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COMPOSITE MICROMECHANICAL MODELING USING THE BOUNDARY ELEMENT METHOD

Robert K. Goldberg and Dale A. Hopkins
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

The use of the boundary element method for analyzing composite micromechanical behavior is demon-

strated in this study. Stress-strain, heat conduction, and thermal expansion analyses are conducted using

the boundary element computer code BEST-CMS, and the results obtained are compared to experimental

observations, analytical calculations, and finite element analyses. For each of the analysis types, the

boundary element results agree reasonably well with the results from the other methodologies, with explain-
able discrepancies. Overall, the boundary element method shows promise in providing an alternative method

to analyze composite micromechanical behavior.

INTRODUCTION

In the analysis of composite materials, the behavior at the micromechanical (constituent) scale is often

of interest. Several approaches have been used previously in examining micromechanical behavior. These

include analytical methods, in which simplified models are used to yield closed form equations that
describe effective composite properties, and some micromechanical responses (refs. 1 to 5). Discrete methods

have also been used previously, in which representative volumes of fiber and matrix are modeled directly

and analyzed (see ref. 6 as one of many examples). The finite element method (FEM) and boundary ele-

ment method (BEM) are examples of discrete methods.

The objective of this study is to demonstrate the use of the boundary element method for analyzing

composite micromechanical behavior as an alternative to other approaches. Specifically, composite micro-
mechanical analyses have been conducted for several types of problems, and the boundary element results

have been compared to those obtained from several other methodologies.

BACKGROUND

The boundary element method is a discrete analysis method in which discretized integral equations
are solved over the surface of a domain. This methodology differs from the more familiar finite element

method in which discretized differential equations are solved over the entire volume of a domain. By only

requiring the surfaces of a domain to be discretized, the boundary element method can allow a significant
reduction in the complexity and effort required for modeling.

To model a composite material, the outer surface of the matrix is discretized. To model the fibers,

specially formulated _Insert Elements s (ref. 7) are used. For these insert elements, only the centerline of
the fiber is defined, using nodes and elements, and the fiber radius is defined at each node. Both straight

and curvilinear fibers are permitted. The fiber surfaces and the variation of the field variables in the plane

of the fiber cross section are represented analytically within the boundary element formulation. To calcu-
late the variation of the field variables along the length of the fiber, numerical integration is performed.

By using the boundary element method to model composite materials, efficiency (from a mesh dis-

cretization standpoint) can be significantly increased as compared to the finite element method. This



increase in efficiency is primarily due to the fact that the complexity of d|scretizing the interior of the

domain is eliminated. By reducing the number of nodes and elements needed to model a problem, com-

putational efficiency may also improve. However, due to the fact that commercial finite element codes

are often optimized for a specific computer system, and the boundary element code that was used for this

study is a research code, it is not reasonable at this point to compare computational efficiency.

The BEST-CMS (ref.7) (Boundary Element SolutionTechnology-Composite Modeling System)

computer code was used to conduct the boundary element analysesin thisstudy. The analysiscapabili-

tiesavailablewithinBEST-CMS includeelastostatics,steadystateand transientheat conduction,and

steady stateand transientthermoelastics.Severalother capabilitiesof the code are worth mentioning.

The fiber matrix interface can be idealized as a perfect bond, a linear spring interface, or a nonlinear

spring-Coulomb-friction interface. The matrix material can be defined to have linear elastic or elastic-

plastic constitutive behavior.

There are certain restrictions within the BEST-CMS computer code that should be noted. The analy-

tical integration in the plane of the fiber cross section assumes that the fiber ends are not free surfaces,

and thus exposed fiber ends cannot be represented. This restriction results in thermal and mechanical

loads being transferred through the composite matrix to the end of the fiber. Also, the analytical integra-

tion of the fiber surface assumes that the fiber has a circular cross section. Particularly for angleplied

composites, these restrictions result in the intersection of fibers with the matrix outer surface not being

modeled correctly.

Finally, rigid plane (multi-point constraint) tying boundary conditions are not specifically available

within BEST-CMS. To accommodate this limitation, either uniform displacements must be applied to

nonrestrained faces of a model, or nodal averages of results must be taken over faces of interest in the
computation of effective composite properties. Another consequence o_ this limitation is that for angle-

plied composites appropriate symmetry boundary conditions cannot be applied, and thus various nodal

constraint boundary conditions must be applied in order to set bounds to the results.

MATERIAL SYSTEM

For the analysesin thisstudy,a composite materialsystem composed ofSiC (SCS-6) fiberswith a

fiberdiameter of 145 _m embedded withina titanium (Ti-15V-3Cr-3Sn-3Alor Ti-15-3forshort)matrix

was used. The room temperature materialpropertiesofthe constituentsof the materialare given in tableI

(ref.8). A fibervolume fractionof0.34was used forthe analyses.

Several important assumptions were applied to the material. Unless otherwise specified, residual

stresses due to material processing and cooldown were not considered. In addition, a perfect bond was

assumed between the fiber and matrix. Even though these assumptions do not apply to the actual mate-

rial, the assumptions allowed the analysis to be simplified. In order to ensure that the assumptions

remained valid, only linear deformations were considered, and the material was only loaded to a small

percentage of failure strain. To simplify the thermal analyses, the material properties were assumed not
to vary with temperature, which also is not the case with the actual material.

MODEL GENERATION

To generate the boundary element models forthisstudy,a softwareinterfaceto the commercial

preprocessorPATRAN (ref.9) was developed. This interface,titledCOMGEN-BEM (Composite Model



Generation-Boundary Element Method) (ref. 10), enables the development of composite boundary element

models based on user supplied:

- Fiber volume fraction

- Fiber diameter

- Model thickness

- Mesh density

- Material properties
- Fiber orientation angle

- Loads and boundary conditions

For this study, one-cell square and four-cell square three-dimensional boundary element models were

used (fig. 1). The model thickness was set equal to the width. The four-cell square model was shown to

give more accurate boundary element results, but the one-cell square model was used for cases where

computational efficiency was more important. Eight noded quadrilateral elements are used to model the
matrix outer surface, and three noded line elements are used to model the fiber elements.

It is important to note that the outer surface mesh topology shown in the figures is a mesh of the

matrix only_ not of the fibers. This topology for the matrix mesh was shown to give the most accurate
results. Also, it should again be emphasized that only the outer surface of the composite matrix needed

to be modeled. By representing the fibers with line elements, to model angleply composites the fiber line

elements need only to be rotated. This procedure is much simpler than would be required for f'mite ele-

ment modeling, where complex interior meshing would be required.

STRESS-STRAIN ANALYSES

The first set of analyses involved studying the stress-strain behavior of the SiC/Ti-15-3 material.

A four-cell square model was used, and ply orientations of [0Is, [90Is, [+3012 s, and [=t=451zs were considered.

The original boundary conditions included clamping the back face of the model, applying a uniform tensile
stress to the front face of the model, and calculating the equivalent strain on the front face. Since the

front face, as described before, cannot be defined as a rigid plane, the equivalent strain was calculated by

taking the average of the nodal displacements and dividing that value by the model thickness. The stresses
were applied up to the approximate point where the material behavior became nonlinear for each ply layup.

The boundary element results were compared to experimental results obtained by Lerch and Saltsman

(ref. 8) and, where possible, to results obtained from similar models by the finite element program NASTRAN

(ref 11). First, the results from the stress-strain analyses for each ply layup are presented, followed by a
discussion of the results.

The stress-strain results for the [0Is laminate are shown in figure 2. The BEST-CMS results are

compared to both finite element and experimental results, and the material was loaded to approximately

44 percent of its failure strain. For this ply layup, the boundary element results are within 6.5 percent of

the experimental results at the point of maximum discrepancy, and the finite element results are within

5 percent of the experimental results. Since the material was found to be linear up to a stress level of

900 MPa (ref. 8), the slight break seen in the experimental curve is most likely an experimental artifact.

The stress-strain results for the [90]8 laminate, which was loaded to 11 percent of its failure strain,
are shown in figure 3. The boundary element results are within 1.8 percent of the experimental results,

while the finite element results are within 3.6 percent of the experimental. The break in the experimental

curve is most likely due to the start of fiber/matrix debonding (ref. 8), which the analyses do not capture.



The stress-strainresultsforthe lq-30]2sand the [±4512slaminatesare shown infigures4 and 5,

respectively.The [±3012slaminate was loaded to 20 percentofitsfailurestrainand the [±4512slaminate

was loaded to lessthan 4 percentof itsfailurestrain.Finiteelement resultswere not availablefor these

layups,due to the complexity of developingfiniteelement models forangleplylaminates. The boundary

element resultsforthe [±30]zslaminate were within 17.9percentofthe experimentalresults,and the

boundary element resultsforthe I±4512slaminate were within 10.6percentof the experimentalresults.

To attempt to explainthe discrepancybetween the boundary element resultsand the experimental

results,severalfurtherstudieswere conducted on the boundary element models forthe [0]sand [±3012s
laminates. First,the model was loaded with a cooldown from 700 to 21 °C to account forthe residual

stressesthat were appliedto the actualmaterial(ref.8) while maintainingthe boundary conditionof

clamping the back faceofthe model. As can be seenin figures6 and 7,adding residualstressesalone did

not change the resultsforthe linearrange ofthe stress-straincurve. These resultswere somewhat expected

sincethe experimentalresultswere assumed to have zerostressand zerostrainat the beginningof the

test,thus neglectingany residualstresses.The residualstresseswould probably become more significant

ifthe fiber-matrlxdebondlng behavior was being examined.

To examine the effectsofthe boundary conditions,the nodai constraintboundary conditionwas

changed from clamping the back faceto applyingrollerboundary conditionsto the back, leftand bottom

facesofthe four-cellsquaremodel. The cooldown to apply residualstresseswas alsoappliedto thisproblem.

As can be seen in figures6 and 7,changing the boundary conditionsvariedthe resultsslightlyfor both

ply orientations,thus servingto providebounds on the results,but did not change the accuracy of the

resultsto any significantextent.

Finally,the equivalentstrainresultsforthe clamped boundary conditionwith the thermal cooldown

were examined on an interiorfaceof the model, parallelto the frontface,forboth ply orientations.For

thisset ofexaminations,the boundary element resultsfor the [0]slaminate improved as compared to

theresultsobtainedon the end facefrom within6.5 percentofthe experimentalresultstowithin4.66 percent

of the experimentalresults.For the [±3012slaminate,the boundary element resultsimproved from within

17.9percentof the experimentalresultsto within 11.52percentof the experimentalresults.

The reason forthe improvement in the resultson the interiorfacesismost likelydue to the BEST-

CMS assumption thatthe fiberends are not freesurfaces,thus not allowingexposed fiberends to be repre-

sented. The assumption has two primary effectson the resultson the end face. First,the loadsmust be

transferredthrough the matrix to the end ofthe fiber,which can affectthe end faceresults.Second, the

resultson the end faceare the responseof the matrix materialonly,while on the interiorfacethe response

ofthe fiberismore accuratelyrepresented.The fiberend assumption alsohelpsto explainwhy the boundary

element resultsforthe [018laminate were lessaccuratethan thoseforthe [90]8laminate. Since the load-

ing forthe [90]slaminate isperpendicularto the fibers,the fiberend assumption probably plays a much

lesssignificantroleforthislaminate as compared to the [018laminate.

The [018and [90]slaminate resultstended to be more accuratethan the angleplylaminate results.

The discrepancyof resultsismost likelydue to the BEST-CMS assumption that the fibersmust have a

circularcrosssection,The effectof thisassumption isthat forthe angleplylaminates,the lengthof the

fibermust be cut offsufficientlyfaraway from the outer surfaceof the matrix to assurea circularcross

section.The reductionin fiberlengthcausesa reductionin the effectivefibervolume fraction,thus

affectingthe results.However, the effectoffiber/matrixdebonding stillneeds to be examined, particu-

larlyforthe angleplylaminates. Includingthe debonding behavior willmost likelyimprove the accuracy

of allof the results,particularlyat the higherstrainlevels,where the materialnonlinearitiesbecome

significant.
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HEAT CONDUCTION ANALYSES

The second set of analyses involved examining the heat conduction capabilities of BEST-CMS,

including both steady state and transient heat conduction. For these analyses, the SiC/Ti-15-3 was used
as the base material. However, the constituent properties were assumed to not vary with temperature.

Also, for the steady state heat conduction analyses, the thermal conductivity of the fiber was varied so

that the ratio of fiber to matrix conductivities (Kf/Km) ranged from 2.07 (base material) to 10.

For all of the heat conduction analyses, a unidirectional ply orientation was used. For the steady state

problems, a four-cell square model was used. A one-cell square model was used for the transient problem

in order to reduce the computation time. For the steady state problems, a 100 °C temperature gradient

was imposed first parallel to the fibers (longitudinal case) and then perpendicular to the fibers (transverse

case). The equivalent heat flux was then calculated on the low temperature face. The boundary element
results were then compared to those obtained from NASTRAN finite element results and to results obtained

from the Composite Cylinders analytical model (ref. 4). While experimental results would have been

preferable to use as a baseline as opposed to an analytical model, experimental results were not available

for this problem. For the transient analyses, a 100 °C temperature was applied to the back face of the

model, and the equivalent temperature on the front face of the model was calculated as a function of time.

For the steady state heat conduction analyses, the equivalent heat flux is plotted as a function of the
thermal conductivity ratio for the longitudinal case in figure 8 and for the transverse case in figure 9.

For the longitudinal case, while the finite element results matched the theoretical results exactly, the

boundary element results varied from the theoretical by 0.8 percent when the Kf/K m ratio equaled 2, and

by 21 percent when the Kf/K m ratio equaled 10.

The cause of the discrepancy of the boundary element results, particularly at the higher conductivity

values, is most likely related to the variation of the heat flux within each phase (fiber and matrix) that
each method assumes. The finite element results showed, and the theory assumes, that the flux remains

constant within each constituent, and is independent of the properties of the other constituents. For

example, the flux values were constant within the matrix, and did not vary, even as the fiber conduc-

tivity was changed. The boundary element results, on the other hand, did show that the flux varied within
each constituent and changed based on the changing of fiber properties. The variation within each phase

became more pronounced as the fiber conductivity was increased, which accounts for the greater discrep-

ancy of the results at higher fiber conductivities. Only by studying experimental results, however, can a
true determination be made as to which method gives the most accurate answers.

For the transverse steady state heat conduction problem, the boundary element results were within

7.2 percent of the theoretical results, while the finite element results were within 4 percent of the theoreti-

cal results. The boundary element results were closer to the theoretical results at higher conductivity

ratios than was seen in the longitudinal case. This increase in precision was probably due to the fact that
for the transverse heat conduction, the continuity conditions (temperature and flux must remain constant

across fiber/matrix boundaries) are the same for both the analytical theory and the boundary element
method. This set of continuity conditions forces interaction between the constituents to be taken into

account for all of the analysis methods.

For the transient heat conduction analyses, the equivalent temperature on the front face of the model

is plotted as a function of time in figure 10. As can be seen in this figure, the temperature approaches an

asymptotic value of 100 °C (the original applied temperature) as time is increased. This result is to be

expected, as with no other boundary conditions applied the model should approach a constant steady

state temperature.



THERMAL EXPANSION ANALYSES

The final set of analyses involved examining the thermal expansion behavior of the SiC/Ti-15-3
material system. The material properties of the constituents were assumed not to vary with temperature,

and the fiber volume fraction was varied from 0.25 to 0.34 to 0.45. A one-cell square model with a unidi-

rectional ply orientation was used. The back face of the model was clamped, a 100 °C temperature load

was applied to the entire model, and the equivalent strain was calculated on the front face. The bound-
ary element results were compared to NASTRAN results from equivalent finite element models, and to

analytical results obtained from a rule of mixtures model (ref. 5). Again, while it would have been prefer-

able to have experimental results to use as a baseline to compare the computational results against, due

to the lack of experimental results an analytical model had to be utilized.

The equivalent strain on the front face is plotted as a function of the fiber volume fraction in fig-

ure 11. As can be seen from the figure, while the boundary element results and the finite element results

are within 6.5 percent of each other, there is a significant discrepancy between these results and the theo-

retical results (around 35 percent for the boundary element models).

To explain these discrepancies, the case where the fiber volume fraction was 0.34 was further examined
with additional boundary element analyses. First, the model was lengthened so that the thickness was

equal to twice the model width. The discrepancy in strains was reduced to 17.45 percent as compared to

the theory, which indicates that the original model was not long enough to eliminate the effects of apply-

ing the boundary conditions. By looking at a plane slightly on the interior of the model, the discrepancy

in strains was reduced to 15.89 percent. The cause of the reduction in the discrepancy is probably due to

the fact that the fiber ends in BEST-CMS cannot be free surfaces, as discussed before. Finally, the nodal

constraints were changed for the longer model from clamping the back face to applying rollers to the back,

bottom and left faces. With these boundary conditions, the strain discrepancy was reduced to 10 percent
when the end face strains were examined and to 6 percent when the strains on an interior face were exam-

ined. The roller boundary condition allowed the model to expand freely in all three directions, which

probably is a more accurate representation of the behavior, which yielded the more accurate results.

CONCLUSIONS

The boundary element code BEST-CMS was used to conduct composite micromechanical stress-

strain, heat conduction, and thermal expansion analyses, with the results being compared to those obtained

by alternate methodologies. For the stress-strain analyses, the original boundary element results were at

most within 18 percent of the experimental results. The discrepancies were primarily due to the BEST-

CMS assumptions that the fibers are not free surfaces and must have circular cross sections. For the heat

conduction analyses, the boundary element results were found to differ from theoretical and finite element
results due to BEST-CMS having fewer restrictions on the heat flux variation within a constituent phase.

For the thermal expansion analyses, the boundary conditions and model length were found to have a sig-

nificant effect on how close the boundary element results matched theoretical calculations. Overall, the

specially formulated boundary element methods show promise in providing an alternative approach to

analyzing composite micromechanical behavior.

Several areas of future work besides those mentioned already (applying fiber/matrix debonding to

the stress-strain calculations, etc.) are being undertaken. First, efforts are ongoing to conduct analyses of

woven composite materials. Due to the complex nature of this composite architecture, the advantages of

the boundary element method model generation become even more significant in analyzing these materials.



Also,elastic-plasticmatrix behaviorwill be incorporatedinto the stress-strain models, in order to more

accurately capture the material behavior at high strain levels.
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TABLE I.--MATERIAL PROPERTIES FOR

COMPOSITE CONSTITUENT MATERIALS

Density, kg/m s

Young's modulus, GPa

Poisson's ratio

Conductivity, W/mK

Heat capacity, J/kg K

CTE, 1/QC

SiC TI-15-3

2989.34

393

0.19

16.74

1256.10

2.2×10 -6

4760.81

88

0.32

8.10

502.44

8.1xlO -e
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One cell squaremodel. Fot=rcell square model.

Figure1.--COMGEN-BEM BoundaryElementModels.
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