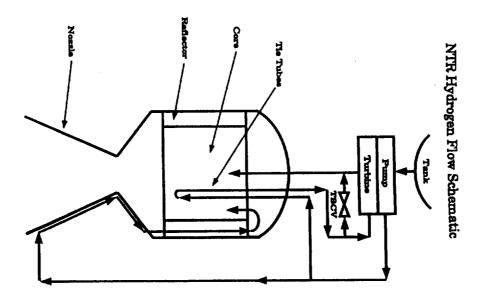
N93-26951

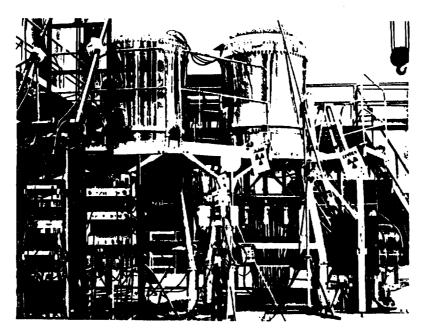
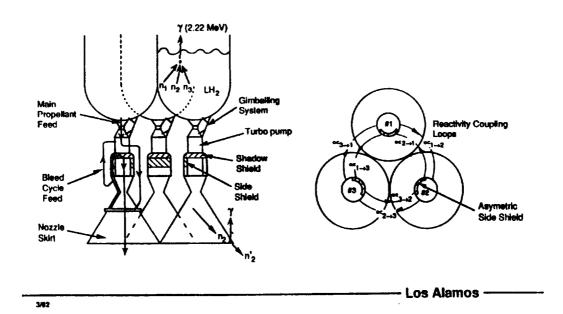
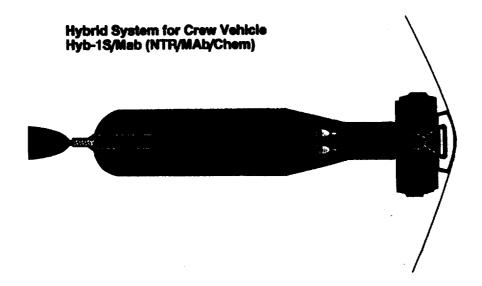

NTP: Systems Modeling

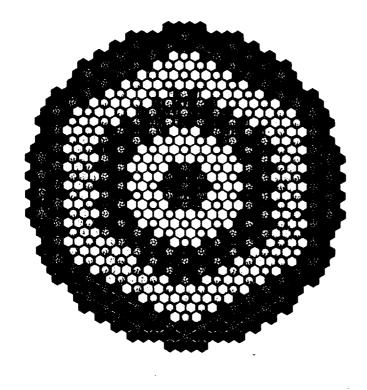
Next Generation System Modeling of NTR Systems

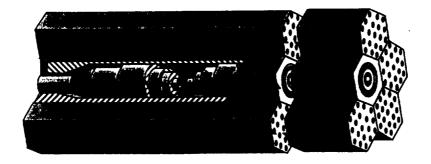
John J. Buksa and William J. Rider Los Alamos National Laboratory October 22, 1992

	— Los Alamos ——
Introduction	
☐ NTR Modeling Challenges	
☐ Current Approaches	
☐ Shortcomings of Current An	alysis Methods
☐ Future Needs	
☐ Present Steps Toward These	e Goals

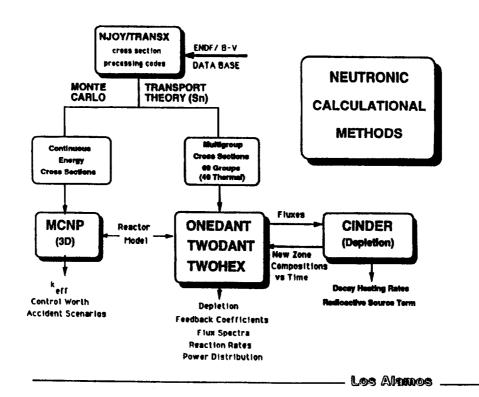
712

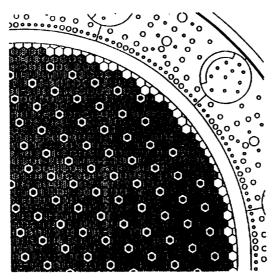

Figure 1. The Coupled Cores in Kiva-3, Pajarito Site. "Test Kiwi" is on the left, and PARKA is on the right.


32

ENGINE COUPLING PHENOMENA



3D NTR Cluster


Introduction: Modeling Applications

- Design: performance (SS operation) and lifetime (fuel / criticality)
- Startup and Shutdown
 (two phase T-H, neutronics, kinetics, heat transfer, low strain rate hydro)
- Water Immersion (kinetics, neutronics, all hydro)
- Impaction
 (kinetics, neutronics, high strain rate hydro)
- Engine-Out Operations
 (all except high strain rate hydro)

- Los Alamos -

DETAILED MCNP MODELING OF NUCLEAR THERMAL ROCKETS – WESTINGHOUSE NRX-A6 REACTOR

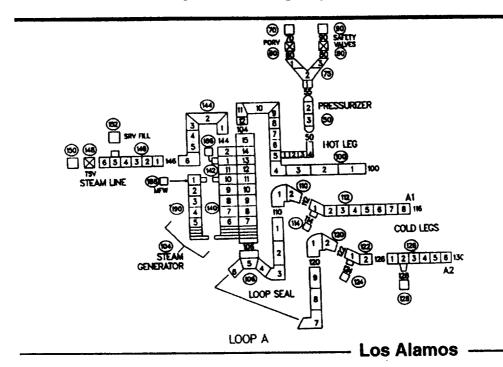
Los Alamos ·

Thermal-Hydraulic Analysis Methods

- Extensive experience in both space and terrestrial reactors
- TRAC

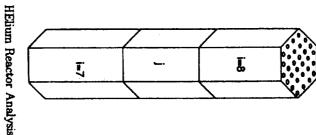
3/92

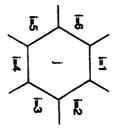
- Developed for LOCA analysis of PWRs
- Highly developed models for two-phase flow
- Low/zero gravity models are available
- Useful for facility/more general system analysis


HERA

- Developed for solid core terrestrial reactors
- Useful for the thermal analysis of general systems including space nuclear systems

KLAXON

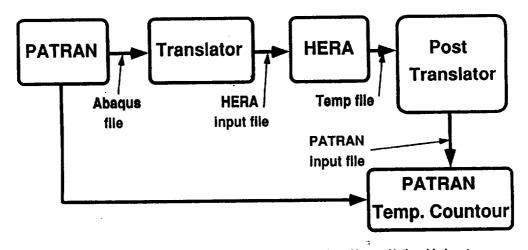

- New thermal hydraulic systems code designed specifically for gas cooled, space reactors
- THROHPUT
 - State-of-the-art heat pipe modeling from startup to shutdown


- Los Alamos ———

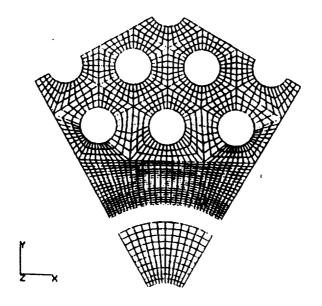
- Flexible input allows a large number of test cases Fully three-dimensional allowing for complex geometries to be accurately represented.

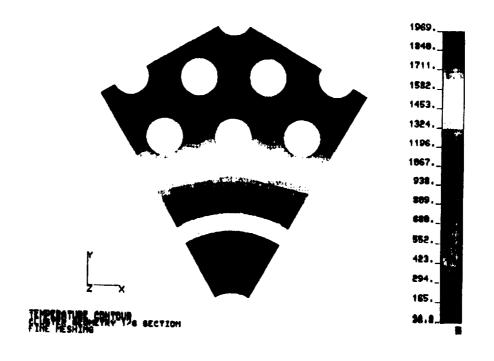
The code computes solution with minimal computational effort

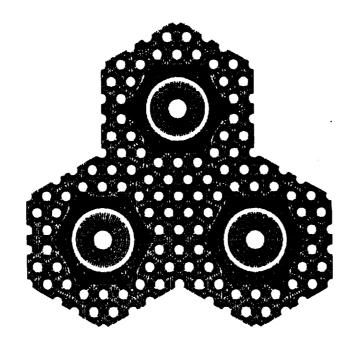
Description of HERA

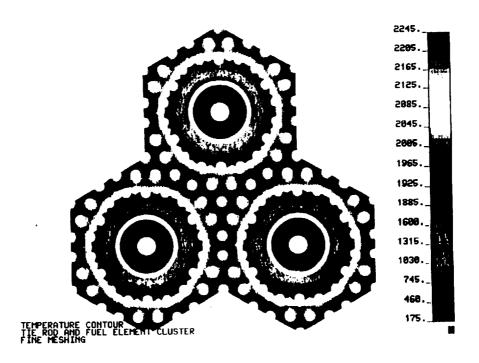

Thermal-Hydraulic Modeling: Prismatic Fuel

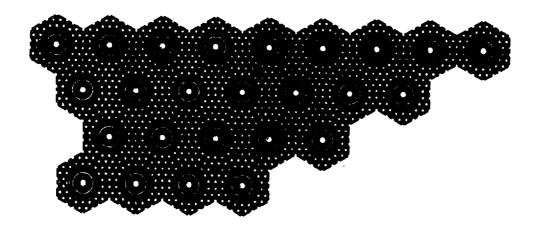
- HERA: HElium/Hydrogen Reactor Analysis
- Used to model reactor core and core components with axially homogeneous construction
- Three-dimensional, fully transient, arbitrary user defined geometries
- Programmed to be computationally efficient, especially on vector supercomputers
- Currently exists in stand-alone mode and coupled to TRAC. Connection to KLAXON is planned
- PATRAN grid generator and visualization translators currently being written
- Coupling to Storm's corrosion model envisioned Core Lifetime
- Component and core T-H model planned (fuel element, support element, and periphery)

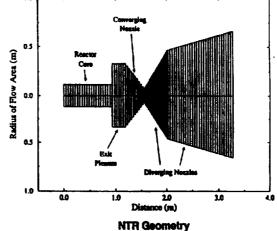

Los Alamos


Methodology: New


Specific Outline:




Los Alamos National Jahora Mileting



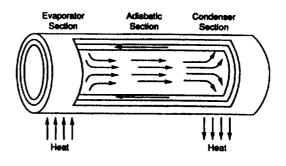
KLAXON GAS-COOLED REACTOR SYSTEMS MODELING CODE

Time-dependent analysis of systems operating with compressible gas working fluids. TRAC-like pipe, plenum, etc. component models, fill and break capabilities, and advanced flow modeling numerics for shock following in nozzles.

Future Development

- Connection to HERA
- Validation with systems data

3/92


- Los Alamos -

THROHPUT HEAT PIPE MODELING CODE

Transient thermal-hydraulic heat pipe modeling code with:

- Multi-region capability (wall, fluid, mixed, gas)
- 2-D convection and conduction heat transfer
- Li melt model
- Gravity and non-gravity capillary pressure models

Future development:
Benchmarking and validation
with LANL experiments

Heat Pipe Operation

3/92

Los Alamos

LOS Alamos Los Aemos Netoral exogeny

Why Level 3/4 Model Development?

Level 3/4 Improvements
- Integral versus Ad hoc

- Physics versus Assumptions

Confidence versus Safety MarginMachine versus Human Intervention

Examples

- Reactor Compaction/Immersion Accidents

- Reactor Startup

Future Needs

☐ Better All Aro	und Resolution of Problems
☐ System Desig	n Optimization Tools
	ization of Modern Technology nd Algorithms)
☐ Use of Integra	ated Physics Codes
	Los Alamos

LOS ALAMOS
LOS ALAMOS NATIONAL LABORATORY

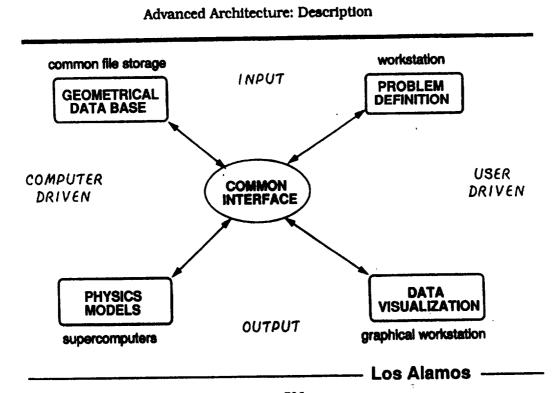
Reactor Design and Analysis Group

Los Alamos Perspective

- Emphasis on Simulation Instead of Testing
 - current ES&H environment dictates reduced testing of nuclear systems
- Interagency NTP Modeling Team
 - Role, Impact, Importance, Visibility
- Effort Should be Commensurate With the SEI
 - ambitious, high profile, high tech, national importance

LOS A PRIMOS LOS ARMOS NATIONAL LOS ARMOS NATIONAL

The Need for New Code Development in Level 3/4


No "Real" Level 3/4 Codes Exist

Codes will be Heavily Relied on

Testing will be Restricted by ES&H Requirements
Current Codes are Designed to Analyze Primarily

Terrestrial Reactors
• Current Codes use Outdated Methodologies

Current Codes are Designed for Older Computer
 Architectures

Advanced Architecture: Potential Physics Packages

- Neutronics (including cross-sections, dosimetry)
- **Spatial Kinetics**
- Generation/Depletion
- Thermal-Hydraulics (two phase)
- Low Strain Rate Hydro
- High Strain Rate Hydro (solid and fluid)
- Heat transfer (conduction, radiation)
- Chemistry/Materials

Los Alamos -

Los Alamos

Outlined Needs and Requirement for Level 3/4 Code Development

LANL Current Status

 Investigated LANL Capability Example LANL Capability - NIKE - A time-dependent S_n radiation transport code with artistrary 3-D meshes on a CM (or Cray)

NIKE is coupled to PAGOSA/X3D for high strain rate hydradynamics on CM (or Cray)

Genesis of Level 3/4 code capability for compaction/immersion accident analysis

Starting demonstrative NIKE/PAGOSA NTR analysis effort Thernal-hydraulic work continues with work on improving

bofk KLAXON and HERA

- Fluid dynamics codes
 - Developed for a large range of physical situations varying from incompressible to highly compressible flows
 - Advanced methodologies
- High Strain Rate Solid/Hydrodynamics
 - Applicable to events involving reactor impaction/disassembly
 - Examples: launch accidents, reentry, water immersion
 - Coupled directly to other physical phenomena (neutronics for instance)
 - Advanced methodologies
- High Performance Computing
 - One of two DOE centers of excellence
 - ICN (3 CMs, 7 Cray YMPs)
 - ACL

- Los Alamos ----

ADVANCED COMPUTING LABORATORY

Acting as a university/industrial/laboratory interface for state of the art computations, emphasizing:

- State of the art hardware for massively parallel computation (largest CM-2s and CM-5 in the nation)
- Wide area gigabit network for distributed parallel computing (using ANSI standard: HIPPI)
- Advanced scientific visualization using high speed networking and parallel computational methods
- Software tools/algorithms development for distributed parallel computation (NSF Science & Tech. center: CRPC)
- Emphasizing "real" applications running in parallel environment (Grand Challenges and beyond)

Purposes of the ACL

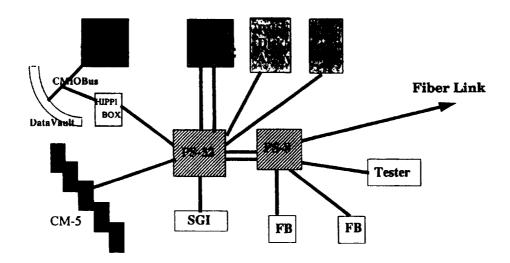
- To respond to the rapid changes in hardware and software
- To investigate new "Grand Challenge" computing environments
- To provide more "access" to Los Alamos from the outside world
- Provide high performance testbed for networking and visualization
- Stimulate practical algorithm development for massively parallel computing
- Function as one of the Dept of Energy High Performance Computing Research Centers

Los Alamos

Table 1: TODAY

Project	i Decemant	विकास स्त्रीत	Yours	in hulydding
Porous Media	2-d immiscible flow	10 ¹⁶	8 Gbytes	40 GBytes
Novel Materials	2-d molecular dynamics	10 ¹⁴	500 Mbytes	64 GBytes
	3-d multimaterial hydro (200 ³ pts)	10 ¹⁵	8 GBytes	100GBytes
Plasma physics	transport scaling	10 ¹⁵	8 GBytes	200 GBytes
Global Ocean	decade, 20 levels, 1/2°	10 ¹⁵	500 MBytes	250 GBytes
Brain Topology	3-d reconstruction	10 ¹³	200 MBytes	10 GBytes
QCD	quenched lattice (32x32x32x64)	10 ¹⁶	500 MBytes	500 MBytes

Table 1: TOMORROW


	in the state of th	1	10 St. 1	در دودو می دودو می دودو
Porous Media	3-d immiscible flow	10 ¹⁸	1 Tbytes	4 TBytes
Novel Materials	3-d molecular dynamics	10 ¹⁸	20 Gbytes	3 TBytes
	3-d multimaterial hydro (1000 ³ pts)	1018	1 TBytes	20TBytes
Plasma physics	numerical Tokamak	10 ¹⁸	1 TBytes	100 TBytes
Global Ocean	century, 40 levels, 1/4°	10 ¹⁷	4 GBytes	20 TBytes
Brain Topology	3-d reconstruction	10 ¹⁵	15 GBytes	1 TBytes
QCD	quenced lattice (64x64x64x128)	10 ¹⁸	8 GBytes	8 TBytes

Los Alamos

Applications on the CM-2

- QCD
- Condensed Matter Physics
- Free Lagrange Hydrodynamics
- Global Ocean Model
- Lattice Gas (porous media)
- Oil Reservoir: Mobil (11Gflops sustained)
- Tokamak Fluid Turbulence
- Fokker Planck
- Crystal Formation
- Many Body Problem
- Plasma Particle Simulations
- Molecular Dynamics
- Neural Networks

Existing ACL HIPPI Network

Los Alamos

PAGOSA

- ☐ A 3-D Multi-Material Hydrodynamics Code on the Connection Machine
- ☐ High-Speed Hydrodynamics and High-Rate Deformation of Solids
- ☐ Eulerian, Second-Order Predictor Corrector Lagrangian Step with Third-Order High-Resolution Advection
- ☐ High-Resolution Interface Reconstruction Algorithm
- ☐ Highly Efficient for the Connection Machine

Los Alamos

The NIKE Codes

• NIKE-R

- 3-D Rectangular Mesh

- Corner Finite-Difference Scheme

NIKE-T

3-D Arbitrarily-Connected Tetrahedral Mesh

- Linear-Continuous Finite-Element Discretiza-

Common Characteristics

Solve Even-Parity S_n Transport Equation with Anisotropic Scattering in Cartesian Geometry

Time-Dependent, Steady-State, k or α Eigenvalue Calculations Essentially Positive Solutions - No Flux Fixup Inner and Outer Iteration DSA - Unconditionally Stable and Effective

Very Efficient Simplified P_n Option - No Ray

Conclusions

Current Modeling	Approaches	are	Generally
Inadequate			•

☐ In the Future Modeling will be Relied on Heavily

☐ Los Alamos has begun to Lay the Groundwork for Future Modeling Capabilities

Los Alamos -