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TECHNICAL MEMORANDUM
TSS TETHER CABLE METEOROID/ORBITAL DEBRIS DAMAGE ANALYSIS
I. INTRODUCTION

This report summarizes the damage analyses performed on the tether cable of the tethered
satellite system (TSS) for the damage that could be caused by a meteoroid or orbital debris impact.
The TSS consists of a tethered satellite deployer and a tethered satellite. The analytical studies
were performed at Marshall Space Flight Center (MSFC) with the results from the following tests:
(1) hypervelocity impact tests to determine the “critical” meteoroid particle diameter, i.e., the
maximum size of a meteoroid particle which can impact the tether cable without causing “failure”;
(2) electrical continuity tests on the damaged and undamaged tether cable to see whether a degra-
dation of current flow occurred through the damaged tether cable; and (3) tensile load tests to verify
the load carrying capability of the damaged tether cables. To aid in the analysis efforts, the HULL
hydrodynamic computer code was used to simulate the hypervelocity impact of the tether cable by
particles at velocities higher than can be tested to determine the extent of the expected tether
damage.

II. BACKGROUND

The TSS is a joint project with the Italian Space Agency, the Agenzia Spaziale Italiana
(ASI). Tt was developed to be a reusable orbital flight facility for a wide variety of scientific investi-
gations in low-Earth orbit (LEO). The TSS will be used to checkout, deploy, maintain, and retrieve
scientific payloads away from or toward the Earth from the space shuttle on either a conducting or
nonconducting tether. The TSS is capable of deploying a satellite using a conducting tether for elec-
trodynamic missions to a distance of not less than 20 km above the orbiter (away from the Earth)
with the shuttle operating in a nominal 297-km circular orbit. For atmospheric/geodynamic missions,
the TSS is capable of deploying a satellite using a nonconducting tether to a distance of not less than
100 km below the orbiter (toward the Earth) with the shuttle operating at a nominal 230-km circular
orbit. For the nominal TSS mission, a duration of 38 h is subject to the limitations of the satellite
electrical energy and operational profile selected. The first mission for the TSS, called TSS-1, was
launched in July 1992, and was an electrodynamic mission. A series of TSS missions are planned
throughout the 1990’s.

III. EVALUATION OF PREVIOUS TSS-1 METEOROID IMPACT ANALYSES

A major concern with the tether was the effect of the meteoroid and orbital debris environ-
ment definitions on its survivability. The previous analyses used median material densities as 0.5
g/cm? for meteoroids and 2.5 g/cm3 for orbital debris. The most common practice accepted by the
space station program for the meteoroid and orbital debris damage analysis uses the constant



densities 0.5 g/cm3 for meteoroids and 2.8 g/cm3 for orbital debris. These values are used in this
report for the TSS meteoroid and orbital debris damage analysis.

In addition to difference in environment definitions, previous analyses may not have
accounted for effects of the gravitational defocusing and body shielding factors for the meteoroid
environment. The space shuttle, tether, and satellite altitudes are necessary to determine these
factors and may not have been defined until recently. The gravitational defocusing and body shielding
factors are calculated by using the following equations:!

Gravitational defocusing factor, Gg = 0.568+0.432 (E,E—) ,

where
Rg = Earth radius (km)
* r = orbit radius (km).
Body shielding factor, & = l—f-%os—e ,
where )
sin 6 = 2R~

R = Earth radius (km)
H = altitude above surface (km).

These factors affect the meteoroid flux, i.e., the number of meteoroid particles expected to impact a
given area in a given amount of time. These factors are therefore very important for accurate

analyses.

Previous analyses used data from hypervelocity impact tests? 3 performed several years ago
and determined the “critical” meteoroid particle diameter to be 0.04 cm. Since these tests did not
use the actual tether cable as the target, the calculation of the “critical” particle may have been
affected. The “critical” particle is defined as the meteoroid particle diameter, velocity, and average
density which results in damage that will cause 50 percent loss of the tether cable strength.
Analyses were performed by MSFC to determine the probability of mission failure, with the updated
meteoroid environment, to compare to previous results. Another possible “critical” failure not yet
considered was the degradation of the tether cable that may cause loss of mission due to loss of
current flow resulting in little or no scientific data obtained. :

To begin the MSFC comparison, the final configuration of the tether cable was obtained
(fig. 1). To check the previously estimated 0.04-cm “critical” particle, this meteoroid particle diame-
ter was analytically tested to see if it would penetrate through the Nomex braided jacket and Kevlar
strength member to damage the insulation of the tether cable without losing half of the tether cable
strength (fig. 2). The combined density for the Nomex braided jacket and Kevlar strength member
was estimated as 1.403 g/cm3 with a total thickness of 0.05 cm. An empirically developed penetra-

tion equation for a “thick plate” was used to determine the penetration depth of the 0.04-cm particle
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into the tether cable. This penetration equation, shown below, assumes the penetration depth would
be less than half of the total target thickness: 4

p = Km®32p vt
where
K = a constant for target material
p = depth of penetration (cm)
m = particle mass (g)
p = particle density (g/cm3)
V = impact velocity (km/s).

Table 1 shows the constant, K, for two larget materials. Since material constants are not provided in
the literature for nonmetallic materials, the material constant from the Nomex/Kevlar combined
density (1.403 g/cm3) was estimated as 0.47 by interpolating from these data points (fig. 3).

Next, the number of hours between expected critical impacts and the probability of no mission
loss for meteoroids was calculated using the 0.04-cm diameter “critical” meteoroid particle. A 30-h
exposure time (the lifetime defined for the aeroassist flight experiment) was assumed to be applic-
able for the TSS mission. It was concluded that the 0.04-cm diameter particle would impact the
tether cable every 48 days and would penetrate half of the tether diameter. The probability of no
mission loss from meteoroids only was calculated as 97.43 percent. Any change to the assumptions
made here could dramatically change the final results.

1V. ADDITIONAL METEOROID/ORBITAL DEBRIS ANALYSES
ON TETHER CABLES

The main objective of these analyses was to determine the integrity of the tether cable after
the damage caused by meteoroid or orbital debris impacts. The Kevlar strength member of the tether
is designed to provide 400 1bf (1,780 N) of break load. Also, from IRAD test results,? 3 the damage
from a hypervelocity impact of the 0.04-cm diameter meteoroid particle was estimated to decrease
the tether strength by half, i.e., reduce its capability to 200 Ibf (890 N). The expected maximum
operational load for the TSS-1 is 25 Ibf (111 N), and the nominal operational load is 13 Ibf (58 N).
Thus, it was concluded that the tether cable should meet the design requirements for structural
integrity if impacted by a 0.04-cm diameter meteoroid.

To verify this conclusion, first an analytical and then an experimental determination of the
meteoroid particle which would degrade the tether strength by half was made. The “critical” particle
diameter was determined which would just penetrate through the Nomex braided jacket and Kevlar
strength member thicknesses, and cause possible degradation of the insulation capability. The thick
plate penctration depth equation* was again used to calculate the particle diameters which would
penetrate this depth into the tether cable. The “critical™ particle diameters were calculated for



meteoroids and orbital debris as 0.0348 ¢cm and 0.0244 cm, respectively. Two different particle sizes
were expected, due to differences in the average velocities and average material densities of
meteoroids and orbital debris. Figure 4 shows the expected tether damage caused by these par-
ticles. The overall probability of no mission loss (or no impact of these particle sizes or any larger
ones) was calculated as ~93.68 percent.

The assumption for the material constant, as discussed in the previous section, increases the
uncertainty in the calculated values for the meteoroid and orbital debris particle sizes, but it is the
best estimate currently available. To increase confidence in the analysis, tests to simulate impact of
hypervelocity particles on the actual tether cable were planned and completed.

V. TEST RESULTS FROM HYPERVELOCITY IMPACT, TENSILE LOAD
AND ELECTRICAL RESISTANCE TESTS, AND COMPUTER
CODE SIMULATION RESULTS

A. Hypervelocity Impact Tests

Smce hyperveloc1ty 1mpact tests were never performed usmg the actual tether cable thls .
became the next step in the analysis. This would disprove or verify the MSFC analysis done to this
point. In addition, an analysis for the effects of the manmade orbital debris was needed, and these
tests could conmbute valuable information to complete such an analysis.

At the request of MSFC personnel, hyperveloc1ty impact tests on the tether cable were per-

formed at Johnson Space Center (JSC). Approximately 15 ft (457.20 cm) of tether cable was supplied

by Martin Marietta Corporation, the prime contractor. The cable was cut into 15-in (38.10-cm) long -

samples. Each test article had three cables mounted on a 6-inch (15.24-cm) square frame, to assure
at least one would be impacted by the tiny test particle (fig. 5). Four hypervelocity impact tests were
performed. Pyrex and aluminum spheres were used to model the meteoroid and orbital debris par-
ticles, respectively. Two particle sizes, 1/64-in (0.0397-cm) and 0.0341-cm diameter spheres, which
were the smallest sizes within the facilities launch capability, were used for these tests. These also
happen to be very near the estimated 0.04-cm predicted “critical” particle diameter. MSFC’s
assessment of the tether from the impact tests is shown in table 2 with the test results and
conditions on each tether cable. Figures 6 and 7 are photos of the impacted tethers for tests No.
1951 and 1956. For tests No. 1951 and 1958, the No. 2 cable, located at the middle of the test article,
received the worst damage and lost about a half of the Kevlar strength member due to impact. These
impacts appear to be in dead center of the cables. An interesting side result is that the Kevlar
seemed to turn black from the heat of impact. The right side of the No. 3 cable for test No. 1951,
located on the right side of the test article, was grazed by one half of the sabot used to propel the
particle down the gun barrel (equivalent to approximately 2 mg of nylon). For test No. 1954, the
particle slightly grazed the outer side of the No. 3 cable. Only the Nomex jacket, the outermost layer
of the cable, was damaged. Finally, for test No. 1956, the particle hit the left side of the No. 2 cable,
located at the middle of the test article, causing some damage to the Nomex and Kevlar. Also, one
half of the sabot hit the right side of No. 1 cable, located at the left side of the test article, causmg

extensive damage.
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B. Computer Code Impact Simulations

Current hypervelocity impact test technology limits projectile velocities to below 8 km/s.
Some facilities under development can reach velocities up to 12 km/s, but the projectile shapes and
sizes are random, and costs for operation are too high. To verify impact reactions of the tether at the
higher velocities, the HULL hydrodynamic computer code was used for impact simulation. The HULL
computer code is currently used by the U.S. Army Corps of Engineers through an agreement with
NASA for the Space Station Freedom program to evaluate candidate orbital debris shields. Two
cases were chosen to simulate hypervelocity impacts: one with an 8 km/s aluminum particle for com-
parison with the hypervelocity impact test result, and the other with a 19 km/s ice projectile, the
average meteoroid velocity, to simulate a meteoroid impact. The particle sizes used were 0.0348 cm,
simulating a meteoroid impact and 0.0244 cm simulating a debris impact. The results from these code
runs, shown on figures 10 and 11, show that the meteoroid impact traveling at 19 km/s is less
damaging than the orbital debris impact traveling at 8 km/s. For both cases, at least half of the
Kevlar strength member remains to carry the expected maximum load. These results complement the
previous test results and analyses.

C. Tensile Load Test on Damaged Tether Cables

After the hypervelocity impact tests were completed, tensile load tests were performed for
the damaged tether cables. These tests determined whether the 50-percent loss of the Kevlar
strength member would cause a S0-percent reduction of the tether’s design load. Three tests were
performed and were recorded on high-speed film. The film of these tests is available for viewing from
the authors or from the TSS project office. Table 3 shows the test results. All the damaged tether
cables tested held at least 160-1b tensile load, this was about 40 percent of the design break load
and 640 percent of the expected maximum operational load.

D. Electrical Continuity Tests on Damaged Tether Cables

As an aside, to determine if the current flow through the tether cable would be affected by a
meteoroid or orbital debris impact, electrical continuity tests were performed on the damaged and
undamaged tether cables, before the tensile load tests were performed. The test results are shown
in table 4. It was found that the damaged tether cables did not show any measurable degradation of
current flow compared to the undamaged cables. Thus, it was concluded that the chance of aborting
the mission or losing scientific data from a meteoroid or orbital debris impact causing loss of electri-
cal continuity is insignificant.

VI. RECOMMENDATIONS/CONCLUSIONS

It is extremely important to have the accurate mission information and correct meteoroid and
orbital debris environments for a true representative analysis. Changing the values for these
parameters by a fraction can influence the analysis results dramatically. Variations in the “critical”
particle diameter for both meteoroids and orbital debris will be misleading and result in wrong con-
clusions. It is always recommended to perform the verification tests using the actual configuration of
the flight hardware.



For the tether cable, it was concluded that the tether cable can sustain operation during a
30-h mission, given the nominal environment definitions. A particle larger than the 0.04-cm diameter
meteoroid particle would be required to damage the cable to a break point. This corresponds to a
probability of no encounter of less than 97.43 percent, for meteoroids alone. To be more precise, the
overall probability of no mission failure for the combined meteoroid and orbital debris environments is
~93.68 percent. The series of tests performed indicate that the damaged tether cable can operate
nominally and hold more than the expected maximum operational load without degrading the current
flow. Although this study was not exhaustive, it is believed that the chance of a TSS-1 mission
failure from a meteoroid or orbital debris particle impact is very low.
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METEOROID / DEBRIS PARTICLE

A A
NOMEX BRAIDED JACKET
0.05334 cm

Y

0.03302 cm
(0.013 inches)
1.38 gm/cm3

1.403 gm/cm3 A
KEVLAR STRENGTH MEMBER

.4 4

0.02032 cm
(0.008 inches)
1.44 gm/cm3

INSULATION

COPPER

NOMEX CORE

The “critical” plate thickness which the projectile can penetrate is
assumed as the total thickness of the Nomex Braided Jacket and
the Kevlar Strength Member, i.e. 0.05334 cm.

Figure 2. Assumptions made to predict the “critical” projectile diameter.
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Figure 6. Hypervelocity impact test results for test No. 1951.
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Table 1. A constant, K, and density for different materials.

Constant Density

Material (K) (gm/cm3)
Aluminum alloys 0.42 2.80
Stainless steels 0.25 7.92

NOTE: From “Meteoroid Damage Assessment,” NASA SP-8042),
May 1970, Table III, Constants for Crater Depth in a
Semi-infinite Body (Room Temperature).
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