still reflect the queuing

network as the underlying base modeling paradigm and rely on asynchronous and synchronous

simulation implementation strategies. The so-caUed lump model of the phenomena of interest is

represented as the sets of conditional event expressed as rules. The software model is then

implemented based on a LISP, PROLOG, or more specific AI programming paradigm.

The simulation community's interest in knowledge-based simulation has been driven by the need

to model increasingly complex systems. This need is especially apparent where the domain of

interest is considered complex and/or complex decision making is central to specific phenomena

being modeled. The general approached used by the simulation researchers like the AI researchers

has been to build the simulation software in a AI environment based in either LISP or Prolog.

Typically, the approach has been to implement well understood modeling methods and constructs

from traditional simulation modeling in the AI based language and then integrate some facilities

for knowledge representation into the model [O_Keefe, 1989]. The emphasis of these approaches

has been on the knowledge representation of the decision processes in the model.

-17-

TATSS FINAL REPORT

Contrasting these two communities approaches provides some useful insights [O_eefe, 1989]

(1) The AI community has made better use of available AI methods, software, and

hardware.

(2) The simulation community has used a sounder methodological base for developing

simulations.

(3) The converse is true of each.

(4) Both communities rely on the same underlying paradigm for their base models.

Perhaps what is most illustrating of the approaches of the two communities is the efforts each

must expend to obtain the capability generally associated with the other. Both communities have

well established tools and methodologies to perform their central goals. In A.I, numerous expert

system shells and development environments are available and widely used to support knowledge

base development and inferencing. Similarly, in simulation, numerous simulation languages and

environments are available to support a wide range of simulation models and goals. But, in their

efforts to bring both AI and simulation together, each community appears to start at the base level

of the other. The AI community tends to develop the simulation models from scratch in whatever

development environment with which they are working. The simulation community tends to

develop not only the expert systems from scratch including inferencing techniques in some base

AI language but, to achieve integration of the AI language with a procedural language, the

simulationist must also developed from scratch in the base procedural (or object-oriented)

language his implementation of the simulation model. Both fail to exploit the strengths and

general tools of the other.

-3.8-

TATSS FINAL REPORT

This general situation is impeding the development of simulation to meet the challenges identified.

Consider the efforts researcher must currently expend to do knowledge-base simulation. First,

they must concentrate resources on building the side of the AI-simulation pair in which they are

deficient. Such development efforts can severely delay arriving at a point where the researchers

can focus on the problems associated with the methodology and philosophies of knowledge-based

systems. Due to the effort and resources required to actually get a working simulation with

knowledge-base capabilities or vice-versa, the attainment of a working model, not necessarily a

useful model, appears to be perceived as the principle achievement. Indeed, such achievements

should be acknowledged. However, because of the expenditure in resources to merely get a

working model, further development, if pursued at all, tends to focus on the refinement of the

basic approaches and goals of the project which initiated the effort. Fundamental experimentation

and investigation of the issues and potential of knowledge-based simulation to address new

phenomena (e.g. autonomy) and more complex manifestations of the phenomena currently being

studied are generally not pursued.

What is needed for the simulation and AI communities is the marriage of each's tools and

development environments which can reduce the development effort necessary to obtain the basic

simulation and knowledge-base modeling tools. Further, what is needed is also the inclusion of

environments which will enable simulation to investigate broader ranges of modeling paradigms

and support the development of the concept of autonomy.

The need for integration of simulation and AI tools and methodologies is especially critical for air

traffic modeling and the issues raised by vertical flight and the new navigation technologies. The

demands for policy development, operational procedure development, and causal analysis in the

increasingly complex air traffic environment envisioned for the twenty-first century cannot be

adequately supported by current simulation tools and methodologies. The TATSS project has

-19-

TATSS FINAL REPORT

addressed these simulation problems by effectively integrating the object oriented simulation

environment MODSIM 1I with the expert system shell and language CLIPS. Further, the TATSS

project has developed and implemented autonomous objects in this integrated knowledge-based

simulation environment. The following sections address these developments in further detail.

-20-

TATSS FINAL REPORT

GENERAL APPROACH TO SIMULATION PROBLEM

Achieving the goals of the TATSS project required addressing the fundamental simulation

problems associated with paradigms, knowledge, and autonomy. As discussed in the previous

section, previous efforts involving these concerns did not provide a cohesive or integrated base of

software tools or methodologies with which to efficiently support the wide-spread investigation

and development efforts associated with TATSS Project simulation model goals. Availability of

such software tools and development environments were critical to the TATSS Project efforts.

However, time and resources did not permit development of a custom software simulation

environment with which to explore the basic modeling issues of the TATSS Project.

The approach used to obtain a suitable software environment to develop the TATSS simulation

model employed available off-the-shelf object-oriented simulation and expert system software.

By employing off-the-shelf software, each designed for its particular mission, project resources

would not be spent on duplicating basic implementation approaches of simulation and expert

system. The obvious concern was identifying available simulation and expert system soi_ware

which could be integrated effectively.

The two software packages were identified which satisfied the availability requirement. The two

were MODSIM II from the CACI, Corporation and CLIPS developed and supported by NASA

and available from COSMIC, NASA's Computer Software Technology Transfer Center. Both

packages generated C language code as an intermediate stage between their base programming

environment and executable code. With this common grounding in C, the two packages could

interface and communicate via C subroutine calls. Further, modularity and system performance

were increased by running both packages as separate processes under the UNIX's V operating

system's multi-tasking capabilities. Communications between the two active processes were

made using the FIFO pipes available under UNIX.

-21-

TAT$$ FINAL REPORT

The establishment of a working simulation environment permitted research and experimentation

to proceed on development of autonomy in the simulation. This experimentation led to the

development of an approach to autonomy which could be incorporated into the integrated

simulation environment ofMODSIM II and CLIPS.

MODSIM H

MODSIM IT is a general-purpose, modular, block-structured high-level programming language

which provides direct support for object-oriented programming and discrete-event simulation.

MODSIM II is also a general-purpose, strongly typed, procedural programming language which

can be used to write traditional style computer programs. Objects in MODSIM II are defined as

dynamically allocated data structures coupled with routines, called methods. The fields in the

object's data structure define its state at any instant in time while its methods describe the action

which the object can perform. The values of the fields of an object are modified only by its own

methods.

In MODSIM 1I, simulation is supported by a library module which contains a number of

simulation specific objects and procedures (e.g. simulation clock, event calendar, probability

distributions, random number generators, etc.) All objects are allowed to perform actions which

elapse simulation time. A method of one object might include a statement to WAIT until some

future time before proceeding to the next statement, or it might send a message to another object

so that the message arrives at that object at a specific simulation time. MODSIM U allows a

related group of activities to be coded in one routine. When it is necessary to elapse simulation

time, the routine suspends execution until the stated amount of simulation time has elapsed then

the routine resumes execution

-22-

TATSS FINAL REPORT

CLIPS.

CLIPS is an expert system tool developed by the Software Technology Branch, NASA/Lyndon B.

Johnson Space Center. The acronym CLIPS stands for C Language Integrated Production

System. CLIPS is both a type of computer language and a complete environment for developing

expert systems. As a complete expert system environment, CLIPS includes features such as an

expert systems shell, integrated editor, and debugging tools. The expert system shell refers to

that portion of CLIPS which performs inferencing. The shell provides the basic elements of an

expert system including: (1). fact-list, (2) knowledge-base, and (3) inference engine. A program

written in CLIPS consists of rules and facts. The inference engine decides which rules should be

executed and when. CLIPS versions 5.0 or later include an object extension to the language

called CLIPS Object-Oriented Language.

CLIPS was designed for full integration with other languages, particularly C and Ada. Versions

of CLIPS are available which are written in C and Ada. The most common form of CLIPS

integration with other languages is for an executable CLIPS program to be called from a

procedural language, perform its function, and then return control back to the calling program.

Similarly, procedural code can be defined as external functions and called from CLIPS. When the

external code completes its task, control returns to CLIPS.

Still another approach for CLIPS integration is available under multi-tasking operating systems

such as UNIX. In this approach, the CLIPS based program element and the procedural based

program element are run as a separate coexisting processes under the operating system.

Communication between processes is through the operating system. For example, under UNIX,

there are several forms of interprocess communication including pipes and sockets. The use of

coexisting processes for integration enhances the efficiency of program execution and increases

the modularity of the resulting software system.

-23-

TATSS FINAL REPORT

AUTONOMY

A simple autonomy strategy requires each object to schedule its next model space position (and

associated event) according to its own objectives. The object would then poll ever other object in

the model to determine if the newly scheduled event would precipitate any conflicts. Conflicts

would be resolved based upon the model's conflict resolution procedures. This is similar to the

general approach used in synchronous modeling.

Unfortunately, such a simple conceptual strategy suffers from the same basic demand for

computational resources as the synchronous modeling. Moreover, computational resource

demand grows with at least the square of the number of objects in the model. What is needed is

an approach which enables conflict recognition between objects while minimizing the number of

objects and number of communication channels and interchanges which must be maintained

between objects.

The conflict identification strategy pursued in the TATSS project uses the concept of a spatial

template. Under this concept, all objects in the model space are represented as geometric shapes.

To simplify, all object model shapes are polygons. Dynamic objects (e.g. airplanes, ships, guided

vehicles, weather, etc.) are also represented by polygons but polygon size and shape is based on

the object's model space trajectory. The parameters of the associated polygon of the dynamic

objects in the spatial template are defined by the originating object event and the next scheduled

event for that object as well as unique characteristics of the object.

For example, the trajectories of two moving objects could be represented as two polygons in the

X-Y plane &their movement. The origin of Object l's trajectory is point X_,Y_ and the end of its

trajectory is point X2,Y:. These points correspond to events e1.1 and e_._. Similarly for Object 2,

its origin and end points are X3,Y3 and X4,Y4, respectively. The corresponding events are e_,t and

e._. The polygons on the spatial template for each of these objects could be defined by the origin

-24-

TATSS FINAL REPORT

and end points and by a Ay for each object. Thus, a polygon representative of Object 1 would be

defined by the four points (Xt,Y_+Ay), (Xt,Y1-Ay), (X:,Y2+Ay), and (X2,Y2-Ay). A polygon

representation of Object 2 would be defined by the four points (X3,Y3+Ay), (X3,Y3-Ay), (X, Y4+A

y), and CX_,Y4-Ay). The two corresponding polygons and spatial template are illustrated in Figure

4.

This static representation in two dimensions implies a third dimension (time) by the extent of the

polygon from the point of the arrival event. This static representation may also be regarded as a

most probable model space trajectory for the object. Uncertainty in the proposed model space

trajectory may be reflected in the shape and extent of the object polygon (e.g. the Ay's). Figure 4

illustrates this concept. Potential conflicts are identified when the representational polygons of

objects intersect. Once intersection is detected, objects may then resolve conflicts. Clearly, the

key methodological issues are associated with how to efficiently identify polygon intersections in

the spatial template.

The problem of how to determine if any two geometric objects intersect in a given coordinate

system is the principle implementation issue associated with this approach. Efficient and easily

implemented methodologies are readily available. The point of issue with polygon intersection

detection for the spatial template approach is the determination of what is an efficient way to

identify which objects should be tested to determine if they intersect? Testing between all objects

in the system every time a new event is scheduled merely recasts the problems of synchronous

modeling.

The spatial template is fundamentally concerned with the identification of the POTENTIAL

conflicts. That is, to identify those objects whose model space trajectories may compete for the

same model space resources (e.g. space) at the same time. The goal is to reduce the message

traffic between model objects necessary to determine if conflicts will occur. The approach taken

-25-

TAT_S F/NAL REPORT

_ Ay
_:Ay
_Ay

Ay,y
_ Ay

!
: OBJECT 1

OBJECT 2

x 2 x 3 X4 X I

I1 II
el.2 e2.1 e2.2 el.1

Figure 4. Spatial Template with object trajectory polygons.

by the TATSS Project is to graphically represent the model space trajectory of model system

objects and to identify the intersection of trajectories before allowing the object to proceed. How

to identify these potential conflicts in an efficient manner is dependent on the how to represent the

model space information and the object trajectory information associated with trajectory polygons

and scheduled simulation events.

The proposed spatial template approach to representing this information is to partition a two or

three dimensional Cartesian model space into equal sectors. The model space trajectory of an

-26-

TATSS FINAL REPORT

object represented by its associated polygon is defined within the model space Cartesian

coordinate system (See Figure 5) as discussed before. The Sector partitioning then overlays the

model space Cartesian system (See Figure 6). The Sectors are identified by a coordinate sector

numbers (e.g. sector 1,3,2). The Sectors through which the trajectory polygon overlays and/or

intersects are identified. Associated with each sector then is a list of objects whose trajectory is

schedule to go through some part or all of that sector (See Figure 7). When new object

trajectories are added a the sector list, a check is made to determine if any other object trajectories

are also associated with that Sector. If an object trajectory is already associated with a Sector,

then a potential conflict exists. When potential conflicts are identified, the model communicates

with each object in the identified Sector to determine if an actual conflict exists. When conflicts

do exist, the model may then employ its conflict resolution strategies to remove the conflict.

-27-

TATSS FINAL REPORT

¥

POSSIBLE CONFLICT

×

Figure 5. Example spatial template with polygons.

-28-

TATSS FINAL REPORT

IY
2 3 4 5 6

2

3

4

5

6

/N

// \

Figure 6. Sectors overlaying spatial template.

-29-

TATSS FINAL REPORT

Figure 7. Spatial template with sector queues.

-30-

TATSS FINAL REPORT

The data structure employed to maintain the list of objects associated with spatial template

Sectors is a dynamic array of queues. The Sectors of the model space become elements in the

array. Each element in the array is a queue. As object trajectories cross a sector, the name of the

object is added to the sector (i.e. queue). Once a new model trajectory has been established for

an object, the name of the object is remove from the sectors associated with the old object

trajectory.

In the object-oriented software implementation, each sector element is defined as a queue object.

The use of objects to describe sectors enables the exploitation of a dynamic array. A dynamic

array will only use the memory necessary for the active sector objects. Thus, if no sectors have

objects associated with them, they are not created, and do not require computational resources.

Likewise, as a sector becomes empty, that sector object may be disposed of, freeing

computational resources.

Implementing the spatial template as described above in a discrete-event simulation model

provides an approach which supports autonomous object modeling. The spatial template approach

reduces the coordination overhead required for autonomous objects in both synchronous and

asynchronous simulation. Practical programming considerations dictate an object oriented

approach is required for the software implementation.

-31-

TATSS FINAL REPORT

CONCEPTUAL FRAMEWORK OF TATSS

The basic object model for the TATSS consists of two general types of objects with a total of five

basic subtypes. The two general types are (1) Spatial Objects and (2) Model Management

Objects. The Spatial Objects have two subtypes (a) Moving Objects and Co) Stationary Objects.

The Model Management Objects consist of three subtypes: (a) the Spatial Template Object, (b)

the Conflict Identifier Object, and (c) the Conflict gesolver Object. (Refer to Figure 8). In any

given model there may be more than one instance of Moving and Stationary objects. However,

there is generally only one instance per model of the Spatial Template, Conflict Identifier, and

Conflict Resolver objects. Figure 9 provides an illustration of the inter connective relationship

between these five types of objects. The general relationships between these objects are

illustrated by following descriptive example.

DESCRIPTIVE EXAMPLE. A two dimensional model-space contains phenomena of interest.

The phenomena consists of two dimensional entities and their behavior. Entities may have two

basic behaviors; (1) they occupy space and (2) they may move from one location to another.

Some entities may possess both behaviors (i.e. Moving Objects) while some may posses only the

first (i.e. Stationary Objects). Stationary Objects are of random sizes and randomly assigned

locations in the model-space. Moving Objects start at random locations within the model-space

and move with a random velocity vector for a random period of time. Further, no two entities can

occupy the same space at the same time.

-32-

TATSS FINAL REPORT

MODELSPACE

MODELMANAGEMENT

I

Figure 8. TATSS general object types and sub-types.

-33-

TATSS FTNAL REPORT

i

© 'I "; "'="_ I •

SPATIALOLECTIlYs

p,' t[.OS'ES_P,OIqB'A
./"-".xCO0_I,,_ L _, _. _._:..,_....lit IFE,FIEDSECTOR \m"_'_L I. J_ILIL"I41_'I' !_'_.J+=; '-.,-;'/ ,,_ /

/

\ .- I_"_ I_.,ilKl_r_| __;_'_._E_"_-_';:! \')

U,O_
t_'I',ALOOJ[L'TS

i i I

Figure 9. Inter conective relationship between object types.

-3£3-

TATSS FINAL REPORT

TATSS OBJECT OVERVIEW

In the basic TATSS object model the illustrative example presented would function as follows: All

stationary objects report their dimensions and location in the model-space to the Spatial Template

Object when they are instantiated. Moving Objects report their dimensions and their current

positions in the model-space to the Spatial Template Object when they are instantiated. Before a

Moving Object moves, it notifies the Spatial Template Object of its next desired position or

location in the model-space. This establishes a planned model-space trajectory for the moving

object which is represented graphically in the Spatial Template.

If the planned model-space trajectory of a Moving Object intersects the model-space trajectory of

another Moving Object or the model-space of a stationary object then a possibility of a conflict

exists. The Spatial Template Object identifies such intersections of the model-space trajectory

polygon. These intersections represent potential conflicts. When intersections are identified, the

Spatial Template notifies the Conflict Identifier Object that a possible conflict exists between the

two object instances in the model-space.

The Conflict Identifier then questions the two objects to determine when each object will arrive at

the intersection neighborhood. Obviously for stationary objects, there is no arrival time. The

objects are always there. If the arrival are separated by enough time, no actions are required and

the moving object which wished to move to its next position is allowed to schedule its desired

destination. The current position of the moving object and its desired/goal position establishes a

spatial trajectory in the Spatial Template Object. If one of the two objects is a stationary object or

if the separation time of two moving objects is insufficient, the Conflict Identifier Object notifies

the Conflict Resolver Object that a conflict exists between two objects for model-space resources.

The Conflict Resolver determines the nature and extent of the conflict. The Conflict Resolver

also determines the course action to be taken depending on the objects involved. For example, a

-35-

TATSS FINAL REPORT

conflict may be determined to exist between a stationary object and a moving object. The

conflict resolver object might simply notify the moving object that it will intersect a stationary

object if corrective action is not taken. Or, the conflict resolver may determine the best course of

action and issue new course trajectory to the moving objects. The choice would depend on the

design of a particular model. Once a new course action is determined either by the resolver or the

objects themselves, the new course objective is sent to the Spatial Template and the process

begins again.

With this overview of the object architecture in mind, the following sections describe each of the

object subtypes in more detail.

MOVING OBJECT. A Moving Object occupies space and follows a model-space trajectory as it

moves from one location to another in model-space. A Moving Object is represented in the model

as a geometric surface (i.e. a polygon) in either two or three dimensional space. A Moving Object

may follow its own goal directed model-space trajectory based upon its own decision making

capabilities and rules or it may be directed to follow specified trajectories by other "objects (e.g.

Conflict Resolver) in the model based on system model state. A Moving Object communicates

with the Spatial Template Object, the Conflict Identifier Object, and the Conflict Resolver Object.

STATIONARY OBJECT. A Stationary Object occupies space and does not normally change

locations in the model-space. A Stationary Object is represented in the model-space as a

geometric surface (i.e. a polygon) in either two or three dimensional space. A Stationary Object

communicates with the Spatial Template Object, the Conflict Identifier Object, and the Conflict

Resolver Object.

SPATIAL TEMPLATE OBJECT. The Spatial Template Object provides a graphical memory

of the model-space status between model events. The Spatial Template Object maintains this

-36-

TATSSFINALREPORT

memory by a graphical representation based on the proposed model-space trajectory of a moving

object or the occupied space of a stationary object. When new graphical descriptions are created

representing model-space trajectories and model-space occupation, these new graphical objects

are incorporated into the spatial template.

As each new graphical representation is added to the spatial template, the Spatial Template Object

simply identifies instances when a new trajectory may compete for the same model-space

resources as another object with a previously approved model-space trajectory. That is, it

identifies when a potential conflict occurs between two or more model-space objects. When

potential conflicts are identified, the Spatial Template passes the identification of the involve

objects to the Conflict Identifier Object.

There are two related principal technical issues associated with implementing the Spatial Template

Objects of the TATSS base object architecture into an associated software model. The first

technical issue is the identification of a data structure to represent the spatial template graphical

based information. The second technical issue is how to detect when model-space object in the

Spatial Template Object intersect. Each of these issues is addressed in more detail in subsequent

sections of the report.

CONFLICT IDENTIFIER OBJECT. The Conflict Identifier Object receives from the Spatial

Template Object the identification of spatial objects which have a potential conflict and the

location in the model-space of that potential conflict. The Conflict Identifier Object sends

messages to each of the potentially conflicting spatial objects asking them at what time each will

arrive at the location of the potential conflict. If the difference in the arrival times of each is

sufficiently large enough, then no conflict will occur. The spatial object whose new position

change precipitated the conflict identification process is given permission to schedule its event

past the location identified with the possible conflict. If the difference in the arrival times of each

-3"/-

TATS$ FINAL REPORT

object is sufficiently small enough, then a conflict will occur. The Conflict Identifier Object then

sends a message to the Conflict Resolver Object containing the identification of each of the

conflicting spatial objects, the location in the model-space of the conflict, and the time of the

conflict.

CONFLICT IDENTIFIER OBJECT. The Conflict Identifier Object receives from the Spatial

Template Object the identification of spatial objects which have a potential conflict and the

location in the model-space of that potential conflict. The Conflict Identifier Object sends

messages to each of the potentially conflicting spatial objects asking them at what time each will

arrive at the location of the potential conflict. If the difference in the arrival times of each is

sufficiently large enough, then no conflict will occur. The spatial object whose new position

change precipitated the conflict identification process is given permission to schedule its event

past the location identified with the possible conflict. If the difference in the arrival times of each

object is sufficiently small enough, then a conflict will occur. The Conflict Identifier Object then

sends a message to the Conflict Resolver Object containing the identification of each of the

conflicting spatial objects, the location in the model-space of the conflict, and the time of the

conflict.

CONFLICT RESOLVER OBJECT. The Conflict Resolver Object determines the actions

specified by the system model designed to resolve the conflict. After determining the appropriate

course of actions, the Conflict Resolver Object sends message(s) to one or both affected spatial

object instructing them on actions to be taken to resolve the conflict. If the system model design

specifies that decision making to resolve a conflict be performed by the one or both of the objects

in conflict, the Conflict Resolver Object informs the appropriate object or objects of the conflict

and the identifies the other object involved. In such a case, each spatial object must be designed

to make conflict resolution decisions.

-38-

TATSS FINAL REPORT

If the system model dictates that determination of the conflict resolution actions be made by the

Conflict Resolver Object, the conflict resolution mechanism must be directly or indirectly a pan of

the Conflict Resolver Object. Once the appropriate actions are determined by the Conflict

Resolver Object, these actions are sent as messages to the involved objects. Each spatial object

must be so designed to implement these specified actions.

The conflict resolver mechanism is best thought of as rule-based approach to conflict resolution.

This mechanism may include hard coded soi_ware methods and procedures as part of the system

soitware model or may be based on rule-based inferencing through a separate knowledge base

typical of expert-system approaches. To obtain this latter capability, the Conflict Resolver Object

must include or interface with an expert system shell or language. In TATSS this expert system

shell is CLIPS.

SPATIAL TEMPLATE DATA STRUCTURE

In previous discussions, the Spatial Template was identified as a graphical representation of the

model state space. The Spatial Template is both more and less than this. The fundamental interest

is the identification of the POTENTIAL conflicts. That is, to identify those objects whose model

space trajectories may compete for the same model space resources (e.g. space) at the same time.

The goal is reduce the message traffic between model objects necessary to determine if conflicts

will occur. The approach taken is to graphically represent the model space trajectory of model

system objects and to identify the intersection of trajectories before allowing the object to

proceed. How to identify these potential conflicts in an efficient manner is dependent on the how

to represent the model state space information.

TATSS's approach to these issues is based on a partitioning of the model space. Currently, the

model space is divided into equal size sectors. Thus, the model space can be represented by either

a two or three dimensional Cartesian coordinate system. Sectors are identified by their coordinate

-39-

TATSS FINAL REPORT

numbers (e.g. sector 1,3, 2). The model space trajectory of an object represented by its associated

polygon is position with reference to this coordinate system (Refer to Figure 6). The sectors

through which the trajectory polygon goes are identified. Associated with each sector is a list of

objects whose trajectory is schedule to go through some part or all of that sector. When new

object trajectories are added a the sector list, a check is made to determine if any other object

trajectories are also associated with that sectors. If an object trajectory is already associated with

a sector, then a potential conflict exists. The Conflict Identifier is then notified and the names of

the object with potential conflicts are sent with the notification.

The data structure employed to capture this approach is a dynamic array of queues. The sectors

of the model space become elements in the array. Each element in the array is a queue. As object

trajectories cross a sector, the name of the object is added to the sector (i.e. queue) (Refer to

Figure 7). Once a new model trajectory has been established for an object, the name of the object

is remove from the sectors associated with the old model trajectory.

In the object-oriented software implementation, each sector element is defined as a queue object.

The use of objects to describe sectors enables the exploitation of dynamic arrays. A dynamic

array uses only the memory necessary for the active sector objects. Thus, if no sectors have

objects associated with them, they are not created, and do not require computational resources.

Likewise, as a sector becomes empty, that sector object may be disposed of, freeing

computational resources.

-40-

TATSS FINAL REPORT

INTERSECTION IDENTIFICATION

The identification of the intersection of the model space trajectory of objects follows a

hierarchical decision process. The first level in the process determines if the model space

trajectories (i.e. the trajectory polygons) of objects transverse or occupy the same sector or

sectors. If more than one model space trajectory intersects a sector, then the name of the objects

associated with that sector are sent to the conflict identifier to establish ifa conflict actually exists.

The issue of concern is to identify what sectors an object model space trajectory intersects. This

section discusses the approach used in TATSS to identify these sectors intersected by an object's

model space trajectory.

When an object reports its current and goal positions to the Spatial Template, the Spatial

Template defines the trajectory polygon in the model space. Determination of which sectors are

intersected is made by scanning along the x direction of each side of two parallel sides of the

polygon. The two parallel sides chosen are the two which are parallel to the velocity vector.

Scanning is made in the direction of the x component of the velocity vector. Scanning along the

other sides of the polygon is not necessary because the width of the polygons are less than one

sector width.

As the scanning occurs along the polygon side, the contents of each sector queue intersected is

checked. If another object's (or objects') trajectory has already been recorded in the queue, the

name of the object(s) along with the object which is scanning is sent to the Conflict Identifier for

further conflict evaluation.

Scanning is performed by establishing the coordinate border values for the sector under

consideration. For example, in a two dimensional coordinate system, one side of a polygon could

be defined by the two points (1,2) and (8,11). Movement is in the direction from (1,2) to (8,11).

Sectors in this example are 3 unit square. Therefore, sector I would be defined by sector borders

-41-

TATSS FINAL REPORT

of X=3 and Y=3. The point (1,2) is less than the value for each border but greater than 0.

Consequently, point (1,2) is in the first sector. Scanning continues along the line defined by the

points (1,2) and (8,11). The next test point is the X border value of 6 and the Y value where the

polygon side intersect the x axis with value 6. The scan determines which sectors the line

intersects/crosses between this new point and the old sector value (i.e. sector 1, 0<X<3, 0<Y<3).

The sector scan continues until the sector contains the end points of the polygon is identified or an

identified conflict results in a new trajectory plan. The area of sector identification is the one area

of the project which would benefit from more intensive investigation.

-42-

TATSS FINAL REPORT

SOFTWARE OBJECTS USED TO IMPLEMENT THE MODEL OBJECTS

In this section, we will present the software objects which compose the prototype application part

of the model and their relation to the conceptual model objects specified in the previous section.

The conceptual Moving object is implemented in the prototype as a PlaneObject. PlaneObjects are

capable of moving and stopping in space. Each instances of a PlaneObject has its own speed,

direction, current spatial position and intended destination. The conceptual Staaonary Object is

implemented as the StationaryObject in the prototype. StationaryObjects are represented in the

Model Space as polygons and have no associated movement.

The Spatial Template is implemented as the SpatialTempletObject. The SpatialTempletObject

defines an object that represents a model space. This model space can be divided by rectangular

coordinates into smaller areas called sectors. Each sector can be thought of as a queue that

maintains a list of all objects that are associated with this sector. Maintenance of the sector

queue lists is the responsibility of SectorManagerObject. The SectorManagerObject updates the

information about the location of PlaneObjects and StationaryObject with respect to the spatial

template sectors. Individual sectors are represented in the prototype by SectorObjects.

SectorObjects report to the Spatial Template any time the trajectory polygon of an instance of a

PlaneObject intersects a sector which already has a StationaryObject or PlaneObject instance

associated with it.

The Conflict Identifier is represented in the prototype by the ConflictldentifierObject. The

ConflictldentifierObject establishes if a collision will occur between the planned trajectory of a

PlaneObject and with other PlaneObjects and StationaryObjects. The Cot_ict Resoh,er is

represented by the ConflictResolverObject in the prototype. The ConflictResolverObject is

responsible for resolving any conflict that might exist between PlaneObjects or between

PlaneObjects and StationaryObjects in the Model Space. The implementation of this

-43-

TATSS FINAL REPORT

ConflictResolverObject includes the capability to interface and use the CLIPS expert system shell.

Each of these prototype objects are discussed in more detail in the following sections.

PLANE OBJECT

PlaneObjects are the software implementation constructs of the conceptual MovingObjects

described in the approach to the problem. PlaneObjects represent aircraft in the air traffic

simulation model. PlaneObjects control their own speed, direction, location, and report

information to the spatial template. PlaneObjects also respond to instructions from the

ConflictResolverObject. PlaneObjects have the following methods:

CalcTime

ChangeStatus

Delaymove

Direction

InitPlaneFields

NameMover

NewArrive

NewMove

NewTime

Each of these methods are discussed in more detail in the following sections.

CalcTime. The CalcTime Method provides the remaining time to the next scheduled

destination point in the simulation model. The ConflictldentifierObject calls the CalcTime Method

to request the remaining time. The CalcTime Method calculates the time at which the plane will

arrive at its destination by establishing the remaining distance between the PlaneObject's current

position and its destination position then "dividing that distance by its speed. The formula of time

calculation is:

Distance = [(Xposition - XDestination)-" +(Yposition - YDestination):]_

-44-

Whel"e,

Time = Distance/Speed.

TATSS FINAL REPORT

Xposition = X coordinate of the plane's current position

Yposition = Y coordinate of the plane's current position

XDestination = X coordinate of the plane's destination

YDestination = Y coordinate of the plane's destination

Speed = Speed of the plane

ChangeStatus. The ChangeStatus Method is used to change the PlaneObject's status. In air

traffic simulation model this the ConflictResolverObject sends this message to the PlaneObject.

The PlaneObject's status can have one of the following values:

"AT DESTINATION"

"GIVEN PERMISSION"

"NEW POSITION"

"INITIALIZED"

Delaymove. The Delaymove Method is activated when the ConflictResolverObject does not

permit a PlaneObject to move to its next destination point. The PlaneObject holds at its current

position for a specified amount of time. The PlaneObject status remains the same and it is not

changed. At the end of the time delay, the PlaneObject sends its next destination to the Spatial

Template again. Delaymove may be called more than once for the same plane. When there are no

further conflicts or when the ConflictResolverObject no longer delays the PlaneObject, the

PlaneObject is permitted to begin its move to the next destination.

Direction. The Direction Method calculates the PlaneObject's

referenced to the y-axis (or North of the air traffic simulation model).

is calculated by the following formula:

direction in ± degrees

The PlaneObject direction

-45-

TATSS FINAL REPORT

Heading = ARC SINE (YComp)

Direction = Heading * 180.0 / Pi

Where,

YComp = normalized Y

(Destination_Y_positon - Current

component of the plane's path (i.e.

Y Position)/Distance)

InitPlaneFields. The InitPlaneFields Method assigns the initial values of the PlaneObject's

attributes when a PlaneObject is instantiated. Each instance of a PlaneObject will be assigned an

ID, starting position coordinates, speed, and destination coordinates. These values are obtained by

calling methods of the Planner Object. InitPlaneFields also assigns the status "INITIALIZED" to

PlaneObject and activates the Direction Method to establish the direction for the PlaneObject.

NameMover. The NameMover Method assigns a name to the PlaneObject. NOTE: this

name is NOT the PlaneObject ID used to address instances of a PlaneObject. The name assigned

by NameMover is a string variable. This is used for output reasons only.

NewArrive, The NewArrive Method assigns new destinations to the PlaneObject. New

destinations are determined by sending a request to the NextPlan Method of the PlannerObject.

The NextPlan Method will provide new values for speed and destination coordinates. NewArrive

also request a new direction be established by the Direction Method. The NewArrive Method

assigns the PlaneObject a new status "NEWPOSITION". It also sends the CalcTime Method a

message to update the estimated time-of-arrival (ETA). This new information is provided to the

ReportPosition Method of the Spatial TempletObject.

NewMove. The NewMove Method is activated by NoConflict Method of the

ConflictIdentifierObject. The NoConflict Method is sent when the PlaneObject's destination plan

does not result in a conflict with any other PlaneObject's destination plans. As a result, the

-46-

TATSS FINAL REPORT

PlaneObject is given the permission to move to its destination. The NewMove Method advances

the simulation clock with a duration equal to the estimated time-of-arrival. Alter arrival at the

destination, the PlaneObject updates its status to "AT DESTINATION." NewMove also sends a

message to the ReponPosition Method of the SpatialTempletObject.

NewTime. The NewTime Method calculates the time required by the PlaneObject arrive at a

specified destination. The time is calculated by establishing the distance between the PlaneObject's

current position and destination position and dividing that distance by the speed of the

PlaneObject. The formula for this calculation is:.

Time = (((XCurrent -XnextDest)**2 + (YCurrent - YnextDest)**2)** 1L2) / speed

STATIONARY OBJECTS

Each StationaryObject is permanently assigned to the sector(s) in which it lies and its envelope is

the actual envelope of the prohibited travel area. In the event of a potential conflict, the conflict

resolver must give priority to the stationary object over any PlaneObject. In the prototype

software the stationary object's size, dimensions, and locations are randomly assigned. Stationary

objects communicate with the SpatialTemplate Object. Stationary objects have the following

method:

InitStationaryFields

InitStationaryFields. The InitStationaryFields randomly selects four points within the

model space to specify a stationary object. This method also sets the ID name to the

ObjeetNumber and assigns the name of the stationary object created to name given the object at

its creation. This method also communicates with the Spatial Template's method

Report StationaryPosition.

-4"7-

TATSS FINAL REPORT

SPATIAL TEMPLATE OBJECT

The SpatiaiTemplateObject provides a graphical memory of the model-space status between

model events. The SpatialTemplateObject maintains this memory by a graphical representation of

the model-space, static objects, and the proposed model-space trajectory of PlaneObjects.

Necessarily, the model-space must be bounded, constructed, defined, and referenced in terms of a

basic coordinate system. The current SpatialTemplateObject implementation uses a two-

dimensional Cartesian coordinate reference system based on the ranges of the two dimensions of

the model-space. The ranges of model-space are arbitrary and determined by user specification.

The SpatialTemplateObject constructs the coordinate reference system with point-of-origin (i.e.

point 0,0) in the center of the defined model-space.

For example, a model space defined by the dimensions of 200 km by 150 km would be

represented by the SpatialTemplateObject as follows: Assume the 150 km dimension represents

an east-west direction and the 200 km dimension represents a north-south direction. The origin

of the model space would be at the center of this]50 km X 200 km rectangle (i.e. point 0,0).

From the origin, the boundaries of the model-space would be defined to be +75 km east, -75 km

west, -100 km south, and +100 km north. All PlaneObjects and StaticObjects spatial attributes

composing the air tra_c simulation model would be defined and referenced in terms of this

coordinate system.

The SpatialTemplateObject maintains the model-space memory between events by representing

StaticObjects dimensions and PianeObject trajectories as polygon constructs in the model-space

coordinate reference system. Since the model-space environment is dynamic, the

SpatialTemplateObject must send and receive messages from the model-space constituents (i.e.

instances of StaticObjects and PlaneObjects) as events change the spatial relationships of the

constituents. What actions taken by the SpatialTemplateObject depends upon the object

originating the message and that objects status. For example, if the instance of a PlaneObject is

-48-

TATSS FINAL REPORT

newly initialized, the SpatialTemplateObject initiates the envelope that surrounds planned

trajectory, determine the sectors the trajectory will pass through, and informs those SectorObject

instances. If the plane has arrived at its next destination point, the SpatialTemplateObjeet informs

the SeetorObject instances to update reflecting that the PlaneObject has already cleared their

sectors. Tiffs, in effect, is removing the trajectory polygon associated with a completed move.

The SpatialTempletObject is also responsible for the creating instances of the SectorManager, the

SectorObjects, SectorQueueObjects, and the MasterSectorArray. The MasterSectorArray is a

two dimensional array with pointers referencing SectorObject instances.

This object has the following methods:

GenSectors

InformPotentialConf

ReportPosition

ReportStationaryPosition

SPcheckupdate

GenSectors. The GenSector Method creates the instances of the SectorManagerObject and the

SectorObjects. The GenSector Method also creates each sector and assigns it an identification

number (reference number). The SectorObjects are represented as a MasterSectorArray.

InformPotentialConf. The lnformPotentialConf Method sends a message to the

ConflictIndentiferObject that the new trajectory polygon of a PianeObject intersects a

SectorObject which already has model-space static and/or trajectory polygons associated with it.

These potential conflicts were detected by the MonitorSectorMethod of the SectorObject. The

InformPotentiaIConf Method maintains the interface between the SpatialTemplate and all other

objects of the air traffic simulation model.

-49-

TATSS FINAL REPORT

ReportPosition. The ReportPosition Method receives messages from StaticObjects and

PlaneObjects. ReportPositon receives the pointer to instances of the StaticObjects and

PlaneObjects. The ReportPosition Method sends messages to the SectorManagerObject

depending on the status of the PlaneObject. If a PlaneObject's status is "AT DESTINATION",

the SectorManagerObject is requested to delete the PlaneObject's trajectory polygon and update

the associated SectorObject information. If the PlaneObject status is "NEWPOSITION", the

SectorMangerObject is requested to create a new trajectory polygon for the PlaneObject based

upon its new destination and to send the appropriate SectorObjects messages informing them of

their intersection by the new trajectory polygon. In both cases, the PlaneObjects pointers are sent

to the SectorManagerObject

ReportStationaryPosition. The ReportStationaryPosition Method communicates with

SectorMangerObjects through the SectorMangerObject's Method SetStationaryEnvSectors. The

ReportStationaryPosition Method only passes the name of the Stationary Object to the

SectorMangerObject. The intent is maintain the Spatial Template as the principle object that

model space object must communicate with.

SPcheckupdate. SPcheckupdate Method sends message to Checkupdate Method of

SectorManagerObject informing the SectorManagerObject that the specified PlaneObject has

reached its destination point. The Sector ManagerObject subsequently deletes the trajectory

polygon of the PlaneObject

SECTOR MANAGER OBJECT

This acts as a manager for the sectors. It initiates the plane objects' graphical representation, and

determines the sectors that the plane will be passing near or occupying during its travel. The

sector manager is in charge of updating the information about the plane object and its location

-50-

TATSS FINAL REPORT

with respect to the sectors. Like the sector object, the sector manager object is a third level

derivative of the second level spatial template element.

One of the primary functions of the sector manager object is to calculate the vertices of the plane's

envelope, and the sectors that the plane and its envelope are crossing. The first is determined by

using the information reported about the current position &the plane and its final destination. The

latter depends on the results obtained from the first method as basis for its calculations.

Knowing that the width of the envelope is 4 kilometers (2 kilometers on each side of the plane's

path), the following calculations are applied to determine the envelopes vertices:

Sector Manager has the following methods:

Checkupdate

InitSectorQueue

SetStationaryEnvSectors

UpdateEnvSectors

UpdateSectors

Cheekupdate. The Checkupdate Methods receives messages from the

SpatialTemplateObject's SPCheckupdate Method. The message is received when a PlaneObject

has reached its destination. Checkupdate's primary task is to update the SectorArray and the

MasterSectorArray based on the arrival of the PlaneObject at its destination.

InitSectorQueue. The InitSectorQueue Method initiates the status of all elements of the

SectorArray to "Absent" and creates the SectorQueue. InitSectorQueue receives messages from

the SpatialTemplateObject's method GenSectors

-51-

TATSS FINAL REPORT

SetStationaryEnvSectors. The SetStationaryEnvSectors Method asks the specified stationary

object what are its defining coordinates in the model space This method then identifies the

sector(s) occupied by the stationary objects and updates the master sector array

UpdateEnvelope. The UpdateEnvelop Method determines the location of the vertices of the

PlaneObject trajectory polygon based on the PlaneObject's current position and its destination

positions. The locations are referenced to the specified model-space coordinate system. The width

of the trajectory polygons of the air traffic simulation model is specified in the software code to be

4 Kilometers.

The following calculations identify the vertices for a trajectory polygon:

vertex[1].x = current position of the plane in x direction - 2.0 * normalized y component of its

trajectory.

vertex[1].y = current position of the plane in y direction + 2.0 * normalized x component of its

trajectory.

vertex[2].x =

vertex[2].y =

current position of the plane in x direction + 2.0 * normalized y component of its

trajectory.

current position of the plane in y direction - 2.0 * normalized x component of its

trajectory.

vertex[3].x =

vertex[3].x =

destination position of the plane in x direction + 2.0 * normalized y component of

its trajectory.

destination position of the plane in x direction - 2.0 * normalized x component of

its trajectory.

vertex[4].x =

vertex[4].x =

destination position of the plane in x direction - 2.0 * normalized y component of

its trajectory.

destination position of the plane in x direction + 2.0 * normalized x component of

its trajectory.

UpdateEnvSectors. The UndateEnvSectors Method determines the sectors the

PlaneObject trajectory polygon intersects or encompasses. UndateEnvSectors updates the

-52-

TATSS FINAL REPORT

SectorArray and the MasterSectorArray. TheUpdateEnvSectors receives messages from the

SpatialTemplateObject's ReportPosition Method.

UpdateEnvSectors determines the sectors intersected by each side of the trajectory polygon.

Intersection is determined by establishing the equation of the line of each side of trajectory

polygon from one vertices to the next. Search begins with the current position vertex position

with the minimum x value. The search follows the line to the associated destination vertex

identifying the sectors the line intersects.

The sector edges are defined as horizontal and vertical lines. In the case of a non-horizontal and

non-vertical trajectory polygons, the equation of a line defined by each edge of the polygon (i.e. y

= mx + b) will intersect each line representing the edge of a sector if the reference coordinate

system was of infinite dimensions. (Separate checks are made to handle vertical and horizontal

envelopes). If the intersection point between the sector and the trajectory polygon line occurs

between the vertices of the trajectory polygon then the trajectory polygon intersects the sector,

that sector is then associated with the trajectory of the PlaneObject. The description which

follows is only for the x direction. The formulation for the y direction is similar.

The reference coordinate system is scanned along the x axis for right to left (i.e. west-to-east in

the air traffic simulation model). Scanning is done in segments corresponding to the borders of the

sectors defined by the x coordinates of their vertices. The intersection of a sector is established if

the border of a sector defined by its largest x component is between the two vertices of the

trajectory polygon used to define the trajectory polygon side line. Next, the intersection point of

the trajectory polygon edge and the vertical line defined by x coordinate of the first sector

determined in the previous search, is determined. If this intersection's y component value is either

less than the maximum y component of the vertex of the trajectory polygon edge defining the line

or greater than the minimum y component of the vertex of the trajectory polygon edge defining

-53-

TATSS FINAL REPORT

the line, then the sector intersects trajectory polygon. After the first sector if identified, it is simply

a matter of counting how many sectors fit from the left and bottom edges of the reference

coordinate system to the point of intersection. The sectors immediately to the left and right of the

intersection point will be identified as intersecting the trajectory polygon. The process is repeated

for each side of the trajectory polygon identifying all sectors associated with the trajectory

polygon.

UpdateSeetors. UpdateSectors Method updates the SectorObjects concerning which after

PlaneObjects have reached a destination. PlaneObjects are removed which are no longer

associated with a SectorObject PlaneObjects scheduled for new destination have result in new

SectorObjects being associated with that PlaneObject.

SECTOROBJECTS

The SectorObject corresponds to a subdivision of the model-space reference coordinate system of

the SpatialTemplateObject into reference grids. Each SectorObject defines a square area of the

specified model-space in the reference coordinate system. Each SectorObject is responsible for

maintaining a record of all SpatialTemplateObject polygons which intersect or encompass it. The

SectorObject identifies any new polygon additions to its sector as a possible conflict if any other

polygons are currently on record for that sector. When such situations identified, they are

reported as possible conflicts to SpatialTemplateObject. The SpatialTemplateObject in turn

notifies the ConflictldentifierObject of the potential conflict and the Static and PlaneObjects

involved. The SectorObject type is defined with multiple inheritance The SectorObject's parents

are the SectorManagerObject and the MODSlM-defined Queue Object. Due to inheritance all

methods of SectorMangerObject and the Queue Objects are available to SectorObjects.

Sector Objects have the following methods:

ChangeSectorStatus

-54-

TATSS FINAL REPORT

MonitorSector

SetBorders

SetObjectlD

ChangeSectorStatus. The ChangeSectorStatus Method changes the status of the

SectorObject. Status can be either "PRESENT" or "ABSENT". In PlaneObject is assigned to a

sector, its status is "PRESENT". If a PlaneObject is not assigned to a sector its status is

"ABSENT". The Checkupdate Methods assigns the status to a SectorObject for a given

PlaneObject. Based upon this status, a PlaneObject is either added to sector queue or removed

from the sector queue. When PlaneObjects are added to sector queue, the MontitorSector

Method is sent a message identifying the PlaneObject added and the SectorObject ID.

MonitorSector. The MonitorSector Method determines if two SpatialTemplateObjects

polygons are associated with a specified SectorObject If two polygons are associated with the

specified SectorObject, the SpatialTemplateObject's method InformPotentialConf is sent a

message identifying the two objects associated with the SpatialTemplateObject polygons and the

SectorObject ID.

SetBorders. The SetBorders Method sets the boundaries for each sector by determining

the values of its vertexes. Sector partitioning of the reference coordinate system is based on user

input of the number of sectors into which the model-space area is to be divided Boundaries for

each sector are defined by the coordinates of its vertices. For example, assume the user specified

the following inputs:

number of sectors in x direction, numsecx = 20

number of sectors in y direction, numsecy = 20

range of the area in the x direction, xrange = 100

range of the area in the y direction, yrange = 100

-55-

TATSS FINAL REPORT

The vertices of the lower fight hand sector would be calculated based on an individual sector's

identification numbers of, for example, (2,3) as follows;

sectorlDx = 2

sectorlDy = 3

xmin= xrange * ((sectorlDx - 1)/numsecx - 0.5) = 100 * ((2 - 1)/20 - 0.5) = - 45.0

xmax= xrange * (sectorlDx/numsecx - 0.5) = 100 * (2/20 - 0.5) = - 40.0

ymin= yrange * ((sectorlDy - 1)/numsecy - 0.5) = 100 * ((3 - 1)/20 - 0.5) = - 40.0

ymax = yrange * ((sectorlDy - I)/numsecy - 0.5) = I00 * (3/20 - 0.5) = - 35.0

Where,

sectorIDx

sectorIDy

= sector identification number in the x direction,

= sector identification number in the y direction,

xmin, xmax, ymin, ymax = the four vertices &the sector in reference coordinate system

xrange = the user input range in the x axis for the model space dimension

yrange= the user input range in the y axis for the model-space dimension

numsecx = the number of sectors in the x direction of the model-space

numsecy = the number §ors in the y direction &the model-space

Therefore, for SectorObject ID of (2,3), the value of its four vertices are (-45,-40,-40,-35).

Similar calculations are carried for all other sectors.

The SetBorders Method receives messages from the GenSector Method of the

SpatialTemplateObject.

SetObjectlO. The

identification number pair references a specific SectorObject

SetObjectlD method receives messages from the

SpatialTemplateObject.

SetObjectlD sets the sector identification number pair. The sector

in the MasterSectorArray. The

GenSector Method of the

-56-

TATSS FINAL REPORT

SECTOR QUEUE

The SectorOueueObject is a child of the MODSIM II standard Queue Object. The

SectorQueueObject incorporates an added method that requires conformation that the trajectory

polygon of the specified PlaneObject is not already assigned to the sector in question. This

method is used by the SectorManagerObject to update the list of sectors that are occupied by a

PlaneObject's trajectory polygon. The added queue object method is the LogicalAdd.

LogicalAdd. The Logical Method determines the logical status of an object before

adding it to the queue. That is, is there already an instance of an object in the queue. If there is, it

is not added again. If there is not, then the object is added to the queue.

CONFLICT IDENTIFIER OBJECT

The ConflictIdentifierObject determines

SpatialTemplateObject are actual conflicts

if the potential conflicts identified by the

The ConflictldentifierObject receives messages from

the SpatialTemplateObject's InformPotentialConflict Method identifying a possible conflict exists

between two objects in model-space. The ConflictldentifierObject requests information from the

model-space objects with potential conflicts identified by the SpatialTemplateObject. If no conflict

exists, the identified PlaneObject are given permission to proceed as planned. If a conflict does

exist, the situation and the objects are referred to ConflictResolverObject for resolution. The

ConflictldentifierObject defines a conflict as two or more model-space objects occupying the

same space within five minutes from each other.

The ConflictldentifierObject establishes conflicts by determining the points that each PlaneObject

in the potential conflict the sector in question. Once these points are estimated, the conflict

identifier request from the model-space objects concerned to report their estimated time of

entering the sector. SpatialObjects are always in the concerned sector. The

-57-

TATSS FINAL REPORT

ConflictIdentifierObject uses the reported information to determine if the model-space objects will

arrive within five minutes from each other.

The following methods are used in this object:

Noconflict

ReponPC

Noeonflict. The Noconflict Method is invoked by the SpatialTempletObject when it reports

that there are no conflicts. PlaneObject are allowed to move as planned

ReportPC. The ReportPC Method receives messages from the SpatialTemplate's

InformPotentialConf Method identifying the sector, the model-space objects. ReportPC

determines the points and times the PlaneObjects enter the sector in question. Conflicts are

established if the times in the sector are within five minutes from each other.

CONFLICT RESOLVER OBJECT

The conflict resolver receives the information from the conflict identifier regarding the planes in

conflict. Checking for the appropriate action to take is done by the conflict resolver. The conflict

resolver would inform the proper plane what it should do, such as delaying its move or giving it

the permission to carry on with its projected path. These decisions are made by an expert system

located in the CLIPS portion of TATSS. The expert system which is interfaced with the

MODSIM part of the TATSS through the UNIX systems FIFO utlities. The method used to

resolve conflicts is:

Resolve

Resolve. The Resolve Method of the Conflict Resolver Object receives message containing

the two planes in conflict and their respective distances from the intersection point of thier

-50-

TATSS FINAL REPORT

trajectories. The Resolver Method calls the appropriate C language subroutine which is the link

between the MODSIM model and the UN/X operating system. The Resolve Method then sends

the appropriate data concerning the state of the two objects in conflict to the expert system for

conflict resolution. The expert system sends the appropriate command back to the Resolve

Method through the C language subroutine. The Resolve Method then sends the appropriate

object command to the object which it has been decided must alter it trajectory.

-59-

TATSS FINAL REPORT

REFERENCES

P. Bratley, B.L.Fox, and L.E. Scharage. A Guide to Simulation, (2nd ed). Springer-Verlag, New

York:, 1987.

S. Middleton and R. Zanconato, "BLOBS: an Object-Oriented Language for Simulation and

Reasoning," in E.J.H. Kerckhoffs, G.C. Vansteenkiste and B.P. Zeigler (Eds.) Artifical

Intelligence Applied to Simulation, The Society for Computer Simulation, San Diego, CA,

1986, p-p 130-135.

Robert M. OXeefe. "The Role of Artifical Intelligence in Discrete-Event Simulation." in Arti.fical

Intelligence, Simulation and Modeling. (Eds.) Lawrence E. Widman, Kenneth A. Loparo,

and Norman R. Nielsen. John Wiley and Sons, New York, 1989.

Jeff Rothenberg, Sanjai Narain, Randall Steeb, Charlene Hefley, Norman Z. Shapiro. Knowledge-

Based Simulation: An Interim Report. The RAND Corporation, Santa Monica, CA . July

1989.

Bermard P. Zeigler. Theory of Modeling and Simulation. Wiley and Sons New York, 1976.

-60-

APPENDIX A - [

MAIN MODULE CCon;

FROM

FROM

FROM

FROM

FROM

FROM

SimMod IMPORT StartSimulation, SimTime;

RandMod IMPORT RandomObj, FetchSeed, Random;

CCGlobal IMPORT

CCGlobal IMPORT

CCGlobal IMPORT

CCGlobal IMPORT

meanarrivaltime, numoflars;

xrange,yrange,numofsecx, numofsecy;

numofplanes, planenames,GeneratorObj, ranNumGen;

SpatialTempletGenerator ,ConflictldentifierGenerator;

FROM CCGlobal IMPORT ConflictResolverGenrator, StationaryGenerator;

FROM CCSpatialTempObj IMPORT MasterSectorArray;

FROM CCGlobal IMPORT Pi, ObjectNumber;

FROM CCG-eoObj IMPORT CreoObj;

FROM GrpMod IMPORT QueueObj;

FROM UtilMod IMPORT Delay;

FROM CCSectorObj IMPORT SectorObj;

FROM CSectQObj IMPORT SectorQueueObj;

FROM ACMove IMPORT Modellnit,PlarmerObj,PlaneObj;

FROM CCStationaryObj IMPORT StationaryObj,Stationary;

FROM CCGlobal IMPORT window,MasterGraphic;

FROM CCGlobal IMPORT clockwindow,clockgraphic;

FROM CCGlobal IMPORT GraphicLib,MasterPlanelcon;

FROM GTypes IMPORT WorldXhi,WorldYhi,WorldXlo,WorldYlo;

FROM GTypes IMPORT ColorType(Blue,Green);

FROM Graphic IMPORT GraphicLibObj;

VAR

xs,ys: REAL;

BEGIN

Pi := 3.14159265;

ObjectNumber := 0;

OUTPUT(" PLEASE ENTER : mean arrival time in minutes");

INPUT(meanarrivaltime);

OUTPUT(" PLEASE ENTER : number of simulation hours ");

INPUT(numofhrs);

OUTPUT(" PLEASE ENTER :X-Range in kilometers ");

INPUT (xrange);

OUTPUT(" PLEASE ENTER :Y-Range in kilometers ");

INPUT(yrange);
OUTPUT (" PLEASE ENTER : number of sectors in the x direction ");

INPUT(numofsecx);

OUTPUT (" PLEASE ENTER : number of sectors in the y direction ");

INPUT(numofsecy);

A-2

NEW(rartNumGen);
NEW0VlasterSectorArray,1..numofsecx,1..numofsecy);
NEW(SpatialTempletGenerator);
NEW(ConflictldentifierGenerator);
NEW(ConflictResolverGenrator);
NEW(StationaryGenerator);

(*** Initialize graphics ***)

NEW(window);

NEW(MasterGraphic);

NEW(GraphicLib);

ASK window TO SetColor(Blue);

ASK window TO AddGraphic(MasterGraphic);

ASK MasterGraphic TO SetWor/d (

-xrange/20, -yrange/2.0, xrange/2.0, yrange/2.0);

ASK MasterGraphic TO SetTranslation ((WorldXhi-WorldXlo)/20,

(WorldYhi-WorldYlo)/2.0);

ASK window TO Draw();

NEW(clockwindow);

ASK clockwindow TO SetSize(20.0,10.0);

ASK clockwindow TO SetTranslation(75.0,90.0);

ASK clockwindow TO SetColor(Blue);

ASK clockwindow TO Draw();

NEW(clockgraphic);

ASK ciockwindow TO AddGraphic(clockgraphic);

ASK clockgraphic Scaling(xs,ys);

OUTPUT("xs,ys = ",xs,", ",ys);

ASK clockgraphic TO Scale(1.0,0.65);

ASK clockgraphic TO SetTimeScale(1.0/60.0);

ASK ciockgraphic TO SetTranslation(0.0,30.0);

ASK clockgraphic TO Draw;

ASK clockgraphic TO Update;

ASK clockgraphic TO StartMotion;

ASK GraphicLib TO ReadFromFile("ACon/con.lib");

NEW(MasterPlanelcon);
ASK MasterPlanelcon TO LoadFromLibrary(GraphicLib,"Planelcon");

ASK window TO AddGraphic(MasterPlanelcon);

ASK window TO Draw();

ASK MasterPlanelcon TO Erase();

A-3

{GenSpatialTempletwill ask Sector Manager to gensectors method }

ASK SpatialTempletGenerator TO GenSpatialTemplet;

ASK ConflictldentifierGenerator TO G-enConflictldent;

ASK ConflictResolverGenrator TO GenConflictResolve;

ASK StationaryGenerator TO GenStationary;

{make sure that the Sector Manager is generated before planes are

created}

Modellnit; {Create the plane}

StartSimulation;

OUTPUT;DEFINITION MODULE ACMove;

FROM

FROM

FROM

FROM

FROM

FROM

SimMod IMPORT SimTime;

RandMod IMPORT RandomObj;

MathMod IMPORT SQRT, POWER, ATAN,pi,SIN,COS;

CCGeoObj IMPORT GeoObj;

GrpMod IMPORT QueueObj;

Fill IMPORT PolygonObj;

FROM Image IMPORT ImageObj;

FROM GTypes IMPORT FillStyleType(HollowFill,SolidFill,NarrowDiagonalFill,

MediumDiagonalFill,WideDiagonalFill,NarrowCrosshatchFill,

MediumCrosshatchFill,WideCrosshatchFill);

FROM GTypes IMPORT PointArrayType;

FROM AuxMathMod IMPORT DIST2D, INT;

TYPE

PlaneObj =

OBJECT(GeoObj)

MyName :STRING;

Name: STR/NG;

{Status: STRING;} {possibilities--

"IN FLIGHT",

"AT DESTINATION",

"ON GROUND",

"FLIGHT INTERRUPTED",

"INITIALIZED",

"NEWPOSITION",

"GIVEN PERMISSION"

A-4

/
{inhened xpos,ypos from C_oObj } {plane's current position}

XStart, YStart, {plane's origin}

Speed,

Velocity,

Degree,

Heading,

{inherted xdest,ydest from GeoObj } {plane's final destination}

Dist,

FinDesttime,

ETA,

TimeStartFlight,

TranTime, {time to fly from last position to destination}

est {time to fly from current position to a specified position}

:REAL;

EnvelopePolygon: PolygonObj;

{New code by Rajesh to test printing of graphics}

{PlaneVertex: PointArrayType ;

PlaneEnvelopePolygon: PolygonObj;

PlanePolygon : PolygonObj;

PlanePlanelcon : ImageObj;

PlanePlaneGraphic:ImageObj; }

ASK METHOD

ASK METHOD

ASK METHOD

ASK METHOD

ASK METHOD

InitPlaneFieids(IN Index : INTEGER;IN StringName : STRING;

IN localnamelD : STRING);

GiveName0: STRING;

CalcTime0: REAL;

Direction;

Comp;

ASK METHOD NewTime (IN XnextDest,YnextDest:REAL):REAL;

TELL METHOD NewMove(iN Plane:PlaneObj);

ASK METHOD NameMover(IN Namin:STRING);

TELL METHOD Delaymove(IN Plane:PlaneObj);

ASK METHOD NewArrive;

ASK METHOD ChangeStatus(IN Plane:PlaneObj; IN modstatus: STRING);

OVERRIDE

TELL METHOD NewArrive 1(IN Indicator: STRING);

A-5

END OBJECT;

PlannerObj =

OBJECT

ASK METHOD NextPlan(OUT OUTSpeed, OUTXDest, OUTYDest: REAL);

ASK METHOD FirstPosit(OUT X,Y : REAL);

ASK METHOD Objlnit;

ASK METHOD IdentifyPlanelnstance

(IN IPIplanelD : INTEGER) : PlaneObj;

END OBJECT;

PROCEDURE ReportEstimatedTime(IN RETplanelD : INTEGER; IN Sx, Sy : REAL;

OUT est : REAL);

PROCEDURE Modellnit;

VAR

Stream : RandomObj;

MovPlanner: PlannerObj;

Red,Blue,Green,Black : PlaneObj;

PlaneQue : QueueObj;

ranNumGen: RandomObj;

END MODULE.

OUTPUT (" Simulation is done");

END MODULE.

A-6

IMPLEMENTATION MODULE ACMove;

FROM SimMod IMPORT SimTime,PendingListDump,ActivityListDump;

FROM RandMod IMPORT RandomObj;

FROM MathMod IMPORT SQRT, POWER, ATAN,pi, SIN,COS,ASIN;

FROM GrpMod IMPORT QueueObj;

FROM CCSpatialTempObj IMPORT SpatialTempletObj,SpatialTemplet;

FROM

FROM

FROM

FROM

CConflictldentObj IMPORT ConflictldentifierObj,Conflictldentifier;

AuxMathMod IMPORT DIST2D, INT;

CCGlobal IMPORT xrange,yrange, meanarrivaltime,Pi, numothrs,ObjectNumber;

CCG-eoObj IMPORT GeoObj;

FROM Fill IMPORT PolygonObj;

FROM Image IMPORT ImageObj;

FROM GTypes IMPORT ColorType(Yellow, Orange,Violet,White);

FROM GTypes IMPORT FillStyleType(HoUowFill, SolidFill,NarrowDiagonalFill,

MediumDiagonalFill,WideDiagonalFill,NarrowCrosshatchFill,

MediumCrosshatchFill,WideCrosshatchFiil);

FROM CCGlobal IMPORT GraphicLib;

FROM CCGlobal IMPORT MasterGraphic;

FROM CCGlobal IMPORT Planelcon, PlaneGraphic; {..

OBJECT PlaneObj;

ASK METHOD InitPlaneFields(iN localObjectNumber :INTEGER;IN

StringName:STRING;
IN localnameID :STRING);

VAR

Xlocation, Ylocation,

OutSpeed,OutXDest,OutYDest,

scaleX, scaleY :REAL;

BEGIN

ASK SELF TO SetNameID(localnamelD);

ASK SELF TO SetlD(localObjectNumber);

FinDesttime:= ((numofhrs + 0.5)*60.0) ;

ASK MovPlanner TO FirstPosit(Xlocation, Ylocation);

XStart := Xlocation;

YStart := Ylocation;

XPos := Xlocation;

YPos := Ylocation;

A-7

ASK MovPlanner TO

NextPlan(OutSpeed,0utXDest,OutYDest);

Speed: = 0utSpeed;

Velocity:= Speed;

XDest:= OutXDest;

YDest:= OutYDest;

{ tranTime is the total flight time;

the first time it is calculated it is the travel

time from original position to destination;

this time will change if the flight is interrupted;

the est field will contain the original time;

}

ASK SELF TO Direction;

Status := "INITIALIZED";

ETA := ASK SELF TO CalcTime();

{######rajesh move this to model init}

{ASK SpatialTemplet TO ReportPosition(SELF); } {move this to model init}

{FUTURE: ask SectorManager or SpatialTemp to init these fields}

NEW (PlaneVertex, 1..4);

NEW (PlanePlaneGraphic);

NEW (PlaneEnvelopePolygon);

ASK PlaneEnvelopePolygon TO SetStyle(HollowFill);

NEW (PlanePianelcon) ;

ASK GraphicLib TO ReadFromFileCAConleon.lib");

ASK PlanePlanelcon TO LoadFromLibrary(G-raphicLib,"Planelcon");

ASK PlanePlaneGraphic TO AddGraphic(PlanePlanelcon);

ASK PlanePlaneGraphic TO AddGraphic (PianeEnvelopePolygon) ;

ASK MasterGraphic TO AddGraphic (PlanePlaneGraphic);

ASK PlanePlanelcon Scaling(scaleX, scaleY);

ASK PlanePlanelcon Scale(scaleX/300.0, scaleY/300.0);

END METHOD;

TELL METHOD NewMove(IN Plane: PlaneObj);

VAR

Distravel,

Theta :REAL;

A-8

waittime: REAL;

A:INTEGER;

BEGIN

TimeStartFlight := SimTime0;

waittime:=ABS (ETA)+ SimTime0;

WAIT DURATION ETA

{Plane has arrived at the destination}

OUTPUT(" Plane waited ETA minutes", ETA);

END WAIT;

XPos := XDest;

YPos := YDest;

Status := "AT DESTINATION";

{when at destination reporting position will

remove: plane from Master sector Array and

3-dim sector array}

ASK SpatialTemplet TO ReportPosition(SELF);

IF (ASK SELF Status ="AT DESTINATION")

ASK SELF NewArrive;

END IF;

END METHOD;

(**** ADDED on 2/5/1992 ****)

ASK METHOD ChangeStatus(IN Plane:PlaneObj; IN modstatus:STRING);

BEGIN

OUTPUT("Plane ", ASK Plane ID, " had a status ",

ASK Plane Status);

Status: = modstatus;

OUTPUT("Plane ", ASK Plane ID, "now have a status ",

ASK Plane Status);

END METHOD;

A-9

TELL METHOD Delaymove(INPlane:PlaneObj);

VAR
DTime:REAL;

BEGIN

DTime:= 5.0;

WAIT DURATION DTime

OUTPUT(" Plane ", ASK Plane ID, " has delayed its move ");

END WAIT;

ASK SpatialTemplet TO ReportPosition(SELF);

END METHOD;

ASK METHOD NewArrive;

VAR

Out Speed,OutXDest,OutYDest REAL;

BEGIN

IF (SimTime0 =6.0)
Status:= "ATFINALDESTINATION";

DISPOSE(SELF);

ELSE

ASK MovPlanner TO

NextPlan(Out Speed,OutXDest,OutYDest);

Speed: = OutSpeed;

XPos: = XDest;

YPos: = YDest;

Velocity: = Speed;

XDest: = OutXDest;

YDest: = OutYDest;

{ tranTime is the total flight time;
the first time it is calculated it is the travel

time from original position to destination;

this time will change if the flight is interrupted;

the est field will contain the original time;

A-10

ASK SELF TO Direction;

Status := "NEWPOSITION";

ETA := ASK SELF TO CalcTimeO;

ASK SpatialTemplet TO ReportPosition(SELF);

END IF;

END METHOD;

TELL METHOD NewArrivel (IN Indicator :STRING);

VAR

OutSpeed,OutXDest,OutYDest :REAL;

localName : STRING;

BEGIN

localName := ASK SELF NameID;

IF (SimTime0 =6.0)

Status:= "ATFINALDESTINATION";

DISPOSE(SELF);

ELSIF (localName = "Aircraft")
ASK MovPlanner TO

NextPlan(Out Speed,OutXDest, OutYDest);

Speed: = OutSpeed;

Velocity:= Speed;

XDest:= OutXDest;

YDest: = OutYDest;

{ tranTime is the total flight time;
the first time it is calculated it is the travel

time from original position to destination;

this time will change if the flight is interrupted;

the est field will contain the original time;

}

ASK SELF TO Direction;

Status := "NEWPOSITION";

ETA := ASK SELF TO CalcTime0;

ASK SpatialTemplet TO ReportPosition(SELF);

A-11

END IF;

END METHOD;

ASK METHOD CalcTime0: REAL;{ remainingtimein Flight }

BEGIN

Dist: = SQRT(POWER((XPos-XDest),2.0) +

POWER((YPos-YDest),2.0));

RETURN (ABS(Dist/Speed));

END METHOD;

ASK METHOD NewTime(IN XnextDest,YnextDest:REAL):REAL;

VAR

YCurrentPos,

XCurrentPos :REAL;

Distravel,

Theta :REAL;

BEGIN

{ figure out where you are}

Theta: = ATAN((ETA* Speed)/(YDest-YPos));

Distravel: = (SimTime0 - TimeStartFlight) *Speed;

YCurrentPos: = Distravei*SIN (Theta) + YPos;

XCurrentPos: = Distravel*COS (Theta) + XPos;

RETURN((SQRT(POWER((XCurrentPos-XnextDest),2.0) +

POWER((YCurrentPos-YnextDest),2.0)))/Speed);

END METHOD;

ASK METHOD Comp;

BEGIN

XComp := XDest-XPos;

YComp := YDest-YPos;

END METHOD;

ASK METHOD Direction;

VAR

Hypotenuse: REAL;

BEGIN

A-12

Hypotenuse := DIST2D (XPos, YPos, XDest, YDest);

XComp := (XDest - XPos) / Hypotenuse;

YComp := (YDest - YPos) / Hypotenuse;

Heading := ASIN(YComp);

IF (XComp < 0.0) Heading := Pi - Heading;

END IF;

IF ((XComp>0.0) AND (YComp<0.0)) Heading := Heading + 2.0*Pi;

END IF;

Degree := (Heading* 180.0)/Pi;

END METHOD;

ASK METHOD GiveName0 :STRING;

BEGIN

RETURN MyName;

END METHOD;

ASK METHOD NameMover(IN Namin:STRING);

BEGIN

MyName := Namin;

END METHOD;

END OBJECT;

OBJECT PlannerObj;

ASK METHOD Objlnit;

BEGIN

NEW(ranNumGen);

END METHOD;

ASK METHOD NextPlan(OUT OUTSpeed, OUTXDest, OUTYDest : REAL);

BEGIN

OUTSpeed := 5.0 *(ASK ranNumGen Exponential(meanarrivaltime)) ;

OUTXDest := (xrange- 4.0) * ((ASK ranNumGen Sample()) - 0.5);

OUTYDest := (yrange- 4.0) * ((ASK ranNumGen Sample()) - 0.5);

END METHOD;

A-13

ASK METHOD FirstPosit(OUT X,Y • REAL);

BEGIN

X:= (xrange-5.0) * ((ASK ranNumGen Sample()) - 0.5);

Y:= (yrange-5.0) * ((ASK ranNumGen Sample()) - 0.5);

END METHOD;

ASK METHOD IdentifyPlanelnstance

(IN InputlD : INTEGER) : PlaneObj;

VAR

Planelnstance : PlaneObj;

Foundlt :STRING;

BEGIN

Foundlt := "NO";

Planelnstance := ASK PlaneQue TO First();

WHILE(Planelnstance <> NILOBJ) AND (Foundlt = "NO");

IF (ASK Planelnstance ID = InputlD)

Foundlt := "YES";

ELSE

Planelnstance := ASK PlaneQue TO Next(Planelnstance);

END IF;

END WHILE;

RETURN Planelnstance;

END METHOD;

END OBJECT;

{.. }
PROCEDURE ReportEstimatedTime(IN ID : INTEGER;

IN RETxNextDest,RETyNextDest :REAL;

OUT RETestTime : REAL);

VAR

Planelnstance :PlaneObj;

BEGIN

Planelnstance := ASK MovPlanner TO IdentifyPlanelnstance(ID);

IF Planelnstance = NILOBJ;

RETestTime :=-1.0;

ELSE

RETestTime := ASK Planelnstance TO

NewTime(RETxNextDest,RETyNextDest);

END iF;
END PROCEDURE;

PROCEDURE Modellnit;

{VAR

A-14

Index :INTEGER;}

{ these vars are defined in DACMove.mod and are global to this

module: MovPlanner: PlannerObj;

Red,Blue, Green, Black : PlaneObj;

PlaneQue : QueueObj;

}

BEGIN

{create mov planner; it has an obj init (creates a RN generator)}

NEW(MovPlanner);

{creat a queue obj }

NEW(PlaneQue);

INC(ObjectNumber);

NEW(Red);
ASK Red TO InitPlaneFields(ObjectNumber,"Red","AJrcraft");

ASK Red TO NameMover("Red");

ASK PlaneQue TO Add(Red);

ASK SpatialTemplet TO ReportPosition(Red);

INC(ObjectNumber);

NEW(Blue);

ASK Blue TO InitPlaneFields(ObjectNumber,"Blue","Aircraft");

ASK Blue TO NameMover('Blue");

ASK PlaneQue TO Add(Blue);

ASK SpatialTemplet TO ReportPositionfBlue);

INC(ObjectNumber);

NEW(Green);
ASK Green TO InitPlaneFields(ObjectNumber,"Green","Aircraft");

ASK Green TO NameMover("Green");

ASK PlaneQue TO Add(Green);

ASK SpatialTemplet TO ReportPosition(Green);

INC(ObjectNumber);

NEW(Black);

ASK Black TO InitPlaneFields(ObjectNumber,"Black","Aircratt");

ASK Black TO NameMover("Black");

ASK PlaneQue TO Add(Black);

A-15

ASK SpatialTemplet TO geportPosition(Black);

END PROCEDURE;

END MODULE.

A-16

DEFINITION MODULE ACVer2,

FROM SimMod IMPORT StartSimulation, SimTime;

FROM RandMod IMPORT RandomObj, FetchSeed, Random;

FROM GrpMod IMPORT QueueObj;

FROM GTypes IMPORT PointArrayType;

FROM Fill IMPORT PolygonObj;

FROM Image IMPORT ImageObj;

FROM Window IMPORT WindowObj;

FROM Animate IMPORT DynDClockObj;

FROM AuxMathMod IMPORT DIST2D, INT;

FROM Graphic IMPORT GraphicLibObj;

TYPE

MovingObj = OBJECT; FORWARD ;

ControllerObj = OBJECT; FORWARD;

PlanelnSectorStatus = (ABSENT, PRESENT, ENVELOPE) ;

SectorObj = OBJECT(QueueObj)

sectorlDx, sectorlDy : INTEGER;

xmin,ymin, xmax,ymax :REAL;

vertex : PointArrayType ;

Polygon : PolygonObj;

ASK METHOD SetobjectlD(IN ij :INTEGER);

ASK METHOD SetBorders;

ASK METHOD ChangeSectorStatus (IN Plane : MovingObj ;

IN Status : PlanelnSectorStatus) ;

ASK METHOD Find (IN Planel, Plane2 : MovingObj) ;

TELL METHOD MonitorSector(IN control:ControllerObj);

TELL METHOD HighlightPath(IN DeltaT:REAL);

END OBJECT;

SectorQueueObj -- OBJECT(QueueObj)

ASK METHOD LogicalAdd (IN eleml : ANYOBJ);

END OBJECT;

MovingObj = OBJECT

objectlD: INTEGER ;

XDest, YDest: REAL;

A-17

velocity:REAL;

XPos,YPos: REAL;

vertex : PointArrayType ;

XStart,YStart:REAL;

XComp, YComp: REAL;

Heading:REAL;
location: STRING;

ETA, Tlnc, TLast :REAL;

SectorQueue: SectorQueueObj;

SectorArray: ARRAY INTEGER, INTEGER OF PlanelnSectorStatus;

SectorEnvQueue: SectorQueueObj;

EnvelopePolygon: PolygonObj;

Planelcon : ImageObj;

PlaneGraphic: ImageObj;

ASK METHOD SetobjectlD(IN numofplanes:INTEGER);

ASK METHOD SetOrigination (IN XValue,YValue: REAL);

ASK METHOD SetSpeed (IN speed: REAL);

ASK METHOD SetCourse (IN XValue,YValue: REAL);

ASK METHOD SetLocation(IN loc: STRING);

ASK METHOD InitSectorQueue;

ASK METHOD InitEnvelope;

ASK METHOD UpdatePosition;

ASK METHOD UpdateEnvelope;

ASK METHOD CHECK;

TELL METHOD Fly;

ASK METHOD UpdateSectors;

ASK METHOD UpdateEnvSectors;

ASK METHOD UpdateEnvSectorsOld;

TELL METHOD Talk(IN Planel, Plane2:MovingObj);

TELL METHOD Wait;

TELL METHOD ReduceSpeed;

END OBJECT;

ControllerObj = OBJECT

ConObjlD: INTEGER;

{CXPos :REAL;}
TELL METHOD Inform(IN Planel,Plane2:MovingObj);

ASK METHOD SetControllerlD(IN I:INTEGER);

{ASK METHOD ConPlanes(IN Con:ANYOBJ); }

END OBJECT;

A-18

GeneratorObj = OBJECT
TELL METHOD GenPlanes;

TELL METHOD GenSectors;

ASK METHOD GenController;

END OBJECT;

VAR

numofhrs,

meanarrivaltime: REAL;

movingobjgen: MovingObj;

numofplanes:INTEGER;

MasterSectorArray: ARRAY INTEGER, INTEGER OF SectorObj;

MasterGraphic: ImageObj;
sectorGenerator: GeneratorObj;

planeGenerator: GeneratorObj;
controlGenerator: GeneratorObj;

planenames: QueueObj;

ranNumGen: RandomObj;

Controller:ControllerObj;

window: WindowObj;

clockwindow: WindowObj;

clockgraphic: DynDCIockObj;

xrange, yrange: REAL;

numofsecx,

numofsecy: INTEGER;

MasterPlanelcon: ImageObj;

GraphicLib : GraphicLibObj;

Pi:REAL;

END MODULE.

A-19

IMPLEMENTATION MODULE ACVer2,

FROM SimMod IMPORT StartSimulation, SimTime;

FROM RandMod IMPORT RandomObj, FetchSeed, Random;

FROM MathMod IMPORT SQRT,ASIN;

FROM GrpMod IMPORT Queuc'Obj;

FROM GTypes IMPORT PointArrayType;

FROM GTypes IMPORT ColorType(G-reen, Yellow, Blue, Red, Orange, Violet,White);

FROM GTypes IMPORT FillStyleType(HollowFill, SolidFill,NarrowDiagonalFill,

MediumDiagonalFill,WideDiagonalFill,NarrowCrosshatchFill,

MediumCrosshatchFill,WideCrosshatchFill);

FROM Fill IMPORT PolygonObj;

FROM Image IMPORT ImageObj;

FROM AuxMathMod IMPORT DIST2D, INT;

FROM Graphic IMPORT GraphicLibObj;

FROM UtilMod IMPORT Delay;

FROM Line IMPORT PolylineObj;

FROM GTypes IMPORT LineStyleType(SolidLine);

OBJECT SectorQueueObj,

ASK METHOD LogicalAdd (IN eleml: ANYOBJ);

VAR

elem2: ANYOBJ;

status: (PRESENT, ABSENT);

BEGIN

elem2 := ASK SELF First0;

status := ABSENT;

WHILE ((elem2<>NILOBJ) AND (status=ABSENT))

IF (elem2=eleml) status:=PRESENT;

END IF;

elem2 := ASK SELF Next(elem2);

END WHILE;

IF (status=ABSENT) ASK SELF TO Add(eleml);

END IF;

END METHOD;

END OBJECT;

A-20

OBJECTSectorObj;

ASK METHOD SetobjectID (IN i,j: INTEGER);

BEGIN

sectorIDx := i;

sectorIDy :=j;
END METHOD;

ASK METHOD SetBorders;

BEGIN

xmin := xrange * (FLOAT(sectorIDx-1)fFLOAT(numofsecx) - 0.5) ;

xmax := xrange * (FLOAT(s_torIDx)/FLOAT(numofsecx) - 0.5) ;

ymin := yrange * (FLOAT(sectorlDy-1)/FLOAT(numofsecy) - 0.5) ;

),max :- yrange * (FLOAT(sectorIDy)/FLOAT(numofs_y) - 0.5) ;

NEW(vertex, 1..4);

vertex[1].x := xmin ; vertex[l].y := ymin ;

vertex[2].x := xmax ; venex[2].y := ymin ;

vertex[3].x := xmax ; venex[3].y :-- ymax ;

vertex[4].x := xmin ; vertex[4].y := ymax ;

{OUTPUT("From Sector Object the vertex values are: vertex[1].x ", vertex[l].x, "

vertex[1].y = ", vertex[1].y, "vertex[2].x = ", vertex[2].x," vertex[2].y = ", vertex[2].y,

"vertex[3].x = ", vertex[3].x, "vertex[3].y = ", vertex[3].y, "vertex[4].x = ", vertex[4].x,"

vertex[4].y = ", vertex[4].y);}

NEW(Polygon);

ASK Polygon TO SetPoints(vertex);

ASK Polygon TO SetColor(Yellow);

ASK Polygon TO SetStyle(HollowFill);

ASK MasterGraphic TO AddGraphic(Polygon);

END METHOD;

TELL METHOD MonitorSector(IN control: ControllerObj);

VAR

planel, plane2 : MovingObj;

cid:INTEGEPq

BEGIN

(*** New part that constructs lines between all the planes****)

planel :-- ASK SELF FirstO;

WHILE (planel o NILOB/)

plane2 := ASK SELF Next(planel);

WHILE (plane2 o NILOB,I)

{ASK SELF Find (planel, plane2);}

A-21

plane2 :=ASK SELF Next(plane2);

END WHII.,E;

planel :=ASK SELF Next(planel);

END WHILE;

WHILE (SimTime0 < numofhrs*60.0)

(*** Here is where the control/collision algorithm will go; for now,

issue an alert if two aircraft are simply in the same sector. ***)

planel := ASK SELF First0;

IF (planel _ NILOBJ) plane2 := ASK SELF Next(planel);

END IF;

IF (plane2 _ NILOBJ)

{ASK SELF TO Find(planel,plane2);}

OUTPUT;

OUTPUT(" ***************** DANGER!! Possible collision! **********");

OUTPUT(" Planes ",ASK planel objectID," and ",ASK plane2 objectlD,

"are both in or near Sector (", sectorIDx, ", ",

sectorlDy,") at time ", SimTime0);

OUTPUT(" Plane ",ASK plane1 objectID,": (",

ASK plane] XPos,", ",ASK plane1 YPos,")");

OUTPUT(" Plane ",ASK plane2 objectID,": (",

ASK plane2 XPos,", ",ASK plane2 YPos,")");

OUTPUT;

(**** When the intersection is detected, the plane is asked to talk to

the other plane ********)

TELL plane1 TO Talk(planel,plane2);

cid: = ASK control ConObjID;

OUTPUT("CID ", cid);

TELL control TO Inform(planel,plane2),

END IF;
WAIT DURATION 2.0

ON INTERRUPT

OUTPUT("Sector ",sectorIDx,",",sectorIDy," was interrupted at ",

SimTime0);

END WAIT;

END WHILE;

END METHOD;

A-22

TELL METHOD HighlightPath(IN DeltaT:REAL);

BEGIN

WAIT DURATION DeltaT

END WAIT;

ASK window TO SetColor(Violet);

ASK window TO Draw0;

Delay (1),

ASK window TO SetColor (Blue);

ASK window TO Draw0;

END METHOD;

ASK METHOD ChangeSectorStatus (IN Plane" MovingObj ;

IN Status • PlaneInSectorStatus) ;

VAR

elem • MovingObj ;

BEGIN

(*** Note: this will have to be redone when the envelope and

airplane are colored differently, so that one plane does not

clobber another one's graphics. ***)

IF (Status = ABSENT)

{OUTPUT("Changing status of sector ",sectorIDx,",",sectorIDy,

"to ABSENT for plane ",ASK Plane objectlD);}

elem := ASK SELF First0;

WHILE (elem o NILOBJ)

OUTPUT("old queue contains: ",ASK elem objectlD);

elem := ASK SELF Next(elem);

END WHILE;

END IF;

IF (Status = ABSENT)

OUTPUTCRemoving plane ",ASK Plane objectlD);

elem := ASK SELF First0;

WHILE (elem _ NILOBJ)

OUTPUT("Before remove, queue contains: ",

ASK elem objectlD);

elem := ASK SELF Next(elem);

END WHILE;

A-23

IF(ASK SELFIncludes(Plane))OUTPUT("It is there.');

END IF;

ASK SELF TO RemoveThis (Plane) ;

IF(ASK SELF Includes(Plane)) OUTPUT("It is still there.');

END IF;

elem := ASK SELF First0;

WHILE (elem o NILOBJ)

OUTPUT("At_er remove, queue contains: ",

ASK elem objectlD);

elem := ASK SELF Next(elem);

END WHILE;

IF (ASK SELF First0 = NILOBJ)

ASK Polygon TO SetColor(Ydlow) ;

ASK Polygon TO SetStyle(HollowFill) ;

ASK Polygon TO Draw0 ;

END IF ;

ELSE

IF (Status = PRESENT)

ASK Polygon TO SetColor(Red) ;

ASK Polygon TO SetStyle(SolidFiU) ;

ASK Polygon TO Draw0 ;

END IF ;

IF (Status = ENVELOPE)

ASK Polygon TO SetColor(Red) ;

ASK Polygon TO SetStyle(NarrowDiagonalFill) ;

ASK Polygon TO Draw0 ;

ENDIF ;

elem := ASK SELF First0;

WHILE ((elem o NILOBJ) AND (elem o Plane))

elem "= ASK SELF Next{elem) ;

END WHILE ;

IF (elem = NILOBJ) ASK SELF TO Add(Plane) ;

END IF;

END IF;

IF (Status = ABSENT)

OUTPUTCNew list of sector ",sectorIDx,",",sectorIDy,

" is");

dem := ASK SELF FirstO;

WHILE (elem _ NILOBJ)

OUTPUT("new queue contains: ",ASK elem objectID);

elem := ASK SELF Next(elem);

A-24

END WHILE,

END IF,

END METHOD;

ASK METHOD Find (IN Planel, Plane2 : MovingObj) ;

VAR

Epsilon : REAL;

XCompl, XComp2 : REAL ;

YCompl, YComp2 : REAL ;

XPosl, XPos2 : REAL ;

YPosl, YPos2 : REAL ;

yell, vel2 : REAL ;

a,b, ¢, d : REAL;

MinDist, t : REAL ;

points: PointArrayType;

line: PolylineObj;

BEGIN

OUTPUTCfrom find for planeid",ASK Planel objectID,"plane2id",ASK Plane2

objeetrD);
Epsilon := 0.0001;

XCompl := ASK Planel XComp ; YCompl := ASK Planel YComp ;

OUTPUT("From FIND for plane ", ASK Planel objectlD,"XCompl,YCompl

",XCompl,YCompl);

XPosl := ASK Planel XPos ;YPosl := ASK Planel YPos ;

OUTPUT("From FIND for plane ", ASK Planel objectlD,"XPosl,YPosl

",XPosl,YPosl);

XComp2 := ASK Plane2 XComp ; YComp2 := ASK Plane2 YComp ;

OUTPUT("From FIND for plane ", ASK Plane2 objectlD,"XComp2,YComp2

",XComp2,YComp2);

XPos2 := ASK Plane2 XPos ;YPos2 := ASK Plane2 YPos ;

OUTPUT("From FIND for plane ", ASK Plane2 objectID,"XPos2,YPos2

",XPos2,YPos2);

yell := ASK Planel velocity ; vel2 := ASK Plane2 velocity ;

OUTPUTCFrom FIND for plane ", ASK Plane2 objectID,"vel 1,vel2 ",vel l,vel2);

(*** Test to see if paths are either parallel or antiparallel. ***)

A-25

{IF (((ABS(XCompl) - ABS(XComp2)) < Epsilon) AND

((ABS(YComp 1) - ABS(YComp2)) < Epsilon))}

IF ((ABS(ABS(XCompl) - ABS(XComp2)) < Epsilon) AND

(ABS(ABS(YCompl) - ABS0fComp2)) < Epsilon))

OUTPUT;

OUTPUT (" Paths are either parallel or antiparralel");

MinDist := XCompl *

(YPosl - YPos2 + XCompl/YCompl*(XPosl - XPos2));

OUTPUT("Paths are either parallel or antiparallel; distance = ",

MinDist);
ELSE

a :=XPos2 -XPosl ; c := YPos2 - YPosl ;

b :=veI2*XComp2 -vcIl*XCompl ;

d := vel2*YComp2 -veIl*YCompl ;

t := -(a*b + c*d)/(b*b + d'd) ;

MinDist := SQRT((a+b*t)*(a+b*t) + (c+d*t)*(c+d*t)) ;

OUTPUT("From sector (",sectorIDx,",",sectorIDy,", planes ",

ASK Plancl objectID," and ",ASK Plane2 objectID,

"will have a minimum distance of",MinDist,

"at time ",t, " Simulation time = ", SimTim¢0);

END IF,

NEW (points, 1..2);

NEW (line);

points[1].x := XPos 1 + vel 1*XComp 1*t;

points[l].y := YPosl + vell*YCompl*t;

points[2].x := XPos2 + vel2*XComp2*t;

points[2].y := YPos2 + vel2*YComp2*t,

OUTPUT("Coordinates of the shortest distance are:");

OUTPuT(points[1].x,",",points[1].y);

OUTPUT(points[2].x,",",points[2].y);

ASK line TO SetPoints(points);

ASK line TO SetStyle(SolidLine);

ASK line TO SctColor(White);

ASK MasterGraphic TO AddGraphic(line);

ASK line TO Draw0;

{TELL SELF TO HighlightPath(t),}

END METHOD;

A-26

END OBJECT;

OBJECT MovingObj;

ASK METHOD SetobjectlD (IN numofplanes:INTEGER);

BEGIN

objectlD: = numofplanes;

END METHOD;

ASK METHOD SetOrigination (IN XValue, YValue • REAL);

BEGIN

XStart := XValue;

YStart := YValue;

XPos := XValue;

YPDs := YValue;

END METHOD;

ASK METHOD SetSpeed (IN speed REAL);

BEGIN

velocity := speed;

END METHOD;

TELL METHOD ReduceSpeed;

VAR

redvel: REAL;

BEGIN

redvel: = ASK SELF velocity;

velocity: = redve1-0.2;
WAIT DURATION 3.0;

END WAIT;

velocity: = redvel;

END METHOD;

ASK METHOD SetCourse (IN XVahe, YValue • REAL);

VAR Hypotenuse: REAL;

BEGIN

XDest := XValue ;

YDest := YValue ;

Hypotenuse := DIST2D (XPos, YPos, XDest, YDest);

XComp := (XDest - XPos) / Hypotenuse;

A-27

YComp := (YDest - YPos) / Hypotenuse;

Heading := ASIN(YComp);

OUTPUT("From SetCourse Plane ", ASK SELF objectID, "XDest ",

XDest," YDest ", YDest, "Hpotenuse ", Hypotenuse, "XComp ",XComp,

"YComp",YComp, "Heading ",Heading);

IF (XComp < 0.0) Heading := Pi - Heading; END IF;

IF ((XComp>0.0) AND (YComp<0.0)) Heading := Heading + 2.0*Pi;

END IF;

ASK SELF TO UpdateEnvelope;

END METHOD;

ASK METHOD SetLocation (IN loc: STRING);

BEGIN

location := loc;

END METHOD;

ASK METHOD InitSectorQueue;

VAR

i, j :INTEGER;
BEGIN

NEW (SectorQueue);

NEW (SectorEnvQueue);

NEW (SectorArray, 1 .. numofsecx, 1 .. numofseey) ;

FOR j := 1 TO numofsecy
FOR i := 1 TO numofsecx

SectorArray [i, j] := ABSENT ;

END FOR ;

END FOR ;

END METHOD;

ASK METHOD InitEnvelope;

VAR sx, sy:REAL;

BEGIN

NEW (vertex, 1..4);

NEW (PlaneG-raphic);

NEW (EnvelopePolygon);

ASK EnvelopePolygon TO SetStyle(HollowFill);

NEW (PlaneIcon) ;

ASK GraphicLib TO ReadFromFile("AConIcon.lib");

ASK

ASK

ASK

ASK

ASK

Planelcon TO LoadFromLibrary(GraphicLib,"Planelcon");

PlaneG-raphic TO AddGraphic(Planeleon);

PlaneGraphic TO AddGraphic (EnvelopePolygon) ;

MasterGraphie TO AddGraphic (PlaneGraphic);

Planelcon Scaling(sx, sy);

A-28

ASK PlaneIcon Scale(sx/300.0,sy/300.0);
END METHOD;

ASK METHOD UpdateEnvelope;
BEGIN

vertex[1].x := XPos - 2.0*YComp ;

vertex[1].y := YPos + 2.0*XComp ;
vertex[2].x := XPos + 2.0*YComp ;
vertex[2].y := YPos - 2.0*XComp ;
venex[3].x := XDest + 2.0*YComp ;

vertex[3].y := YDest - 2.0*XComp ;
venex[4].x :-- XDest - 2.0*YComp ;
vertex[4].y := YDest + 2.0*XComp ;

{OUTPUT("From the Moving Object UpdateEnvelope routine ", "vertex[1].x =",

vertex[1].x,"vertex[1].y =", vertex[1].y,"vertex[2].x =', vertex[2].x,"vertex[2].y =",
vertex[2].y,"vertex[3].x =", vertex[3].x,"vertex[3].y =", vertex[3].y,"vertex[4].x =",

vertex[4].x,"vertex[4].y =_, vertex[4].y),}
ASK EnvelopePolygon TO SetPoints(vertex);

ASK Planelcon TO SetTranslation(XPos,YPos);

ASK Planelcon TO Rotate(Heading-Pi/2.0);

ASK PlaneCn'aphic TO Draw0;

END METHOD;

ASK METHOD UpdateEnvSectors;

VAR

queueOld, queueNew: SectorQueueObj;
loopsec, secA, secB, secAtemp: SectorObj;

secnum, loopsecnum: INTEGER;
REMOVED: BOOLEAN;

qx, qy, xstart, ystart, xstop, ystop: INTEGER;

xscale, yscale: REAL;

xsector, ysector : INTEGER;

xborder, yborder: REAL;
m, b, yint,xint : REAL;
NewSector : ARRAY INTEGER, INTEGER OF PlanelnSectorStatus ;

ij :INTEGER;

BEGIN

(*** Initialize the NewSector array ***)

NEW (NewSector, 1 .. numofsecx, 1 .. numofsecy) ;

FORj := 1 TO numofsecy
FOR i := 1 TO numofsecx

A-29

NewSector [i, j] := ABSENT ;
END FOR ;

END FOR ;

(*** Determine the new list of sectors ***)

FOR i := 1 TO 4

j := (i MOD 4) + 1;

(*** Define m and b for the line equation yfmx+b only for non-vertical
lines ***)

IF (vertex[i].x o vertex[j].x)
m := (vertex[j].y - vertex[i].y) / (vertex[j].x - vertex[i].x) ;
b := vertex[i].y - m*vertex[i].x ;
{OUTPUT(" From Moving Object Update EnvelopeSector vertex[i]= M,

vertex[i].x, "Vertex[i].y= ", vertex[i].y);}
END IF;

(*** first, add the "x pairs" ifline is not vertical ***)
IF (vertex[i].x _ vertex[j].x)
FOR xsector := 2 TO numofsecx

xborder := xrange * (FLOAT(xsector-1)/FLOAT(numofsecx) -0.5);
IF ((MINOF (vertex[i].x,vertex[j].x) < xborder) AND

(MAXOF(vertex[i].x, vertex[j].x) > xborder))

yint := m*xborder + b ;

),border :=-yrange/2.0;

ysector := 1;

WHILE (),border < yint)

ysector := ysector + 1 ;

yborder := yrange *
(FLOAT0,sector- 1)/FLOAT(numofsecy) - 0.5);

END WHILE;

qx := xsector-1;

qy := ysector-1;
NewSector [qx, qy] := ENVELOPE ;

qx := xsector;
NewSector [qx, qy] := ENVELOPE ;
END IF;

END FOPq
END IF;

A-30

(***now add the"ypairs"***)

FOR ysector:=2 TO numofsecy

yborder:=yrange* (FLOAT (ysector-l)/FLOAT(numofsecy)-0.5);
IF ((MINOF(vertex[i].y,vertex[j].y)< yborder)AND

(MAXOF(vertex[i].y, vertex[j].y) > yborder))

IF (vertex[i].x o vertex[j].x)
xint := (yborder-b)/m ;

ELSE

xint := vertex[i].x;

END IF;

xborder := -xrange/2.0;

xsector := 1;

WHILE (xborder < xint)
xsector :=xsector + I,

xborder := xrange *
(FLOAT (xsector- l)/FLOAT(numofsecx) - 0.5),

END WHILE;

qx :=xsector -I;

qy :=ysector-l;

NewSector [qx, qy] :=ENVELOPE ;

qy :=ysector;
NewSector [qx, qy] :=ENVELOPE ;

END IF;

END FOR;

END FOR;

FOR j := I TO numofsecy
FOR i:=I TO numofsecx

IF (SectorArray[i,j]o NewSector [i,j])

SectorArray [i, j] := NewSector [i, j] ;

ASK MasterSectorArray [i j] TO
ChangeSectorStatus (SELF, SectorArray [i,j]);

END IF;

END FOR;

END FOR ;

END METHOD ;

ASK METHOD UpdateEnvSectorsOld;

VAR

A-31

queueOld, queueNew: SectorQueueObj;

loopsec, secA, secB, secAtemp: SectorObj;

secnung loopsecnum: INTEGER;

REMOVED: BOOLEAN;

qx, qy, xstart, ystan, xstop, ystop: INTEGER;

xscale, yscale: REAL;

xsector,ysector : INTEGER;

xborder,yborder: REAL;

m, b, yint,xint : REAL;

i,j :INTEGER;
BEGIN

(*** This is to empty the SectorEnvQueue *****)

secA := ASK SectorEnvQueue First0;

WHILE (secA o NILOBJ)

ASK SectorEnvQueue TO RemoveThis (secA);

secA := ASK SectorEnvQueue First0;

END WHILE;

(*** Set queueOld to be the previous list of sectors

NEW (queueOld);

secA := ASK SectorQueue First0;

WHILE (secA _ NILOBJ)

ASK queueOld TO Add(secA);

secA := ASK SectorQueue Next(secA);

END WHILE;

***)

(*** Determine the new list of sectors ***)

NEW (queueNew);

FOR i: = 1 TO 4

j := (i MOD 4) + 1;

(*** Define m and b for the line equation y=mx+b only for non-vertical

lines ***)

IF (vertex[i].x o vertex[j].x)

m := (vertex[j].y - vertex[i].y) / (vertex[j].x - vertex[i].x) ;

b := vertex[i].y - m*vertex[i].x ;

END IF;

(*** first, add the "x pairs" if line is not vertical ***)

IF (vertex[i].x _ vertex[j].x)

A-32

FOR xscctor := 2 TO numofsecx

xborder :-- xrange * (FLOAT(xsector-1)/FLOAT(numofsecx) - 0.5),

IF ((MINOF (venex[i].x, venex[j].x) < xborder) AND

(MAXOF(venex[i].x, venex[j].x) > xborder))

yint := m*xborder + b ;

yborder := -yrange/2.0;

ysector := I;

WHILE (yborder < yint)

ysector := ysector + 1 ;

yborder := yrange *

(FLOAT(ysector-1)/FLOAT(numofsecy) - 0.5);

END WHILE;

qx := xsector-I;

qy := ysector-1;
ASK SectorEnvQueue TO Logica]Add (MasterSectorArray[qx, qy]);

qx := xsector;
ASK SectorEnvQueue TO Logica]Add (MasterSectorArray[qx, qy]);

END IF;

END FOR;

END IF;

(*** now add the "y pairs" ***)

FOR ysector := 2 TO numofsecy

yborder := yrange * (FLOAT (ysector-1)/FLOAT(numofsecy) - 0.5);

IF ((MINOF(vertex[i].y, vertex[j].y) < yborder) AND

(MAXOF(vertex[i].y, vertex[j].y) > yborder))

IF (vertex[i].x <> vertex[j].x)

xint := (yborder-b)/m ;

ELSE

xint := vertex[i].x;

END IF;

xborder :=-xrange/2.0;

xsector := I;

WHILE (xborder < xint)
xsector :-- xsector + 1;

xborder := xrange *

(FLOAT (xsector- 1)/FLOAT(numofsecx) - 0.5);

END WHILE;

qx := xsector - 1;

qy := ysector -l;
ASK SectorEnvQueue TO LogicalAdd (MasterSectorArray[qx, qy]),

qy := ysector;
ASK SectorEnvQueue TO LogicalAdd (MasterSectorArray[qx, qy]);

A-33

END IF;

END FOR;

END FOR;

secA := ASK SectorEnvQueue First0;

WHILE (secA o NILOBJ)

ASK (ASK secA Polygon) TO SetColor(Red);

ASK (ASK secA Polygon) TO SetStyle(NarrowCrosshatchFill);

ASK (ASK secA Polygon) TO Draw0;

secA := ASK SectorEnvQueue Next(seeA);

END WHILE;

{ xscale := (XPos + xrange/2.0)/xrange*FLOAT(numofsecx);

yscale := (YPos + yrange/2.0)/yrange*FLOAT(numofsecy);

qx := INT(xscale)+ 1;

qy := INT(yscale)+l;

OUTPUTCPIane ",objectlD," is in sector C,qx,",",qy);

xstart := qx;

xstop := qx;

ystart := qy;

ystop := qy;

IF (((xscale - FLOAT(INT(xscale))) <= 0.2) AND (qx o 1))

xstart := xstart- 1;

END IF;

IF (((yscale - FLOAT(INT(yscale))) <= 0.2) AND (qy o 1))

ystart := ystart- 1;

END IF;

IF (((xscale - FLOAT(INT(xscale))) >= 0.8) AND (qx _ numofseex))

xstop := xstop + 1;

END IF;

IF (((yscale - FLOAT(INT(yscale))) >= 0.8) AND (qy _ numofsecy))

ystop :--- ystop + 1;

END IF;

FOR qx :---xstart TO xstop

FOR qy :-- ystart TO ystop

ASK queueNew TO Add(MasterSectorArray[qx, qy]);

END FOR;

END FOR;

{ secA := ASK queueOld First0;

WHILE (secA _ NILOBJ)

OUTPUTCBefore cancellations, queueOld: sector ",ASK secA sectorlD);

secA := ASK queueOld Next(secA);

END WHILE;

secB := ASK queueNew Firs't0;

WHILE (secB o NILOB_

OUTPUT("Before cancellations, queueNew:

secB := ASK queueNew Next(secB);

END WHILE;}

sector ",ASK secB sectorID);

(*** Remove from both queueOld and queueNew those sectors which are in

both queues. ***)

seeA :-- ASK queueOld First0;

LOOP

IF (secA = NILOBJ) EXIT;

END IF;

secB := ASK queueNew First0;

REMOVED := FALSE;

LOOP

IF (secB = NILOBJ) EXIT;

END IF;

IF (secA = seeB)

secAtemp := secA;

secA := ASK queueOld Next(secA);

ASK queueOld TO RemoveThis (secAtemp) ;

ASK queueNew TO RemoveThis (secB) ;

REMOVED := TRUE;

EXIT;

END IF;

secB := ASK queueNew Next(secB);

END LOOP;

IF (NOT REMOVED) secA := ASK queueOld Next(secA);

END IF;

END LOOP;

WHILE (secA _ NILOBJ)

secB := ASK queueNew First0;

WHILE (secB _ NILOBJ)

IF (secA = secB)

ASK queueOld TO RemoveThis (secA) ;

ASK queueNew TO RemoveThis (seeB) ;

END IF ;

secB := ASK queueNew Next(secB);

END WHILE;

secA := ASK queueOld Next(secA);

A-35

END WHILE,

{ secA := ASK queueOld First0;

WHILE (secA _ NILOBJ)

OUTPUT("AIter cancellations, queueOld: sector ",ASK secA sectorID);

secA := ASK queueOld Next(secA);

END WHILE;

secB := ASK queueNew First0;

WHILE (secB _ NILOBJ)

OUTPUT("Afler cancellations, queueNew: sector ",ASK secB sectorID);

secB := ASK queueNew Next(secB);

END WHILE;)

(*** Inform any sectors remaining in queueOld that this plane is no longer

its airspace, and remove the sector from the plane's SectorQueue.

secA := ASK queueOld First();

WHILE (secA _ NILOBJ)

ASK secA TO RemoveThis (SELF);

ASK SectorQueue TO RemoveThis (secA);

secA := ASK queueOld Next(secA);

END WHILE;

(*** Inform any sectors remaining in queueNew that this plane has entered

its airspace, and add the sector to the plane's SectorQueue. ***)

secB := ASK queueNew First0;

WHILE (secB o NILOBJ)

ASK secB TO Add (SELF);

ASK SectorQueue TO Add (secB);

secB := ASK queueNew Next(secB);

END WHILE;

)
END METHOD;

in

A-36

ASK METHOD UpdateSectors;

VAR

queueOld, queueNew: QueueObj;

loopsec, secA, secB, secAtemp: SectorObj;

secnum, loopsecnum: INTEGER;

REMOVED: BOOLEAN;

qx, qy, xstart, ystart, xstop, ystop: INTEGER;

xscale, yscale: REAL;

BEGIN

(*** Set queueOld to be the previous list of sectors

NEW (queueOld);

secA := ASK SectorQueue First0;

WHILE (secA <_ NILOBJ)

ASK queueOld TO Add(secA);

secA := ASK SectorQueue Next(secA);

END WHILE;

***)

(*** Determine the new list of sectors ***)

NEW (queueNew);

{OUTPUTCXPos, YPos = ",XPos,",",YPos), }

xscale := (XPos + xrange/2.0)/xrange*FLOAT(numofsecx);

yscale := (YPos + yrange/2.0)/yrange*FLOAT(numofsecy);

qx := INT(xscale)+l;

qy := INT0,scale)+l;

OUTPUTCPIane ",objectID," is in sector ",qx,",",qy);

xstart := qx;

xstop := qx;

),start := qy;

ystop := qy;

IF (((xscale - FLOAT(INT(xscale))) <= 0.2) AND (qx o 1))

xstart := xstan- l,

END IF;

IF (((yscale - FLOAT(INT(yscale))) <= 0.2) AND (qy o 1))

ystart := ystart- 1;

END IF;

IF (((xscale - FLOAT(INT(xscale))) >= 0.g) AND (qx <> numofsecx))

xstop := xstop + 1,

END IF;

IF (((.yscale - FLOAT(INT(yscale))) >= 0.8) AND (qy <> numofsecy))

ystop := ystop + 1;

END IF;

A-37

FOR qx := xstart TO xstop

FOR qy "= ystart TO ystop

ASK queueNew TO Add(MasterSectorArray[qx, qy]);

END FOR;

END FOR;

{ secA := ASK queueOld First0;

WHILE (secA o NILOBJ)

OUTPUTCBefore cancellations, queueOld: sector ",ASK secA sectorlD);

secA := ASK queueOld Next(secA);

END WHILE;

secB := ASK queueNew First0;

WHILE (secB o NILOBJ)

OUTPUTCBefore cancellations, queueNew: sector ",ASK secB sectorlD);

secB := ASK queueNew Next(secB);

END WHILE;}

(*** Remove from both queueOld and queueNew those sectors which are in

both queues. ***)

secA := ASK queueOld First();

LOOP

IF (secA = NILOBJ) EXIT;

END IF;

secB := ASK queueNew First0;

REMOVED := FALSE;

(secB = NILOBJ) EXIT;

END IF;

IF (secA = secB)

secAtemp := secA;

secA := ASK queueOId Next(secA);

ASK queueOld TO RemoveThis (secAtemp) ;

ASK queueNew TO RemoveThis (secB) ;

REMOVED := TRUE;

EXIT;

END IF;

secB := ASK queueNew Next(see, B);

END LOOP;

IF (NOT REMOVED) secA := ASK queueOld Next(secA);

END IF;

END LOOP;

LOOP

IF

A-38

WHILE (secA o NILOBJ)

secB := ASK queueNew First0;

WHILE (secB "_ NILOBJ)

IF (secA = secB)

ASK queueOld TO RemoveThis (secA) ;

ASK queueNew TO RemoveThis (secB) ;

END IF ;

secB := ASK queueNew Next(secB);

END WHILE;

secA := ASK queueOld Next(secA);

END WHILE;

{ secA := ASK queueOld First();

WHILE (secA o NILOBJ)

OUTPUT("Afler cancellations, queueOld: sector ",ASK secA seetorlD);

secA := ASK queueOld Next(secA);

END WHILE;

secB := ASK queueNew First0;

WHILE (secB <> NILOBJ)

OUTPUTCAfler cancellations, queueNew: sector ",ASK secB sectorID);

secB := ASK queueNew Next(secB);

END WHILE;}

(*** Inform any sectors remaining in queueOld that this plane is no longer

its airspace, and remove the sector from the plane's SectorQueue.
_)

secA := ASK queueOld First0;

WHILE (secA _ NILOBJ)

ASK secA TO RemoveThis (SELF);

ASK SectorQueue TO RemoveThis (secA);

secA := ASK queueOld Next(secA);

END WHILE;

(*** Inform any sectors remaining in queueNew that this plane has entered

its airspace, and add the sector to the plane's SectorQueue. ***)

secB := ASK queueNew First0;

in

A-39

WHILE (secB o NILOBJ)
ASK secB TO Add (SELF);

ASK SectorQueue TO Add (secB);

secB := ASK queueNew Next(secB);

END WHILE;

END METHOD;

ASK METHOD CHECK;

VAR ij:INTEGER;
absent: PlanelnSectorStatus;

BEGIN

absent := ABSENT;

IF (ABS(XPos-XDest)<ABS(XComp*velocity*0.01)) AND

(AB S(YPos-YDest)<ABS(YComp*velocity*0.01))

XPos := XDest;

YPos := YDest;

location: = "AT DESTINATION";

ETA := SimTime0;

{ OUTPUT("Erasing polygon..."); }

ASK PlaneGraphic TO Erase0;

ASK PlaneIcon TO Erase();

ASK EnvelopePolygon TO Erase();

DISPOSE(PlaneIcon);

DI SPOSE(EnvelopePolygon);

DI SPOSE(PlaneGraphic);

FOR j := 1 TO numofsecy
FOR i := 1 TO numofsecx

IF (SectorAn'ay [i, j] o ABSENT)

ASK MasterSectorAn'ay [id] TO

ChangeSectorStatus (SELF, absent),

END IF;

END FOR ;

END FOR ;

ELSE

ETA :-- SimTime0 +

DIST2D(XPos, YPos, XDest,YDest)/velocity;

END IF;

IF ((Tlnc < 2.0) OR (INT(SimTime0) MOD 10 = 0))

OUTPUTCPLANE ",objectlD," is ",location," at time ",SimTime0);

A.40

IF(location="IN FLIGHT") OUTPUT("

END IF;

END IF;

END METHOD;

ETA = ",ETA);

ASK METHOD UpdatePosition,

BEGIN

(**** Change the position ****)

XPos := XPos + (SimTime0 - TLast)*XComp*velocity,

YPos := YPos + (SimTime0 - TLast)*YComp*velocity ;

(**** Update TLast ****)

TLast := SimTime0 ;

(*** Update the envelope ***)

ASK SELF TO UpdateEnvelope;

(*** Update the sectors. ***)

ASK SELF TO UpdateSectors;

(*** Update the envelope sectors ***)

ASK SELF TO UpdateEnvSectors;

(*** Check to see if the plane is at its destination ***)

ASK SELF TO CHECK;

END METHOD;

(***** Method for the planes to talk ******)

TELL METHOD Talk(IN Planel, Plane2:MovingObj);

VAR

vel 1,vel2: REAL;

BEGIN

OUTPUT(" Plane ", ASK Planel objectID," has velocity of = ", ASK Planel

velocity);

OUTPUT(" Plane ", ASK Plane2 objectID, "has velocity of = ", ASK Plane2

velocity);
veil :ffi ASK Planel velocity;

vel2 := ASK Plane2 velocity;

A-41

IF (yell <= vel2)
yell :=vell+ ABS(veII-vel2),
velocity:=veil;
OUTPUTCARerthechangethenewvelocityisequal- ",ASK Planel velocity);

TELL Plane2 TO Wait;

END IF;

END METHOD;

TELL METHOD Wait;

BEGIN

WAIT DURATION 3.0

END WAIT;

{velocity:= ABS(velocity -0.3);}

OUTPUTCfrom Wait the object waiting is ", ASK SELF objectlD, "with a

velocity equal to = ", ASK SELF velocity);

END METHOD;

TELL METHOD Fly;

VAR

abc:MovingObj;

Hypotenuse: REAL;

BEGIN

{(*** Initiate the envelope ***)

ASK SELF TO UpdateEnvelope;

(*** Initiate the sectors. ***)

ASK SELF TO UpdateEnvSectors;}

location: = "IN FLIGHT";

ETA := SimTim¢0 +

MINOF(4.0, DIST2D(XStart,YStart,XDest, YDest)/velocity);

WHILE (location ,o "AT DESTINATION")

(*** Calculate an appropriate time increment ***)

Tint := MINOF(ABS(ASK ranNumGen Sample0 - 0.5),MAXOF(

(ETA-SimTime0)/2.0,0.01));

OUTPUTCTime Increment = ", TInc);
WAIT DURATION Tlne

END WAIT;

A-42

ASK SELF TO UpdatePosition;

END WHILE;

END METHOD;

END OBJECT;

OBJECT ControUerObj;

TELL METHOD Inform(IN Planel,Plane2: MovingObj);

BEGIN

OUTPUT("From Control Plane ", ASK Planel objectlD,

"From Control Plane", ASK Plane2 objectlD);

TELL Plane2 TO ReduceSpeed;

END METHOD,

ASK METHOD SetControllerlD(IN I:INTEGER);

BEGIN

Co.Objm:= I;

END METHOD;

{ ASK METHOD ConPlanes(IN Con:ANYOBJ);

VAR

ETA: REAL;

ConobjlD: INTEGER;

ConXpos: REAL;

{ConYpos,
ConXDes,
ConYDes :REAL;}
CAirplane: MovingObj;

def." MovingObj;

BEGIN

CAirplane: = Con;

IF ASK CAirplane objectlD = 2

ConobjlD: = ASK CAirplane objectlD;

ConXpos: = ASK CAirplane XPos;

OUTPUT ("FROM CONTROL OBJECT OBJECT ID AND POSITION",

ConobjlD, ConXpos);

END IF

A-43

def :-- ASK planenames First0;
WHILE def o NILOBJ

{OUTPUT(" ***From Controller Name in QUeue ",ASK def objectID,

" ", ASK defXPos);}

dei_= ASK planenames Next(def);

END WHILE;

END METHOD;}

END OBJECT;

OBJECT G-eneratorObj;

TELL METHOD GenSectors;

VAR

i,j :INTEGER;

sector : SectorObj;

BEGIN

FOR j: = 1 TO numofsecy;

FOR i:=l TO numofsecx ;

NEW (sector);

ASK sector TO SetobjectID(i,j);

ASK sector TO SetBorders;

ASK (ASK sector Polygon) TO Draw0;

MasterSectorArray[i,j] := sector;
TELL sector TO MonitorSector(Controller);

END FOR;

END FOR;

END METHOD;

ASK METHOD GenController;

VAR

i: INTEGER;

BEGIN

i:--l;

NEW(Comrolle0;

OUTPUT("From the control generator, I got created");

ASK Controller TO SetControllerID(i);

END METHOD;

TELL METHOD GenPlanes;

VAR

A.-44

def :-- ASK planenames First0;
WHILE def<> NILOBJ

{OUTPUT(" ***From Controller Name in QUeue ",ASK def object[D,

" ", ASK defXPos);}

def: = ASK planenames Next(def);

END WHILE;

END METHOD;}

END OBJECT;

OBJECT GeneratorObj;

TELL METHOD GenSectors;

VAR

i,j :INTEGER;

sector:SectorObj;

BEGIN

FOR j:= 1 TO numofsecy;
FOR i:=l TO numofsecx ;

NEW (sector);

ASK sector TO SetobjectlD(ij);

ASK sector TO SetBorders;

ASK (ASK sector Polygon) TO Draw0;

MasterSectorArray[i,j] := sector;

TELL sector TO MonitorSector(Controller);

END FOR;

END FOR;

END METHOD;

ASK METHOD GenController;

VAR

i: INTEGER;

BEGIN

i:=l;

NEW(Controller);

OUTPUT("From the control generator, I got created");

ASK Controller TO SetControllerID(i);

END METHOD;

TELL METHOD GenPlanes;

VAR

A-44

ranNumGen: RandomObj;

Airplane :MovingObj;

waittime:REAL;

k: INTEGER;

i,j: INTEGER;

junk:MovingObj;

BEGIN

NEW(planenames);

NEW(ranNumC_n);

numofplanes:= 0;

FOR k:=l TO 5;

NEW(Airplane);

INC(numofplanes);

ASK planenames TO Add(Airplane);

ASK Airplane TO SetobjectID(numofplanes);

ASK Airplane TO InitEnvelope;

ASK Airplane TO InitSectorQueue;

(*** Define the flight path of the plane with random values. ***)

ASK Airplane TO

SetOrigination ((xrange-5.0) *

((ASK ranNumGen Sample()) - 0.5),

(yrange-5.0) *

((ASK ranNumGen Sample0) - 0.5)),

ASK Airplane TO

SetSpeed (5.0 *(ASK ranNumGen Exponential(meanarrivaltime))) ;

ASK Airplane TO

SetCourse (xrange * ((ASK ranNumGen Sample0) - 0.5),

yrange * ((ASK ranNumGen Sample0) - 0.5)) ;

ASK Airplane TO SetLocation ("ON GROUND") ;

(*** Initiate the envelope ***)

ASK Airplane TO UpdateEnvelope;

(*** Initiate the sectors. ***)

ASK Airplane TO UpdateEnvSectors;

TELL Airplane TO Fly;

A-45

END FOR;

WHILE SimTimeO < (numofhrs * 60.0)

WAIT DURATION 5.0;

END WAIT;

END WHILE;

{INTERRUPT AL_ovingObj);}

DISPOSE (ranNumGen);

OUTPUTCReady...');

FOR j := 1 TO numofseey
FOR i := 1 TO numofsecx

junk := ASK MasterSectorArray[ij] First0;

IF (junk o NILOBJ)
OUTPUT;

OUTPUT(" Sector ",i,',",j," contains ");

WHILE (iunk<>NILOBJ)

OUTPUTCPlane ",ASK junk objectlD);

junk := ASK MasterSectorArray[ij] Next(junk);

END WHILE;

END IF;

END FOR;
END FOR;

END METHOD;

END OBJECT;

END MODULE.

A-46

DEFINITION MODULE AuxMathMod;

FROM MathMod IMPORT SQRT;

PROCEDURE DIST2D (IN xl, yl, x2, y2: REAL) • REAL;

PROCEDURE INT (IN x: REAL)" INTEGER;

END MODULE.

A-47

IMPLEMENTATION MODULE AuxMathMod;

FROM MathMod IMPORT SQRT;

PROCEDURE DIST2D (IN xl, yl, x2, y2: REAL) : REAL;

BEGIN

RETURN(SQRT((x2-xl)*(x2-xl) + (y2-yl)*(y2-yl)));

END PROCEDURE;

PROCEDURE INT (IN x: REAL): INTEGER;

BEGIN

RETtmN (ROUND(x-O.5));
END PROCEDURE;

END MODULE.

A-48

DEFINITION MODULE CCGeoObj;

TYPE

G-eoObj -- OBJECT

NamelD : STRING;

XPos,YPos, YDest,XDest,XComp,YComp :REAL;

ID : INTEGER;

Status : STRING;

ASK METHOD SetNameID(IN LocalNameID : STRING);

ASK METHOD SetID(IN localObjNumber : INTEGER);

TELL METHOD NewArrivel (IN Indicator:STRING);

END OBJECT;

PROCEDURE ReportEstimatedTime;

VAR

Geo : GeoObj;

END MODULE.

A-49

IMPLEMENTATION MODULE CCGeoObj;

OBJECT GeoObj;

ASK METHOD SetNameID (IN LocalNameID : STRING);

BEGIN

NameID :-LocalNameID,

END METHOD;

ASK METHOD SctID(IN localObjNumber : INTEGER);

BEGIN

ID "= IocalObjNumber,

END METHOD,

TELL METHOD NewArrive 1(IN Indicator :STRING),

BEGIN

END METHOD,

END OBJECT;

END MODULE.

A-50

DEFINITION MODULE CCGlobal;

{FROM ACMove IMPORT Modellnit, PlannerObj,PlaneObj;}

{FROM CCSectorObj IMPORT SectorObj;}

FROM CSectQObj IMPORT SectorQueueObj;

FROM GrpMod IMPORT QueueObj;

FROM RandMod IMPORT RandomObj, FetchSeed, Random;

FROM AuxMathMod IMPORT DIST2D, INT;

FROM GTypes IMPORT PointArrayType;

FROM SimMod IMPORT StartSimulation, SimTime;

{FROM CCSpatialTempObj IMPORT SpatialTempletObj, SpatialTemplet;

FROM CCStationaryObj IMPORT StationaryObj, Stationary;

FROM CConflictIdentObj IMPORT ConflictldentifierObj,Conflictldentifier;

FROM CConflictgesolve IMPORT ConflietResolverObj,ComClictResolver;}

FROM Image IMPORT ImageObj;

FROM Fill IMPORT PolygonObj,

FROM Window IMPORT WindowObj;

FROM Animate IMPORT DynDCIockObj;

FROM Graphic IMPORT GraphicLibObj,

TYPE

GeneratorObj = OBJECT

ASK METHOD GenSpatialTemplet;

ASK METHOD GenConflictIdent,

ASK METHOD C_nConflictResolve,

ASK METHOD GenStationary;

END OBJECT;

VAR

{simuluation parameters}

numothrs,

meanarrivaltime: REAL;

numofplanes:INTEGER;

SpatialTempletGenerator,

A-51

ConflictldentifierOenerator,

ConflictR.esolverGenrator,

StationaryGenerator :OeneratorObj;

planenames: QueueObj;

{fields necessary for generating planes}

ranNumG-en: RandomObj,

{parameters for defining the sectors by the spatial templet}

xrange, yrange: REAL;

numofsecx,

numofsecy: INTEGER;

ObjectNumber : INTEGEK;

Pi:REAL;

{Graphics variables }

MasterGraphic: ImageObj;

window: WindowObj;

elockwindow: WindowObj;

elockgraphic: DynDCiockObj;

MasterPlanelcon: ImageObj;

GraphicLib : GraphicLibObj;

Polygon: PolygonObj;

Planelcon : ImageObj;

PlaneGraphic:ImageObj;

END MODULE.

A-52

IMPLEMENTATION MODULE CCGIobal;

FROM CCC_oObj IMPORT G-toObj,Geo;

FROM ACMove IMPORT PlannerObj,PlaneObj,MovPlanner;

FROM CCSectorObj IMPORT SectorObj;

FROM CSectQObj IMPORT SectorQueueObj;

FROM GrpMod IMPORT QueueObj;

FROM RandMod IMPORT RandomObj, FetchSeed, Random;

FROM AuxMathMod IMPORT DIST2D, INT;

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

(/Types IMPORT PointArrayType;

SimMod IMPORT StartSimulation, SimTime;

CCSpatialTempObj IMPORT SpatialTempletObj,SpatialTemplet;

CCStationaryObj IMPORT StationaryObj,Stationary;

CConflictldentObj IMPORT ConflictldentifierObj,ConflictIdentifier;

CConflictResolve IMPORT ConflictResolverObj,ConflictResolver;

Image IMPORT ImageObj;

Fill IMPORT PolygonObj;

Window IMPORT WindowObj;

Animate IMPORT DynDClockObj;

Graphic IMPORT GraphicLibObj;

OBJECT G-eneratorObj;

ASK METHOD GenSpatialTemplet;
BEGIN

NEW(SpatialTemplet);

{create and set the Bvertex attribute of the Spatial Templet}

ASK SpatialTemplet TO SetFrame(xrange,yrange);

ASK SpatialTemplet TO GenSectors;

END METHOD;

ASK METHOD CmnConflictldent;

BEGIN

NEW (Conflictldentifier);

END METHOD;

A-53

ASK METHOD GenConflictResolve;

BEGIN

NEW(CortflictResolver);

END METHOD;

ASK METHOD GenStationary;

BEGIN

INC(ObjectNumber);

NEW(Stationary);

ASK Stationary TO InitStationaryFields("Static"),

END METHOD;

END OBJECT;

END MODULE.

A-54

DEFINITION MODULE CConflictIdentObj;

(***** Conflict Indentifier Object *****)

FROM CCGeoObj IMPORT CreoObj;

FROM RandMod IMPORT RandomObj, FetchSeed, Random;

FROM GrpMod IMPORT QueueObj;

FROM GTypes IMPORT PointArrayType;

FROM AuxMathMod IMPORT DIST2D, INT;

FROM ACMove IMPORT Modellnit,PlannerObj,PlaneObj;

FROM CCSpatiaITempObj IMPORT SpatialTempletObj;

FROM CCSectorObj IMPORT SectorObj;

TYPE

ConflictldentifierObj = OBJECT

ASK METHOD ReportPC(IN conflictsector:SectorObj; IN Member, Rock:GeoObj;

INOUT Indicator:STRING);

ASK METHOD Noconflict(IN planel :PlaneObj);

{ASK METHOD Doit(IN plane 1 :PlaneObj; INOUT Indicator:STRING); }

END OBJECT;{ConflictldentifierObj }

VAR

Conflictldentifier: ConflietldentifierObj;

DesVarl, DesVar2: REAL;
END MODULE.

A-55

IMPLEMENTATION MODULE CConflicfldentObj;

FROM

FROM

FROM

FROM

FROM

FROM

CCGeoObj IMPORT GeoObj;

ACMove IMPORT PlarmerObj,PlaneObj,ReportEstimatedTime;

CCStationaryObj IMPORT StationaryObj;

CCSemorObj IMPORT Se_orObj;

SimMod IMPORT PendingListDump;

CCSpatialTempObj IMPORT SpatialTempletObj, SpatialTemplet;

FROM CConflictResolve IMPORT ConflictResolverObj, ConflictResoiver;

OBJECT Confli_IdentifierObj;

ASK METHOD ReportPC

(IN e,onflictseetor: SectorObj;

IN Member, Rock: GeoObj;

INOUT Indicator:STRING);

VAIl

sxpos 1,sypos 1 :REAL;

sxpos2,sypos2:REAL;

estime2,estime 1 :REAL;

DesVarl, DesVar2: REAL;

pllD,p2ID: INTEGER;

xpospl,

ypospl,

xdestpl,

ydestpl: REAL;

xposp2,

yposp2,

xdestp2,

ydestp2: REAL;

sec_xmin,

sectxmax,

sectymin,

sectymax :REAL;

sectidx,

sectidy: INTEGER;

m 1,m2, b 1,b2: REAL;

yintO l,yint I I: REAL;

xint01,xint 11: REAL;

yintO2,yint 12: REAL;

A-56

xint02, xint 12:REAL;

xxxl,yyyl: REAL;

xxx2,yyy2:REAL;

iocalnameIDl,localnameID2:STRING;

planestatus 1,planestatus2: STRING;

Dii_ REAL;

Plane:PlaneObj;

Stationary: StationaryObj;

planel,plane2: G-eoObj;

BEGIN

localnameIDl := ASK Member NameID;

localnameID2 := ASK Rock NameD;

IF (localnameID1 = "Aircraft") AND (localnameID2 = "Aircraft")

planel := Member;

plane2 := Rock;

plID:= ASK planel ID;

p2ID:= ASK plane2 ID;

xpospl := ASK planel XPos;

ypospl := ASK planel YPos;

xdestpl := ASK planel XDest;

ydestpl := ASK planel YDest;

xposp2:= ASK plane2 XPos;

yposp2: = ASK plane2 YPos;

xdestp2: = ASK plane2 XDest;

ydestp2: = ASK plane2 YDest;

sectxmin:= ASK conflictsector xmin;

sectxmax: = ASK conflictsector xmax;

sectymin: = ASK conflictse_tor ymin;

sectymax: = ASK conflictsector ymax;

(**************** Determining the Intersection ********)

A-57

(*** FOR PLANE # 1 ***)

ml := (ydestpl -ypospl)/(xdestpl -xpospl),

b 1 := yposp I - (ml* xposp 1);

yint01 :-- (m 1" sectxmin) - b I;

yintl I := (ml *sectxmax) -bl;

xint01 := (sectymin - bl)/ml;

xint I 1:= (sectymax - b 1)/m 1;

xxxl := ASK planel XComp;

yyyl := ASK planel YComp;

IF((xxxl > 0.0) AND (xintl 1 > xint01)) OR

((yyyl > 0.0) AND (yintl 1 > yint01))

ELSE

sxposl := xintOl;

syposl := yintO I;

sxposl: = xintl I;

syposl: = yintl I;

END IF;

(*** FOR PLANE # 2 ***)

m2:= (ydestp2 -yposp2)/(xdestp2 -xposp2);

b2: = ypospl - (m2* xposp2);

yint02 := (m2* sectxmin) - b2;

yintl2 := (m2 *sectxmax) -b2;

,4,-58

xint02 := (sectymin - b2)/m2;

xintl2:= (sectymax - b2)/m2;

xxx2:= ASK plane2 XComp;

300,2: = ASK plane2 YComp;

IF((xxx2 > 0.0) AND (xintl2 > xint02)) OR

((yyy2 > 0.0) AND (yint 12 > yint02))

{OUTPUT(" point 1 is before poim2");}

sxpos2: = xint02;

sypos2:= yint02;

ELSE

{OUTPUT(" point 2 is before point 1");}

sxpos2: = xintl2,

sypos2:= yint 12;

END IF;

{**** Enquire from the planes their estimated time

of entering the sector*** }

ReportEstimatedTime(pllD,sxposl,syposl,estimel);

DesVarl := estimel;

ReportEstimatedTime(p2ID,sxpos2,sypos2,estime2);

DesVar2:=estime2;

(***New section done on Sat 2/8/92 *****)

{Included for the Resolver}

IF (ABS(DesVarl - DesVar2) < 5.0)

{conflict exists call conflict resolver}

ASK ConflictResolver TO

Resolve(planel,plane2,Indicator,DesVar 1,DesVar2);

END IF;

,4,-59

ELSIF (iocalnameIDl = "Aircraft") AND (localnameID2 = "Static")

OUTPUT("testing resolve 1; plane I st");

Indicator :="ON STATIC";

ELSIF (localnameID1 = "Static") AND (localname]D2 = "Aircraft")

OUTPUT("testing resolve 1; plane 2nd");
Indicator :="ON STATIC";

END IF;

END METHOD;

ASK METHOD Noconflict(IN planel :PlaneObj);
VAR

planestatus: STRING;
BEGIN

planestatus: = ASK planel Status;

OUTPUTCCALLING NOCOFLICT-- ERROR");

IF (planestatus _ "GIVEN PERMISSION")

{TELL plane 1 NewMove(planel);}

END IF;

END METHOD;

END OBJECT;
END MODULE.

A-60

IMPLEMENTATION MODULE CConflictldentObj;

FROM

FROM

FROM

FROM

FROM

FROM

CCGeoObj IMPORT GeoObj;

ACMove IMPORT PlannerObj,PlaneObj,ReportEstimatedTime;

CCStationaryObj IMPORT StationaryObj;

CCSectorObj IMPORT SectorObj;

SimMod IMPORT PendingListDump;

CCSpatialTempObj IMPORT SpatialTempletObj,SpatialTemplet;

FROM CConflictResolve IMPORT ConflictResolverObj, ConflictResolver;

OBJECT ConilictIdentifierObj;

ASK METHOD ReportPC

(IN conflictsector:SectorObj;

IN Member,Rock:GeoObj;

INOUT Indicator:STRING);

VAR

sxpos 1,sypos 1 :REAL;

sxpos2,sypos2:REAL;

estime2,estimel :REAL;

DesVarl, DesVar2: REAL;

plID,p2ID: INTEGER;

xpospl,

ypospl,

xdestpl,

ydestpl: REAL;

xposp2,

yposp2,

xdestp2,

ydestp2: REAL;

sectxmin,

sectxmax,

sectymin,
sectymax :REAL,

sectidx,

sectidy: INTEGER;

ml,m2, bl,b2: REAL;

yint01,yint 11: REAL;

xint01,xint 11 : REAL;

yint02,yint 12: REAL;

A-61

xintO2,xint12:REAL;

xxxl,yyyl: REAL;

xxx2,yyy2:REAL;

localnameID l,localnameID2: STRING;

planestatus l,planestatus2: STRING;

Diff_ REAL;

Plane:PlaneObj;

Stationary: StationaryObj;

planel,plane2: GeoObj;

BEGIN

localnameID 1 := ASK Member NameID;

localnameID2 := ASK Rock NameD;

IF (localnameIDl = "Aircraft")AND (localnameID2 = "Aircraft")

planel := Member;

plane2 := Rock;

plID:= ASK planel ID;

p2ID:= ASK plane2 ID;

xpospl := ASK planel XPos;

ypospl := ASK planel YPos;

xdestpl := ASK planel XDest;

ydestpl := ASK planel YDest;

xposp2: = ASK plane2 XPos;

yposp2:= ASK plane2 YPos;

xdestp2:= ASK plane2 XDest;

ydestp2: = ASK plane2 YDest;

sectxmin:= ASK conflictsector xmin;

sectxmax: = ASK conflictsector xmax;

sectymin:= ASK conflictsector ymin;

sectymax: = ASK corzflictsector ymax;

(**************** Determining the Intersection ********)

A-62

(*** FOR PLANE # ! ***)

m 1 :ffi (ydestp I -yposp 1)/(xdestp 1 -xposp 1);

bl: = ypospl - (ml* xpospl);

yint01 "= (m 1" scctxmin) - b I;

yint11 := (ml *sectxmax) -bl;

xint01 := (sectynfin - bl)/ml;

xintl 1:= (sectymax - bl)/ml;

xxxl:= ASK planel XComp;

yyyl := ASK planel YComp;

IF((xxxl > 0.0) AND (xintl 1 > xint01)) OP.
((yyyl > 0.0) AND (yintl I > yint0D)

ELSE

sxpos 1:= xint01;

syposl := yint01;

sxpos 1:= xint 11;

sypos 1:= yint I 1;

END IF;

(*** FOR PLANE # 2 ***)

m2:= (ydestp2 -yposp2)/(xdestp2 -xposp2);

b2:= ypospl - (m2* xposp2);

yint02 := (m2* sectxmin) - b2,

yint12 := (m2 *sectxmax) -b2;

A-63

xint02 := (sectymin - b2)/m2;

xint 12:= (sectymax - b2)/m2;

xxx2:-- ASK plane2 XComp;

yyy2:= ASK plane2 YComp;

IF((xxx2 > 0.0)AND (xintl2> xintO2))OR

((yyy2 > 0.0)AND (yint12> yint02))

{OUTPUT(" pointI isbeforepoint2");}

sxpos2:= xint02;

sypos2: = yint02;

ELSE

{OUTPUT(" point 2 is before point 1");}

sxpos2: = xintl2;

sypos2:= yintl2;

END IF;

{ * *** Enquire from the planes their estimated time

of entering the sector*** }

ReportEstimatedTime(plID,sxposl,syposl,estimel);

DesVarl := estimel;

ReportEstimatedTime(p2ID,sxpos2,sypos2,estime2);

DesVar2:=estime2;

(***New section done on Sat 2/8/92 *****)

{Included for the Resolver}

IF (ABS(DesVarl - DesVar2) < 5.0)

{conflict exists call conflict resolver}

ASK ConflictResolver TO

Resolve(plane1 ,plane2,Indicator,DesVar 1,DesVar2);

END IF;

A-64

ELSIF (IocalnameID 1 = "Aircraft") AND (localnameID2 = "Static")

OUTPUT("testing resolve 1; plane lst");

Indicator :="ON STATIC';

ELSIF (IoealnamelDl = "Static") AND 0ocalnameID2 = "Aircraft")

OUTPUT("testing resolve 1; plane 2nd");

Indicator :='ON STATIC';

END IF;

END METHOD;

ASK METHOD Noconflict(iN planel :PlaneObj);
VAR

planestatus: STRING;

BEGIN

planestatus:= ASK planel Status;

OUTPUT("CALLING NOCOFLICT-- ERROR");

IF (planestatus o "GIVEN PERMISSION")

{TELL plane I NewMove_lane 1); }

END IF;

END METHOD;

END OBJECT;

END MODULE.

A-65

DEFINITION MODULE CCSectorObj;

FROM GTypes IMPORT PointArrayType;

FROM GrpMod IMPORT QueueObj;

FROM ACMove IMPORT ModelInit,PlannerObj,PlaneObj;

FROM CCStationaryObj IMPORT StationaryObj, Stationary;

FROM CCGeoObj IMPORT GeoObj;

FROM SimMod IMPORT StartSimulation, SimTime;

FROM AuxMathMod IMPORT DIST2D, INT;

FROM CSectQObj IMPORT SectorQueueObj;

FROM Fill IMPORT PolygonObj;

FROM GTypes IMPORT ColorType(Green.Yellow,Blue,Red,Orange,Violet,White);

FROM GTypes IMPORT FillStyleType(HollowFill, SolidFill,NarrowDiagonalFill,

MediumDiagonalFill,WideDiagonalFill,NarrowCrosshatchFill.

MediumCrosshatchFill,WideCrosshatchFiU);

TYPE

SectorManagerObj =OBJECT

SectorQueue: SectorQueueObj;

SectorEnvQueue: SectorQueueObj,

SectorArray: ARRAY INTEGER, INTEGER, INTEGER OF STRING,

vertex: PointAn'ayType ;

EnvelopePolygon: PolygonObj;

Polygon : PolygonObj;

ASK METHOD InitEnvelope; {called by a sector manager}

ASK METHOD InitSectorQueue; {called by a sector manager}

ASK METHOD UpdateEnvelope(IN Plane:PlaneObj);

ASK METHOD checimpdate(IN Plane: PlaneObj; IN TempInd: STRING);

ASK METHOD UpdateEnvSectors(IN Plane:PlaneObj);

ASK METHOD SetStationaryEnvSectors(IN Stationary:StationaryObj);

ASK METHOD UpdateSectors(iN Plane:PlaneObj);

ASK METHOD DumpSectors;

ASK METHOD DumpStationarySectors;

#.-66

END OBJECT;

{_#_Rajesh climate this inheritance add vertex to this object first

check for other things}

SectorObj = OBJECT(SectorManagerObj,QueueObj)

sectorlDx, seetorlDy : INTEGER;

xmin, ymin,xmax,ymax : REAL;

ASK METHOD SetobjectID(IN ij:INTEGER);

ASK METHOD SetBorders(iN xrange, yrange:REAL; IN

numofsecx, numofsecy:INTEGER);

ASK METHOD ChangeSectorStatusAbsent (IN Plane : PlaneObj);

ASK METHOD ChangeSectorStatus (IN Member : GeoObj ;

IN Status : STRING;

INOUT Indicator : STRING) ;

ASK METHOD LogicallyRemove (IN Plane: PlaneObj);

ASK METHOD MonitorSector(IN Member:GeoObj; INOUT Indicator :

STRING);

END OBJECT;

VAR

SectorManager: SectorManagerObj; {I believe this is here by error as only 1

manager is createdand it's reference

pointer is a global variable to the

DCCSpatialTempObj.mod and its routines}

SectorArray: ARRAY INTEGER, INTEGER OF STRING;

END MODULE.

A-67

IMPLEMENTATION MODULE CCSectorObj;

FROM GTypes IMPORT PointArrayType;

FROM GrpMod IMPORT QueueObj;
FROM ACMove IMPORT Modellnit,PlannerObj,Plan_)bj;

FROM CCStationaryObj IMPORT StationaryObj,Stationary;

FROM CCG-eoObj IMPORT C.reoObj;

FROM SimMod IMPORT StartSimulation, SimTime;

FROM MathMod IMPORT SQRT,ASIN,POWER, SIN, COS,ATAN;

FROM CCGlobal IMPORT xrange, yrange, numofsegx, numofsecy, numoflu's,Pi;

FROM CSectQObj IMPORT Sec_orQueueObj;

FROM AuxMathMod IMPORT DIST2D, INT;

FROM CCSpatiaITempObj IMPORT MasterSe_orArray,

SpatialTempletObj, SpatialTemplet;

FROM Fill IMPORT PolygonObj;

FROM Image IMPORT ImageObj;

FROM GTypes IMPORT ColorType(Green, Yellow, Blue,Red,Orange, Violet,White);

FROM GTypes IMPORT FillStyleType(HollowFill, SolidFill,NarrowDiagonalFill,

MediumDiagonalFill,WideDiagonaWill,NarrowCrosshatchFill,

MediumCrosshatchFill,WideCrosshatchFill);

FROM Line IMPORT PolylineObj;

FROM GTypes IMPORT LineStyleType(SolidLine);

FROM CCGlobal IMPORT Cn'aphicLib;

FROM CCGlobal IMPORT MasterGraphic, MasterPlaneIcon,window, Planelcon,

PlaneGraphic;

FROM CConflictldentObj IMPORT ConflictIdentifierObj,ConflictIdentifier;

FROM CConflictResolve IMPORT CotrflictResolverObj,ConflictResolver;

OBJECT SectorObj;

ASK METHOD SetobjectID (IN ij: INTEGER);

BEGIN

sectorIDx := i;

sectorlDy := j;

END METHOD;

ASK METHOD SetBorders(IN localxrange, localyrange:REAL;

IN localnumofsecx, localnumofsecy: INTEGER);

BEGIN

A-68

xmin := iocalxrange* (FLOAT(sectodDxo1) /

FLOAT(iocalnumofsecx) - 0.5) ;

xmax := localxrange * (FLOAT(sectorlDx) /

FLOAT(localnumofsecx) - 0.5) ;

yrnin := Iocalyrange * (FLOAT(se_orlDy-1) !

FLOAT(loc_lnumofsecy) - 0.5) ;

ymax := localyrange * (FLOAT(sectodDy) /

FLOAT(Iocalnumofsecy) - 0.5);

NEW(vertex, 1..4);

venex[1].x := xmin ; venex[1].y := ymin ;

vertex[2].x := xmax ; vertex[2].y := yrnin ;
venex[3].x := max ; vertex[3].y := ymax ;

venex[4].x := xmin ; vertex[4].y := ymax ;

NEW(Polygon);

ASK Polygon TO SetPoints(vertex);

ASK Polygon TO SetColor(Yellow);

ASK Polygon TO SetStyle(HollowFill);

ASK MasterGraphic TO AddGraphic(Polygon);

END METHOD;

ASK METHOD ChangeSectorStatusAbsent (IN Plane :PlaneObj);

VAR

elem : PlaneObj; {****is this method being used???****}

BEGIN

IF (ASK SELF Includes(Plane))

ASK SELF RemoveThis(Plane);

OUTPUTCRemove Plane ",ASK Plane ID);

{Added this in order to change the graphical sector status, Rajesh,3/3/92}

{***************}
ASK Polygon TO SetColor(Yellow);

ASK Polygon TO SetStyle(HollowFill);

ASK Polygon TO Draw0 ;

sector");

ELSE

OUTPUT("ERROR, In Remove plane But not a memeber of master

END IF;

A-69

END METHOD;

ASK METHOD ChangeSectorStatus (IN Member : GeoObj ;

IN Status : STRING; INOUT Indicator : STRING) ;

VAR

localname:STRING;

{VAR

elem, eleml, : PlaneObj ;}

BEGIN

{the Status defines whether the plane should be in this sector obj's queue

or not}

IF (Status= "ABSENT")

(**plane is in the permanent sector array and must be removed **)

{I am changing this in order to accomodate for the static}

{object on 04/07/92 ,Rajesh}

{localmember := ASK SELF First0;}

IF (ASK SELF Includes(Member))

localname := ASK Member NameID;

IF (localname _ "Static")

ASK SELF RemoveThis(Member);

{if this sector is now empty--change the grapic color back to empty}

{Added this in order to change the graphical sector status, Rajesh,3/3/92}

{***************}
IF ASK SELF numberIn = 0

ASK Polygon TO SetColor(Yellow);

ASK Polygon TO SetStyle(HollowFill);

ASK Polygon TO Draw0 ;

END IF;

END IF;

{OUTPUT("From change sector status Remove Plane ", ASK Member ID);}

ELSE

OUTPUTCERROR, In Remove plane But not a memeber of master sector");

A-70

END IF;

ELSIF (Status= "PRESENT M)

ASK Polygon TO SetColor(Red) ;

ASK Polygon TO SetStyle(SolidFill) ;

ASK Polygon TO DrawO ;

{ rm}
IF NOT (ASK SELF Includes(Member))

ASK SELF TO Add0Vlcmber) ;

END IF;

ASK SELF MonitorSector(Member,Indicator);

ELSIF (Status = "ENVELOPE")

IF NOT (ASK SELF Includes(Member))

ASK SELF TO Add(Member) ;

END IF;

{added this IF statement to incorporate the Static}
IF ASK SELF numberIn = 1

ASK Polygon TO SetColor(R.ed) ;

ASK Polygon TO SetStyle(NarrowDiagonalFill) ;

ASK Polygon TO Draw 0 ;

END IF;

ASK SELF MonitorSector(Member,Indicator);

ELSIF (Status = MStationaryEnvelope")

ASK Polygon TO SetColor(Green) ;

ASK Polygon TO SetStyle(SolidFill) ;

ASK Polygon TO Draw 0 ;

IF NOT (ASK SELF Includes(Member))

ASK SELF TO Add(Member) ;

A-71

ASK SELFMonitorSector(Member, Indicator),

END IF;

END IF;

END METHOD;

ASK METHOD LogicallyRemove (IN Plane: PlaneObj);

VAR

elem: PlaneObj;

BEGIN

elem :-- ASK SELF First0;

WHILE (elem <> NILOBJ)

IF (elem = Plane)

ASK SELF TO RemoveThis (elem);

END IF;

elem :-- ASK SELF Next (elem) ;

END WHILE;

END METHOD;

ASK METHOD MonitorSector(IN Member:GeoObj;INOUT Indicator" STRING);

VAR

Rock: GeoObj;

Plane : PlaneObj;

BEGIN

A-72

Rock := ASK SELF Fkst0;

{OUTPUT

("MONITOR SECTOR--is plane in sector: ", ASK SELF Includes (Member));}

WHILE (Rock o NILOBJ)

IF (Rock o Member)

ASK SpatialTemplet TO
informPotentialConf(SELF,Member,Rock, Indicator);

END IF;

Rock := ASK SELF Next(Rock);

END WHILE;

END METHOD;

END OBJECT;

OBJECT SectorManagerObj

OBJECT SectorManagerObj;

ASK METHOD InitEnvelope;

VAR

sx,sy:REAL;

BEGIN

NEW (vertex, 1..4);

NEW (PlaneGraphic);

NEW (EnvelopePolygon);

ASK EnvelopePolygon TO SetStyle(I-IoUowFill);

NEW (Planelcon) ;

ASK GraphicLib TO ReadFromFile("AConlcon.lib");

ASK Planelcon TO LoadFromLibrary(GraphicLib,"Planelcon");

A-73

ASK PlaneCn'aphic TO AddG-raphic(PlaneIcon);

ASK PlaneCn'aphic TO AddGraphic (EnvelopePolygon) ;

ASK MasterGraphic TO AddGraphic (PlaneCn'aphic);

ASK Planelcon Scaling(sx, sy);

ASK PlaneIcon Scale(sx/300.0,sy/300.0);

END METHOD;

ASK METHOD InitSectorQueue;

VAR

k ,i, j : INTEGER;

BEGIN

NEW (SectorQueue);

NEW(SectorEnvQueue);

NEW (SectorAn'ay, l .. l 0, I .. numofsecx, 1 .. numofsecy) ;

FOR k := 1 TO l0

FOR j := 1 TO numofsecy

FOR i := I TO numofsecx

SectorArray [k ,i, j] := "ABSENT" ;

END FOR ;

END FOR ;

END FOR;

END METHOD;

ASK METHOD UpdateEnvelope(IN Plane: PlaneObj);
VAR

localxpos,localypos,

localxcomp,localycomp,

localxdest,localydest,

localpheading_

localttoarrive :REAL;

{replace the number 2.0 with the variable: HalfWidthOIEnvelope}

BEGIN

localxpos :-- ASK Plane XPos;

Iocalypos := ASK Plane YPos;

localxdest := ASK Plane XDest;

localydest := ASK Plane YDest;

localxcomp := ASK Plane XComp;

A-74

Iocalycomp:=ASK PlaneYComp;

localpheading:=ASK PlaneHeading;

{vertex is a Sector Manager attribute in this case SELF;
is method can be called by the sector objects also

through inheritance, but I didn't find any such calls;

(if the sector calls it then vertex belong to the sector obj)
IMPORTANT: sets vertex for this plane to be followed

immediately by a call to Update Env Sectors
}

{Rajesh-- save these vertex calculations in the plane's vertex

and call the plane's vertex in the UPdateEvnSectors method}

vertex[l].x

vertex[l].y

vertex[2],x

vertex[2].y

vertex[3].x

:=localxpos-2.0* localycomp;

:=localypos+ 2,0 * localxcomp;

:---Iocalxpos+ 2.0* Iocalycomp;

:=Iocalypos-2.0* Iocalxcomp;

:=Iocalxdest+ 2.0* Iocalycomp;

vertex[3].y := localydest - 2.0 * localxcomp ;
{vertex[4].x := localxdest - 2.0 * localxcomp ;
vertex[4].y := localydest + 2.0 * localxcomp ;}

IF (localxcomp<= 0.0)AND (localycomp>= 0.0)

vertex[4].x:=localxdest-2.0*localycomp;

verlex[4].y:=localydest+ 2,0*localxcomp;

ELSIF (Iocalxcomp>= 0.0)AND (Iocalycomp<= 0.0)

vertex[4].x := localxdest - 2.0*localycomp ;
vertex[4].y := Iocalydest + 2.0*localxcomp ;

ELSIF (localxcomp <= 0.0)AND (Iocalycomp <= 0.0)

venex[4].x := localxdest - 2.0*localycomp ;

vertex[4].y := localydest + 2.0*localxcomp ;
ELSIF (iocalxcomp > 0.0) AND (Iocalycomp > 0.0)

vertex[4].x := localxdest - 2.0*iocalycomp ;

vertex[4].y := localydest + 2.0*localxcomp ;

ELSE

vertex[4].x := localxdest - 2.0*localxcomp ;

vertex[4].y :-- Iocalydest + 2.0*localxcomp ;
END IF;

A-75

{EnvelopePolygon and Planelcon belong to the Sector Manager}

ASK (ASK Plane PlaneEnvelopePolygon) TO SetPoints(venex);

ASK (ASK Plane PlanePlaneIcon) TO

SetTranslation0ocalxpos, Iocalypos);

ASK (ASK Plane PlanePlaneIcon) TO

Rotate(localpheading - Pi/2.0);

ASK (ASK Plane PlanePlaneGraphic) TO Draw0;

END METHOD;

ASK METHOD UpdateEnvSectors(IN Plane:PlaneObj);

VAR

queueOld, queueNew: SectorQueueObj;

loopsec, secA, secB, secAtemp: SectorObj;

secnum, loopsecnum: INTEGER;

REMOVEDorNOT: BOOLEAN;

qx, qy, xstart, ystart, xstop, ystop: INTEGER;

xscale, yscale: REAL;

xsector,ysector : INTEGER;

xborder,yborder: REAL;

m, b, yint,xint : REAL;

NewSector : ARRAY INTEGER, INTEGER OF STRING ;

elem: PlaneObj;

ID: INTEGER;

ij :INTEGER;

Indicator: STRING;

Member:PlaneObj;

BEGIN

{routine called by SectorManager in Report Position method}

{ of the spatial template}

Member := Plane;

ID := ASK Plane ID;

Indicator := "NO";

(***Initialize the NewSector array ***)

A-76

NEW (NewSector, 1 .. numofsecx, I .. numofsecy) ;

FOR j := 1 TO numofsecy
FOR i := l TO numofsecx

NewSector [i, j] := "ABSENT";

END FOR ;

END FOR ;

(*** Determine the new list of sectors for the envelope of this plane***)

{repeat for 4 pairs of vertices of the evelope:

V[1], V[2]; V[2], V[3]; V[3], V[4], V[4], V[1]

for x coor and then for y coor, where V is vertex array}

FOR i := 1 TO 4

j := (i MOD 4) + 1;

(*** Define m and b for the line equation y=mx+b only for non-vertical

lines ***)

IF (vertex[i].x _ vertex[j].x)

m := (vertex[j].y - vertex[i].y) / (vertex[j].x - vertex[i].x) ;

b := vertex[i].y - m*vertex[i].x ;

{OUTPUT(" From Moving Object Update EnvelopeSector vertex[i]= ",

vertex[i].x, " Vertex[i].y = ", vertex[i].y);}

END IF;

(*** first, add the "x pairs" if line is not vertical ***)

IF (vertex[i].x <> vertex[j].x)

FOR xsector := 2 TO numofsecx

xborder := xrange * (FLOAT(xsector-1)/FLOAT(numofsecx) - 0.5);

IF ((MINOF (venex[i].x,vertex[j].x) < xborder) AND

(MAXOF(venex[i].x,vertex[j].x) > xborder))

yint := m*xborder + b;

yborder :=-yrange/2.0;

ysector := 1;

A-77

WHR,E (yborder < yint)

ysector :---ysector + 1 ;

yborder :-- yrange *

(FLOAT(ysector- 1)/FLOAT(numofsecy) - 0.5);

END WH/LE;

qx := xsector-1;

qy := ysector-1;

NewSector [qx, qy] := "ENVELOPE" ;

qx := xsector;

NewSector [qx, qy] := "ENVELOPE" ;

END IF;

END FOR;

END IF;

(*** now add the "y pairs" ***)

FOR ysector := 2 TO numofsecy

yborder := yrange * (FLOAT (ysector-1)/FLOAT(numofsecy) - 0.5);

IF ((MINOF(vertex[i].y, vertex[j].y) < yborder) AND

(MAXOF(vertex[i].y, vertex[j].y) > yborder))

IF (vertex[i].x <> vertex[j].x)

xint = (yborder-b)/m ;

ELSE

xint := vertex[i].x;

END IF;

xborder :=-xrange/2.0;

xsector := 1;

WHILE (xborder < xint)

xsector := xsector + l;

xborder := x.range *

(FLOAT (xsector- l)/FLOAT(numofsecx) - 0.5);

END WHILE;

A-78

qx := xsector -I;

qy := ysector -I;

NewSector [qx, qy] := "ENVELOPE" ;

qy := ysector;

NewSector [qx, qy] := "ENVELOPE" ;

END IF;

END FOR;

END FOR;

{END repeat for 4 pairs of vertices of the evelope}

{NOW the NewSector 2-dim array has the word ENVELOPE at every

point where the plane should be; each point is the ID of a sector

else the array hold the word ABSENT}

Indicator := "YES";

OUTPUTCBefore the dump sector plane is ", ASK Plane ID);

ASK SELF DumpSectors;

{ SectorArray created and init by GenSectors which

ask the SectorManager object to InitSectorQueue

the init value is ABSENT)

{ while loop that stops if indicator <> yes}

{Indicator will be set to NO ifa conflict is identified}

j:=l;

i:=l;

WHILE (i <= numofsecx) AND (Indicator = "YES")

WHILE (j <= numofsecy) AND (Indicator = "YES")

{ WHILE (i <= numofsecx) AND (Indicator = "YES")}

{}
IF (SectorArray [ID, i, j] <> NewSector [i, j])

AND (SectorArray [ID, i, j] <> "PRESENT")

{update the permanent array with the plane}

SectorArray [ID, i, j] := NewSector [i, j] ;

ASK MasterSectorArray [i,j] TO

A-79

ChangeSectorStatus(Plane,NewSector[i,j], Indicator) ;

END IF;

{i :=i+ l;)j :=j + 1;

END WHILE;

{i := I;} j:=l;

{j:=j+ 1;}

END WHILE;

i:=i+ 1;

ASK ConflictResolver TO Doit(Plane, Indicator);

{dispose of the created array}

DISPOSE (NewSector);

END METHOD ;

ASK METHOD SetStationaryEnvSectors(IN Stationary:StationaryObj);

VAR

queueOld, queueNew: SectorQueueObj;

loopsec, secA, secB, secAtemp: SectorObj;

secnum, loopsecnum: INTEGER;

REMOVEDorNOT: BOOLEAN;

qx, qy, xstart, ystart, xstop, ystop: INTEGER;

xscale, yscale: REAL;

xsector,ysector : INTEGER;

xborder,yborder: REAL;

m, b, yint,xint :REAL;

NewSector : ARRAY INTEGER, INTEGER OF STRING ;

elem: PlaneObj;

ID: INTEGER;

i,j :INTEGER;

Indicator: STRING;

Member: StationaryObj;

StationaryVertex:PointArrayType;

BEGIN

NEW(StationaryVertex, 1 ..4);

StationaryVertex[1],x := ASK Stationary StationaryVenexX 1;

StationaryVertex[1].y := ASK Stationary StationaryVenexY 1;

StationaryVenex[2].x := ASK Stationary StationaryVenexX2;

A-80

StationaryVertex[2].y := ASK Stationary

StationaryVertex[3].x := ASK Stationary

StationaryVertex[3].y := ASK Stationary

StationaryVertex[4].x := ASK Stationary

StationaryVertex[4].y := ASK Stationary

StationaryVertexY2;

StationaryVertexX3;

StationaryVertexY3,

StationaryVertexX4;

StationaryVertexY4;

Member := Stationary,

{routine called by SectorManager in Report Position method}

{ of the spatial template}

ID := ASK Stationary ID;

(***Initialize the NewSector array ***)

NEW (NewSector, 1 .. numofsecx, l .. numofsecy),

FOR j := 1 TO numofsecy
FOR i := 1 TO numofsecx

NewSector [i, j] := "ABSENT";

END FOR ;

END FOR ;

(*** Determine the new list of sectors for the envelop of this plane***)

{repeat for 4 pairs of vertices of the evelope:

V[1], V[2]; V[2], V[3]; V[3], V[4]; V[4], V[I]

for x coot and then for y coor, where V is vertex array}

FOR i: = 1 TO 4

j := (i MOD 4) + 1;

(*** Define m and b for the line equation y=mx+b only for non-vertical

lines ***)

IF (StationaryVertex[i].x <> StationaryVertex[j].x)

m := (StationaryVertex[j].y - StationaryVertex[i].y) / (StationaryVertex[j].x -

StationaryVertex[i].x) ;

b := StationaryVertex[i].y - m*StationaryVertex[i].x ;

A-81

I!

{OUTPUT(" From Moving Object Update EnvelopeSector StationaryVertex[i]=

StationaryVertex[i].x, " Vertex[i] .y= ", StationaryVertex[i].y); }

END IF;

(*** first, add the "x pairs" if line is not vertical ***)

IF (StationaryVertex[i].x o StationaryVertex[j].x)

FOR xsector := 2 TO numofsecx

xborder := xrange * (FLOAT(xsector-1)/FLOAT(numofsecx) - 0.5);

IF ((MINOF (StationaryVertex[i].x, StationaryVertex[j].x) < xborder) AND

(MAXOF(StationaryVertex[i].x, StationaryVertex[j].x) > xborder))

yint := m*xborder + b ;

yborder :=-yrange/2.0;

ysector :=];

WHILE (yborder < yint)

ysector := ysector + 1 ;

yborder := yrange *

(FLOAT(ysector-I)/FLOAT(numofsecy) - 0.5);

END WHILE;

qx := xsector-1;

qy := ysector-] ;

NewSector [qx, qy] := "StationaryEnvelope" ;

qx := xsector;

NewSector [qx, qy] := "StationaryEnvelope" ;

END IF;

END FOR;

END IF;

(*** now add the "y pairs" ***)

FOR ysector := 2 TO numofsecy

yborder := yrange * (FLOAT (ysector-1)/FLOAT(numofsecy) - 0.5);

A-82

IF ((MINOF(StationaryVertex[i].y, StationaryVertex[j].y) < yborder) AND

(MAXOF(StationaryVertex[i].y, StationaryVertex[j].y) > yborder))

IF (StationaryVertex[i].x <> StationaryVertex[j].x)

xint := (yborder-b)/m ;
ELSE

xint :-- vertex[i].x;

END IF;

xborder :=-xrange/2.0;

xsector := 1;

WHILE (xborder < xint)

xsector := xsector + 1;

xborder := xrange *

(FLOAT (xsector- 1)/FLOAT(numofsecx) - 0.5);

END WHILE;

qx := xsector -1;

qy := ysector - 1;

NewSector [qx, qy] := "StationaryEnvelope" ;

qy := ysector;

NewSector [qx, qy] := "StationaryEnvelope" ;

END IF;

END FOR;

END FOR;

{END repeat for 4 pairs of vertices of the evelope}

{NOW the NewSector 2-dim array has the word ENVELOPE at every

point where the plane should be; each point is the ID of a sector

else the array hold the word ABSENT}

Indicator := "NotMovable";

OUTPUT("Before the dump sector Stationary is ", ASK Stationary ID);

ASK SELF DumpSectors;

{ SectorArray created and init by GenSectors which

ask the SectorManager object to InitSectorQueue

the init value is ABSENT}

A-83

{FUTURE: change to while loop that stops if indicator _ yes}

{Indicator will be set to NO ifa conflict is identified}

OUTPUT (" before update sector array; numofsec y and x: ",

numofsecy, numofsecx);

FOR j := 1 TO numofsecy

FOR i: = 1 TO numofsecx

{this will be called for the static object only in those

array positions of the NewSector array where it = StationaryEnvelope}

IF (SectorArray [ID, i, j] <_ NewSector [i, j])

{update the permanent array with the static object }

SectorArray [ID, i, j] := NewSector [i, j] ;

ASK MasterSectorArray [i,j] TO

ChangeSectorStatus (Stationary, NewSector[io], Indicator) ;

END IF;

END FOR ;

END FOR;

{ASK MasterSectorArray[qx,qy] TO Add (Stationary);}

{****the way this stationary object is being added should be checked! ! ! !******}

OUTPUT("DUMP After add to sectors; Stationary is ", ASK Stationary ID);

ASK SELF DumpStationarySectors;

{ASK ConflictResolver TO Doit(Plane, Indicator); }

{dispose of the created array}

DISPOSE (NewSector);

END METHOD ;

A-84

ASK METHOD DumpSectors;

VAR

ij: INTEGER;

elem • GeoObj;

BEGIN

OUTPUT(" DUMP SECTORS ");

FOR j := 1 TO numofsecy

FOP. i: = 1 TO numofsecx

elem := ASK MasterSectorArray [ij] First();

IF (elem = NILOBJ) OUTPUT("Sector [",i,","j,"] is empty.");

ELSE

OUTPUT(" Sector [",i,",",j,"] contains plane ",

ASK elem NamelD);

elem := ASK MasterSectorArray[i,j] Next(elem);

END IF;

WHILE (elem <> NILOBJ)

OUTPUT(" and ",ASK elem NameID);

elem := ASK MasterSectorArray[i,j] Next(elem);

END WHILE;

END FOR;

END FOR;

END METHOD;

ASK METHOD DumpStationarySectors;

VAR

i,j: INTEGER;

elem • StationaryObj;

BEGIN

OUTPUT(" D U M P Stationary S E C T O R S ");

FOR j := 1 TO numofsecy

FOR i: = 1 TO numofsecx

elem := ASK MasterSectorArray [i,j] First();

IF (elem = NILOBJ) OUTPUT("Sector [",i,",",j,"] is empty.");

ELSE

OUTPUT("Sector [",i,","j,"] contains Stationary ",

ASK elem ID);

elem := ASK MasterSectorArray[i,j] Next(elem);

END IF;

WHILE (elem <> NILOBJ)

OUTPUT(" and ",ASK elem ID);

A-85

elem :=ASK MasterSectorArray[i,j]Next(elem);

END WHILE;

END FOR;

END FOR;

END METHOD;

ASK METHOD UpdateSectors(IN Plane:PlaneObj);

VAR

queueOld, queueNew: QueueObj;

loopsec, secA, secB, secAtemp: SectorObj;

secnum, loopsecnum: INTEGER;

REMOVEDorNOT: BOOLEAN;

qx, qy, xstart, ystart, xstop, ystop: INTEGER;

xscale, yscale: REAL;

xpos,ypos,xcomp,ycomp,xdest,ydest :REAL;

BEGIN

xpos: = ASK Plane XPos;

ypos: = ASK Plane YPos;

(*** Set queueOld to be the previous list of sectors***)

NEW (queueOld);

OUTPUT (" in update sectors; # of objects in SectorQ ",

ASK SectorQueue numberln);

secA :-- ASK SectorQueue First();

WHILE (secA <> NILOBJ)

ASK queueOld TO Add(secA);

secA := ASK SectorQueue Next(secA);

END WHILE;

(** * Determine the new list of sectors ** *)

NEW (queueNew);

OUTPUT("XPos, YPos = ",xpos,",",ypos);

xscale := (xpos + xrange/2.0)/xrange*FLOAT(numofsecx);

yscale := (ypos + yrange/2.0)/yrange*FLOAT(numofsecy);

qx := INT(xscale)+ 1;

A-86

qy := INT(yscale)+l;

xstart := qx;

xstop := qx;

ystart := qy,

ystop := qy;

IF (((xscale - FLOAT(INT(xscale))) <= 0.2) AND (qx _, 1))

xstart := xstart- 1;

END IF;

IF (((yscale - FLOAT(INT(yscale))) <= 0.2) AND (qy _" 1))

ystart := ystart- 1;

END IF;

IF (((xscale - FLOAT(INT(xscale))) >= 0.8) AND (qx <> numofsecx))

xstop := xstop + 1;

END IF;

IF (((yscale - FLOAT(INT(yscale))) >= 0.8) AND (qy <> numofsecy))

ystop := ystop + 1;

END IF;

FOR qx := xstart TO xstop

FOR qy := ystart TO ystop

ASK queueNew TO Add(MasterSectorArray[qx,qy]);

END FOR;

END FOR;

(*** Remove from both queueOid and queueNew those sectors which are in

both queues. ** *)

secA := ASK queueOld First();
LOOP

IF (secA = NILOBJ) EXIT;

END IF;

secB := ASK queueNew First();

REMOVEDorNOT := FALSE;

LOOP

IF (secB = NILOBJ) EXIT;

END IF;

IF (secA = secB)

secAtemp := secA;

secA := ASK queueOld Next(secA);

ASK queueOld TO RemoveThis (secAtemp) ;

ASK queueNew TO RemoveThis (secB) ;

A-87

REMOVEDorNOT := TRUE;

EXIT;

END IF;

secB := ASK queueNew Next(secB);

END LOOP;

IF (NOT REMOVEDorNOT) secA := ASK queueOld Next(secA);

END IF;

END LOOP;

WHILE (secA <> NILOBJ)

secB := ASK queueNew First();

WHILE (secB _ NILOBJ)

IF (secA = secB)

ASK queueOid TO RemoveThis (secA) ;

ASK queueNew TO RemoveThis (secB) ;

ENDIF ;

secB := ASK queueNew Next(secB);

END WHILE;

secA := ASK queueOid Next(secA);

END WHILE;

(*** Inform any sectors remaining in queueOld that this plane is no longer

its airspace, and remove the sector from the plane's SectorQueue.
_)

secA := ASK queueOld First();

WHILE (secA <> NILOBJ)

{ ASK secA TO RemoveThis (Plane);}

ASK SectorQueue TO RemoveThis (secA);

secA := ASK queueOld Next(secA);

END WHILE;

(*** Inform any sectors remaining in queueNew that this plane has entered

its airspace, * * * *)

secB := ASK queueNew First();

WHILE (secB <> NILOBJ)

ASK secB TO Add (Plane);

ASK SectorQueue TO Add (secB);

secB := ASK queueNew Next(secB);

END WHILE;

in

A-88

END METHOD;

{The following method is being called from SPcheckupdate of the SpatialTempObj }

{and it appears it is called only when the plane is at its destination}

ASK METHOD checkupdate(IN Plane: PianeObj;

IN Templnd: STRING);
VAR

j, i, qx, qy: INTEGER;

ID: INTEGER;

xscale, yscale :REAL;

BEGIN

ID:= ASK Plane ID;

FOR j := 1 TO numofsecy

FOR i := 1 TO numofsecx

IF (SectorArray [ID,i, j] <> "ABSENT")

AND (SectorArray [ID, i, j] <> "PRESENT")

SectorArray[ID, i, j] := "ABSENT";

ASK MasterSectorArray[ij] TO

ChangeSectorStatus (Plane, SectorArray[ID,iO],Templnd);

END IF;

END FOR ;

END FOR ;

{do not remove the plane completely from these arrays, leave plane

in it current position}

IF ASK Plane Status = "ON HOLD"

xscale := (ASK Plane XPos + xrange/2.0)/xrange*FLOAT(numofsecx);

yscale := (ASK Plane YPos + yrange/2.0)/yrange*FLOAT(numofsecy);

qx := INT(xscale)+ 1;

qy := INT(yscale)+l;

SectorArray[ID, qx, qy] := "PRESENT";

ASK MasterSectorArray[qx,qy] TO Add (Plane);

END IF;

{####Rajesh dora do this here look for where lobna does this

A-89

erase polygon but not plane icon...

ASK Planelcon TO Erase();

ASK EnvelopePolygon TO Erase();}

{DISPOSE(Planelcon); }

{DlSPOSE(EnvelopePolygon); }

{DI SPOSE(PlaneGraphic); }

END METHOD;

END OBJECT;

END MODULE.

A-90

DEFINITION MODULE CCSpatialTempObj;

(***** Spatial Templet Object *****)

FROM Cn'pMod IMPORT QueueObj;

FROM GTypes IMPORT PointArrayType;

FROM ACMove IMPORT PlaneObj;

FROM CCGeoObj IMPORT GeoObj;

FROM CCStationaryObj IMPORT StationaryObj,Stationary;

FROM CCSectorObj IMPORT SectorObj, SectorManagerObj;

TYPE

SpatialTempletObj = OBJECT(QueueObj)

Bxmin,Bymin,Bxmax,Bymax :REAL;

Bvertex: PointArrayType;

BsectorIDx, BsectorIDy: INTEGER;

ASK METHOD SetFrame(IN xrange,yrange:REAL);

ASK METHOD GenSectors;

ASK METHOD SPcheckupdate(IN Plane:PlaneObj);

ASK METHOD ReportPosition(IN Plane:PlaneObj);

ASK METHOD ReportStationaryPosition(IN Stationary:StationaryObj);

ASK METHOD Reportzerofindings(IN Piane:PlaneObj);

ASK METHOD InformPotentialConf(IN commonsector:SectorObj; IN

Member, Rock :GeoObj;INOUT Indicator:STRING);

END OBJECT; { SpatialTempletObj }

VAR

MasterSectorArray: ARRAY INTEGER, INTEGER OF SectorObj;

sector: SectorObj;

SpatialTemplet: SpatialTempletObj;

SectorManager: SectorManagerObj;

END MODULE.

A-91

IMPLEMENTATION MODULE CCSpatialTempObj;

FROM GTypes IMPORT PointArrayType;

FROM CCSectorObj IMPORT SectorObj, SectorManagerObj;

FROM CCGeoObj IMPORT GeoObj;

FROM ACMove IMPORT ModelInit,PlannerObj,PlaneObj;

FROM CCStationaryObj IMPORT StationaryObj,Stationary;

FROM CConflictIdentObj IMPORT ConflictIdentifierObj,ConflictIdentifier;

FROM CCGlobal IMPORT xrange, yrange, numofsecx,

numofsecy,numoflu's, ObjectNumber;

FROM Image IMPORT ImageObj;

FROM Fill IMPORT PolygonObj;

FROM Window IMPORT WindowObj;

FROM Animate IMPORT DynDClockObj;

FROM Graphic IMPORT GraphicLibObj;

OBJECT SpatialTempletObj;

ASK METHOD SetFrame(IN localxrange,localyrange:REAL);

VAR

Bvertex: PointArrayType;

BEGIN

Bxmin := localxrange * (-0.5);

Bxmax := localxrange * (0.5);

Bymin := localyrange * (-0.5);

Bymax := localyrange * (0.5);

NEW(Bvertex, 1 ..4);

Bvertex[1].x := Bxmin; Bvertex[1].y := Bymin;

Bvertex[2].x := Bxmax; Bvertex[2].y := Bymin;

Bvertex[3].x := Bxmax; Bvertex[3].y := Bymax;

Bvertex[4].x := Bxmin; Bvertex[4].y := Bymax;

END METHOD;

ASK METHOD GenSectors;

VAR

ij :INTEGER;

tempsector: SectorObj; {use tempsector instead of global var: sector

below someday}

BEGIN

A-92

{createthe sectors and set their attributes;

save the sector reference pointer in the MasterSectorArray}

{sector and MasterSectorArray are variables that are global

for all routines of the Spatial Template;

It's definition is in DCCSpatialTempObj.mod}

FOR j:= 1 TO numofsecy;

FOR i:=l TO numofsecx ;

NEW (sector);

ASK sector TO SetobjectlD(ij);

{ set this sector's atributes: sectorlDx, sectorlDy,

xmin,ymin, xmax,ymax,

and the inherited attributes: vertex,

Polygon

}

ASK sector TO SetBorders(xrange,yrange,

numofsecx,numofsecy);

ASK (ASK sector Polygon) TO Draw();

{save the reference pointer to this sector}

MasterSectorArray[ij] := sector;

END FOR;

END FOR;

NEW(SectorManager); {SectorManager is a variable that is global

for all routines of the Spatial Template;

It's definition is in DCCSpatialTempObj.rnod}

{create the SectorManager's vertex attribute (don't assign values)

and do graphical icons: envelopepolygon, planeicon}

ASK SectorManager lnitEnvelope;

{create more sector manager's attributes:

SectorQueue, SectorEnvQueue,

SectorArray (a 3-dim array
with l rd dim = "ABSENT"

2th and 3rd dim stan_l for the sector ID)

each value in this array corresponds to a position

in an

A-93

individualsectorobject's queue (the queue

is called using the sector obj's reference

pointer name)

}

ASK SectorManager InitSectorQueue;

END METHOD;

ASK METHOD ReportPosition(IN Plane:PlaneObj);
VAR

planestatus: STRING;

BEGIN

planestatus:= ASK Plane Status;

OUTPUT(" From the SpatialTemplet the planestatus of plane ",

ASK Plane ID, planestatus);

IF (planestatus = "AT DESTINATION")

ASK SELF SPcheckupdate(Plane);

ELSIF (planestatus ="NEWPOSITION")

{##### rajesh get rid InitEnvelope; InitSectorQueue;

should be done only once and in GenSectors}

{**ASK SectorManager TO InitEnvelope;

ASK SectorManager TO lnitSectorQueue;** }

ASK SectorManager TO UpdateEnvelope(Plane);

ASK SectorManager TO UpdateEnvSectors(Plane);

{_### rajeshcan't figure this out will drop it for now:

ASK SectorManager TO UpdateSectors(Plane); }

ELSIF (planestatus ="INITIALIZED")

{#### rajesh get rid InltEnvdope; InitSectorQueue;

should be done only once and in GenSectors}

{ ASK SectorManager TO InitEnvelope;

A-94

ASK SectorManagerTO InitSectorQueue;**}

{set SectorManager's vertex field and

draws plane and sets polygon pts}

ASK SectorManager TO UpdateEnvelope(Plane);

{uses the sector manager's vertex fields to

Determine the new list of sectors for the envelop

of this planes and start the process }

ASK SectorManager TO UpdateEnvSectors(Plane);

{##-### rajeshcan't figure this out will drop it for now:

ASK SectorManager TO UpdateSectors(Plane); }

ELSIF (planestatus ="NOT GIVEN PERMISSION")

{#### rajesh get rid InitEnvelope; InitSectorQueue;

should be done only once and in GenSectors}

{ASK SectorManager TO InitEnvelope;

ASK SectorManager TO InitSectorQueue;}

ASK SectorManager TO UpdateEnvelope(Plane);

ASK SectorManager TO UpdateEnvSectors(Plane);

{##### rajeshcan't figure this out will drop it for now: }

{ASK SectorManager TO UpdateSectors(Plane); }

ELSE

OUTPUT(" The plane is not Init, Dest, new");

END IF;

END METHOD;

ASK METHOD ReportStationaryPosition(iN Stationary: StationaryObj);

BEGIN

{ASK SectorManagerTO SetStationaryEnvelope(Stationary);}

ASK SectorManager TO SetStationaryEnvSectors(Stationary);

END METHOD;

A-95

ASK METHOD SPcheckupdate(IN Plane:PlaneObj);
VAR

sp: STRING;
BEGIN

sp: = "YES";

ASK SectorManager checkupdate(Plane, sp);

END METHOD;

ASK METHOD Reportzerofindings(IN Plane:PlaneObj);

VAR

planestatus: STRING;
BEGIN

planestatus: = ASK Plane Status;

IF (planestatus <> "GIVEN PERMISSION")

ASK Conflictldentifier TO Noconflict(Plane);

END IF;

END METHOD;

ASK METHOD InformPotentialConffIN commonsector: SectorObj;

IN Member,Rock:GeoObj;

INOUT Indicator: STRING);

VAR

SIDX, SIDY, PIlD,P2ID: INTEGER;

plane 1,plane2 : PlaneObj;

BEGIN

{PIID := ASK planel ID;

P2ID := ASK plane2 ID; }

{OUTPUT(" SECTOR ", ASK commonsector sectorIDx,",

",ASK commonsector sectorIDy," Plane ", PIID,

" Plane ", P2ID);}

ASK ConflictIdentifier TO ReportPC

(commonsector,Member,Rock, Indicator);

END METHOD;

A-96

END OBJECT_

END MODULE.

A°97

DEFINITION MODULE CCStationaryObj;

FROM

FROM

FROM

FROM

FROM

FROM

FROM

RandMod IMPORT RandomObj;

CCGlobal IMPORT ObjectNumber;

CCGeoObj IMPORT GeoObj;

Fill IMPORT PolygonObj;

Image IMPORT ImageObj;

GTypes IMPORT FillStyleTypeCHollowFill, SolidFilI,NarrowDiagonalFill,

MediumDiagonalFill,WideDiagonalFill,NarrowCrosshatchFill,

MediumCrosshatehFill,WideCrosshat ehFill);

GTypes IMPORT PointAn'ayType;

TYPE

StationaryObj = OBJECT(GeoObj)

StationaryVertexX 1,StationaryVertexX2,

StationaryVertexX3,StationaryVertexX4,

StationaryVertexY 1,StationaryVertexY2,

StationaryVertexY3,StationaryVertexY4 :REAL;

StationaryVertex: PointArrayType ;

StationaryPolygon : PolygonObj;

Name : STRING;

ASK METHOD InitStationaryFields (IN Iocalname : STRING);

END OBJECT;

VAR

Stationary: StationaryObj;

END MODULE.

A-98

IMPLEMENTATION MODULE CCStationaryObj;

FROM

FROM

FROM

FROM

CCGlobal IMPORT xrange,yrange,ObjectNumber;

RandMod IMPORT RandomObj;

CCSpatialTempObj IMPORT SpatialTempletObj,SpatialTemplet;

CCGeoObj IMPORT GeoObj;

FROM Fill IMPORT PolygonObj;

FROM Image IMPORT ImageObj;

FROM GTypes IMPORT FillStyleType(HoliowFill,SolidFill,NarrowDiagonalFill,

MediumDiagonalFill,WideDiagonalFill,NarrowCrosshatchFill,

MediumCrosshatchFill,WideCrosshatchFill);

FROM GTypes IMPORT PointArrayType;

OBJECT StationaryObj;

ASK METHOD lnitStationaryFields(IN localname : STRING);

VAR

ranNumGen : RandomObj;

BEGIN

{####Rajesh make sure you really want a separate RN generator here;

if so you probably should set the seed}

NEW (ranNumGen);

StationaryVertexX 1

StationaryVenexY 1

StationaryVenexX2

StationaryVenexY2

StationaryVertexX3

StationaryVenexY3

StationaryVenexX4

StationaryVenexY4

:= (xrange- 2.0) * ((ASK ranNumGen Sample()) - 0.5);

:= (yrange- 2.0) * ((ASK ranNumGen Sample()) - 0.5);

:= (xrange- 5.0) * ((ASK ranNumGen Sample()) - 0.5);

:= (yrange- 5.0) * ((ASK ranNumGen Sample()) - 0.5);

:= (xrange- 2.0) * ((ASK ranNumGen Sample()) - 0.5);

:= (yrange- 2.0) * ((ASK ranNumGen Sample()) - 0.5);

:= (mange- 5.0) * ((ASK ranNumGen Sample()) - 0.5);

:= (yrange- 5.0) * ((ASK ranNumGen Sample()) - 0.5);

StationaryVenexX1 := 4.0;

StationaryVertexY1 := 5.0;

StationaryVenexX2 := 4.0;

StationaryVenexY2 := 4.0;

StationaryVenexX3 := 5.0;

StationaryVertexY3 := 4.0;

A-99

StationaryVertexX4:= 5.0;

StationaryVertexY4 := 5.0;

ASK SELF TO SetID(ObjectNumber);

ASK SELF TO SetNamelD(localname);

ASK SpatialTemplet TO ReportStationaryPosition(Stationary);

END METHOD;

END OBJECT;

END MODULE.

A-100

DEFINITION MODULE CSeetQObj;

FROM GrpMod IMPORT QueueObj;

TYPE

SeetorQueueObj -- OBJECT(QueueObj)

ASK METHOD LogicalAdd (IN eleml: ANYOBJ);

END OBJECT;

END MODULE.

A-10I

IMPLEMENTATION MODULE CSectQObj;

FROM GrpMod IMPORT QueueObj;

OBJECT SectorQueueObj;

ASK METHOD LogicalAdd (IN eleml: ANYOBJ);

VAR

dem2: ANYOBJ;

status: STRING;

BEGIN

elem2 := ASK SELF First();

status := "ABSENT";

WHILE ((elem2<>NILOBJ) AND (status="ABSE NT''))

IF (elern2=elem 1) status:="PRES ENT'';

END IF;

elem2 := ASK SELF Next(elem2);

END WHILE;

IF (status="ABSENT '') ASK SELF TO Add(eleml);

END IF;

END METHOD;

END OBJECT;

END MODULE.

A-102

DEFINITION MODULE sendrec;

PROCEDURE rajmain(INOUT status • STRING): STRING,NONMODSIM,

END MODULE.

A-103

DEFINITION MODULE sendrec;

PROCEDURE rajmain(INOUT status • STRING): STRING_NONMODSIM_

END MODULE.

A-104

DEFINITION MODULE CConflictResolve;

(***Conflict Resolver Object***)

FROM RandMod IMPORT RandomObj, FetchSeed, Random;

FROM GrpMod IMPORT QueueObj;

FROM GTypes IMPORT PointArrayType;

FROM AuxMathMod IMPORT DIST2D, INT,

FROM ACMove IMPORT ModelInit,PlannerObj,PlaneObj;

FROM CCGeoObj IMPORT GeoObj,Geo;

TYPE

ConflictResolverObj = OBJECT

ASK METHOD Resolve(IN planel,plane2:GeoObj;

INOUT Indicator: STRING;

IN DesVarl,DesVar2:REAL);

ASK METHOD Dolt(IN planel :PlaneObj; INOUT Indicator:STRING);

ASK METHOD DoitStatic(IN plane 1 :GeoObj; INOUT Indicator: STRING);

{ASK METHOD Noconflict(IN planel :PlaneObj);}

END OBJECT;

VAR

ConflictResolver: ConflictResolverObj;

END MODULE.

A-105

IMPLEMENTATION MODULE CConflictResolve;

FROM ACMove IMPORT PlannerObj,PlaneObj,ReponEstimatedTime;

FROM SimMod IMPORT PendingListDump;

FROM CCSpatialTempObj IMPORT SpatialTempletObj,SpatialTemplet;

FROM CCGeoObj IMPORT GeoObj,Geo;

FROM sendrec IMPORT rajmain;

OBJECT ConflictResolverObj;

{####***********RAJESH INOUT indicator}

ASK METHOD Resolve (IN planel,plane2:GeoObj;

INOUT Indicator:STRING;

IN DesVarl,DesVar2:REAL);

VAR

planestatus 1,planestatus2: STRING;

Diff:REAL;

BEGIN

{enter this routine with the absolute Diff< 5 and hence a conflict}

Diff: = DesVarl - DesVar2;

OUTPUT(" the Difference in the times = ", Diff);

planestatusl := ASK planel Status;

OUTPUT ("######## Potential Conflict exist between plane#-#####");

OUTPUT(" Plane ", ASK planel ID, "and Plane ",

ASK plane2 ID);

{Currently planel is put on hold when there is a conflict;

NOTE: this Indicator is used for planel only}

Indicator: = "ON HOLD";

A-106

END METHOD;

ASK METHOD Doit(IN planel :PlaneObj; INOUT Indicator:STRING);

VAR

planestatusl: STRING;
TestMethod : STRING;

status : STRING;

BEGIN

OUTPUT ("IN DOIT: planel id: ", ASK planel ID, "with indicator ",

Indicator);

planestatusl := ASK planel Status;

IF (Indicator = "YES")

{set status}

ASK planel ChangeStatus(planel,"GIVEN PERMISSION");

status := "GIVENPERMISSION";

TestMethod := rajmain(status);

IF (TestMethod = "NewMove")

TELL planel NewMove(planel);

END IF;

ELSIF (Indicator ="ON HOLD")

ASK planel ChangeStatus(planel,"NOT GIVEN PERMISSION");

{this does the remove from the MasterSector and 3-dim SectorArray}

ASK SpatialTemplet SPcheckupdate(planel);

OUTPUT("SHOULD REMOVE ENVELOPE");

TELL plane 1 Delaymove(plane 1);

ELSIF (Indicator = "ON STATIC")

ASK SELF TO DoitStatic(plane 1,1ndicator);

{ do nothing}

END IF;

PendingListDump(TRUE);

A-107

END METHOD;

ASK METHOD DoitStatic(INplanel:GeoObj;INOUTIndicator:
STRING);

VAR

planestatusl:STRING;

BEGIN
OUTPUT ("IN DOITSTATIC: planel id: ", ASK planel ID, " with indicator

",Indicator);

planestatusl:= ASK planel Status;

{ IF(Indicator="YES")##########removing }

{set status}

TELL planel NewArrivel (Indicator);

{ END IF;}

END METHOD;

END OBJECT;

END MODULE.

A-108

/* UNIX test programs for two process communicating across FIFOs

** 08AUG91 Dutch Guckenberger initial edit

** two way test

** 21 AUG-91 Dutch C,uckenberger chg header in(o & fix bugs

** 25AUG91 Dutch Guckenberger mod sire version to go with

** definition module of same name .mod

*/

#include <stdio.h>

#include <errno.h>

#include <fcntl.h>

#include <math.h>

#include "clips.h"

#define FALSE 0

#define TRUE 1

#define enum {FALSE,TRUE} BOOLEAN

#define MAXOPEN 7

static struct {

long key;

int fd;

int time;

}fifos[MAXOPEN];

#define MAXTR/ES 3

#define NAPTIME 5

syserr(str)

char *str;

{
printf("error stub");

}

static char *fifoname (key)/* construct fifo name from key */

long key;

{

static char fifo[20];

sprintf(fifo, "/tmp/fifo%ld", key);

return(fifo);

A-109

staticint openfifo(key,flags)/* returnfifo fd */
long key;
int flags;
{

static struct {

long key;

int fd;

int time;

}fifos[MAXOPEN];

static int clock;

int i, avail, oldest, fd, tries;

char *fifo;

extem int errno;

clock++;

avail = - l;

for (i = O; i <MAXOPEN; i++) {

if(fifos[i].key _ key) {

fifos[i].time = clock;

retum(fifos[i].fd);

}
if (tiros[i]. key _ 0 && avail --= - 1)

avail = i;

}
if(avail _-l) { 1" alJ fdsin use; find oldest */

oldest = - 1;

for (i=0; i<MAXOPEN; i++)

if(oldest _--- -1 IIfifos[i].time <oldest) {

oldest = flfos[i].time;

avail = i;

}
if(close(fifos[avail].fd) ==-1)

return (- 1);

}
fifo--fifoname(key);

if(mkfifo(fifo) _ -l && errno f= EEXIST)

return(- l);

for (tries = l; tries <=MAXTRIES; tries++) {/* await writer */

if((fd = open(fifo, flags I O_NDELAY)) !=-l)

break;

A-I10

if(ermo != ENXIO)

return (- 1);

sleep(NAPTIME);

}
if(fd _-1) {

errno =ENXIO;/* sleep may have messed it up */

return (- 1);

if(fcntl(fd,F_SETFL,flags) _--- I)/*clear 0_NDELAY *1

return(- 1);

fifos[avail].key = key;

fifos[avail].fd = fd;

fifos[avail].time = clock;

retum(fd);

int send(dstkey, buf, nbytes)/* send message */

long dstkey;

char *bur,

int nbytes;

{
int fd;

if ((fd = openfifo(dstkey, O_WRONLY)) -- - 1)

return(FALSE);

return(write(fd, bur, nbytes) != - 1);

}

int receive (srckey, buf, nbytes)/* receive message */

long srckey;

char *buf;

int nbytes;

{
int fd, nread;

if((fd = openfifo(srckey, 0 I_ONLY)) _ -1)

return(FALSE);

while ((nread = read(fd, buf, nbytes)) _ 0)

sleep(NAPTIME);

return(nread T= - 1);

A-11I

void rmqueue(key)/*removemessagequeuefifo */
long key;
{

int errno;

if(unlink(fifoname(key)) _--1 && ermo r= ENOENT)

syserr("unlink");

int mkfifo(path)/* make FIFO */

char *path;

{
retum(mknod(path, S_IFIFO 10666,0));

}

/************* process adder client *********/

#include "addmsg.h"

/*float recmain0 adder client */

char * rajmain(status)/* adder client */

char result[100];

MESSAGE m;

int x,y;

char Chumma[100];

mclientkey = getpid0;

for (x = 1; x <= 5; x++)

for (y = 1; y <= 5; y++) {

m.x = x;

m.y = y;

printf('%'tRaj sending x= %d and y=%d ",x,y);

/*sprintf(Chumma,"%d",x);

AssertString(Chumma);*/

if (! send(ADDERKEY, &m, sizeof(m)))

syserr("send");

if (!receive(m.clientkey, &m, sizeof(m)))

syserr("receive");

printf("_Raj received x = %d and y=%d sum---%d ",mx, my, m sum);

sprintf(Chumma,"%d",x);

A-112

/*AssenString(Chumma);*/

if(x + y != m.sum){

primfCAddition error!_n");

exit(l);

}

rmqueue(m clientkey);

printf("%ld worked OKkn", m.clientkey);

/*AssertStringCTats test");*/

/*exit(0); */

/*****command line is adder&addclient&addclient& ****/

float recmain0

{
/*AssertString("this is a fact");*/

return(1.0);

/*****command line is adder&addclient&addclient&

/*

char* itos(strp,n)

char* strp;

int n;

(
sprintf(strp,"%d",n);

retum(strp);

*/

****/

A-113

/* "C" Language Integrated Production System */
/* */

/* A Product Of The */

/* Software Technology Branch */

/* NASA - Johnson Space Center */
/* */

/* CLIPS Version 5.00 11/19/90 */

/* */

/* CLIPS HEADER FILE */

/* Purpose:

/*

/* Principal Programmer(s):

/* Gary D. Riley
/*

/* Contributing Programmer(s):
/*

/* Revision History:

/*

*/

*/

*/

*/

*/

*/

*/

*/

*/

#ifndef H clips

#define H clips

#include "setup.h"
#include "constant.h"

#include "clipsmem.h"

#include "symbol.h"
#include "router.h"

#include "sysdep.h"

#include "expressn. h"

#include "evaluatn.h"

#include "facts.h"

#include "constrct.h"

#include "utility.h"

#include "intrfile.h"

#if DEFRULE CONSTRUCT

#include "defrule.h"

#include "engine.h"

#include "drive.h"

A-ll4

#endif

#ifDEFFACTS CONSTRUCT
#include "deffacts.h"

#endif

#ifDEFTEMPLATE CONSTRUCT

#include "def_empl.h"
#endif

#if DEFGLOBAL CONSTRUCT

#include "defglobl.h"
#endif

#if DEFFUNCTION CONSTRUCT

#include "deffnctn.h"

#endif

#if DEFGENEKIC CONSTRUCT

#include "genrccom h"

#inclu d e "genrcfu n. h"

#endif

#if OBJECT SYSTEM

#include "extobj.h"
#endif

/* OTHER FUNCTION PROTOTYPES */

#ifANSI COMPILER

#if (BLOAD [JBLOAD_ONLY IIBLOAD AND_BSAVE)

int Bload(char *);

#endif

#ifBLOAD AND BSAVE

int Bsave(char *);

#endif

int

int

int

int

VOID

LoadFacts(char *);

SaveFacts(char *);

SetAutoFloatDividend(int);

GetAutoFloatDividend(void);

InitializeCLIPS(void);

#if DEFRULE CONSTRUCT

BOOLEAN PPDefrule(char *,char *);

A-115

VOID ListDefrules(void);

#endif

#else

#if (BLOAD IIBLOAD_ONLY IIBLOAD_AND_BSAVE)

int Bload0;

#endif

#if BLOAD_AND_BSAVE

int

#endif

int

int

int

int

VOID

Bsave0;

LoadFacts0;

SaveFacts0;

SetAutoFloatDividend0;

GetAutoFloatDividend0;

InitializeCLIPS0;

#if DEFRULE_CONSTRUCT

BOOLEAN PPDefrule0;

VOID ListDefrules0;

#endif

#endif

#endif

A-116

