NP-TIM-92

N93-26930

## NASA

Majignal Aeronautics and The Aronautics and

Lowis Mesearch Center

Computational fluid dynamics for NUCLEAR THERMAL PROPULSION

Presented to the Nuclear Propulsion Technical Interchange Meeting

October 21, 1992

Robert M. Stubbs Suk C. Kim



ORIGINAL PAGE IS OF POOR QUALITY



#### SPECIFIC IMPULSE AS A FUNCTION OF CHAMBER PRESSURE



 $T_{\rm C} = 3,600 \ {\rm K}$ 

NTP: Technology

#### RPLUS

- DEVELOPED AT NASA-LEWIS
- A NAVIER-STOKES CODE WITH FINITE RATE CHEMICAL KINETICS CAPABILITY
  - LU-SSOR
  - 9 SPECIES, 18 REACTIONS, (H2, O2 COMBUSTION SYSTEM)
  - 3-D, (ONLY 2-D AXISYMMETRIC REQUIRED HERE)



ORIGINAL PAGE IS OF POOR QUALITY



## ORIGINAL PAGE IS OF POOR QUALITY

NTP: Technology

r.



SPECIFIC IMPULSE AS A FUNCTION OF CHAMBER PRESSURE

 $T_{C} = 3,600 \text{ K}$ 



OF POOR QUALITY







NTP. Technology

466

NP TIM 92

ORKINAL PAGE IS OF POOR QUALITY



National Aeronautics and Space Administration

Lewis Research Center

# NVZV

TABLE 4.Specific Impulse of NTP<br/>Nozzles which have been scaled<br/>to produce, at each Temperature,<br/>approximately equal Thrust.

|                     | Isp, (                                           | lsp, (lb <sub>f</sub> -s/lb <sub>m</sub> )          |                                                  |  |
|---------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--|
| Т <sub>с, (К)</sub> | P <sub>c</sub> =10 atm<br><sup>r</sup> t =0.28 m | $P_{c}=1.0 \text{ atm}$<br>$r_{t}=0.8854 \text{ m}$ | P <sub>c</sub> =0.1 atm<br>r <sub>t</sub> =2.8 m |  |
| 2700                | 901.61                                           | 899.48                                              | 903.14                                           |  |
| 3200                | 1024,33                                          | 1037.21                                             | 1072.47                                          |  |
| 3600                | 1144.22                                          | 1183.39                                             | 1223.17                                          |  |

NP-TIM-92

۰.

467

NTP: Technology

ORKENAL PACE 16 OF POCR QUALITY National Aeronautics and Space Administration

Lewis Research Center

| TABLE 5.               | Specific Impulse for variously sized NTP Nozzles with $T_c=3600$ K, $P_c=1.0$ atm. |                       |
|------------------------|------------------------------------------------------------------------------------|-----------------------|
|                        | Isp, (lb <sub>f</sub> ~s/lb <sub>fi</sub>                                          | )<br>)                |
| <sup>r</sup> t =0.28 m | r <sub>l</sub> =0.8854                                                             | r <sub>t</sub> =2.8 m |
| 1151.57                | 1183.39                                                                            | 1220.41               |

| Nationa<br>Space | I Aeronautics and<br>Administration                                                                                                                                                                                                                   | COMPUTATIONAL FLUID DYNAMICS<br>FOR | NASA   |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|--|--|
| Lewis            | Research Center                                                                                                                                                                                                                                       | NUCLEAR THERMAL PROPULSION          | ······ |  |  |
|                  |                                                                                                                                                                                                                                                       | SUMMARY                             |        |  |  |
| •                | CFD SIMULATIONS PREDICT LOWER SPECIFIC IMPULSE VALUES FOR THE LOW<br>PRESSURE NUCLEAR THERMAL ROCKET THAN ONE-DIMENSIONAL, INVISCID<br>ANALYSES.                                                                                                      |                                     |        |  |  |
| •                | THE LOW PRESSURE CONCEPT SHOWS MORE PROMISE AT HIGHER<br>TEMPERATURES THAN AT LOWER TEMPERATURES, BECAUSE OF THE GREATER<br>AMOUNT OF DISSOCIATION.                                                                                                   |                                     |        |  |  |
| •                | SMALLER NOZZLES SHOW LARGER VISCOUS LOSSES, ESPECIALLY AT LOW<br>PRESSURES; THEREFORE, PERFORMANCE GAINS ARE ASSOCIATED WITH<br>LARGER NOZZLES.                                                                                                       |                                     |        |  |  |
| •                | ADVANCED CFD CODES SUCH AS RPLUS (3D, NAVIER-STOKES, CHEMICAL<br>KINETICS), WITH THEIR ABILITY TO SIMULATE REAL GAS EFFECTS, PROVIDE<br>THE DESIGNER WITH POWERFUL TOOLS TO ANALYZE THE ENTIRE FLOW FIELD<br>AND CALCULATE GLOBAL PERFORMANCE VALUES. |                                     |        |  |  |

i

,