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Propellant Production and Useful Materials:

Hardware Data from Components and the Systems

Kumar Ramohalli

University of Arizona/NASA Space :Engineering Research Center

Abstract

Dudng the past year significant progress included a major breakthrough in oxygen production
through discs (instead of tubes) that resultedin two orders-of-magnitude increase inthe yield rates,
proving that oxygen production from any iron-bearing silicate (avoiding costly beneficiation) in lunar
ISRU; construction of a half-scale robotic soil processor; production of melt-spun fibers in a solar
furnace; and the culmination of first-stage research inthe construction (and delivery to NASA LeRC)
of a self-contained portable oxygen plant that incorporates the first generation ISRU technologies
developed at UA SERC. In addition, further reductions in mass and power needs were achieved in
two smaller oxygen plants, which, however, have production rates far greater production rates.

SERC continued to attract bright students both at the undergraduate and graduate levels, and
several area high school students through the Professional Intemship Program (PIP) administered
by the local school district. Invited lectures at elementary schools continue to draw enthusiastic
response. Another Important first was the creation of the Freshman Colloquium, "Space in Our
Future, and Our Future in Space,* geared toward women and minority students. This course proved
to be a success, with more than one-half of the enrollment composed of women. In recognition of
these Important contributions, the author was appointed to the NRC Committee on Space Science
Technologies.
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Introduction

The fundamental aim continues to be the education of students in the areas of high-tech innovative

space technologies and the actual hardware realization of the more promising concepts. It would

be helpful to recognize that unless ISRU Is advanced beyond paper studies and Isolated laboratory

Investigations, its extraordinary poteiltiais ma_y=neverbe realized. In fa_,tt hasi0ng been recognized

that ISRU is perhaps the only means of achieving significant long-term cost savings in space

missions. Unfortunately, much of the work has been at levels that may be described as TRL1

through TRL2, in the usual NASA ITP terminology, so that serious consideration by mission

planners could not be assured. At the UA/NASA SERC, we have been fortunate to have support for

advancement of technologies through TRI.5.

The principal components of this year's work have been the oxygen production plant and its

miniaturization; the robotic processing of lunar soils;production of polymers, ceramics, and glasses;

development of a valid quantitative Figure-of-Merit to evaluate the overall impact of these on space

missions; and the associated controls, simulations, and computations.

The virtues of in-situ resource utilization (ISRU) in introducing significant cost savings In space

missions have received extensive attention in recent years.(1"1°) Following this general

acknowledgment of the potential for cost effectiveness, several studies have examined a theoretical

"mission architecture" that could incorporate the ISRU components. (1H5) An interesting, and

Important, development has been the seriousattention paid by industry to these resource utilization

missions.(ls'_9) This interest by industry signifies the recognition of long-term benefits of a tangible

nature.

The Initial activities and a general summary of the Center's activities have been reported

earlier. (2°'21)The present chapter is a logical next step Inthe sequence of technical reports from the

Center.(22-24)

The overall "game plan"at the Center ts shown In Table 1. At regularly scheduled weekly meetings,

innovative ideas are discussed in an open forum consisting of scientists,engineers, undergraduate

and graduate students, faculty, and administrators. This free exchange of ideas results in a list of

possible candidates for further pursuit.The promising ones are subjected to several reviews: internal

reviews by the three Directors, semi-annual reviews by the Center Advisory Committee, and annual

reviews by the NASA Technical Representative Committee. in addition, our concepts and results are
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always subjected to peer review in joumals, symposi¢ and external meetings. Those concepts that

survive these reviews are selected for small-scale feasibility demonstrations; this is the first place

where hardware experiments are committed. After extensive tests Involving several operation

scenarios that go beyond the expected boundaries of operation in applications, the more promising

ones are selected for table-top units that now produce reasonably realistic quantities of end

products. Understandablyl only two or three conceptsreach this stage because of resource

requirements at these larger-scale production stages. Those that continue to prove promising at this

stage are selected for breadboard development and testing at the highest level of technology

demonstration, or TRL 5 in NASA terminology.

Another Important aspect of our activities is our willingness and abilityto apply basic knowledge and

expertise to important specific national needs. Two such examples are discussed here: one is our

design and demonstration of a common lunar lander (Artemis) concept that Involves robotic

pr_essing_ Of unbeneflciated lunar soilsfor_oxygen_- __(and__c°nstructi°n.... materials) production, and_the

other is a portable oxygen plant that uses carbon dioxide as itsfeedstock(with obvious applications

to Mars). The latter has already been delivered to NASA Lewis Research Center for demonstration

purposes.
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The activities at the Center are all aimed at ISRU for Introducing significant cost savings and mission

simplicity; the specific projects are logically div_ed into four major categories, or disciplines: (1)

lunar, (2) Martian; (3) support, and (4) common technologies. In the lunar category, we are pursuing

soil reduction through hydrogen`and ca_otherrnal processes, innovative non-equilibrium plasma

processing for compact energy efficient reactors, solar processingthrough direct photon absorption,

and some other specific studies that involvesoil processing Into dishes. In the Martian category, we

are processing carbon dioxide to produce oxygen, using the spent (hot) stream to produce

hydrocarbons (the hydrogen comes from a water electrolysis unit), and have an overall system

deslgn using modem software. A recent study has been started to explore the permafrost and its

safe bearing capacity (in support of platforms and structures).

In the support technologies category, we are exploring mechanical properties, general-purpose

software development for mission optimization, in-situ mechanical property measurements, and

quantitative visualization through CAD.

Inthe common technologies category, we are developing intelligent semi-autonomous controls with
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smart sensors, self-contaln_ modular designs, quantitative bill of_materials, compatibility testing,

and an overall cost-benefit analysis that includes an examination of historical mission data.

This chapter concludes with a bdef description of two applications: the common lunar lander and

the portable oxygen plant that uses carbon dioxide.

The ComDonent Activities

Lunar Resources

Lunar resources Include various soils and ores. Initial studles were confined to the (much-studied)

ilmenite processes.23 A major breakthrough in 1992 extended the work to any Iron-bearlng silicate.

The vapor deposition of a monolayer of (imported) carbon enabled the reductlon of Iron-bearlng

silicates. One representative result is shown in Figure 1. This forms the basis for our Artemis deslgn.

In our quest for high-tech efficient reactions, we are exploring cold plasma reactions of lunar ores

and dlrect photon enhancement of chemical reactions. The non-equillbrlum plasma enables high

electron temperatures to be achieved while malntainlng very low translational, rotational, and

vibrational (sensible) temperatures; this fact results In good thermal efficiency in reactor deslgn.

Besides, the photon-electron Interactions have a greater cross sectlon than photon-molecule cross

sections; this enables the dlrect deposition of solar energy into the reaction stream. The results are

shown in Figure 2. The co_dplasma In operation Is shown In Figure 3. The general nature of the

experimental setup for the microbalance Investigationof Iunar soils Is shown in Figure 4. Details on

the plasma reactor are given In reference 25.

Some of the beams and struts made from (authentically) simulated lunar soils are shown in Figure

5. The mechanical properties and their modifications through the use of small (<2% by total mass)

quantities of fibers (In this scheme, to be Imported from Earth, but in a subsequent scheme to be

manufactured on the Moon from glassy silicates) were reported earlier.23More recent results have

included the production of silicon-based polymers that could be used as the substrates for

amorphous photovoltaic cells.

Martian Resources

Our basic work continues to develop newer technologies for oxygen production from carbon

dioxide. The 16-cell unit that utilizes yttria-stabilized zirconla is shown In Figure 6. The screening

matrix and the mass and energy needs are shown in Tables 2 and 3, respectively. A major
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breakthrough occurred In the altemative disc technology. Compared to the eadier tube geometry,

the discs have a far greater effective area. The results are shown inFigure 7; a dramatic comparison

is shown in Figure 8. The effective area in the tube is clearly revealed in the IR thermogram of the

tube In Figure 9.

!

A highly sensitive area of Importance is the seal between the ceramic (ZrO2) and the metal (inconel)

that houses the overall system. Major advances were made in recent months using shape-memory

alloys that improve the seal at higher temperatures. Results are shown in Figure 10. Several

in-house technologies of solid electrolytes, catalysts, and electrodes were all proven to be superior

to what Is commercially available. Generous support from JPL, where three of our students were

hosted this summer, is acknowledged. This process of Martian CO2 reduction Is also studied in

reference 26. Our eady work was reported in reference 27.

The spent stream is dch in carbon dioxide and carbon monoxide. If separated, the carbon monoxide

can be a valuable fuel on Mars. The separation process has been refined in the last few months.

The basic scientific principle Involves pressure cycling or temperature cycling. The

adsorption/desorption is on a copper-based substrate. The results are shown in Figure 11.

Another use of the spent stream could be for the manufacture of hydrocarbons, if hydrogen can be

made available. We have a water electrolysis system (WES), loaned to us by United Technologles,

Hamilton Standard of Windsor Locks, Connecticut. The WES is shown in Figure 12. The principle

of the WES is applicable to Martian plants, which could use water from the soil, polar caps, or even

from the atmosphere. The hydrogen, so produced, is used In a Sabatier reactor (Figure 13). The

overall scheme is shown in Figure 14, and the principal results are shown in Figure 15.

Martin-Marietta is expected to fund a small grant at SERC for the study of "higher" chemistry from

the hydrocarbons that can be produced starting from methane and hydrogen; it should be

acknowledged that the Initial construction of the Sabatler reactor was through an eadier MM grant

to SERC.

Suooort Technolooies

These include the intelligent controls and smart sensors. The overallview is shown in Figure 16. The

controls have proven their applicability in several hundred-hour runs that were conducted dudng

severe thunderstorms in Tucson, which resulted in natural (mains) power outages. The full-system

operation was reported in reference 23.
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Common Techndooles .... -

These Include ceramics from local soils, mechanical properties of beams and struts made from soils,

and quantitative CAD and visualization. The principal results adsing from the ceramics research

using lunar soil are shown in Figure 17.

Specific ADDliCations

The general knowledge base and hardware experience present at The University of Arizona's Space

Engineering Research Center have been applied to several national needs, of which two are

described here,

Artemis (Lunar Lander)

This project involves the demonstration of a completely self-contained lander that weighs under 65

kg. The basic process is a reduction of any Iron-bearing silicate. The reactor, made of a light

ceramic, is capable of carbothermal or hydrogen reduction. The overall plant is shown as a scale

model in Figure 18. A half-scale robotic unit has been built and demonstrated, using solar thermal

energy. The full-scale unit's mass and energy balance are shown in Table 4. The sequence of

operations is shown in Table 5. The unit is currently undergoing thorough testing and will be

developed through TRL 5 in the coming year (Figure 19).

Portable Oxygen Plant

A small-scale (1 Ib/day class) oxygen plant was designed and constructed using Indigenous

electrodes, catalysts, and electrodes. The completed unit is shown in Figures 20 and 21. The

performance characteristics are shown In Figures 22 and 23; the unit has been shipped to NASA

Lewis Research Center and is expected to be used In demonstrations in conjunction with a rocket

motor that will bum the CO and O_ so produced.

Since this unit is meant for thorough characterization at Lewis Research Center, only the proof-of-

working data were obtained at the temperature of 800°.

These medium-temperature data must be interpreted with caution. The high temperatures (1000°C)

will yield much higher 02 production rates.
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Sumr_ry and Conclusions

At The University of Arizona's Space Engineering Research Center, vadous activities are carrying

novel ISRU concepts through idea generation, sclentlflc screening, feasibility demonstrations, and

full-system hardware. Several plants have been built and operated under realistic conditions for

extended durations. It is expected that these hardware realizations of scientifically sound ISRU

concepts will Inspire confidence in mid!on planne_, who could gal_ substantial cost _neftts and

acceptability by the general (tax-paying).... public, who would then recognize that space ventures need

not be costly if we use the local resources "out there."
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, FIGURE1

PROVEN OXYGEN PRODUCTION
solid carbon mixed with (simulated) lunar soil
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FIGURE 3. COLD PLASMA OPERATION,

FIGURE 4.

!

SETUP USED FOR MICROBALANCE INVESTIGATION.

FIGURE 5. BEAMS AND STRUTS MADE FROM SIMULATED LUNAR SOILS.
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FIGURE8

Measured Oxygen Flow vs Time
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Nickel on Keiselguhr Catalyst (#:4)
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FZGURE 16. SUPPORT TECHNOLOGY SETUP, WZTH SMART SENSORS AND
DEDZCATED ADAPTZVE CONTROLS.
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Fig. 21. Portable oxygen plant (cover removed).
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Table 1. The basic game plan for in-situ resource utilization.

NOVEL CONCEPTS IN HIGH TECHNOLOGY: "Anything Goes"

.r f

FEASIBILITY STUDIES: "Back-of-the=Envelope Calculatiofis and "Test=Tube" Evaluations

SMALL-SCALE PROOF-OF-CONCEPT: Mathematical Models. Computer Simulations, First Hardware

BREADBOARD ENGINEERING DEMONSTRATIONS: Realistic Full-Size System at Realistic
Production Rates

HIGHEST TECHNOLOGY READINESS LEVEL: Plans and Software Delivered to NASA and Industry

Table 2. Screening matrix for yttria-stabilized zirconia.

Temperature Applied Oxygen Yield
Tube Electrode (oC) Voltage (cc/min)

C-4 Proprietary 825 2.40 11.75

C-6 Proprietary 825 2.98 12.90

C-7 Proprietary 825 2.37 7.0

SERC 1 Ag/LSM 800 2.62 5.0

SERC2 Pt/I.SM 1000 2.00 3.8

SERC3 Pd/LSM 850 2.00 2.9

SPECIAL Undisclosed 900 2.00 22.4

Table 3. Mass and energy need_ for oxygen production utilizing yttria-stabilized zirconia. '

Full-Scale

Single-Cell 4-Cell Unit 16-Cell Unit Prototype
Unit 0.1 kg/day 0.4 kg/day 1-2 kg/day

Mass (kg) 4.08 13.15 52.16 113.0

Dimensions b (cm) 20x20x28 30x30x46 120× 120,<46 30×,-)6x36

Power Needs: Thermal (kw) 0.37 0.50 2.00 4.80
Electrical (w) 3.0 12.5 50.0 150.0

a lmmediate Applications: portable 0.1 kg/day demo unit for LeRC; prove ability to engineer;
package and operate at sites other than SERC.

bZrO2 subsystem only.
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Table 4. Summary of mass and power needed for integratedoxygen production.

Mass (kg) Power (w)

Communications 3.5 I0/I20

Computer 4.25 16

Sensors/Acutators

Servo motors (8)
Flow meters (2)
Pressure sensors (2)
Force/torque sensors (2)

Proximity sensors; strain gauge
Flow control valves (2)
Thermocouples (2)
CCD camera (I)
Mass spectrometer (I)

6.4 480.0
0.3 7.5
0.1 0.2
1.0 *

1.2 2.4

0.2 3.0
0.5 2.0

10.2 495.1

*Negligible.

Table 5. Integrated Oxygen production:
task decomposition.

SoilSample Acquisition

• Move arm and gathersoil

• Depositin cruciblethrough sieve

Reactor Operation

• Mix solidcarbon powder with soil
• InsertCrucibleat the focus

• Control heating(mirroradjustment)
• Measure/identifygases

• Remove and storeresidue(tilesfrom slag)

Data Management

• Obtain measurements and store data

Telemetry and Upload

• Adjust antenna/transmit data
• Upload code and data
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