
Undecidability in Macroeconomics

(Preliminary Draft)* /_-B3 _ t_,

Siddharth Chandra**

Tushar Deepak Chandra***

TR 93-1340 0

April 1993

v,

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

\
- \

*Research supported by NSF grant CCR-9102231, DARPA/NASA Ames grant NAG
2-593, grants from the IBM Endicott Programming Laboratory and Siemens Corp.
**Department of Economics, Uris HAll, Cornell University, Ithaca, NY 14853. This
author is also supported by a Cornell Sage fellowship.
***Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY
14853. This author is also supported by an IBM graduate fellowship.

https://ntrs.nasa.gov/search.jsp?R=19930017824 2020-03-17T06:03:18+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42806752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Undecidability in Macroeconomics

(Preliminary Draft)*

Siddharth Chandra t and Tushar Deepak Chandra *

April 28, 1993

Abstract

In this paper we study the difficulty of solving problems in economics. For

this purpose, we adopt the notion of undecidability from recursion theory. We

show that certain problems in economics are undecidable, i.e., cannot be solved

by a Turing Machine, a device that is at least as powerful as any computational
device that can be constructed [2]. In particular, we prove that even in finite closed

economies subject to a variable initial condition, in which a social planner knows

the behavior of every agent in the economy, certain important social planning

problems are undecidable. Thus, it may be impossible to make effective policy

decisions.

Philosophically, this result formally brings into question the Rational Expec-

tations Hypothesis which assumes that each agent is able to determine what it
should do if it wishes to maximize its utility. We show that even when an optimal

rational forecast exists for each agent (based on the information currently available

to it), agents may lack the ability to make these forecasts. For example, Lucas [7]

describes economic models as "mechanical, artificial world(s), populated by in-

teracting robots". Since any mechanical robot can be at most as computationally

powerful as a Turing Machine, such economies are vulnerable to the phenomenon

of undecidability.

*Research supported by NSF grant CCR-9102231, DARPA/NASA Ames grant NAG-2-593, grants
from the IBM Endicott Programming Laboratory and Siemens Corp.

tDepartment of Economics, Uris Hall, Cornell University, Ithaca, NY 14853. This author is also

supported by a Cornell Sage fellowship.
$Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853. This author

is also supported by an IBM graduate fellowship.

Contents

ii

2 The

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Problem 4

Introduction 4

Encoding the Turing Machine 4

A Basic Economy 6

An Undecidable Economy 6

Correspondence between the Turing Machine and the Economy 9

The Problem is Recursively Enumerable 9

Undecidability Proof 9

3 Applications and Limitations 11

3.1 Applications 11

3.2 Limitations 11

4 Conclusion 12

1 Introduction 1

1.1 Rational Expectations: a limitation 2

1 Introduction

In this paper we prove that there are fragments of macroeconomics about which it is

not possible to reason. In order to do so, we adopt techniques from recursion theory

that are new to the study of macroeconomics. There are two implications of this result.

First, agents in such economies cannot reason about potentially important facts. Sec-

ond, economists studying these economies cannot reason about them either. This result

prompts us to question the applicability of various traditional assumptions about knowl-

edge in economics. These include but are not restricted to the Rational Expectations

Hypothesis and a variety of systems involving the formation of subjective or objective

probability priors. We emphasize that this result applies to closed finite economies. By

extension, we also provide an insight into what "...a formal theory of rational decision-

making in an open 1 universe..." [1] might confront.

This result does not apply to the kinds of models macroeconomists are used to seeing

in journals. Those models have been designed to provide neat answers to a variety

of questions. An important feature that is almost invariably lacking in such models,

however, is a sense of separation of numerous heterogeneous agents or sectors. The result

of this paper might explain why economic models which mimic economies as distributed

systems of interacting agents or sectors are not very popular today: it is difficult and

sometimes impossible to reason about such economies.

Discrete decision processes are central to economic research. Examples of these

processes are the Overlapping Generations Model [10, 15] and the Townsend Turnpike

Model [10, 13]. It is natural to ask whether a systematic method solves such optimization

problems for economies with heterogeneous agents. This question is extremely difficult

to analyze. So we address the simpler question: given an arbitrary economy for which

there is a solution to a decision making problem, is it possible to find that solution? In

this paper, we show by example that this may not be possible even for a finite economy.

Thus the problem is "hard" because of its inherent complexity, and not because the

economy itself is intractably large. We present a problem that is specified in all respects

except for its initial condition and show that it is "hard" to solve.

To prove such a result we use the concept of a Turing Machine. A Turing Machine

is a computing device which is capable of executing any possible computing algorithm

including every possible learning algorithm and fine tuning mechanism. There is strong

evidence that a Turing Machine is at least as powerful as any=computational device

that can be constructed [2]. A problem that cannot be solved by a Turing Machine

is said to be undecidable. We use techniques introduced by Reif et al [9] to develop a

methodology for showing that a variety of problems in economics are undecidable. We

apply this methodology to a simple problem for which a solution exists, and show that

the solution cannot be found using a Turing Machine. We thus demonstrate the degree

of difficulty that economists would encounter in characterizing a network economy in

terms of discrete interacting agents _ with limited choices.

1The italics are ours.

2These could be consumers, sectors, producers, trading partners etc.

2

Note:

A

B

INACCESSIBLE

_[__ _ACCESSIBLE

_INFORMATION

C implies A and B

FACTS

KNOWLEDGE

SET

Figure 1: We prove the existence of inaccessible facts.

This paper is divided into two parts. In the first part we present a discussion of

knowledge in economics and an example of an economy in which there are undecidable

problems. The second part consists of four appendices, the last two of which intro-

duce optimization and recursion theory to readers without any background in these

subjects. We strongly recommend that readers who are unfamiliar with the economic

or computational concepts used in the first part of the paper refer to these appendices.

Supplementary remedial readings are also suggested in each appendix.

1.1 Rational Expectations: a limitation

We use the exposition in Wan [16] to summarize rational expectations:

• Individuals form subjective probability distributions over future events.

• These distributions agree with the objective probability distribution of events based

on given information.

• This information includes past history, government policy and the set of relations

and functions that make up the general environment.

• Based on this information, a known outcome follows.

Thus, in order for rational expectations to hold, facts that follow from and only from

an agent's information must be available to the agent. In this paper, we show that there

exist facts that follow from and only from an agent's information that are not computable

by that agent even if (s)he knows the complete specification of the economy (see figure

1). Rational expectations as it is widely understood today shows no awareness of this

phenomenon.While this result is philosophical in nature, it should be of concernto a
variety of economists.In section3 weoutline a few examplesin which undecidability is
a concern. The work of Spear [12]is relatedto this subject.

2 The Problem

2.1 Introduction

In this section, we will state a problem for a finite closed network economy and show

that it is undecidable. Intuitively, our construction will proceed as follows. Suppose

we are given a Turing Machine specification x and an input i. We will construct an

economy £(x) with an agent a, and an initial impulse I(i) with the following property.

The impulse I(i) reaches a in £(x) if and only if ¢_ halts on i. In other words, we will

reduce the halting problem into a decision problem for a finite closed economy. By doing

so, we will have shown that the set of such problems is not recursive. This follows from

the fact that the halting problem is not recursive.

2.2 Encoding the Turing Machine

Suppose the given Turing Machine is 7" = (Q_-, F, _L, _], 5_-, qo, qa, q,) where F = {0, 1}. 3

We construct a new Turing Machine A4 that has exactly one halting state qh such that

j%4 halts on exactly the same set of inputs as 7".

The set of states of A4 is Q = Q_-U{qh}. The state transition function of A4, denoted

5, includes all the transitions of 6_r and the following four additional transitions:

 (qo, 0)= (qo, 1) = 0) = 1) = (qh,1,R>

The reader may verify that the resulting Taring Machine .£4 halts on exactly the same

set of inputs as T. We will now construct an economy that mimics the behavior of .Az[
and therefore mimics T.

Our economy consists of n agents, where n denotes the number of states in Q. Each

agent corresponds to a unique state of M. We represent the storage tape of A4 by using

two binary fractions a, and b,. Let go be the symbol which the tape head is currently

scanning.

Let gl,g2,g3, ... be the successive symbols on the left of go, and ho, hl,h2,.., be the

successive symbols on the right of go. This is shown in figure 2. Then, we can represent

the storage tape by using two numbers a, and b,: 4

(x)

a, = 3"_ (I)

h_
b, = _ 3-WT (2)

i=0

Turing Machine moves can be divided into two cases, left moves and right moves.
Thus we consider two cases of 6:

aThis assumption on F does not reduce the computational power of the Turing Machine.

4We use 3 in the denominator of our expressions for a, and b,. [9] use 2 in the corresponding place.

Tape

Read\Write Head

5 • • •

Finite

Control

Figure 2: Schematic diagram of a Turing Machine with alphabet {0, 1}.

Note that gi, hi E {0, 1}.

Case 1: 5(q,c)= (q',w,L)

Case 2: 5(q,c) = (q',w,R)

Here, q is the current state of M, q_ is the next state of M, c E {0, 1} is the symbol

below the tape head, and w E {0, 1} is the symbol which the tape head writes on the

tape. L represents a left move, and R represents a right move. We now map the state

transition function 5 into the transition operation of an economy as follows:

Case 1: Left move 5(q, c) = (q', w, L). Let ab and bb be the values of a, and b, respectively

after this transition. Then, ab and bb can be written as:

oo g' - 3(a, g3)ab= 3_ 3i+---_ - - (3)
i=1

w 1 _ hi w b,
bb=_+_- 3 '+1 -- 3 +- (4)

i=O 3

Case 2: Right move 5(q, c) = (q', w, R). In this case ab and bb can be written as:

ho w 1 _ g, ho w a, - a
ab= 3- +-9 + 3,=1 33i+---i = -3- + 9 + 3 (5)

6
O0

bb= 3 _ 3i+---'--'-fhi 3(b, ho= - (6)
i=l

In the next few sections we present agents who perform the very transformations

listed above, and then redirect the impulse to the agent corresponding to the new state

of Azi. Thus our economy will simulate the above Turing Machine.

2.3 A Basic Economy

Given the Turing Machine and its encoding, we can construct an economy as follows.

Each state of the Turing Machine's finite control is represented by a unique agent of the

economy. The computation of the Turing Machine is encoded as an impulse that flows

through the economy. At any instant this impulse will reside at exactly one agent. This

agent corresponds to the current state of the finite control of the Turing Machine. 5 The

magnitude of the impulse represents the value of the tape of the Turing Machine.

When an agent receives an impulse, it optimizes its utility function and transmits

a new impulse to one of two s neighbors (see figure 3). The choice of the neighbor to

whom the impulse is transmitted depends on the state transition function of the Turing

Machine as follows. A state transition from a to a r of the given Turing Machine is

encoded by an impulse transmitted by the agent corresponding to a towards the agent

corresponding to a r. The optimization function of each agent is designed to ensure that

the dynamics of the economy mimic the computation of the given Turing Machine.

Since the number of states of the given Turing Machine is finite, the number of agents

in the economy is also finite. The intensity of the received impulse plays an important

role in deciding with whom the receiving agent is going to interact. The process of

reoptimization may result in the absorption or magnification of some of the intensity of

the impulse/

2.4 An Undecidable Economy

We consider the following economy: there are four consumer goods, a, b, c and d, and a

leisure good l. The economy consists of a variety of agents who can consume any or all

of these goods, but can produce either one unit each of a and b, or one unit each of c

and d only. The goods in each production pair are referred to as related goods. Each

agent can buy goods from either a producer of a and b, or from a producer of c and d.

Goods are bought by transforming leisure into labor, at the constant marginal cost of 1.

Figure 3 shows a section of the economy.

SThis statement has a small technical flaw. In Appendix 3 we discuss this flaw and present a

specification for the economy which overcomes this flaw. We have avoided this technical discussion in
this section to make this paper easier to read.

°The problem can be generalized to a problem of choosing among many choices.
7This model is motivated by a discrete-choice making process which results from an impulse. An

example is an agent faced with a finite number of possible actions, of which he must choose one. His
action causes the agent he interacts with to adjust his behavior, and so on.

(_ Endowment: (a,b)

/__:ility: U = U l(a,b,c,d,1)

EtndityW:m_nt: (Ua2_,b,c,d,])__ _d_tymunt--: (uC3_,b,c,d,l)

Figure 3: A section of the economy

Following are the variables used in this analysis.

is = quantity of good i sold to the preceding agent in a period

ib = quantity of good i bought from the subsequent agent in a period

ic = quantity of good i consumed in a period

where i is one of the four consumer goods. The utility function of agent j is of the

general form:
4

Uj = _ K, jic} + l (7)
i=1

where

g,j = (S)

Thus the utility function is continuous and concave in a_, be, cc and de. The parameter

K,j is a function of the quantity of produced goods sold by agent j. We motivate this

by an 'information effect' on an agent's utility function.

Figure 10 in Appendix 2 shows the different values that K_j can take on for producers

of a and b. The corresponding values of Kit for producers of c and d are obtained by

replacing a, with cs, b, with d,, ab with cb, etc.

The constant K_j for any good is a function of i,, where i is the good itself or the

related good. The motivation for is entering K, i is as follows. An agent's marginal utility

for a good depends on how much of the good itself and the related good the agent sold.

We now emphasize some aspects of the economy. Note that all utility functions are

concave (weakly so in the case of leisure) and increasing in their arguments. The economy

has heterogeneous agents, i.e., different agents may have different utility functions. Thus

the economy is consistent with traditional assumptions of economic theory.

We now solvethe optimization problem for one possibletype of a and b producer.

See Appendix 2 for the solutions to the problems for all types of a and b producers. The

solution to the problem for the c and d producer is similar and is left to the reader.

The first case of Appendix 2 is solved below. This case corresponds to the following

transition in the Turing Machine simulation. The value in the tape cell below the tape

head of the Turing Machine is 1. The state transition function of M for the current

state requires the tape head to write a 1 and move to the left.

In this case, the agent chooses to buy a and b. The consumer's problem is:

1 I- 1 4 - 2bs }
Max U = 2(2as)_ag + 0.1c_ + 2(_)½bc + 0.1d_ + I (9)

subject to

ac = 1-a,+ab (10)

bc = 1-b,+bb (11)

cc = cb (12)

d_ = db (13)

The first order conditions for an optimum are:

,-½
(2a,)_ac = 1 (14)

(4

This condition will hold for the two

-2b, ! -½
)_b_ =1 (15)

_!

0.05c_ _ = 1 (16)

_!

0.05d¢ 2 = 1 (17)

goods which were bought: the agent will not be

willing to work for wages beyond this point, because leisure will be more valuable at the

margin. Because of the restriction on choice, the first order conditions will not hold for

the two goods which were not bought.

=If a and b are bought, then a_ = 2a, and ab = 3a, - 1. Similarly, bc b,) and

bb = ½(1 + b,). If c and d were to be bought, then c_ = cb = __Aand de = db= 0.__!12• It can

be checked that the utility from buying cb and db is lower than the utility from buying

ab and bb. Thus a and b are bought and:

ab = 3a.- 1 (18)

l+bs
bb = -_ (19)

3

Recall that in this case the value of the tape cell below the tape head go is 1. It is

easy to verify the the impulse passed on to the next agent, i.e., (ab, b_) corresponds to

the case in which the tape head writes a 1 and then moves left (see Equations 3 and 4).

9

The optimization problemfor the other types of a and b producer and for the c and

d producers can be solved in an analogous manner. A summary of the coefficients kij

for these cases appears in the figure in Appendix 2. Thus we have simulated a Turing

Machine using a simplistic economy consisting of producers and consumers who must

make discrete choices.

2.5 Correspondence between the Turing Machine and the Econ-

omy

In the introduction to this section the stated problem was whether an impulse I(i) reaches

an agent a. We can now relate these elements of the economy to the corresponding

elements of the given Turing Machine A/i.

• The agent a corresponds to qh, the halting state of ,h/t.

• The initial shock to the economy is determined as follows. Let i denote the initial

value of the tape of A/i. Then I(i), the initial shock to the economy is (a,, bs) as

defined in Equations 1 and 2.

In summary, our construction mimics A/[as follows. A/_ halts on input i if and only if

an initial shock I(i) reaches a in C(x).

2.6 The Problem is Recursively Enumerable

In our model economy, the path along which the impulse travels can be partitioned into

agent-to-agent subpaths. Since each subpath is an element of the solution to a simple

problem, the total path can be determined by a rational agent. Thus the problem is in

principle solvable, and a Turing Machine is capable of enumerating all the perturbations

which will ultimately affect a given agent. The problem is thus recursively enumerable.

In the next section we show that the problem is not recursive, i.e., a Turing Machine is

not capable of enumerating all the perturbations that never affect a given agent.

2.7 Undecidability Proof

We have shown our system and its relation to the Turing Machine. By simulating each

state as an agent and routing the impulse between the agents, we can simulate any

Turing Machine. Thus we have:

Theorem 1 The following language is undecidable:

{(I, E, a)[initial impulse I reaches agent a in economy E}

Recall that the Universal Turing Machine can be used to simulate any Turing Machine

on any input. Let u denote the specification of any Universal Turing Machine and let

10

E(u) denote the economythat mimics u. Let c_ denote the agent in E(u) corresponding

to the halting states of u. For any Turing Machine specification x and input i, ¢_ halts

on input i if and only if the initial shock I((x, il) reaches c_ in £(u). Thus there is a

particular finite economy C(u) with a particular agent a for which we can show:

Theorem 2 The following language is undecidable:

{I I initial impulse I reaches agent a in economy $(u)}

We encourage the reader to contrast the statements of Theorems 1 and 2.

11

3 Applications and Limitations

3.1 Applications

In this section we mention a few areas in which the concept of undecidability is applicable.

The areas are trigger problems in macroeconomics, game theory and spectral analysis in

econometrics. For all of these examples, consider the kind of network economy presented

in section 3.

Trigger Problems in a Multi-Sector Economy 8

Consider a node of an economy which releases a significant impulse/2 if it receives

an impulse/1. If the question of whether impulse I1 ever passes through the node

is undecidable, then no economist or agent with rational expectations will know

whether the significant impulse/2 is ever going to be released. In this framework,

our modelling capability and rational expectations are compromised.

Game Theory - a dynamic example

Consider a repeated dynamic game whose extensive form looks like the economy

E_r. Then each node in the tree represents a move by a player. The problem of

whether the game passes through a given node is undecidable.

Spectral Analysis in Time Series Econometrics

In the above economy, the question of whether or not an impulse passes through

a certain node of an economy is undecidable. Thus a time series econometrician

collecting data at that node can never be sure that (s)he has a complete set of

data, because (s)he will never know when to stop collecting data.

The above examples are a small subset of the conceivable range of undecidable prob-

lems.

3.2 Limitations

It is important to recognize the limitations of this result. A number of traditional

problems are decidable. Examples are certain problems involving homogeneous agents,

convergent infinite sequences and finite time horizons. These problems can be solved by

a suitably encoded Turing Machine. To the extent that economists are satisfied with the

realism of such problems, the issue of undecidability is not important. However, should

economists try to model the world as it actually is, in terms of a network of interacting

sectors or agents making discrete choices, the issue of undecidability must certainly play

a role in their concept of knowledge in economies.

SModels which attempt to closely mimic macroeconomic reality, such as Competitive General Equi-

librium (CGE) models, are also the types of models which are most susceptible to the problem of
undecidability.

12

4 Conclusion

In this paper we have shown that certain problems in economics are undecidable. This

provides a formal basis for challenging the validity of the rational expectations hypothesis

in the context of such economies. The argument is that there are facts which follow from

and only from an agent's information which the agent cannot compute. Philosophically,

undecidability illuminates a problem for economists: there are fragments of economics

about which it may not be possible to reason.

13

Appendix 1

In section 2 we showed that the execution of any given Turing Machine can be mimicked

by the corresponding economy. In this appendix we illustrate a minor technical flaw in

our construction and show how it can be corrected. We first illustrate the flaw with an

example.

Suppose q, qo and ql are states of the given Turing Machine such that 5(q, 1) =

(ql, x, y) for some x and y, and 5(q, 0) = (q0, x', y') for some x' and y'. Then the economy

has three agents a, al and a0 that correspond to the states q, ql and q0 respectively.

Our construction requires al to be a producer of a and b, and a0 to be a producer of c

and d.

Further suppose that q' is another state of the given Turing Machine such that

5(q',0) = (ql, x,Y) for some x and y. Our construction requires al to be producer

of c and d. In this situation our construction fails. Figure 4 shows the flawed economy.

(
q
)a,b (

)c,d (

_

c,d

) a,b or c,d ? '_

% ql
a,b

Figure 4: A construction of the economy showing the technical flaw.

We overcome this problem by converting the Turing Machine

7= qa,

into the modified Turing Machine

7"= (Q',r,_L,2,lf',(qo, O),(qa, O),(q_,O))

as follows:

. QI = Q x {0, 1}. In other words, every state q of A4 is represented by two states

of A41: (q, 0) and (q, 1).

14

• 5_ mimics 5 as follows. Let q be any state of .hA. Suppose that A4 changes state

from q to q_ upon reading i, i.e., 5(q,i) = (q',x, yt for some x and y. Then

5'((q,O},i) =5'((q, 1},i)= ((q_,i},x,y}.

• To correctly address the halting condition, we also add the following transitions:

_'((qo,1),o)=5'((qo,1/,1)= ((qo,o/,1,RI

5'((q_, 1>,0) = 5'((q_, 1>, 1) = ((q,,0>, 1,R}

q q'

% %

Figure 5: A construction of the economy used to overcome the technical flaw.

Figure 5 is a visual representation of the above construction. It is easy to verify that

L(AW) = L(.M) and that our construction works correctly with .M'. In summary, given

any arbitrary Turing Machine A/_, we first modify it into another Turing Machine .h4' as

described in this appendix and then convert .M' into an economy using the techniques

of section 2.

--7

18

• i..=1

II

<

I I

4- ÷

0
0

I

°_
0

.0 -_1_' "_1_ ,_1_' ,_1_.,_1_._1_'_,_1_. ,-_1_

:_ AI AI AI AI V V V V

[D

<

II}

_S

o

{12

o

o

o

{.}

_o

(12

C_

[/]
©

o

II

O'}

o

©

o

{D

{1.}

{%}

{12

{12

{D

{]2

o

"----1

_6

16

Appendix 3

Optimization for the Recursion Theorist 9

An Economy

An economy consists of a set of people or groups of people, referred to as agents, that

produce, trade and consume goods. The endowment of an agent at any time is the set

of goods produced or acquired by that agent prior to that time and currently within its

possession. For example, the endowment of a farmer today may be 100 tons of rice, the

endowment of an investor may be twenty shares in Imperial Chemical Industries etc.

Each agent in the economy consumes goods to satisfy its needs or to derive pleasure.

By consuming different mixes of goods, an agent derives different amounts of utility. For

example, consuming 1 apple and 1 orange might yield a different utility from consuming

2 apples and 1 banana. The utility of an agent is quantitatively captured by a utility

.function. Each agent tries to maximize its utility function. Note that (1) different agents

may have different utility functions and (2) the utility function of any given agent may

be affected by the past behavior of that agent and by the behavior of other agents.

Utility Maximization

In practice, economists assume that utility functions are concave, l° This captures the

observation that in most cases, every additional unit of a good consumed gives less

additional pleasure.

In order to maximize their utility function, agents may trade a part of their endow-

ment with each other. For example, consider an economy in which there are two agents

A and O. A is an apple farmer whose endowment is 10 apples and O is an orange farmer

whose endowment is 10 oranges. A's utility function UA is

UA(a,o) = 2a½ + o½

and O's utility function Uo is

Uo(a, o) = 2a_ + 3o_

If A and O do not trade, A's utility will be UA(10, 0) = 2V_ _ 6.3. Similarly, O's

utility will be approximately 9.5. Suppose A and O agree to trade 1 apple for 1 orange,

A's utility will be UA(9, 1) = 7 and O's utility will be Uo(9, 1) = ll--both benefit from

the transaction. In fact, A would be even happier if (s)he could trade 2 apples for 2

oranges. 11 In order to determine when A will be happiest, we need to solve the following

constrained optimization problem for a and o:

9111] provides a thorough treatment of this subject.
1°This convenient assumption has never been proved, and is not always validated by observed behavior.
11To keep things simple in this example, we assume that 1 apple is always traded for exactly 1 orange.

17

1 1

MaxUn(a, o) = 2a_ + o_

subject to

known as the budget constraint and

a+o= 10,

a>_O,o>_O

known as nonnegativity constraints.

Using the method of Lagrange, we derive

OUA(a,o) OUA(a,o)
Oa Oo

known as the marginality condition.

The function _ is referred to as the apple farmer's marginal utility of a and

is referred to as the apple farmer's marginal utility of o. In most cases, 12 given a
0o

concave utility function f in n goods gl, g2,.., g_, the maximum utility can be determined

by equating all n marginal utilities of f (i.e., with respect to each of the n goods).

In this paper we consider a finite economy, i.e., one with a finite number of agents.

Each agent has a set of neighbors with whom it can perform transactions. This is indeed

the case in practice, since an agent can only interact with other agents that are "nearby".

In other words, if the physical or temporal distance between two agents is sufficiently

large, they cannot trade with each other.

We assume that time progresses in discrete units. In each time unit, an agent makes

a decision based on its endowment and its utility function, and may participate in a

transaction with one of its neighbors.

We subject this economy to an exogenous shock. An example of an exogenous shock

is an increase in the endowment of an agent. In practice, this may be achieved by reduced

taxation, low-interest loans, an outright grant etc. As economists, we wish to determine

what effect that this action will have on the economy. In particular, we wish to determine

whether an agent A will be affected if an agent B's endowment is increased. In practice,

this ability helps in policy decision making. For example, consider a government that

would like ensure that all its citizens receive at least a subsistence amount of food. One

possible way of achieving this goal would be to provide a subsidy to all farmers in the

economy and hope that some of the benefit in reduced food production "costs" is passed

on to the poor.

Thus the government wants to solve the following problem: if the endowment of the

farming sector is increased, will the poor benefit sufficiently? More generally, we can

study the following abstract problem: if the endowment of an agent A is increased, will

another agent B be affected?

12A common exception is a "corner" solution.

18

We show that in general, this problem is undecidable. Given an arbitrary Turing

Machine "T, we show how to construct an economy Er in which an agent B is affected

by the perturbation if and only if T halts on an empty tape. Technically, this result is

similar to showing that a ray tracing problem is undecidable [9].

19

Appendix 4

Introducing Recursion Theory to Economists

Introduction

In this section, we go over some key concepts in recursion theory. An understanding of

these concepts is necessary for an understanding of the result of this paper. First, we

define some terms necessary for an understanding of recursion theory. Then, as a step

toward understanding the Turing Machine, we present a weaker and simpler computa-

tional device called the Deterministic Finite Automaton. The concept of a Deterministic

Finite Automaton also serves to emphasize the power of the Turing Machine. Finally,

we introduce the Turing Machine and state some fundamental theorems that we will use

to derive our result.

This section summarizes the exposition on Deterministic Finite Automata and Turing

Machines in [5, 6]: we make extensive use of the language and organization of [5, 6].

Basic Definitions

In this section we introduce the economist to Recursion Theory. We provide the defini-

tions of terms used in sections 4 and 4. A more detailed treatment of these concepts is

available in [5].

Definition 1 An alphabet is a finite set of symbols.

For example consider the set of equations in elementary calculus. The alphabet for this

set, denoted _, contains the following symbols:

1. The digits, 0, 1,... 9.

2. The decimal point, ".".

3. A finite set of connectives and operators, +, -, ×, +, ^, =, (,), 0, d, f, lim, 4, sin,

cos, etc.

4. A finite set of variables x, y, etc.

5. A finite set of constants % e, etc.

Clearly, this set of symbols is finite. We use the symbol _ to denote an arbitrary alphabet.

Definition 2 A string over an alphabet F_ is a finite list of symbols belonging to the set

F_.

For example,

dy + dx = x^2 + e^(-x) (20)

is a string over _, the alphabet for the set of equations in elementary calculus.

2O

Definition 3 The concatenation of two strings x and y is denoted by xy.

Definition 4 _]* denotes the set of all strings over the alphabet _.

Definition 5 The length of a string z, denoted Ix I is the number of symbols in x.

For example, the length of the string in Equation 20 is 16.

Clearly not all strings over _, belong to the set of true equations in elementary

calculus. For example consider the following strings:

1. "x(" is not well-formed. It violates the rule that the number of open parentheses

in an equation should equal the number of closed parentheses in an equation.

2. "1 = 2" while well-formed, is false.

Informally, the concept of a language is used to differentiate between "acceptable" and

"unacceptable" elements of _*. Thus the two unacceptable strings above do not belong

to the language of equations in elementary calculus.

Definition 6 A language over _ is a subset of _*.

A decision problem is specified by a set A of all possible inputs and B c_ A of

"acceptable" instances. For example the following is a decision problem: is a specific

sector in an economy affected by a trade shock. The set of inputs is the set of all possible

trade shocks to the economy. The subset of "acceptable" instances is the set of all trade

shocks which affect the specified sector.

Definition 7 A decision problem over E is a function from E* that returns a "yes" or

"no" answer.

Systems, States and Transitions

Intuitively, a system is a set of agents and relations connecting the agents. The state of

a system is a complete, instantaneous description of the system. In particular, the state

of a system provides all relevant information about each agent in the system and the

relations connecting them at the given instant.

Every system, is governed by a set of laws called the state transition function of that

system. The state transition function determines how the state of the system evolves

over time. For simplicity, we assume that the state transitions occur instantaneously.

As an example, we consider the following economy with n agents that trade in a

common market. Each agent a has a utility function Ua which it tries to maximize.

The endowment of a at time t is denoted by Ea(t). At the end of time period t, agent

a selects xa units of one commodity ca from its endowment and exchanges it for other

commodities from other agents. In exchange for ca, agent a acquires a basket of goods,

ba.

The state of this system at time t is an n-tuple (Eal (t), Ea2 (t), ..., Ea. (t)). The state

transition function of this system is the solution of the utility maximization problem for

each agent. Thus if we are given each agent's utility function and the current state of

this system, then we can determine how the system will evolve over time.

21

The Deterministic Finite Automaton

In this section we briefly describe a simple class of computing devices known as Deter-

ministic Finite Automata. We use some of the notation of [5] and [6].

Definition 8 A Deterministic Finite Automaton is a 5-tuple

A4 = (Q,E, 5, qo, A>

where:

1. Q is the finite set of states of A//.

2. E is the finite alphabet of A4.

3. 5 : Q x E _ Q is the state transition function of A/t.

4. q0 E Q is the initial state of A/t.

5. A C Q is the set of accepting states of .£4.

The Deterministic Finite Automaton _4 works as follows. It starts in its initial state,

q0. At each time period, it reads one symbol from its input and changes its state based

on its state transition function. We say that A/t accepts if at the end of its input it is in

an accepting state, i.e., a state in A. Otherwise, we say that Ad rejects. Thus the set of

inputs on which M accepts defines a language on E.

Definition 9 If on input x, A_ accepts, we say .A4 accepts x.

Definition 10 The language of a Deterministic Finite Automaton .A4, denoted L(A,4),

is {x E E*]A4 accepts x}.

Definition 11 A set S C_ E* is called regular if and only if there is a Deterministic

Finite Automaton A/_ such that L(.A4) = S.

An Example

As an example consider AA, a Deterministic Finite Automaton that accepts {x E {a, b)*]x

does not contain the substring aba}. The set of states of Ad is {q0, ql,q2, q3}- The

alphabet of A/t is {a, b}. The initial state of Ad is qo. The set of accepting states of _4 is

{qo, ql, q2}. The state transition function of A/t is given in figure 6. To illustrate how Ad

functions, we show all the state transitions of/_4 when its input is aaabba. See figure 7.

When j_4 reads the last symbol of the input (i.e., a), Ad enters the state ql. A/t accepts

aaabba because q_ is an accepting state of A/t.

As mentioned earlier, Deterministic Finite Automata have limited computing power.

This is illustrated by a theorem known as the pumping lemma. This theorem states that

there is no Deterministic Finite Automaton that accepts certain sets of strings that are

very simple to specify. We next explain the pumping lemma briefly and show that the

set {x[x = a'_b" for some n} is not regular.

State Input
aiD

qo ql qo

ql ql q2

q2 q3 q0

q3 q3 q3

22

Figure 6: State transition function for Deterministic Finite Automaton M

[State [[Input

q0

ql

ql

ql

q2

q0

Symbol Next State

a ql

a q_

a q_

b q2

b qo

a ql

Figure 7: Deterministic Finite Automaton A,t responding to aaabba

The Pumping Lemma

The intuition for the pumping lemma is the following. Consider a Deterministic Finite

Automaton M such that L(.A,t) is infinite. Since]vi consists of a finite set of states, there

exists a sufficiently long string x E L(M) that will force the automaton to repeat at least

one state. Thus x is of the form abc where q, the state of A/t after scanning a, is the state

of M after scanning ab. Since ,£4 cannot tell the difference between two visitations of

the same state, the state of M after scanning abb must be q. Thus the substring between

the two visitations of the repeated state can be inserted into the string before the first

occurrence of the state and the newly constructed string will still be accepted.

This observation can be used to show that the set S = {x[x is of the form a"b"} 13

is not regular, i.e., there is no Deterministic Finite Automaton that accepts precisely

this set. This is proven by contradiction: suppose there exists a Deterministic Finite

Automaton .&4 such that L(M) = S. Take a string of the form a"b"* such that m is

greater than the number of states in M. There must exist x and y, x < y < m such that

the state of M after it scans a *, is the same as the state of M after it scans a y. We

leave it to the reader to verify that M must accept a'+_-Xb _, a string that is clearly

not in S.

13a'_ denotes a string of n consecutive a's. a* denotes a string of any number of consecutive a's.

23

Turing Machines, Computability and UndecidabUity

Introduction

The Turing Machine was invented in 1936 by Alan Turing [14]. It was conceived at a time

when mathematicians were trying to define the concept of computability of functions.

Examples of such efforts are Church's h-calculus [2], Post's Post systems [8], Godel's

#-recursive functions [3], etc. Later mathematicians showed that all of these systems are

computationally equivalent, leading Church to declare that each system captured the

intuitive notion of "computable". This declaration is known as Church's Thesis. Church's

Thesis is widely accepted by Recursion Theorists, and there is no known computable

function that cannot be programmed by a Turing Machine. Recursion Theorists use

the Turing Machine to define computability. Informally, a language L is said to be

computable if and only if there is a Turing Machine that accepts L.

An Informal Description of Turing Machines

In this section, we provide an informal description of Turing Machines. Essentially, a

Turing Machine is a Deterministic Finite Automaton (see page 21) augmented with a

one-way infinite 1 - dimensional tape on which it may read and write values (see figure

8). The tape of the Turing Machine is divided into an infinite number of tape cells, each

of which contains a symbol in F, an alphabet that contains _ and a blank symbol _1__ _.

The Turing Machine accesses the tape via a single tape head. The Turing Machine may

read, write or overwrite a symbol on the tape cell beneath the tape head. A state

transition for a Turing Machine consists of a change in the state of the Deterministic

Finite Automaton associated with the Turing Machine, a command to write a symbol

in the cell below the tape head, and a command to move the tape head one cell to the

left or right. The input to the Turing Machine is a finite string from 2" and is initially

written on the tape in contiguous tape cells (see figure 8). The infinitely many cells on

either side of the input are assigned the blank symbol _l_.

The Turing Machine starts in its initial state q0 with its head scanning the leftmost

symbol of the input. In each step the Turing Machine reads the symbol on the tape cell

beneath its tape head, and depending on that symbol and the current state of the Turing

Machine, it writes a new symbol on that tape cell, moves its tape head either one cell

left or right and enters some new state. The action taken by the Turing Machine in each

situation is determined by its state transition function 5. It accepts its input by entering

a special accept state qa and rejects its input by entering a special reject state qr. The

Turing Machine is said to halt on input x if it either accepts x or rejects x. Note that it

may do neither, by running infinitely on input x without ever accepting or rejecting.

A Formal Description of Turing Machines

Definition 12 A Turing Machine [5] is a 8-tuple

A/[= (Q , r , _L, Y_,5, qo, qa , qr)

Tape

• . a

i
Finite

Read\Write Head

Control

a • •

24

Figure 8: Schematic diagram of a Turing Machine with E = {a, b}.

where:

1. Q is the finite set of states of 2M.

2. F is the set of allowable tape symbols of/t4.

3..J_ is the blank symbol of Ad.

4. _ is the set of input symbols of 3,t. Note that _ c_ F - {_1_}.14

5. 8: Q x I" _ Q × F x (L, R} is the state transition function of Ad.

6. q0 E Q is the initial state of .M.

7. qa E Q is the accepting state of Ad.

8. q_ E Q is the rejecting state of A//.

Figure 8 is a schematic diagram of a Turing Machine. Q and qo for a Turing Machine are

the same as Q and qo for the Deterministic Finite Automaton of the Turing Machine.

The input to the Turing Machine is in N* for some alphabet Z. Each tape cell contains

one symbol from a set I', a superset of P_ that contains .l_, the special blank symbol. The

state transition function of the Turing Machine now returns a triple rather than just the

14In some cases, _ is a proper subset of r - {2.}. In our example in figure 9, r = l_ u {2., &}.

25

state of the Deterministic Finite Automaton of the Turing Machine. As before,_(q,a)

describes the actions of the Turing Machine when it is in state q and the tape cell below

its tape head contains the value a. If 6(q, a) = (q_, a', d), then the operation of the Turing

Machine is as follows.

1. The Turing Machine writes a' on the tape cell below its head.

2. The Turing Machine moves the tape head in direction d (either left, denoted L or

right, denoted R).

3. The Turing Machine enters state q'.

In addition, once the machine enters the accept q_ or the reject state q_, its execution

halts. If it halts in qa, we say that it accepts. If it halts in q_, we say that it rejects.

Definition 13 If on input x, .M accepts, we say ,44 accepts x.

Definition 14 If on input x, M rejects, we say .M rejects x.

Definition 15 The language of a Turing Machine .M, denoted L(.M), is {x E _*I.M

accepts x } .

An Example

As an example, consider M, a Turing Machine that accepts the set {a'_b'_c'_ln > 0}. Z,

the set of input symbols of M is {a, b, c}. The blank symbol of .M is _1_. Apart from _1_

and the symbols in _, F contains the symbol & called the erased symbol. Thus the set

of allowable tape symbols of M is {a, b, c, .1_,&).

Informally, .M repeats the following procedure as often as possible:

1. If there does not exist at least one each of a, b and c, then M stops and decides.

2. If there exists at least one each of a, b and c, the head goes from left to right over

the input, erasing the first a, the first b and the first c.

3. The head goes back to the beginning of the input.

At the end, if there is any symbol in {a, b, c} left, then clearly the string is not of the

form a'_b'_c n. Also note that care is taken to avoid strings of the form abaccb, i.e., strings

with an equal number of a's, b's and c's but not of the form a*b*c*. The state transition

function of M is given in figure 9.

Note that the above set is not regular. That is, we can use the pumping lemma to show

that there is no Deterministic Finite Automaton that will accept this set. The reader is

encouraged to verify that .M actually accepts a'_bnc "_ by trying out a few examples.

26

a

[___ql, &, R)

(q6, a,R)

(qo,a,R)

_ (q4, a, L)

b c £ &

(qs, b, R) (q6, c, R) (qo, &, R)

(q2,&,R)

(q2, b, R)

(q6, b, R)

(q4, b, L)

(q6, c, R)

(q3,&,R)

(q3, c, R)

(qa, c, L)

±,R)
-(q6, ±, R)

(q6, ±, R)

<qo,±,a>
This is the accept state

This is the reject state

(ql, &, R)

(q4,&,L)

Figure 9: State transition function for Turing Machine ,_A

Decision Problems and Recursive Functions

In the previous sections, we saw Turing Machines that check whether a given string is in

a language. A Turing Machine can also be used to compute a function as follows. The

tape of the Turing Machine is initialized to contain the parameters of the function; the

tape head initially scans the leftmost symbol of the input. The output of the function

is taken to be the value written on the tape when the Turing Machine goes into its

accepting state.

Definition 16 A function f is recursive if and only if there is a Turing Machine .hA

such that on every input x in the domain off, ,_4 eventually writes f(x) on its tape and

enters its accepting state.

Given a Turing Machine Ad that computes a function f and a Turing Machine j_i' that

solves a decision problem, we can "concatenate" M and .h/[' as follows. We can construct

a Turing Machine .h/t + that first runs 2P[. When ,_l enters its accepting state, .£4 + runs

M'. Thus .M + accepts {x]f(x) • L(A4')}. More precisely, given

M = (Q,r,±,z,6,qo, qa,q)

and

M' (Q',F, ' ' '-- ±,F_,6 ,qo, qa, q'_)

Assuming for simplicity that Q and Qr are disjoint, we can construct

M+ =)

where

1. Q+=QuQr-{qa, q,}

2. 6+(q,a)= {

8'(q,a)

(q'o,a', d)

if q E Q'

if 5(q,a) = (q',a',d I and q' ¢ qa

if 5(q,a) = (q',a',d) and q_ = qa

3. q_- = qo

4. q+ = q_ and q+ = q'_.

M * M' denotes the concatenation of M and M'.

27

Decidability and Undecidability

Definition 17 A set S C_ _* is called recursively enumerable (abbreviated r.e.) if and

only if there is a Turing Machine M such that L(M) = S.

m

Definition 18 A set S C_ E* is called recursive if both S and S are recursively enumer-

able .15

A property is decidable if there exists a Turing Machine that accepts all strings with that

property and rejects all strings without that property.

Definition 19 A property is decidable if and only if the set of all elements having that

property is recursive.

A property is undecidable if there is no Turing Machine that can determine whether an

arbitrary given string has that property.

Certain properties are undecidable. For example, there is no mechanical procedure

that can be used to tell whether or not a string causes a Turing Machine to halt. In par-

ticular, there is no finite set of axioms and inference rules that can be used to determine

which strings and Turing Machines have this property and which do not.

Note that the terms "recursive" and "recursively enumerable" apply to sets. The

terms "decidable" and "undecidable" apply to properties of elements of sets. By a

slight abuse of terminology, we say that a language is undecidable if there is no Turing

Machine that can determine whether an arbitrary given string belongs to that language.

[4] contains a good intuitive description of the above concepts.

Universal Turing Machines

As we saw earlier, a Turing Machine is specified by an 8-tuple (Q, F, 1, E, 5, q0, q_, q_/.

It is easy to encode this specification so that the only symbols that occur in it are "0"

and "1". Thus the specification of the Turing Machine can be given as a string over the

alphabet {0, 1}.

With this encoding technique in mind, we can view the set of specifications of all

Turing Machines as a language over {0, 1}. That is, each specification of a Turing

Machine corresponds to a unique binary number. The Turing Machine specification

corresponding to the number x is denoted ¢_.

Note that ¢_ is not defined for all x since some numbers do not correspond to a Turing

Machine specification. This is notationally inconvenient. Thus if x does not correspond

ls_ is used to denote the complement of the set S.

28

to a Turing Machine specification, ¢_ is defined (by default) to be the Turing Machine

that accepts 0.

A Universal Turing Machine is a Turing Machine whose language is the set of pairs of

Turing Machines A4 and strings x such that x E L(A//). Intuitively, the Universal Turing

Machine is capable of simulating every Turing Machine. More precisely, the alphabet of

a Universal Turing Machine is {0, 1}. The Universal Turing Machine accepts the string

(x, y) if and only if ¢x accepts y. To see the construction of a Universal Turing Machine,

the reader is referred to [5].

Since the Universal Turing Machine is capable of simulating every Turing Machine,

it is capable of simulating itself. The property by which a Turing Machine can simulate

itself is called self reference. This allows us to use a proof technique called diagonalization

to prove that some problems are undecidable.

Diagonalization

We first illustrate the method of diagonalization with what is perhaps its simplest ex-

ample.

Theorem 3 There is an English sentence that is neither true nor false.

PROOF: Consider the sentence:

"This sentence is false."

Let us assume for contradiction that this sentence is either true or false. There are two

cases to consider:

1. The sentence is true. In this case, the sentence is false--a contradiction.

2. The sentence is false. In this case, it is false that the sentence is false, i.e., the

sentence is true--a contradiction. []

Note that the above sentence refers to itself.

The technique of diagonalization was first used by Cantor [4] at the end of the last

century to show that there does not exist a one-to-one correspondence between the

natural numbers N and 2 N, the power set of N, which is defined as follows.

Definition 20 The power set of a set A, denoted 2 A, iS the set of all the subsets of A.

Cantor's argument is as follows: Suppose for a contradiction that there is a one-to-one

and onto function

f :N---, 2 N.

29

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

f(8)

f(9)

1 2 3 4 5 6 7 8 9 ...

1 0 0 1 0 0 1 0 0 ...

1 0 0 1 1 1 0 0 1 ...

0 0 0 0 1 1 0 0 1 ...

0 0 0 0 1 1 1 0 0 ...

1 1 1 1 1 1 1 0 0 ...

0 1 1 1 1 0 1 0 1 ...

0 1 0 1 0 1 0 1 0 ...

1 0 1 0 1 0 1 0 1 ...

1 0 1 0 0 1 1 0 1 ...

: : : : : : : : : "..

Figure 10: An example of M showing the relationship between N and 2 N.

We can build the following infinite two-dimensional matrix, M:

1 ifj•f(i)M_,j = 0 if j f_ f(i)

In other words, each row of M represents a different function. The 1st row denotes f(1),

the second row denotes f(2), and so on. For example, figure 10 represents one possible

matrix M. f(1) = {1,4,7,...}, f(2)= {1,4,5,6,9,...), and soon. By our assumption

that f is onto, every subset of N appears as a row of the matrix.

Now we will use diagonalization to derive a contradiction. Construct the complement

of the infinite string down the main diagonal of the matrix by switching the l's in it to

O's and the O's to l's. In other words, construct S C N as follows:

i • S if and only if M_,i = 0 (i.e., i ¢ f(i))

The set S for the matrix M in figure 10 is {2, 3, 4, 6, 7, 8,...}. Since f is one-to-one

onto and S C N, there must be a number i such that f(i) = S. There are two cases to

consider:

1. i • f(i). In this case, Mi,i = 1. Hence i ¢ S. Since f(i) = S, we have a

contradiction.

2. i _ f(i). In this case, Mi,i = 0. Hence i • S. Since f(i) = S, we have a

contradiction.

Note that this argument can applied to a wide variety of sets other than N. A similar

argument was also used in "Russell's paradox" [4].

30

Undecidability of the Halting Problem

Cantor's simple cardinality argument allows us to prove the existence of undecidable

decision problems. Informally, the proof is as follows: there are uncountably many

languages over {0, 1}* but only countably many Turing Machines. Thus there must exist

many languages that are not accepted by any Turing Machine.

In this section, we prove the undecidability of one such problem, known as the Halting

Problem and denoted H [5]. Informally, H is stated as follows: given a Turing Machine

specification i and a string x, does ¢, halt on x? More formally H is the language defined

as follows:

H= {(i, xll@(x) halts}

Theorem 4 The halting problem is undecidable.

PROOF: Suppose for a contradiction that there is a Turing Machine specification h such

that Ch accepts (i, x) if ¢, halts on x and Ch rejects (i, x / otherwise. Ch can be represented

as the following infinite two-dimensional matrix:

accepts if ¢, halts on jCh(i,j) rejects if ¢i does not halt on j

Now we will use diagonalization to derive a contradiction. Consider the following
function dbI defined as follows:

dbZ()=

dblis a recursive function. Let h' = (Q, F, .l_, 2, 5, q0, qa, q_) represent the specification

of the Turing Machine dbl. Ch. Then Ch, behaves as follows:

accepts if ¢i halts on iCh,(i) rejects if ¢_ does not halt on i

Note that Ch, corresponds to the diagonal of the two-dimensional matrix representing

Ch. We can construct a Turing Machine specification h + based on the specification h' as

follows. Add a new state qn and replace all transitions to qa with transitions to qn. Thus

Ch, and Ch+ behave identically except when Ch, enters q_, Ch+ enters q,,. More formally,

we construct h + = (Q+, F, _1_,_, 6 +, qo, q_, q_) as follows:

1. Q+ = Q u q_, where q. is a new state not in Q

2. 5+(q,a)= {

<ql, a', d)

(qn, a',d)

(qn, a,R)

if tf(q,a) = (q',a',d),q' ¢ qa and q # q,_

if 6(q,a) = (qa, a',d) and q # %

if q= qn

It is easy to verify the following facts:

31
In• h + is the specification of a Turing Machine that does not accept any strings.

other words, L(¢h+) = 0.

• If ¢h' rejects string x, then ¢h+ also rejects x.

• If ¢h' accepts string x, then ¢h+ does not halt on x. In fact ¢_+ enters state q,_ and

never leaves that state.

Intuitively ¢h+ halts on x if and only if ¢x does not halt on x. Let us now consider what

happens when we run ¢h+ with h + as input. There are two cases to consider:

1. ¢h+ halts on h +. In this case, ¢_+ does not halt on h+--a contradiction.

2. ¢h+ does not halt on h +. In this case, ¢h+ halts on h+--a contradiction.

We conclude from the above argument that H is not recursive. []

In other words, there does not exist a Turing Machine that can determine in a finite

amount of time whether any given Turing Machine 2_4 halts on an arbitrary given input

X.

Reducibility: A Tool to Prove Undecidability

In this section we introduce reducibility, a relation that allows us to compare degrees

of difficulty of solving problems. Using reducibility, it is possible to show that many

problems are at least as hard to solve as the Halting Problem. Since we know that the

Halting Problem is undecidable, it follows that all these problems are also undecidable.

We now define reducibility.

Definition 21 Let L1 and L2 be any two languages over some finite alphabet E. We

say that L1 is Turing reducible to L2, written L1 <T L2 if and only i/there is a recursive__

.function F : E* --_ E* that maps elements of L1 to elements of L2 and elements of L1 to

elements of L2.

In other words, there is a Turing Machine M with the following properties. If the input

to to[is an element of L1, A/I writes an element of L2 on its tape before halting. If the

input to A/[is an element of L--_, .&4 writes an element of L2 on its tape before halting.

Note that several types of reducibility have been studied in the literature. For this paper,

however, we will only be concerned with Turing reducibility. For the rest of this paper,

we use the term "reducibility" to denote Turing reducibility. We can prove the following

theorem about the halting problem H:

Theorem 5 For any language £, if H <T _, then £ is not recursive.

PROOF: Suppose for a contradiction that £ is recursive; there must be a Turing Machine

A4 that halts on every input, such that L(.M) = £. Further, since H is reducible to £,

there is a Turing Machine A_I' with the following properties. If the input to .hA' is an

32

elementof H, M r eventually writes an element of _: on its tape and halts. If the input

to .M r is an element of H, .Mr eventually writes an element of £: on its tape and halts.

Consider the Turing Machine .M+ = M r • .M. We will show that .M+ halts on every

input and L(.M +) = H. Since the halting problem is undecidable, this immediately gives

us a contradiction. There are two cases to consider:

.

o

The input to M + is an element of H. In this case, M + works as follows. First M'

runs until completion. Since the input to .M_ is an element of H, .Mr writes x, an

element of £: on its tape and halts. Next .M runs until completion. Since x, the

input to .M, is an element of/: and L(.M) = Z:, .M accepts. Thus M + accepts.

The input to .M+ is an element of H. In this case, .M+ works as follows. First

.Mr runs until completion. Since the input to .Mr is an element of H, .M_ writes

x, an element of £ on its tape and halts. Next .M runs until completion. Since x,

the input to .M, is an element of Z and .M halts on every input, .M rejects. Thus

.M+ rejects.

We have shown that .Mr halts on every input and that L(.M r) = H, giving the desired

contradiction. []

In section 2 we will define a problem 7" in a finite economy and show that the Halting

Problem is reducible to 7'. From Theorem 5, it follows that 7" is undecidable.

On the Robustness of the Turing Machine model

Even though the Turing Machine model appears to be simple, it is very powerful. In

this subsection we mention a few of the enhancements of the Turing Machine model that

do not increase its power. We hope that this gives the reader some intuition for the

robustness of the Turing Machine model:

Two-way infinite tapes: The Turing Machine model presented in this paper assumes

that the tape is infinite in only one direction. With this enhancement, we allow

the tape to be infinite in both directions.

Multiple tapes: With this enhancement, the Turing Machine is allowed to have sev-

eral tapes, each of which has its own tape head. Each tape can be controlled

independently.

Multiple tape heads: With this enhancement, the Turing Machine is allowed to have

many tape heads on each tape. This allows the Turing Machine to read different

cells of the tape simultaneously. Each tape head can be controlled independently.

Multi-dimensional tapes: The Turing Machine model presented in this paper assumes

that the tape is 1-dimensional. With this enhancement, we allow the tape to be

multi-dimensional and infinite in all dimensions.

33

By introducing non-determinism: The Turing Machine model presented in this pa-

per is completely deterministic, i.e., based on the current state of a Turing Machine

and its state transition function, it is possible to determine the next state of the

Turing Machine. There are several ways to bypass this restriction. One obvious

way is to allow the Turing Machine to toss a coin at each step and make its tran-

sition based on (1) its current state, (2) the value in the tape cell below its tape

head and (3) the result of the coin toss. Other ways of eliminating determinism
such as non-determinism and alternation have also been considered. For a detailed

description, the reader is referred to [5].

None of the enhancements mentioned above increase the power of the Turing Machine

model. Furthermore, even if we apply a combination of these enhancements, the com-

puting power of the Turing Machine model remains unchanged. More precisely, given

any Turing Machine A4 that uses some or all of the enhancements mentioned above,

there exists a Turing Machine A4' without any enhancements such that (a) A4' accepts

if and only if .M accepts, (b) A/I t rejects if and only if A4 rejects and (c) AA' neither

accepts nor rejects if and only if A4 neither accepts nor rejects. The proof of this fact is

beyond the scope of this paper: for this, the reader is referred to [5].

Acknowledgments

34

We would like to thank Karl Shell for his valuable advice and comments on the result.

We would like to thank Mike Reiter, Sonal Deshpande and Nish Shah for their useful

comments on previous drafts of this paper and James Grosjean for his thorough read-

ing and revealing comments. Siddharth thanks John Curran, Mark Fisher and James

Grosjean for expanding the bounds of his rationality.

References
35

[1]

[2]

Ken Binmore. Debayesing game theory, June 1991. Lecture for the International

Conference on Game Theory, Florence.

A. Church. An unsolvable problem of elementary number theory. American Journal

of Mathematics, 58:345-363, 1936.

[3] Kurt GSdel. On Formally Undecidable Propositions. Basic Books, New York, NY,

1962.

[4] Douglas R. Hofstadter. GSdel, Escher, Bach: An Eternal Golden Braid. Random

House, Inc., New York, NY, 1989.

[5] J. Hopcroff and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, 1979.

[6] Dexter Kozen. Lecture notes for introduction to theory of computation. Lecture

notes for Cornell University course CS381, 1992.

[7] Robert E. Lucas Jr. On the mechanics of economic development. Journal of Mon-

etary Economics, 22, 1988.

[8] E. Post. Finite combinatory processes -- formulation, I. Journal of Symbolic Logic,

1, 1936.

[9] John H. Reif, J.D. Tygar, and Akitoshi Yoshida. The computability and complexity

of optical beam tracing. In Proceedings of the Thirty-first Symposium on Founda-

tions of Computer Science, pages 106-114, June 1990.

[10] Thomas J. Sargent. Dynamic Macroeconomic Theory. Harvard University Press,

Cambridge MA, 1987.

[11] Eugene Silberberg. The structure of economics : a mathematical analysis. McGraw-

Hill, 1978.

[12] Stephen E. Spear. Learning rational expectations under computability constraints.

Econometrica, 57(4):889-910, 1989.

[13] Robert Townsend. Models of money with spatially separated agents. In J.H. Kareken

and Neil Wallace, editors, Models of Monetary Economies, pages 265-304. Federal

Reserve Bank of Minneapolis, Minneapolis, 1980.

[14] A.M. Turing. On computable numbers with an application to the Entscheidungs-

problem. Proceedings of the London Math. Society, 2, 1936.

[15] Neil Wallace. Models of Overlapping Generations: An Exposition. University of

Minnesota, Minneapolis MN, 1978.

36

[16] Henry Y. Wan (Jr.). The new classicaleconomics--a game-theoreticcritique. In
GeorgeR Feiwel,editor, Issues in contemporary macroeconomics and distribution,

page 237. State University of New York Press, Albany, 1985.

