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LITHIUM MPD THRUSTER

TECHNOLOGY DEVELOPMENT AT JPL

Funded by NPO in FY92 to develop a lithium feed system

- Reservoir and vaporizer designed and under construction
Flow rate calibration system design complete, components

under construction

• Test facility design nearly complete, conslruclion to be completed
in FY93 '

6' x 15' double-walled stai,aless chamber with 27' long

extension to be used as a beam dump pumped by a 20"
diameter oil diffusion pump

• Initial testing of 100 kWe-class radiation-cooled engine to begin
in FY93
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COMPARISON OF MEASUREMENTS WITH
THEORY FOR MERCURY PHASE SEPARATOR

. DATA OBTAINED WITH A SMALL DEVICE AND AT
LOW TEMPERATURES

• FOR LITHIUM MPD REQUIRED TEMPERATURE
AND FLOW AREA MUST BE GREATER

NEP: Tecbaolou
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INITIAL EXPERIMENTAL HARDWARE DESIGN

• HIGH TEMPERATURE WILL BE CONFINED TO THIN
LITHIUM LIQUID SHEET BETWEEN HOUSING AND
SEPARATOR

• CAN EASILY REPLACE SEPARATOR

JPL

POROUS TUNSTEN VAPORIZER AND HOUSING
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EXPERIMENTAL SETUP

• VAPOR COLLECTOR WILL BE LIGHT

• HEAT OF CONDENSATION WILL BE REMOVED
THROUGH OIL BATH

• LIQUID PRESSURE AT SEPARATOR WILL BE KEPT
WITHIN ACCEPTABLE RANGE WITH REGULATED
ARGON PRESSURE

JPL
LITHIUM VAPORIZER EXPERIMENT

LVDI CANTILEVEREDBEAM
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DRY BOX FOR HANDLING SOLID LITHIUM

. ZERO CONTACT BETWEEN SOLID LITttlUM AND AIR
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EXPERIMENTAL HARDWARE

• BOILER CAN HOLD 900 G OF LITHIUM

• HARDWARE EASILY DISASSEMBLED FOR CLEANING

NEP: Technolocv
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TEST FACILITY

• VACUUM TANK IS 45 x 45 x 80 CM

• PUMP OUT PRESSURE TO LESS THAN 1 MTORR

NP-TIM-92 1033 NEP: Technology

ORI.G_!'_L PAQE IS

OF POOR QUALITY



.JInL

MPD THRUSTER ELECTRODE MODELLING

• Cathode - Emphasis is on lifetime assessment:

Methodology

Modelling
Experimental Verification

• Anode - Primary focus is thermal management:

Impact of anode work function

Assessment of heat rejection methods

.Jill.

DEFINING ENGINE LIFETIME
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Engine lifetime, requiremenls and
operating experience

• CURRENT STATUS

- Required service life is not well defined
- Critical failure modes have not been

identified
- No theoretical or experimental characteri-

zation of life distribution

• IMPORTANT OBSERVATIONS

- Life dislribution characterization by
system-level operating experience is not
feasible

- Engine lifetime is inherently probabilislic
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PROBABILISTIC FAILURE ASSESSMENT

FAILURE MOOEL
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FAILURE RISK

ACCEPTABLE RISK UNACCEPTABLE RISK

ACQUIRE ADDITIONAL REDUCE REQUIREMENTS iMPROVE DESIGN OR

INFORMATION AND/OR INCREASE PRODUCTION QUALITY

• REDCJCE DRIVER UNCERTAINTY INSPECTION FREQUENCY • REDUCE SEVERITY
• CHL&RACTERtZE ENVIRONMENT • REDUCE MANUFACTURINQ

• MEM;URF.JVERIFY LOADS: VARIAIBI_IW
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QUANTITATIVE CATHODE FAILURE
MODELLING

I
Near-Cathode
PlaAma Model _ Heat Flux Model -4--- WOrkModeiFunction

"lbermal Model

gro.lim_l M(_lel

Gas Tran_porl Model
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RATES

CATHODE EROSION MODELLING

MECHANISMS
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COMPARISON OF CALCULATED AND

MEASURED CATHODE EROSION RATES
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Calhode erosion mcasuremenls performed
with Stuttgart thruster NCT-I al 25(X) A,
1.0 g/s of argon, 71 kWe and 20 "l'orr ambient
pressure

• Diffusion-limited evaporation of
tungsten is the dominant mechanism

• Model underpredicts erosion rate by
a factor of 6, reflecting uncertainties
in transport rate through eoncentratio,
boundary layer

• Calculated erosion rates are based on

measured temperatures--Ihermal model
required for fully predictive capability
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CATHODE THERMAL MODELLING

HT9:1-1/2 D thermal model with variable grid spacing and non-linear
thermal and electrical conductivity. Allows specification of radiation,
conduction, convection and arc attachment boundary conditions on
ends and inner and outer radii.

AFEMS: Commercial 2D finite-element model with nonlinear

material properties. Very flexible solid modeller for geometry
specification, but definition of boundary conditions is more
cumbersome than in HT9.

• Fully 2D version of HT9 to be developed in FY93.
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NEAR-CATHODE PLASMA MODEL REGIONS
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NEAR-CATHODE
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PLASMA MODELLING

• The model describes the electrostatic
sheath, presheath and ionization zones

• Current and heat fluxes are calculated
as functions of gas properties, therm-
ionic properties, surface temperature
and sheath potential

• Terms normally neglected in high-
pressure noble gas arc models are
included to allow accurate modelling of
low-pressure alkali metal arcs

JPL

COMPARISON OF CALCULATED AND

MEASURED TEMPERATURE DISTRIBUTIONS
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Cathode model geometry and results

• The model includes radiation, con-
duction out the base and heat input over
the first 5 mm from the near-plasma
model

• The model reproduces the tip temperature
and shaft behavior for reasonable values
of the input parameters

• Errors may be due to experimental data
not in equilibrium and thorium effects
on spectral emissivity
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CATHODE WORK FUNCI'I()N MODEI,I,IN(;
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Emission capabiJily of tungsteil metal
wilh Th arid Li adsorbed (m Ihe surface.

• "Activator" may be electropositive
material ill the cathode bulk or in the

propellalll
• Two models were developed for catho¢lc

additive transport and propellant-surface
imeraction

• Th-W effect on work function is limited

by depletion of thoriunl additive
• Li supply from propellant is unlimited,

but surface coverage depends on gas

prossUl'0 :liitl tt'nllIeralulc
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JPL
CATHODE TEST FACILITY

• Demonstrate feasibilily of new

cathode ctmccpts

• Measure cathode [t;nlpci[lltlre

distributions _i11(1ClOSiOii ialt',_ ll>

wilitltite inodels

• Measure model iiaput parameters

• Collect success/failure dala ill

]Ollg CII(IIlI';IIIt'C lesl._
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IMPACT OF ANODE WORK FUNCTION

Two limiting cases examined:

• Strong positive anode sheath, Vs>>kTde

Thermionic current can be neglected, heal transfer rate is lower for
a low work function anode.

• Negative anode sheath

Preliminary sheath model results indicate lower anode heat transfer

rate for low work function anodes at moderate temperatures (Example:

, 1014For 100 A/cm 2 ne = cm '_ (Argon), T_ = 1 eV, an anode with

a work function of 3.5 eV has lower heat transfer rates than one

at 4.5 eV for temperatures below about 2600 K.)
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ASSESSMENT OF RADIATION-COOLED ANODES
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Analytical model of thin-walled, cylindrical
anodes.

Ti, , = Temperature on inner surface

T m = Melting temperature of material

Fi, = Power/unit axial length

Fot,.,nax = Maximum possible radiated

power/unit length from exterior, OT,,_

NEP: Technolottv 1040

Analytical model of thin-walled anodes
completed--neglects axial conduction,
internal radiation and Joule heating.

Example: 10 cm dia. tungsten anode
with 10 mm wall thickness and max-

imum allowable Ti,--0.8 T m can reject

18 kW of power per cm of length.

• Effect of axial heat conduction anti Joulc
heating is being studied with finite
element analysis.

• Comparison between thin-walled anodes
and anodes with large radiators is bei,g
performed using finite-element analysis.
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