

SPACE ENVIRONMENTAL INTERACTIONS FOR THE SPACE EXPLORATION INITIATIVE

Dale C. Ferguson National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

SPACECRAFT ENVIRONMENTAL EFFECTS

Space Environmental Interactions Atomic Oxygen Attack

- LOW PLANETARY ORBITS ONLY
 - Material Specific
 - Preferentially in Ram
 - Low Mars Orbit Also Contains AO
 - For Some Materials, Synergy w/ UV
 - Ionized AO Also Reactive.
- CHANGES MATERIAL SURFACE PROPERTIES
 - Optical and Thermal Properties Surface Conductivities Strength of Exposed Fibers

Copyright • AIAA 1986 - Used with permission. Visentine, J.T. and Leger, L.J., A Consideration of Atomic Oxygen Interaction with the Space Station, J. Spacecraft and Rockets, 23, 5, 505-511, 1986. Load Blased to 100V Neg. w.r.t. Body

Space Environmental Interactions Arcing and Discharges

- GEOSYNCHRONOUS ENVIRONMENT
 - Differential Charging in Geo Substorms
 - Solar Flares in Interplanetary Space
- LOW PLANETARY ORBITAL ENVIRONMENTS
 - Arcing To or Thru Ionized Plasma
 - Dielectric Breakdown of Anodized Surfaces
 - Arcing at Conductor-Insulator Junctions
- PASCHEN BREAKDOWN PLANETARY SURFACE
 - Martian Atm Pressure Ideal for Discharges
 - Lunar Camps Create Local Atmospheres

Î.

Space Environmental Interactions Micrometeoroids and Debris

• SURFACE DAMAGE

- Pinholes in Insulators
- Change of Thermal Properties
- Sites for Arcing, Sputtering
- Possible Site of Kapton Pyrolysis
- NEED FOR REDUNDANCY OR HEALING
 - Fluid Lines and Heat Pipes
- LOCAL PLASMA CREATED AT SITE
 - May Produce Prompt Arcing
 - Arcs Enlarge Damaged Area

• DEBRIS PROBLEM IN PLANETARY ORBITS

73

Space Environmental Interactions State-of-the-Art Computer Tools

S-CUBED DIV. OF MAXWELL LABORATORIES

- NASCAP (3-D, Particle Tracking)
 - Calculates Charging in GEO
 - Obtainable thru COSMIC
 - Mature Code, Industry Standard
- NASCAP/LEO (3-D, Particle Tracking)
 - Calculates Charging, Currents in LEO
 - Release thru COSMIC This Year
 - Under Final Testing
- EPSAT, EWB (1-D, Systems Tools)
 - Evaluate Multiple Interactions
 - Quick, Approximate
 - Under Beta Testing
 - May Be Ideal Starting Point for SEI

NASCAP model of NASA's Advanced Communications Technology Satellite.

Figure 6

SP-100 Floating Potential

Total atomic oxygen erosion during a 10-year mission life for three conductive coatings as a function of altitude for 60° inclination circular orbits.

KAPTON 41 HOURS EXPOSURE TO ATOMIC OXYGEN ON STS-8

.

STS-8 FLIGHT SAMPLES

LeRC PRELIMINARY MASS LOSS MEASUREMENTS (Corrected for mass change of control due to moisture, etc.)

SAMPLI	E # _ DESCRIP	TION NA	SS CHANGE (g)	(Assum	es 3.87 ×	10 atoms/cm ²)
1	5 mil Kapton,	At backed	-0.0050200	-3.88	x 10 ⁻²⁴	COMPLENT
5	5 mil Teflon,	Aj backed	-0.000820	-6.34	x 19 ⁻²⁶	.ow loss rate
3	5 mil Mylar, i	at backed	-0.0056031	-4.34	x 10-24	HIGHEST MEASURED
4	MgF ₂ anti-rel on glas	flection s	-0.0000204	-1.58 2.01	x 19 ⁻²⁶	to sig. change
5	ITO on glass		-0.0000190	-1.46 2.78	x 19 ⁻²⁶ (to sig. change
6 '	96% 5102 + 41 on 5 mil	K PTFE Kapton	-0.000103	-7.98	x 19-27	Very low loss rate
7	Algo, on 5 mi	l Kapton	-0.0005674	-4.40	x 19-25	LOWEST MEASURED
8	SiO ₂ on 5 mil	Kapton	-0.000058	-4.50	x 10 ⁻²⁷	No sig. change
9	TiO ₂ on quarts		+0.0000437	+3.38	× 10 ⁻²⁶	Low gain rate
10	No on sapphin	re	+0.0000760	+5.88	x 10 ⁻²⁶	Low gain rate
11	Copper on sap	phire	+0.0000764	+5.91 5.93	× 10 ⁻²⁶	No sig. change
12 i ii	Chromium on Ki	pton,	-0.0000492	-3.81	x 10 ⁻²⁶	Low loss rate

Space Environmental Interactions Current Collection and Snapover

- ELECTRON COLLECTION AND SNAPOVER
 - Snapover at Potentials > +100 V
 - Insulators Act as Electron Conductors
 - Large Power Drains
- ION COLLECTION AND SPUTTERING
 - Ions Focused Onto Insulation Defects
 - Sputtering at Potentials < -100 V
- FLOATING POTENTIALS
 - Ion and Electron Currents Must Balance
 - Ease of Electron Collection Makes Systems Float Negative
- POWER SYSTEM GROUND IMPORTANT - Grounds on Moon, Mars Difficult?

ARCING ON SOLAR CELL ARRAY SAMPLES 2x4 cm WRAPAROUND CELLS ON KAPTON -1 kV BIASED ARRAY CIRCUIT 10⁵ cm⁻³ N PLASMA (25 eV IONS, 3 eV e⁻)

NASA/LEWIS RESEARCH CENTER ENVIRONMENTAL INTERACTIONS PROGRAM

Space Environmental Interactions Effluents, Neutral and Ionized

• NEUTRAL EFFLUENTS

- Thruster Firings and Gas Dumps
- Change Vehicle Floating Potential
- May Interact Chemically with Surfaces
- May Become Ionized by UV, Critical Ionization Velocity, Charge Exchange
- Source of Contamination
- IONIZED EFFLUENTS
 - Ion Thrusters, Radioactive Sources
 - May Be Attracted Back by E Fields
 - Change Vehicle Potential
 - Increase Local Plasma Density, Arcing, Sputtering, etc.

Space Environmental Interactions Winds, Dust, and Contamination

- NEUTRAL DUST CONTAMINATION
 - Propelled by Winds or Rocket Exhausts
 - May Have High Sticking Factors
 - Can Change Thermal, Optical Properties
 - Attracted to Charged Surfaces by Dipole Attractions
- CHARGED DUST
 - Mars, Moon Photoelectric Effect
 - Mars Triboelectric Charging
 - Attracted Strongly to Charged Surfaces

x

I alaberta in a la fina analita non della di la consenta di consenta di consenta di la consenta di la consenta di

a second

ī

1

-

84

İ

· · ·

•