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ABSTRACT

A unique formulation of describing fluid motion is presented. The method, referred

to as "extended Lagrangian method," is interesting from both theoretical and numerical

points of view. The formulation offers accuracy in numerical solution by avoiding numerical

diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also

avoids the inaccuracy incurred due to geometry and variable interpolations used by the

previous Lagrangian methods [1,2]. Unlike the Lagrangian method proposed in [3,4] which

is valid only for supersonic flows, the present method is general and capable of treating

subsonic flows as well as supersonic flows. The method proposed in this paper is robust and

stable. It automatically adapts to flow features without resorting to clustering, thereby

maintaining rather uniform grid spacing throughout and large time step. Moreover, the

method is shown to resolve multi-dimensional discontinuities with a high level of accuracy,

similar to that found in one-dimensional problems.

1. INTRODUCTION

It is well known that fluid motion can be specified by either the Eulerian or Lagrangian

description. Most CFD developments over the last three decades have been based on the

Eulerian description and considerable progress has been made. In particular, the upwind

methods, inspired and guided by the work of Gudonov[5], have met with a great deal of

success in solving fluid flows, especially where discontinuities exist. However, this shock

capturing property has proven to be accurate only when the discontinuity is aligned with

one of the grid lines since most upwind methods are strictly formulated in a one-dimensional

framework and only formally extended to multi-dimensions. Consequently, the attractive

property of crisp resolution of these discontinuities is lost. Even though research on genuine

multi-dimensional approaches has recently been undertaken by several leading researchers,

they are nevertheless still based on the Eulerian description.

Recently, Loh and Hull3] have convincingly demonstrated that a Lagrangian formu-

lation can capture a contact discontinuity crisply, which is difficult to achieve by Eulerian

formulation without resorting to some special treatment such as sub-cell resolution. Fur-

ther developments have been carried out by Loh and Liou to solve real gas problems[6]
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and three-dimensional supersonic problems[4]. The 3D extension is not so trivial and in

fact it involves somewhat tricky definition of cell movement and approximate solution of

the multi-dimensional Pdemann problem. Several interesting 3D problems that have not

been attempted previously were calculated and again as in the 2D case, high accuracy

was acldeved in resolving very complex shock-shock interactions. This method employs

the point of view that it strictly follows the fluid particles released at some initial time

line. The streamlines become a "time-like" coordinate and are used also for identifying

particles. Therefore the method is naturally suitable for supersonic steady flow. No grid

generation is needed a priori since the grid is a part of the solution, viz new grid lines are
obtained as the solution marches in the "time-like" direction. Unfortunately, restriction to

supersonic flows only limits the use of the method. To include the subsonic regime requires

substantial conceptual changes.

Numerically solving subsonic flows using the strict Lagrangian concept becomes an

excessive obstacle. Numerous researchers at Los Alamos, making substantial contribu-

tions to this subject, have proposed the so-called Arbitrary Lagrangian-Eulerian(ALE)

method, for example [1,2] and others. The method consists of three phases of numerical

procedures, using time-splitting approximations, and can become rather complicated and

tedious. Tracking the Lagrangian cells requires interpolations of data and coordinates.

Additional constraints must be imposed to prevent grid lines from crossing each other

during the rezoning. Loss of accuracy is then inflicted through the continuous geometry

and flow interpolations in response to the fluid particle motion. Indeed, such a Lagrangian

procedure finds some analogy in the shock fitting procedure, although the former is more

complicated.

Physically fluid particles seem to adjust to motion and to surrounding (geomet-

ric or physical) constraints quickly and graciously, in particular sensing the upstream-

propagating influences. Thus, a key to the success of a numerical Lagrangian procedure

lies in how to properly and instantaneously feed these upstream-propagating waves to the

particles, while tracking them. It is indeed a very challenging research topic that motivates

us to begin this exploratory investigation. This paper presents the salient features of the

method, referred to as "extended Lagrangian method". For flows at all speed regimes

including purely subsonic and mixed flows, we demonstrate the advantages of the method

over the Eulerian description, with focuses on important features commonly seen in com-

pressible flows, such as shocks, expansion waves, slip surfaces, and interactions among

them. We list the distinct features resulting from the extended Lagrangian method.

1. The solution adapts to the flow variations (smooth or sudden), notably shocks and

contacts, and as such it can be regarded as an automatic procedure for solution adap-

tation.

2. Unlike the conventional adaptation techniques, there is no need for clustering grid

points near the discontinuities. Very uniform grid can be maintained and in fact can

also achieve orthogonality easily by construction. Thus discretization accuracy does

not deteriorate. Since streamlines do not cross, grid singularity or negative volume

certainly will not occur.

2



3. As will be seen later, the shock capturing quality in 2D is comparable to that found

in the 1D problem. This suggests that the present approach can be viewed as an

alternative to the current genuine multi-dimensional approach.

4. The contact discontinuity can be resolved crisply, since it is a streamline and as such

no numerical diffusion is introduced due to fluid crossing the cell face.

The rest of the paper is organized as follows. In Section 2 we compare differences of

Eulerian and Lagrangian descriptions of fluid motion, with an emphasis on the numerical

aspects. Some current Lagrangian approaches are commented on in Section 3. Section

4 outlines the key elements in formulating the present extended Lagrangian method for

solving subsonic flows by retaining the advantageous features of the Lagrangian approach.

A detailed formulation is then given in Section 5, including the discretization method

and boundary conditions. Section 6 describes the grid motion of the present "extended

Lagrangian" method. Finally, in Section 7 we demonstrate the advantages of the proposed

method by displaying solutions of flows at all speed regimes, containing various interesting

features.

2. EULERIAN VS LAGRANGIAN DESCRIPTION

By definition, the Eulerian description oberves at fized locations the flow properties as

fluid particles pass by. This has a close relation to the conventional computation approach

in that each fixed grid point can be thought of as an observing station--corresponding to

probes in measurement. With this approach, the meshes are generated mainly based on

the geometry constraint, with little regard given to the motion of fluid. Naturally, the grid

lines will seldom coincide with fluid path lines. Even when grid lines are clustered near

high-gradient regions using conventional adaptation techniques, they are not aligned with

the particle path. A good example is the shock wave along which grid lines are densely

distributed, and with which streamlines make a nonzero angle, since the fluid will always

pass through, not along, the shock wave. The angle is usually oblique in multidimensional

flows. Consequently, the Eulerian approach has several severe numerical effects on the

solution accuracy:

1. Fluid particles are free to cross the grid line, thereby bringing (convecting) with them

numerical mixing and diffusion across the cell interface.

2. This numerical diffusion is only associated with the error resulting from approximating

the cor_vective _erms.

3. A contact/slip or shear layer is smeared ever increasingly with time and distance,

unless some detection and special treatment techniques are employed. See [7] for

example.

In spite of numerical diffusion resulting from approximation of convective terms, the

Eulerian description does offer convenience and simplicity both conceptually and geomet-

rically. The grid can be constructed regularly, simply based on geometry constraints and
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independent of fiow features. To enhance accuracy, grid adaptation is often applied to

regions of high gradients. However, the concept of adapting to high gradients inevitably

results in a skewed and distorted grid. This feature will become more troublesome as two

or more high-gradient areas intersect.

It is quite safe to say that during the last three decades CFD algorithm researchers

have primarily concentrated on developing better (more accurate/robust/efficient) ways

to deal with the conrec_ire terms, which exist only in the Eulerian formulation. Conse-

quently, much success has been achieved, perhaps to the point of near perfection and little

return could be gained. Unfortunately, inaccuracy due to numerical diffusion(mixing) in

forming the interface numerical fluxes still exists and becomes more exaggerated in multi-

dimensional problems. On the other hand, since the convective terms do not explicitly

appear in the Lagrangian formulation, the numerical mixing automatically disappears in

the flux evaluation, rendering the Lagrangian approach more attractive. However, some

other technical barriers have surfaced and discouraged researchers from further pursuing

development of methods for this approach. In what follows, we shall detail the concept

of the Lagrangian approach from the viewpoint of numerical solution. The differences

between the two descriptions will then become obvious.

The Lagrangian description, by definition, states the motion and properties of given

fluid particles as they travel to different locations. In particular, since the particle path

in steady flow coincides with the streamline, no fluid particles will cross the streamline.

In other words, while staying in contact, neighboring streams will not mix via convection,

except in the molecular level where the physical molecular diffusion takes place. Therefore,

the following numerical consequences can be realized:

1. No numerical diffusion is introduced across the cell interface since the computational

cells follow the streamline.

2. Fluid particles change motion (direction/speed) only as warranted, e.g., as shock or

expansion waves are encountered. In other words, streamlines will bend, converge, or

diverge only as situations demand.

3. This description gives a realistic depiction of flow behavior; cells of same j-lndex

form a streamline that is identifiable with flow visualization.

The notion of using a Lagrangian approach to describe flow is not new. In fact,

the very essence of following f_red particles also presents mathematical complexity to the

approach, thereby limiting its scope of success. With the help of the new Lagrangian

formulations, numerical solution can be as easily obtained as for the Eulerian approach,

only with the additional distinct advantages as stated above. In the following, we shall first

review some current numerical procedures based on the Lagrangian approach, commenting

about their strengths and weaknesses. Then we will focus on the applicability to the more

di_cult problem, namely the subsonic regime.

4



3. REVIEW OF CURRENT LAGRANGIAN APPROACHES

The Arbitrary Lagrangian-Eulerian Technique (ALE) perhaps is the most well-known

Lagrangian formulation in use at present time. The technique, initially conceived and

developed at Los Alamos during the 70s and further implemented in the production codes

such as CAVEAT and KIVA[8,9], etc., consists of three phases of numerical procedures

using the time splitting concept. For a complete description of the procedure, the reader is

referred to Refs.[1,2,8,9]. Continuous rezoning is carried out in order to follow the particle

motion. As a result, spurious error produced by this procedure can lead to grid irregularity

and tangling. Thus loss of accuracy, manifested as numerical diffusion, is inflicted through

geometry and flow variable interpolations.

Recently a new Lagrangian Formulation was proposed by Hui and Van Roessel [10]

The invisicd conservation laws are transformed by using stream functions and Lagrangian

time as independent variables. The stream functions serve to identify particles, while La-

grangian time represents time-llke coordinate. Under this formulation, geometry conserva-

tion is enforced and each cell is literally a fluid particle. Since there is no need for remap-

ping, the associated loss of accuracy seen in the ALE method does not appear, allowing

extremely sharp resolution of contact discontinuities. Successful demonstrations have been

made by Lob and Hui [3] in 2D and Lob and Liou [4] in 3D problems. Multi-dimensional

discontinuities are resolved with the same level of accuracy as their one-dimensional coun-

terparts, indicating that the Lagrangian formulation inherently includes multi-dimensional

flow characteristics. However, a severe limitation restricts the validity of the formulation

[3,4] to only supersonic flo_s because the formulation is based on the use of the time-like

coordinate. Thus, extention to s_b_onic flo_os based on the same framework appears im-

possible. In what follows we will first give the basic ideas for extension in the next section

and then describe detailed steps in Section 5.

4. EXTENSION TO SUBSONIC FLOWS

A key element in the _ubsonic flolo is the existence of the upstream-propagating wave.

Thus, the existence of a body located downstream is transmitted to the oncoming fluid

particles via this wave so that the particles can change motion accordingly. This immedi-

ately implies that we must abandon the time-like formulation since it is only suited for pure

initial value problems, such as supersonic flow where no influence comes from downstream.

Next, we must also abandon the idea of following a i'zxed particle, at least for the steady

flows. Alternatively, we consider the steady streamlines as a set of lines that are occupied

by particles released at the same location, different times and yet treated indistinguishably.

The upstream-propagating irdtuence is felt through the downstream particles on the same

streamline in order to satisfy the governing conservation equations and boundary condi-

tions in question. By describing fluid motion along streamlines, we allow fluids to maintain



_heir identity withou_ _racking each specified particle. This definition is of course broader

than and is a sufficient condition to the Lagrangian description, which follows motion of

fluids of spcific identity. Consequently, the present method is termed e_ended Lagrangian

method. The net result is that we retain the essential beauty of the Lagrangian description
that introduces no or minimal numerical diffusion across streamlines.

5. APPROACH

To facilitatethe description,let us firstdefine the notation for the relevant variables

in the 3D Euler equations. The physical variables in a phase space of dimension 5 are

denoted by a boldface uppercase letteror column vector whose elements are denoted by

lowercase letters.

/ ()u= pv , uc= pv , (I)
pw pw

pet phi

where el = e + 0.5(u2 + v2 + w 2) and hi = el+ p/p. The geometrical vectors in physical

(Cartesian) space of dimension 3 are denoted by an overhead arrow "'_'.The fluidvelocity

is

and the normal vector of the boundary surface of a control volume

,.q= sJ+ sy_"+ 8=E. (2b)

The inviscid fluxes in 3D physical space axe compactly written as

F= pv V+ pj_.--UcV+I 3, where IS- P3. •

pw t':7 t':7
(3)

The first term in F is the flux d Uc convected by the fluid velocity V and the second

term simply the pressure flux.

For the following discussion, it is useful to review some basic concepts used to describe
fluids. It is understood that the fluid has been considered to be a continuum. A convenient

concept within continuum mechanics for describing a fluid motion is that of control volume.

In Fig. 1, let 12*(t) be a moving volume with bounding surface cOft*(t); the local boundary

velocity is Y_. The volume is arbitrary and in general need not be identified with either



physical boundary or specific motion of the fluid in f_*. Such a volume is called control

volume. A special type of control volume is called material volume, denoted by ff(t),

consisting of a collection of matter of fixed identity enclosed by a material surface, denoted

by 0ff(t), of which every point moves with the local fluid velocity V. (See also Fig. 1.) If

the volume ff(t) is shrunk to a point, the resulting material volume is called a fluid particle.

Consequently, the fluid properties of the fluid particle can be described mathematically in

terms of space and time.

Under the assumption of the continuum meeharfies, let X be any continuous function,

such as the density. The Reynolds transport theorem [11] gives the time rate of change of

the "content" X of f_*:

d Ox

ft.(t) n.(t) an-CO

(4)

where the element surface dff of ff* is moving with the velocity Vb. Note that Vb may vary

over the surface Off*. A_ain, a special case is when the theorem is applied to the material

volume ff(t) with _ = V.

The conservation laws (neglecting viscous fluxes for simplicity, without loss of gener-

ality in decribing the approach) can be conveniently expressed over an arbitrary control

volume ff*(t) in integral form:

d f
a-(t) off-(t)

[u0(¢ - ¢_)+ _] • d_= 0, with 15_= 1_+

\pV_

(5)

From the above equations, three fundamentally different approaches can result.

(5.1) Eulerian Description:

The Eulerian description assumes that the observer stays stationary with respect to

the chosen frame of reference (e.g., inertial system). This requires:

_7_ = 0, and ff* # ff*(t). (S)

That is, the control volume is fixed in time.

With the application of the Reynolds transport theorem Eq. (4), Eq. (5) is reverted

to the familiar integral form:

f 0u f_-d_ + [uo¢ + P]. dg = 0, (7)
fie 0fie
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where the superscript "E" is used to denote Eulerian frame of reference. In the discrete

version of the above equation, each cell represents a control volume and is not moving in

time, even though the flow may be unsteady. Note that the case in which an observer

is fixed to a non-inertial frame, e.g. on rotating machines, also belongs to the Eulerian

description.

(5.2) Lagrangian Description:

According to the strict definition, the Lagrangian description requires that the volume

_*(t) (enclosed by 0_*(t)) move with the instantaneous fiuid Velocity and is identified as

the material volume _(t) (see also Fig. 1). That is,

_ =_t, Vt > 0, and _*(t) = f_(t). (8)

And the conservation laws are simplified to

Udv + • dg = O.
a(t) on(t)

(9)

Clearly, the pressure remains as the only contribution to the flux on the surface. This

makes it extremely simple to calculate the time-rate of change of f Udv, i.e., involving

only the pressure acting on the bounding surfaces. However, the trajectory of the vertices

is the part that often causes diffculties, resulting in large deformation or irregularity.

(See [1,2].) Nevertheless, this is a very intriguing idea that avoids the nonlinearity in the

equation of motion, thus reducing many difficulties associated with the convective terms

that exist only in the Eulerian viewpoint. Such nice properties unfortunately have not

been able to outweigh the drawbacks (see Introduction) and gain favorable reception vs

the Eulerian approach.

In the following, we propose a new approach that retains essential advantages of the

above two approaches.

(5.3) Eztended Lagrangian Description:

Close investigation of the surface integral reveals that the convective term can be

eliminated also by requiring that:

(10)

That is, a portion of the surface is parallel to (9- Vb). Equation (5) then becomes,

d

nEL (t) on_r (t) on_ L(t)

-  )uo + Phi• dg= o. (11)



The control volume now is denoted by superscript "EL" to indicate the present description.

The surface cgf_F-'L is comprised of two types, a_ EL = O_ EL UO_EV L, where Of_ L coincides

with the instantaneous particle paths and cgf_ L represents the inflow and outflow faces.

Clearly, the present "extented Lagrangian method" combines the quality of the above two

approaches: the second surface integral includes both convective and pressure terms, as in

the case of Eulerian approach; the first surface integral, on the other hand, merely has the

effect of pressure, as in the case of Lagrangian approach. That is, see Fig. 2,

On cgf_EL 4- both convected and pressure fluxes

On O_ EL *- only pressure flux

For steady flow, Vb = 0, there is no need for literally following particles because

no variations of motion with time appear among the particles on the same streamline.

Therefore that whether we strictly follow particles of same identity or not is irrelevant in

the formulation. Indeed, following the streamlines, rather than particles, is the essence

of the present approach and this rescues us from facing the difficulty of other Lagrangian

approaches. Substituting _ = 0, in Eq. (11), we get

d / / [uc? + • dg = 0, in f_Er. (12a)

together with the constraint,

• ,_= 0, on cgf_EL. (12b)

For steady flow (fixed volume), the semi-discrete form, with the time-dependent term

retained for iteration purpose, can be cast as:

flzL iEafl_ t iEafl_ t

(13)

Examination of the above equations reveals some interesting insight. The inbalance of

pressure in two neighboring cells with common interface boundary oof_ L causes the change

of flow direction(i.e., Of_ EL) of the fluids under consideration as well as change of their

volumes. In other words, the deformation and dilatation of the fluid can be described.

Indeed, the Lagrangian grid includes multi-dimensional information and suggests how the

fluid volume distorts in the flow. This point of view makes the description of fluid motion

intuitively simple and clear. Moreover, it results in a major benefit in the numerical

solution because this formulation avoids any arbitrary(numerical) mixing of fluids which in

turn introduces numerical diffusion in the solution, notably across the contact discontinuity

or shear layer. This diffusion error is common in the Eulerian formulation in which a

nonstationary contact discontinuity is smeared without bound as time/space is marched.

Furthermore, the advantage of the present approach is also clearly shown in its capability

for crisply resolving multi-dlmensional shocks.
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To complete the numerical solution procedure in the finite voulume, we employ an

accurate and efficient new upwind scheme described in full detail in [12,13]. In what

follows, we shall see that this new splitting has a very interesting bearing with the present

extended Lagrangian method.

(5.4) The Upwind Method[12,13]

To illustratethe concept, itissufficientto consider only the one-dimensional system.

As a firststep, by recognizing convection and pressure as two physically distinct (but

coupled) processes, we splitthe flux in the form of Eq. (3). In other words, these two

terms deserve separate treatments. Mathematically, we propose to separately deal with

the genuinely no_tmear ((u -a, u + a) pmr) and linearlydegenerate (u) fields.

F=u(_u)+P=Fc+P,ph, Fc=uUc. (14)

The overhead arrow "'_' has been dropped for we are concerned only with one-dimensional

flow. Both Mach number and velocity splittings can be used to represent the convective

quantity u in Ft. In most cases, there is virtually no difference between calculated results

of the two splittings. As found in [13], the velocity splitting is more robust in calculating

unsteady shock tube problems by allowing a larger time step at start. Now, the numerical

convective fluz at the interface (denoted by subscript ½) straddling the left(L) and right(R)

states, is effectively written as:

F¢I/2 -" Ul/2UcL/R , (15)

where _1/2 is the interface convective velocity. Let ul/2 be written as:

721/2 -_ UL+ -}- Up.

Several formulas are appropriate to define u ±, e.g.,

(16)

(u 4-lul)/2, if >_ (17)
-- I. 4-(u 4- a)2 /4a, otherwise,

where a is the speed of sound. The convectible variable vector Uc is then upwinded solely

based on the sign of Ul/2, viz,

(Uc)L, if Ul/2 ___ 0, (].8)UcL/R= (Uc)R, otherwise,

We turn now to the pressure term by writing:

pln = P++ (19)
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Similarly, a whole host of choices are possible for the pressure splitting. A differentiable

pair of the :+' and '-' components have been found to be effective.

j"p(1±,gn(u))/2, if lul>__a,
- "[p(M ± 1)2(2q:M)/4, otherwise.

(20)

This completes the definition of the numerical flux F. Putting (15) and (19) together,

we recast the interface flux in the following form:

1 U 1
F_/2 = ul/2 _( cL + UcR) -- 5 lu / l A1/2Vc + P1/2.

(21)

where A1/2{. } ---- {'}R -- {'}L. Here the first term on the RHS is clearly not a simple

average of the 'L' and 'R' fluxes, but rather a weighted average via the convective velocity.

The dissipation term has merely a scalar coefficient lul/21 and requires only O(r_) oper-

ations for an n-dimensional vector F. Furthermore, since there is no differentiation (or

jacobian matrix) involved in evaluating F1/2, the present method is easily extended to a

general equation of state and non-equilibrium flows and the cost is only linearly increased

with the additional conservation equations considered. Unlike the Roe or Osher schemes,

the extension does not yield additional ambiguity such as the definition of averaged or

intermediate states. Also, numerical tests strongly suggest an entropy-satisfying property

by the present method.

To achieve higher-order spatial accuracy, a MUSCL-type procedure is followed to

upwind-extrapolate variables(primitve variables in the calculations presented in this pa-

per), with TVD limiters incorporated [14]. Then, a two-stage Runge-Kutta procedure is

used to integrate the semi-discrete sytem Eq. (13), subject to the kinematic condition Eq.

(125).

The subsonic inflow conditions are imposed by specifying total enthalpy, total pressure,

and flow angle, while the outflow conditions are obtained with specified static pressure and

extrapolated total enthalpy, total pressure, and flow angle. The usual tangency procedure

is used at the cell boundary that coincides with a physical wall--no ghost cells are used.

The wall pressure is gotten using linear extrapolation from interior data, so is the total

enthalpy.

6. MOTION OF LAGRANGIAN GRIDS

An important integral part of the present method is the grid motion that follows

the constraint Eq. (12b). Two basic settings can be chosen for defining the motion of

computational cells, namely the motion of cell centers or cell vertices. With the former

approach the cell vertices will be defined by the position of neighboring centers, vice versa

11



for the latter. Since the constraint, Eq. (12b), is imposed on the cell boundary, it is
consistent to determine the vertex motion instead. This is easily done with the velocity
field known from the solution. The constraint Eq. (12b) is equivalent to the kinematic
condition on a streamline:

dz dy dz
-- - -- = -- (22)

U t_ W

As flow variables are defined at cell centers, the velocity components at cell boundary must

be defined by some interpolation procedure from surrounding cells. In the present report,

we outline the general notion of grid movement and give a specific strategy showing how the

grid is moved to meet the constraint for the test cases included in the paper. Let us consider

the two-dimensional cell (i, j), shown in Fig. 3. Three dimensional ceils can be treated

similarly. Assuming the cell boundary is described by a line segment (_/+l,j+l -- _/,j+l)'

Since the segment is a part of a streamline, Eq. (22) gives

yi+lj+l = yij+l + _(zi+lj+a - zi,i+l) (23)

where

U

Here we list some possibilities for evaluating (_, Y) :

(a) Mid-point average

+ 2 ,j+1+ + + + (24a)

(b) Upstream average, assuming uij > 0,Vi,j,

l[_/,j Jff Y/,j+l Jr- _/-1,j JP _/-1,j+l]. (24b)

There are two unknowns, (z, Y)i+aj+a, in Eq. (23). Another condition is needed to

complete the system. In this report, we prescribe the value of x-coordinate for each ith grid

line, i.e., z =constant lines. This condition provides simplicity, but also yields accuracy as

will be shown later. Furthermore, specification of x-coordinate allows one to put fine grids

to resolve geometry details, e.g., near high curvature region.

When the constraint, Eq. (12b), is satisfied for all jth grid line, the conservation laws

are basically solved in a one-dimensional stream tube, because there is no/tow across the

j-grid lines. As a result, high accuracy is expected with this virtually one-dimensional

problem. This is the reason that the present method gives sharp representation for oblique

shocks, as accurate as their counterpart in one-dimension. The formulation itself already

inherits multi-dimensional information via the deformation of grid lines (i.e., streamlines).
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The cost of arriving at the above constraint is negligible even if it is done at each

iteration, because calculation of Eqs. (23) and (24) is all it needs. The grid motion can be

predicted in phase as the evolution of the flow variables, or else for a prescribed number of

flow variables iterations. However, it is unnecessary to adjust the grid so frequently while

the flow is still evolving. A more thorough investigation about the optimal iteration per

Lagrangian grid motion and its sensitivity to flow condition is useful, but is beyond the

scope of the present paper.

7. TEST PROBLEMS AND DISCUSSION

We will show examples for flows at all speed regimes, featuring solution accuracy and

grid aspects. The plots are organized uniformly for all cases presented. We show Mach

contours overlaid on the grid used. Fine grids, by doubling grid number in both direction,

are used only in the Eulerian calculation for comparison purpose. The grids shown are

only one half of the whole grid in the Lagrangian case, and one quarter in the fine-grid

case, thus corresponding to roughly the same location in both plots. The symbols denote

the entended Lagrangian solutions and the lines are the Eulerian solutions. The Mach

contours are chosen for presentation so that any numerical anomaly or inaccuracy can be

more easily depicted than the other variables such as pressure.

The first example is the purely subsonic flow in which an Mo¢ = 0.4 flow enters a

channal with 20% circular bump, see Fig. 5 for detailed geometry. The Mach contours,

given in Fig. 4, show nearly perfect symmetry about the midchord, except in the wake

region. The.wake region suggests an entropy production(numerical difr-usion), likely due

to numerical wall boundary condition, which to my knowledge is still a gray area in CFD.

While this may be the situation, the Lagrangian solution still definitely results in a narrower

wake, roughly half the width of the Eulerian result. The Eulerian solutions in fact have a

slight asymmetry near the top wall, even though the residuals were dropped to machine

zero. Notice that the computation domain is considered to be small, extending one chord

length upstream and downstream from the bump, for this purely subsonic problem. It is

worth noting that the present grid automatically evolves from initial Eulerian grid into the

grid system seen in Fig. 4, according to Eqs. (23) and (24a). The grid spacing between

streamlines increases near the stagnation points and converges as flow accelerates. The

detailed distribution of variables on the top and bottom walls are plotted in Fig. 5. The

fine-grid Eulerian solutions are included for comparison. The agreement is remarkable and

again symmetry is quite evident. However, the fine-grid Eulerian solution over-predicts the

stagnation pressure, whose theoretical value is 1.116, while the Lagrangian solution closely

matches. Hereafter, for briefness and contrast to the Eulerian solution, we shall take the

liberty of loosely using the term "Lagrangian solution" to mean the solution obtained by

the extended Lagrangian method described in this papermnot in the strict Lagrangian

sense. It is also noted that the fme-grld solution took considerably more iterations than

the Lagrangian solution to converge.
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The secondexample involves the popular test of transonic flow in a channel with 10%

bump and M_ = 0.675. Results are given in Figs. 6 and 7. Again, we show the Mach

contours and distributions on both walls. The agreement of the coarse-grid Lagrangian

solutions with the fine-grid Eulerian solutions is excellent. The shock resolution from the

Lagrangian method is outstanding, so is the prediction of the so-called "Zierep" singularity

at the foot of the shock on the curved surface. The Lagrangian solution again yields a grid

that senses the global flow characteristic. Notice that no clustering of grid is necessary to

capture the shock in the correct location.

The next case is also a standard one, involving an M¢¢ = 1.4 flow and 4% bump.

This case consists of small subsonic pocket resulting from short Mach stems on both walls,

shown in Fig. 8. Shock-shock-expansion waves interactions take place behind the trailing

edge. The shock locations are in excellent agreement with the fine-grid solutions. Close

examination of the Lagrangian grid shows that the grid lines (also streamlines) remain

straight until the shock is encountered, as it should. The Eulerian grid however already

began bending at the leading edge for all j-th lines, simply because of geometry constraint.

The present method yields grids that are conforming with the flow features by bending,

expanding/contracting. The net result is that excellent shock resolution is obtained, even

though the shock is oblique to the grid line. Figure 9 displays a one-cell capturing of the

oblique shock. This is not entirely surprising since the present formulation has already

taken account of the multi-dimensional nature of the flow via the streamline deformation

caused by the fluxes (pressure forces) of surrounding fluids.

The fourth test is an M¢_ = 1.8 flow over a 15 ° ramp. This case consists of a Mach

stem about 10% of channel height, a slip line emanating from the triple point, and reflected

shocks. In Fig. 10, the roach contours depict an overall picture of the flow, demonstrating

a sharp resolution of the ramp shock, Mach stem, and the subsequent shocks. The slip line,

whose strength is being weakened by the expansion wave generated at the ramp shoulder

and transmitted through the first reflected shock, is resolved to the same level of accuracy

as given by the fine-grid solution, i.e., with the same level of spatial spreading. Figure 11

vividly displays how the grid lines bend as the shock is encountered and change direction

according to the flow. The grid itself already suggests the flow structures, train of shock

reflections, expansions, as well as the Mach stem across which there is no change of flow

angle. It is worth noting the clear slipline emanating from the triple point. In contrast to

the shock-aligned grid, the present grid is aligned with the streamlines, which will never

cross each other, but the shocks can. Thus the present method is indifferent to whether the

high-gradient regions intersect. The profiles (Fig. 12) on the walls show good agreement

of both solutions. Excellent shock resolution capability is observed on both walls even the

second reflected shocks remain well resolved.

CONCLUDING REMARKS

We have presented a unique formulation for dealing with subsonic as well as supersonic

flows. The method, referred to as extended Lagrangian method, combines the accuracy
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belonging to a Lagrangian description and the robustness and simplicity of an Eulerian

description. Through systematic comparison with fine-grid solutions and a theoretical

check for flows at various regimes, we have demonstrated its capability for crisply capturing

high-gradient regions that are not aligned with the grid. In contrast to adaptive approaches

reported to date, the present approach already automatically inherits the ability to adapt

to fiow features, but based on an entirely different adaptive philosophy in which there is no

need for clustering grid lines. Since the grid lines are not aligned with high-gradient areas,

they are maintained regular and uniform. Moreover, one set of grid lines that coincides

with streamlines depicts vividly a form of "numerical flow visualization". Without resorting

to arbitrary detecting criteria, the present approach not only predicts wen the nonlinear

waves, such as shock and rarefaction waves, but also is especially amenable to treating

a linearly degenerate field, such as a contact discontinuity. Furthermore, since the grid

spacing is maintained relatively unform, a large time step is permitted throughout the

calculation, thus increasing e_ciency. Also the common adaptive strategy will have great

di_iculty in the case of intersecting shocks, because the grid lines will cross each other, if

not checked. We also suggest that the present extended Lagrangian method is a viable

alternative approach to the current multi-dimensional scheme and grid-enriching adaptive

procedure for complex flows having high-gradient regions. In fact it is an elegant and

effortless approach to deal with multi-dimensional flows. Further development and 3D

applications are currently underway and will be reported in the future.
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nonstationary, e.g., on rotating frame.
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Fig. 1. Definition of a control volume and material volume.
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Fig. 2. Definition of an Extended Lagranglan volume: the cell boundary O_pEL is

parallel to the fluid velocity.
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Fig. 3. Generating a Lagrangian computational cell so that the cell boundary

(6+1,i+1 - 6,1+1) is parallel to _?.
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