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Abstract

Hydrogen reduction of ilmenite has been studied by a number of investigators as a potential means
for recovery of oxygen from lunar soil. Interest in this process has always rested with the simplicity
of the flow diagram and the utilization of established technology. Effective utilization of hydrogen
in the reduction process at temperatures of 1200 °C and below has always been disappointing and,
as such, has led other Investigators to focus attention on other systems.

Effective utilization of hydrogen in the reduction of ilmenite can be significantly enhanced in the
presence of a non-equilibrium hydrogen plasma. Ilmenite at solid specimen temperatures of 600 °C
to 970 °C were reacted ina hydrogen plasma. Those experiments revealed that hydrogen utilization
can be significantly enhanced. At a specimen temperature of 850 °C the fraction of H2 reacted was
24% compared to the 7% theoretical limit calculated with thermodynamic theory for the same
temperature.

An added advantage for a hydrogen plasma involvesfurther reduction of TiO2. Reduction of the iron
oxide in ilmenite yields TiO2 and metallic iron as by products. Titanium forms a number of oxides
including TiO, Ti203, Ti305 and the Magneli oxides (Ti4Ozto Ti50099). In conventional processing of
ilmenite with hydrogen it is possible to reduce TiO2to TizO13within approximately an hour, but with
poor utilization of hydrogen on the order of one mole of H2 per thousand. In the cold or
non-equilibrium plasma TiO2 can be rapidly reduced to Ti20_ with hydrogen utilization exceeding
10%. Based on design considerations of the plasma reactor greater utilization of the hydrogen in
the reduction of TiO2 is possible.
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Introduction

The most attractive source of lunar oxygen from energy considerations is that associated with Iron

in the mineral Umenite, FeO-TiO2. Investigators in their efforts to recover that oxygen, have primarily

focused their attention on H2, CO, and C reduction of the mineral. Carbon is a highly effective

reducing agent. However, processes based on solid carbon are more complex than those Involving

H2and CO. While processes based on H2and CO are simpler, the thermodynamic equilibrium limits

effective use of those reducing agents.

That limit, however, can be surpassed with the aid of electromagnetic energy In the form of a

non-equilibrium plasma. It is not that the restrictions of thermodynamics are violated, but that the

system be viewed as consisting of separate parts whose thermodynamic parameters can be

adjusted separately. In a plasma-solid reactor there are atoms bound inthe solid reactant, gaseous

molecules, and free electrons all of which can have different temperatures. Electrons accelerated

by a high frequency electro-magnetic field have temperatures between 10,000 to 40,000 K. Charged

molecules, because of their mass, cannot respond to the applied high frequency radiation. In

addition, physical procedures for transferring energy between free electrons and molecules in a cold

plasma are inefficient. As a result, the cold plasma consists of high temperature electrons and

molecules (including positive ions) at temperatures only a few hundred degrees above ambient

temperature.

Reaction Chemistry -- In conventional heating reduction of ilmenite involves the reactions,

FeO.TiO2(s) + H2(g) = Fe(s) + TiO2(s) + H20(g) (1)

TiO2(s) + XH2(g) = > TiO__x(S)+ XH20(g) (2)

condensation and then electrolysis of the H20 for release of the oxygen and recycle of the hydrogen

as shown in Figure 1. The thermodynamic equilibrium for reaction 1 is represented graphically in

Figure 2, where it can be seen that at 500°C the fraction of hydrogen that can be reacted amounts

less than 1%. That percentage grows to only 15% at 1200 °C. In conventional processing the

practical value of X that can be achieved in reaction 2 is 0.15.

In a non-equilibrium plasma both diatomic and monatomic hydrogen are available for reaction. The

latter is formed as a result of inelastic collisions between H2 and energetic electrons and positive
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Figure2. Representation of the thermodynamic equilibrium for both the
thermal and plasma processing of iimenite. Thermal processing makes use of

only a fraction of the hydrogen present, while plasma processing theoretically
allows nearly 100 percent of the hydrogen available for reaction. The actual

experimental results achieved with the plasma are indicated.
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ions. The latter are accelerated through the Debye sheath that _0rrounds the ilmenite particles.
17_ - - "

Reduction of ilmenite in a plasma follows the following sequence of reactions:

FeO-TiO2(s ) + 2H(g) = > Fe(s) + TiO2(s) + H20(g)

TiO2(s ) + 2XH(g) = > TiO2.x(S) + XH20(g )

(3)

(4)

and

TiO2.x(S) + (1-2X)H(g) = > 1/2Ti203(s ) + (1/2-X)H20(g ) (5)

Reactions 1 and 2 also occur as a result of sample heating. An additional 30% of oxygen can be

recovered with the plasma in comparison to that achieved with conventional heating. Moreover it can

be recovered in a substantially shorter period.

Experimental

The effectiveness of a cold plasma for reducing ilmenite and TiO2 has been tested in the apparatus

shown in F/gure 3. That apparatus consists of a microwave generator which emits microwaves at

2.45 GHz along a waveguide to the applicator where solid specimens are reacted In a hydrogen

plasma. A specimen is rotated during an experiment to ensure even heating. A mass spectrometer

has been used to follow the rate at which water vapor is evolved, and to quantify results. X-ray

diffraction (XRD) analysis was used to both identify solid products and quantify the extent of their

formation.

Ilmenite reacted in a hydrogen plasma yielded improved efficiency in hydrogen utilization. As noted

earlier, the extent of reaction 1 is thermodynamically limited. That is not the situation with reaction

3. The high chemical potential of monatomic hydrogen pushes reaction 3 to the right, the theoretical

limit being near complete consumption of the hydrogen, as shown in Figure 2. Ilmenite reacted at

a specimen temperature of 850 °C yielded hydrogen consumption rates of 13 to 24%. That value is

substantially better than the 6% predicted in Figure 2 for conventional heating at 850 °C. The

enhanced utilization has been achieved even thou#h the reactor Is not specifically designed for

extensive interaction between the specimen and the plasma. Utilization of a fluidized bed reactor

should improve plasma-solid contact.
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Figure 3. Schematic of the plasma processing system. The sample holder
can be directly inserted into the XRD for analysis of the solid product layer. _
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Figure 4. A plot of the H20 signal from the mass spectrometer as a function
of reaction time. This signal is characteristic of a surface reaction.
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Plasma-solid contact has to do with the Debye sheath than actual physical contact between the

ilmenite and the plasma. Non-conducting particlesand insulated particles Ina high frequency plasma

become negatively charged due to the mobility of the electrons. The electrons responding to the

field are accelerated quickly as a resultof their small mass. Some of those electrons will impact solid

particles and since they are more mobile than the positive Ions a negative charge builds up on the

surface of the particle. The resulting potential difference between the particle and the plasma Is

referred to as the Debye sheath. Positive ions that enter the sheath due to random thermal motion

are accelerated toward the particle surface where they can break bonds and thereby enhance

reaction rates.

Achieving the appropriate conditions across the Debye sheath is not always reproducible. The wide

variation in the fraction of hydrogen reacted at 850 °C and the low value at 970 °C is attributed to

this condition. The fraction of hydrogen reacted at 970 °C is slightly less than the equilibrium

condition for that temperature, it Is suspected at that temperature that the low fraction of hydrogen

reacted is associated with Improper conditions at the sheath and thus the impact of the plasma is

not experienced.

Experimentally it has been determined that the presence of a ground in the system has a significant

impact on the Debye sheath and the acceleration of ions across the sheath. The extent of the impact

of the ground has been demonstrated with the reduction of TiO2. Selection of that compound is

based on the fact that ilmenite can be reduced with both H2 and H, whereas TiO2 is only reduced

in significant amounts with monatomic hydrogen. Use of TiO2 allows us to evaluate the role plasma

variables (pressure, power absorption, "'etc.) have on the Debye sheath and the reduction process.

Figure 4 indicates that water vapor Is evolved instantaneously with ignition of the plasma. Evolution

of water peaks within the first minute of reaction, and then decreases to a steady state value after

approximately 8 minutes. At the peak the mole fraction of water is on the order of 10 mole percent.

At the same time the surface of the specimen changes from white (TiO2) to black. The black product

extends to a depth of 1 mm and is characteristic of both Ti203 and TiO2.x.

XRD analysis of the solid product revealed it to be principally Ti203 with some residual TiO2. The

spectra for both of these phases showed excellent agreement with the standard spectra. Quantitative

XRD analysis revealed that up to 60% of the specimen surface, to a depth of 5 I m, was converted

to Ti203, as shown In Figure 4. Notice that in that figure the volume fraction of Ti20 _ remains

constant with time. That information, coupled with the results in Figure 4, suggest that the
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conversion of TIO2 to Ti203 is complete after 8 minutes. According to reaction 2, the weight fraction

of TIO2 continues to decrease with time due to the continued production of TiO2.x. The sum of the

volume fractions in Figure 5 do not add up to one at any specific time because experimental

evidence Indicates that TiO2.x is amorphous.

A plasma and solid must have contact in order for a plasma,solid r_ctlon to take place.

Confinement of the black product layer to the surface in contact with the plasma strongly suggests

that effective use of the plasma will require design of a reactor that has greater spacing between

particles. A plasma cannot form or be maintained in the Interstices of a powdered specimen if

particles are too close because the sheaths ovedap. A fluidized bed reactor is under construction

to overcome this problem.

Enerav Considerations

Energy, and In particular electrical energy, will be limited on the Moon and must be used effectively.

A microwave-induced plasma is energy efficient. Energy in the form of electromagnetic radiation

must be continuously applied to maintain the plasma. The efficiency of converting DC current to

microwaves is reported as high as 90.4% at optimum conditions and 84% for extended periods. The

plasma is highlyefficient in the_absorption of micr0waves, with efficiencies approaching 100%. The

extent to which the energy In the plasma can be utilized in chemical reaction is still under

investigation.

Concludina Remarks

Processing of lunar regotithwith a plasma offers more than Justan increase inthe amount of oxygen

recovered per mass of soil. It offers a chemistry that can be used with both refractory and easily

reduced oxides. Inthe case of the former the reduction process involvesoxides that can be reduced

to suboxides, such as TiO2, AI203, and SiO2. As a result, it may be possible to use the regolith

without beneflciation.

Another advantage of cold plasma processing is that the only consumable resource is the electricity

used to maintain the plasma. As the reactant, hydrogen can be recovered by electrolysis and any

losses can be made up with lunar hydrogen.

An additional advantage of cold plasma processing involves reactor life and safety issues. Enhanced
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reaction rates at reduced temperatures reduces thermal degradation of the containment vessel. An

applied magnetic field to contain the plasma can eliminate chemical attack of the vessel by ions and

radicals. In an emergency, the reduction process can be brought to a halt with the extinguishing of

the plasma by eliminating electrical power, or either reducing or Increasing the pressure.
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Figure 5. The production of Ti203 appears to be over after 8 minutes of
reaction, while depletion of TiO 2 continues for longer periods. The data points
labeled "Insulated" indicate the importance of a ground in the system in order the
reaction to proceed.
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