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ABSTRACT

" In this paper we investigate the effectiveness of a pattern classifying fault detection system
that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes.
For detection, the measurements are monitored on-line and flagged upon the detection of ab-
normalities, so that they can be attributed to a faulty or normal case. As such, the detection
system is composed of two components, a quantization matriz to flag the measurements, and
a mutli-valued influence matriz (MVIM) that represents the behavior of measurements during
normal operation and at fault instances. Both the guantization matriz and influence matriz are
tuned during a training session so as to minimize the error in detection. To demonstrate the
effectiveness of this detection system, it was applied to vibration measurements collected from a
helicopter gearbox during normal operation and at various fault instances. The results indicate
that the MVIM method provides excellent results when the full range of faults effects on the
measurements are included in the training set.






1 INTRODUCTION

Helicopter drive trains are significant contributors to both maintenance cost and flight safety
incidents. Drive trains comprise almost 30% of maintenance costs and 16% of mechanically
related malfunctions that often result in the loss of aircraft (Chin and Danai, 1991). Future
helicopters like the COMANCHE and fixed wing aircraft like the ATF require increased levels
of mission capability that simply cannot be met without advancing the state of the art in
detection, particularly in critical components like the power trains. These detection systems
should be reliable so as to avoid unnecessary emergency landings due to false alarms, and should
be fast to be applicable on-line.

For fault detection of helicopter power trains, either debris sensors (chip detectors) are
used to detect the presence of residues caused by component failures (Collier-March, 1985), or
vibration analysis is employed to identify the presence of any abnormalities that may have been
resulted from a fault (e.g., Braun, 1986; Kaufman, 1975). Although chip detectors are effective
in detecting failures which produce debris, due to their insensitivity to wear-related faults, are
not completely reliable. Vibration analysis, on the other hand, is believed to provide a more
generic basis for fault detection (e.g., Cempel, 1988; Astridge, 1986). As such, considerable
effort has been directed toward the identification of features of vibration that are affected by
specific faults (e.g., Pratt, 1986; Mertaugh, 1986), and the development of signal processing
techniques that can quantify such features through the parameters they estimate. For example,
the crest factor of vibration, which represents the peak-to-rms ratio of vibration, has been shown
to increase with localized faults such as tooth cracks (Braun, 1986). For detection purposes,
the parameter values (measurements) obtained through signal processing are analyzed for any
abnormalities, and flagged once such abnormality is observed. The simplest and most common
method of flagging is thresholding the residuals between individual parameters and their normal-
mode values (Chow and Willsky, 1984).

The fundamental problem with the current method of fault detection is that it is at the



mercy of the flagging operation. Flags can be posted due to noise, causing false alarms, or the
effect of faults may not be identified through flagging, so faults may remain undetected. Neither
false alarms nor undetected faults are acceptable for helicopter fault detection, as false alarms
will result in unnecessary emergency landings, and undetected faults could cause catastrophic
failures.

In order to cope with the uncertainty of flagged measurements, pattern classification tech-
niques have been employed (Pau, 1977). Among the various pattern classifiers used for detection,
artificial neural nets are the most notable due to their nonparametric nature (independence of
the probabilistic structure of the system), and their ability to generate complex decision regions.
However, neural nets generally require extensive training to develop the decision regions (de-
tection model). In cases such as helicopter power trains, where adequate data is usually not
available for training, artificial neural nets are known to also produce false alarms or leave faults
undetected.

The purpose of this paper is to investigate the applicability of the MVIM method (Danai and
Chin, 1991) in helicopter power train fault detection. This method uses nonparametric pattern
classification to estimate its detection model, so like artificial neural nets it is independent of the
probabilistic structure of the system. Furthermore, since this method benefits from an efficient
learning algorithm based on detection error feedback, it can estimate its detection model based
on a small number of measurement-fault data. This method utilizes a two-column multi-valued
influence matriz (MVIM) as its detection model to represent no-fault and fault signatures, and
relies on a simple detection strategy which makes it suitable for on-line detection. The MVIM
method can also assess the significance of individual parameters in detection based on their
influence on the speed of training of the system.

To train and test the MVIM, vibration data reflecting the effect of various helicopter main
rotor transmission faults were obtained from NASA. This vibration data was then processed

through a microcomputer customized for vibration signal processing, so that the obtained pa-



rameters can be utilized to train the MVIM method and test its performance. Detection results
indicate that the MVIM method produces perfect detection when trained with the full range
of fault effects on the parameters, and that it produces better overall detection than a neural
net using error back-propagation learning algorithm trained and tested with the same data sets.
The MVIM method is also utilized to rank the parameters for their significance in detection.
It is shown that through this ranking procedure the optimal subset of parameters for detection
can be selected, which is particularly important in reducing processing time for on-line detection

purposes.

2 EXPERIMENTAL

Vibration data was collected at NASA Lewis Research Center as part of a joint NASA /Navy/Army
Advanced Lubricants Program to reflect the effect of various faults in an OH-58A main rotor
transmission (Lewicki et al., 1992). The configuration of the transmission which was tested in
the NASA 500-hp Helicopter Transmission Test Stand is shown in Fig. 1. The vibration signals
were measured by eight piezoelectric accelerometers (frequency range of up to 10 KHz), and an
FM tape recorder was used to record the signals periodically once every hour, for about one to
two minutes per recording (at the tape speed of 30 in/sec, providing a bandwidth of 20 KHz).
Two chip detectors were also mounted inside the transmission to detect the residues caused by
component failures. The location and orientation of the accelerometers are shown in Fig. 2, and
the schematic of the vibration recording/monitoring system is shown in Fig. 3.

In these experiments, failures occurred naturally. The transmission was run under a constant
load and was disassembled/checked periodically or when one of the chip detectors indicated a
failure. A total of five tests were performed, where each test was run between nine to fifteen
days for approximately four to eight hours a day. Among the eight failures occurred during

these tests (see Table 1), there were three cases of planet bearing failure, three cases of sun
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Figure 1.—Configuration of the OH-58A maln rotor transmission.

gear failure, two cases of top housing cover crack, and one case each of spiral bevel pinion, mast
bearing, and planet gear failure. Insofar as fault detection during these tests, the chip detectors
were reliable in detecting failures in which a significant amount of debris was generated, such
as the planet bearing failures and one sun gear failure. The remaining failures were detected
during routine disassembly and inspection. Vibration monitoring during testing was not used

as a diagnostic tool.

3 SIGNAL PROCESSING

In order to identify the effect of faults on the vibration data, the vibration signals obtained

from the five tests were digitized and processed by a commercially available diagnostic ana-
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Figure 2.—Location of the accelerometers on the test stand.
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Figure 3.-—Schematic of vibration recording/monitoring.

lyzer (Stewart Hughes Limited, 1986). Three processing modules of the analyzer were used:
1) Statistical Analysis (STAT), 2) Bascband Power Spectrum Analysis (BBPS), and 3) Bearing
Analysis (BRGA). For analysis I)UI-'])OSQS, only one data record per day was used for each test.
These data records were taken at the beginning of the day unless a fault was reported, which in
that case, the record taken right before the fault incident was selected to ensure that the data
record reflected the fault. Also, in order to reduce estimation errors, each data record was parti-
tioned into sixteen segments and parameters were estimated for each segment and averaged over -
these segments. The data records as well as the parameters obtained from the above processing
modules were then transferred to a personal computer for further analysis. The schematic of
the data acquisition apparatus and the parameters obtained from each module of the diagnos-
tic analyzer are illustrated in Fig. 4. Note that the objective of this paper is to demonstrate
the MVIM pattern classification scheme, not to develop/verify individual diagnostic algorithms.
The algorithms described in the next subsections were used to determine inputs to the MVIM

method, but may not be optimized for transmission health monitoring.



“ Test # l Number of Days 1 Failures J]

1

9

Sun gear tooth pit
Spiral bevel pinion scoring/heavy wear

o

None

13

Planet bearing #2 inner race spall
Top cover housing crack

Planet bearing #2 inner race spall
Micropitting on mast bearing

15

Planet bearing #3 inner race spall
Sun gear tooth pit

11

Sun gear teeth spalls
Planet gear tooth spall
Top housing cover crack

3.1 Statistical Analysis

Table 1: Faults occurred during the experiments.

It is generally believed that the probability density function (p.d.f.) of the vibration amplitude

is near Gaussian when machinery is healthy, and that its shape changes when a defect appears.

The Statistical Analysis Module of the diagnostic analyzer estimates parameters that would

characterize such change. Among the parameters available from this module, the skewness,

kurtosis, crest factor, and peak-to-peak value of vibration data are reported to be good indicators

of localized defects in rotating machinery (e.g., see Dyer and Stewart, 1978). A brief description

of these parameters is as follows:

¢ Skewness Coefficient. The skewness coefficient represents the symmetry of probability

density function of the vibration amplitude. Since the skewness coefficient of a Gaussian

distribution is zero, any deviations of the skewness coefficient from zero can be due to

failure.

o Kurtosis Value. The kurtosis value, which represents the concentration of heights around

the mean line of the probability density function, is equal to 3 for a Gaussian distribution.

As such, kurtosis values larger than 3 are reported to be indicators of localized defects (Dyer

-



and Stewart, 1978).

e Crest Factor. Similar to the kurtosis value, the crest factor is used to describe the
‘peakness’ of the probability density function (Braun, 1986). However, unlike the kurtosis
value, the crest factor is only a relative measure. Moreover, since the crest factor is more

likely to be affected by a single outlier, it is generally not as robust as the kurtosis value.

o Peak-to-Peak Value. When failures occur, the amplitude of the vibration tends to
increase in both upward and downward directions and thus the peak-to-peak value is

expected to increase.

The above statistical parameters were obtained for the five tests. The results indicate that
none of the parameters provide a good indication of all the faults. For example, the averaged
kurtosis values of the vibration signals from the eight accelerometers are shown in Fig. 5 for the
five tests. The results indicate that the kurtosis value reflects only the fault incident at the end
of Test #5, and that it is not sensitive to the other six fault incidents in the other tests (marked
by asterisks). The significant increase in the kurtosis value at the end of Test #5 is perhaps
caused by the severity of faults in this test (i.e., sun gear teeth spall, planet tooth spall, and top

housing crack).
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Figure 4.—Schematic of the data acquisition apparatus,
as well as the parameters obtained from the diagnostic

analyzer,
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Figure 5.—Averaged kurtosis values for the five tasts from the
Statistical Analysis Module. Faults are indicated by asterisks.

3.2 Baseband Power Spectrum Analysis

Spectrum analysis (or frequency domain analysis) is perhaps the most widely used technique
in vibration signal processing, as failures such as unbalance, misalignment, wear, and roller
bearing spalling produce a clear change in the spectrum (e.g., see Dewell and Mitchell, 1984;
Randall, 1982; Taylor, 1980; Lees and Pandey, 1980). However, in complex machinery where
the background noise masks the basic distress signal, changes in the spectra cannot be easily
distinguished (Pratt, 1986). The Baseband Power Spectrum Analysis Module provides several
parameters that can be associated with the frequencies generated by individual components of

the transmission. The parameters obtained from this module are:

10



¢ Root-Mean-Square. The root-mean-square (RMS) value of the vibration amplitude
represents the overall energy level of vibrations. As such, the RMS value can be used to

detect major changes in the vibration level.

o White Spectrum. The white spectruin (WHT) represents the rms level of the signal
minus its strong tones. Therefore, it denotes the energy level in the base of the spectrum.
Since certain failures, like wear, do not seem to increase the strong tones created by shaft
rotation and gear mesh, the energy in the base of the spectrum could potentially be a

powerful detection parameter for wear-related failures.

¢ Rice Frequency. The rice frequency (RFR) denotes the position of the ‘center of gravity’
of the spectrum. Therefore, it can reflect any major changes in the shape of the spectrum

“that may have been caused by faults.

o Comparison Analysis. Failures in rotating machinery tend to increase spectral lev-
els. The Comparison Analysis Function provides several statistical parameters about the
spectral ratio between the current spectrum and a baseline spectrum. The baseline spec-
trum could either be the spectrumn of vibration at the beginning of the test (TEQ) or the
spectrum of vibration from the previous record (TM1). Among the statistical parameters
obtained from this function, TEO-G and TEO-P, which denote the energy level (rms)
and the mean value, respectively, of the spectral ratio with respect to the first spectrum,
and TM1-G and TMI-P, which represent the energy level (rms) and the mean value, re-
spectively, of the spectral ratio with respect to the preceding spectrum, are particularly

effective in representing differences between the current and the baseline spectrum.

s Metacepstral Analysis. The Metacepstrum Analysis Function is used to detect the
periodic features of the vibration signal (Lyon and Ordubadi, 1982; Childers et al., 1977).
The parameters obtained from this function are measures of the energy level at a given

frequency and its harmonics. The two frequencies selected for this analysis were the

11



toothmeshing frequency of the spiral bevel mesh (1911 Hz) and the toothmeshing frequency
of the planetary mesh (572 Hz). The parameters calculated for these two frequencies are

represented as CEP(1911) and CEP(572).

e Tone Analysis. The energy level associated with a particular tone within a spectrum
is also a good indicator of faults. Various faults like unbalance and misalignment tend
to increase the tone energy. The two parameters TON(1911) and TON(572) obtained for

this analysis represent the tone energies at 1911 Hz and 572 Hz, respectively.

The above parameters from the Baseband Power Spectrum Analysis Module were computed
for the five tests. The results indicate that although some of these parameters are good indicators
of specific faults, they are also prone to false alarms. For example, the averaged TM1-G values
of the vibration signals, from the eight accelerometers, obtained for the five tests are shown in
Fig. 6. The results indicate that while this parameter is sensitive to one of the faults in Test #3
(i.e., the first fault caused by planet bearing inner race spall), it also contains a spike on day 5

of Test #1 which could result in a false alarm.

3.3 Bearing Analysis

The vibration energy of bearing elements is usually lower than those produced by gears, shafts,
and sometimes noise. As such, bearing faults cannot be readily detected through abnormalities
in the bearing tone. However, since bearing faults such as spalling produce time domain impulses
which modulate the bearing shaft frequency over a wide range of frequencies, there are features
of high frequency vibration that would reflect such bearing faults (Mathew and Alfredson, 1984;
Braun and Datner, 1979). The Bearing Analysis Module is designed to extract such features.
This module uses a heterodyner to demodulate the vibration signals and obtain an amplitude
envelope (e.g., see Courrech and Gaudet, 1985), and then calculates the power spectrum of this

envelope (i.e., spectral envelope) so that its various features (parameters) can be estimated for

12



1.8 — ey
Test#1 Test#2. Tost#3 | Test#4 | Test #5

1.6} ' i

[%2]
[
=
[
> e
?
= _
’—
3
o
E .
O
>
< H
06} : ]
0.2 L 1 " L "
0 10 20 30 40 50 60

Sample Data Points, N

Figure 6.—Averaged TMI-G values for the five tests obtained from the
Base-band Power Spectrum Analysis Module. Faults are indicated
by asterisks.

bearing fault detection (Dyer and Stewart, 1978; Yhland and Johansson, 1970). The parameters

obtained from this module are:

¢ Envelope Band Energy. The band energy (BE), which is calculated as the sum of the
mean and standard deviation of the full bandwidth envelope, represents the overall energy
level of the envelope. This parameter is expected to be sensitive to most bearing faults

which increase the level of vibration.

* Envelope Kurtosis Value. The kurtosis value of the envelope (BKV) is estimated to

reflect impulsive behavior of vibrations produced by localized bearing faults.

¢ Envelope Base Energy. The envelope base energy (EB) represents the base energy of

the spectrum after all tones have been removed. This parameter is expected to reflect

13



heavy bearing damage.

e Envelope Tone Energy. The tone energy (ET) represents the total energy minus the

base energy. This parameter is expected to reflect localized bearing faults.

The above parameters from the Bearing Analysis Module were computed for the five tests.
The results indicate that most of the parameters are not very sensitive to the faults occurred
during the tests. For example, the averaged values of the kurtosis value of the envelope (BKV)
are shown in Fig. 7. The results indicate that while the BKV is relatively sensitive to the faults

in Tests #1 and #3, it exhibits a spike in Test #3 which could potentially result in a false alarm.
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Figure 7.—Averaged BKV values of the envelope kurtosis values for
five tests. Faults are indicated by asterisks.
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4 THE MVIM METHOD

The MVIM method is based on a multi-valued influence matriz (MVIM) which represents the
uncertain relationship between various faults and measurements (Danai and Chin, 1991). Mea-
surements in this method are monitored in-process and converted to binary numbers through
flagging (see Fig. 8), which are posted in a vector of ‘flagged measurements’. Flagging in this
method is performed by a quantization matriz, and detection is performed by matching this vec-
tor of flagged measurements against the individual columns of the influence matrix (influence
vectors). Influence vectors which represent ‘the no-fault signature and the fault signature are

continuously updated by a learning algorithm to improve detection.

Estimated
Sensory Processed Binary Fault
Data Measurements Measurements Vector
Plant —» Slgnal. —————=  Flagging —La— MVIM |—» X
Processing .

Figure 8.—Detection strategy in the MVIM method.

4.1 Detection Model

The multi-valued influence matrix A representing the no-fault signature and fault signature is
defined as

Y(t) <25 X(1) (1)

to relate the fluggced measurement vector Y(t):

Y(t) = {yl(t)a yZ(t)a evy ym(t)}T (2)



to the fault vector X(¢):

X(1) = {z1(t), z2(1)}7 (3)
where m is the number of measurements. In the above equations, the vectors Y and X are
binary vectors; i.e., the y; (individual flagged measurements) and z; (the no-fault variable z,
and the fault variable z,) can only be equal to 0 or 1, representing the status of the particular
measurement and fault at the time, respectively. Note that the the components of the (m x 2)
influence matrix A in Eq. (1), which represents a functional mapping between Y and X, are
between 0 and 1 defining the causal relationship between individual flagged measurements y;
and the no-fault and fault cases. For example, an aj2 = 0.8 implies that the possibility of the
Ist measurement being flagged at the instance of fault is 0.8, or an a3; = 0.2 indicates that a

0.2 possibility exists that the 3rd measurement is flagged for a no-fault case.

4.2 Detection

Detection in the MVIM method is based on matching the vector of flagged measurements against
the individual influence vectors. The closeness of vectors in the MVIM method is based on their
orientation. Accordingly, the possibility of occurrence (diagnostic certainty measure) of the no-
fault or fault case is defined as the cosine of the angle between the corresponding influence vector
and the vector of flagged measurements. The geometric representation of this reasoning, for a
three dimensional measurement vector (m = 3), is illustrated in Fig. 9. Vectors V; and V5 in this
figure represent the influence vectors associated with the no-fault and fault case, respectively,
and vector ¥ denotes the vector of flagged measurements.

In the MVIM method, the vector of diagnostic certainty measures which ranks the variables

z; and z, for their possibility of occurrence is defined as

: I, cos ay vTy :
X = . = = TG 4)
T cos a3 VY
where a; and a; denote the angles between the influence vectors V; and V, respectively, and

16



Figure 9.—Geomaetric representation of diagnostic
reasoning in the MVIM method for a three
dimensional case.

the flagged measurement vector Y, and \_/]- (j = 1,2) and Y are the normalized forms of vectors

V; and Y, respectively, defined as

- V; a
V; = I = e (5)
TV nd
and
v X _)_u (6)

X om w2

Detection in the MVIM method is based on obtaining the vector of diagnostic certainty measures

X. To obtain X, however, the normalized form of the influence matrix, A,
A=[V, Vv, |

is required. Since this matrix is not known «a priors, it will have to be estimated.

17



4.3 Estimation of A

One of the main features of the MVIM method is its capability to use the detection error as
feedback in estimating/updating A. Based on this learning strategy, individual columns of the
influence matrix are adjusted recursively after the occurrence of fault, or when a flag is posted
in a no-fault case, to minimize the sum of the squared detection error. The estimation algorithm
of A which is based on recursive least-squares estimation (Ljung, 1987) is given in (Danai and

Chin, 1991), where its performance is demonstrated in simulation.

4.4 Flagging

In the MVIM detection system, flagging of measurements is performed by a quantization matriz.

For flagging, the measurements P are multiplied by the weights of the quantization matriz Q
Q= (W, ... W, ... W,], (7)

and hard-limited as

(8)

) 1 when PTW,; > 05
¥ =1 0 otherwise

to produce the binary vector of flagged measurements Y (see Fig. 10). This vector is used for
both detection, as well as estimating/updating the MVIM. The vectors W; in Egs. (7) and (8)
represent the columns of the quantization matriz associated with individual measurements.

The vectors of the MVIM are trained based on the flagged measurements y; (see Eq. (8)).
Therefore, they are directly influenced by the flagging operation. In order to improve the flagging
operation, the quantization matrir is adapted during a training session. Ideally, we would like
the magnitude of all flagged measurements y; to be equal to 0 for no-fault cases and 1 at fault
instances. Therefore, the components of the quantization matriz are adjusted to produce such
ideal flagged measurement vectors (see Fig. 10).

The proposed quantization matriz uses a sample set of measurement-fault vectors to tune

18
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Figure 10.—Schematic diagram of adaptation in the MVIM method.

its parameters iteratively. For this purpose, it uses recursive least-squares adaptation to min-
imize the sum of square errors between the individual flagged measurements produced by the

quantization matriz and their ideal values. This learning algorithm has the form
wi(i) = wy(p = 1) + Gk = 1) [5:(w) - PT()Wilu - 1)] (9)

where the w;; denote the components of the quantization matriz, u is the iteration step, ¥
represent the ideal value of flagged measurements (i.e., §; = 1 for fault cases, and §; = 0 for
no-fault cases), and the [; denote the components of the adaptation gain vector L, updated

according to the relationship (Ljung, 1987)

R(p - 1)PT(y)

L{p) = 10
) = TR - 1)PT () (10)

where matrix R denotes the covariance matrix in least-squares estimation computed as
R(1) = R(u - 1) = L(#)P()R(x - 1). (11)

19



5 DETECTION RESULTS

The averaged values of the nineteen parameters obtained from the diagnostic analyzer were used
as the components of the measurement vector P to train and test the MVIM (see Figs. 4 and
10). For scaling purposes, each parameter value was normalized with respect to the value of the
parameter on the first day of each test.

As explained in the previous section, the MVIM method requires a set of measurements
during normal operation and at fault incidents to estimate the no-fault and fault signatures.
Since in the experiments the exact time of fault was not known, the time of fault occurrence
was conservatively set on the last day, or right before failure was verified through disassembly.
Similarly, no-fault cases were assumed only for the first day of each test, and after faulty com-
ponents were replaced. The specification of vibration data as fault and no-fault on various days
of each test are listed in Table 2. For Tests #1 and #5, only the data from the last day (day 9
and day 11, respectively) was associated with a fault case, since faults in these tests were only
found on the last day during routine disassembly. For Test #2, the data from all of the nine
days were marked as no-fault, since no faults were detected during inspection at the end of the
ninth days. For Test #3, the data from days 1, 5, and 10 were associated with a no-fault case,
because they were obtained directly after faulty components were replaced on days 4, 9, and
13. For Test #4, data from days 1-8 was attributed to a no-fault case, since no faults were
detected upon inspection at the end of the cighth day. For this test, the data from days 12
and 15, which were collected before faulty components were replaced, were associated with fault
incidents. Note that the data from day 13, obtained directly after the replacement of the faulty
component, is also associated with a no-fault case.

The effectiveness of the MVIM detection method was evaluated with different training scts.

20



Fault Status

Day | Test #1 | Test #2 | Test #3 | Test #4 | Test #5
1 no-fault | no-fault | no-fault | no-fault | no-fault
2 - no-fault - no-fault -

3 - no-fault - no-fault -

4 - no-fault fault no-fault -

5 - no-fault | no-fault | no-fault -

6 - no-fault - no-fault -

7 - no-fault - no-fault -

8 - no-fault - no-fault -

9 fault no-fault fault no-fault -

10 no-fault - -

11 - - fault
12 - fault

13 fault no-fault

14 -

15 fault

Table 2: Association of data from each day of the 5 tests with fault and no-fault cases.
The mark ‘-’ denotes that data from that day cannot be specified.

For this purpose, training sets were formed based on parameters from various combinations of
five tests (see Table 3). For each training case, the initial values of the MVIM (19x2) and the
quantization matrix (19x19) were set to 0 and I, respectively, and training was continued until
perfect detection was achieved in the training set (i.e., no false alarm or undetected fault was
found in the training set). The MVIM was then tested on all the data from all of the five tests.
Performance of the NMVIM was represented by the total number of false alarms and undetected
faults it produced during testing (denoted as Total Test Errors in Table 3). The detection results
produced by the MVIM for 30 different cases of training are shown in Table 3.

For comparison purposes, the results obtained from the MVIM are contrasted against the
results obtained from a multi-layer neural net (e.g., see Hertz et al., 1991; Rumelhart et al.,
1988) which was trained and tested under the same conditions. The neural net was trained
with the back-propagation learning algorithm and contained 40 hidden units. This number of

hidden units was selected within a range of 30 to 50 hidden units to optimize its generalization



ability. For training the net, the learning rate and momentum coeflicient were set at 0.2 and
0.8, respectively. The above parameters were selected within a range of 0.2 to 0.8 through trial
and error so as to optimize the convergence speed of the net.

The results in Table 3 indicate that the MVIM was able to provide perfect detection when
faults were fully represented by the training sets (i.e., Cases #18, #21, #24, #25, #28, #29, and
#30), and that it produced better results than the neural net in most of the cases. Specifically,
the MVIM produced better results in nineteen of the test cases, produced identical results in
ten cases, and was outperformed in only one case. Upon a casual inspection of the training sets
that enabled MVIM to perform perfect detection, it can be observed that Tests #3 and #4 are
included in all of them. This implies that the MVIM needs the pérameters from these two tests
to establish an effective pair of signatures for no-fault and fault cases. Note that without Test
#3, the MVIM produces one undetected fault and one false alarm (Case #27), and without Test
#4 it produces one undetected fault (Case #28). Note that the multi-layer neural net could not

provide perfect detection even when trained with all of the five tests (Case #30).
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Case # | Training | Diagnostic | Undetected | False Total
Data Sets Method Faults Alarms | Test Errors
1 | Neural Net 4 0 4
MVIM 1 3 4
2 3 Neural Net 1 3 4
MVIM 1 1 2
3 4 Neural Net 5 1 6
MVIM 2 1 3
4 5 Neural Net 1 2 3
MVIM 3 2 5
5 1,2 Neural Net 4 0 4
MVIM 2 2 4
6 1,3 Neural Net 1 2 3
MVIM 2 0 2
7 1,4 Neural Net 1 1 2
MVIM 1 1 2
8 1,5 Neural Net 1 2 3
MVIM 1 2 3
9 2,3 Neural Net 1 1 2
MVIM 1 1 2
10 2.4 Neural Net 4 2 6
MVIM 3 1 4
11 2.5 Neural Net 3 2 5
MVIM 3 2 5
12 34 Neural Net 2 2 4
MVIM 0 0 0
13 3,5 Neural Net 0 3 3
MVIM 1 0 1
14 4.5 Neural Net 3 0 3
MVIM 1 1 2
15 1,2,3 Neural Net 1 2 3
MVIM 2 0 2
16 1,2,4 Neural Net 2 1 3
MVIM 2 1 3
17 1,2,5 Neural Net 1 2 3
MVIM 1 2 3
18 1,3,4 Neural Net 1 0 1
MVIM 0 0 0
19 1,3,5 Neural Net 0 3 3
MVIM 2 0 2
20 1,4,5 Neural Net 1 1 2
MVIM 1 1 2
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Case # | Training | Diagnostic | Undetected | False Total
Data Sets Method Faults Alarms | Test Errors
21 2,3,4 Neural Net 2 0 2
MVIM 0 0 0
22 2,3,5 Neural Net 1 2 3
MVIM 1 0 1
23 24,5 Neural Net 3 1 4
MVIM 1 1 2
24 34,5 Neural Net 2 0 2
MVIM 0 0 0
25 1,2,3,4 Neural Net 2 0 2
MVIM 0 0 0
26 1,2,3,5 Neural Net 2 1 3
MVIM 1 0 1
27 1,2,4,5 Neural Net 1 1 2
MVIM 1 1 2
28 1,3,4,5 Neural Net 1 0 1
MVIM 0 0 0
29 2,3,4,5 Neural Net 2 0 2
MVIM 0 0 0
30 1,2,3,4,5 | Neural Net 1 0 1
MVIM 0 0 0

Table 3: Detection results obtained from MVIM and a multi-layer neural net when

trained with different data sets.

6 MEASUREMENT SELECTION

The MVIM method can also assess the significance of individual parameters in detection. It
is generally assumed that the parameters which reflect the faults more effectively facilitate
training, particularly when the success of training is based upon detection capability within the
training set. Therefore, when individual parameters are discarded, their influence on overall
detectability must be reflected in the training time for that set. This means that when an
‘important’ parameter (measurement) is discarded from the training set, for the faults are to be

characterized by the remaining parameters (measurements), the training will be more difficult

and, thus, more time-consuming.
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In order to test the above hypothesis, a training set which provided perfect detection results
was selected. Among the various training sets in Table 3 satisfying this condition, Case #12
which contained the smallest number of data sets (i.e., Tests #3 and #4) was selected. Individual
parameters were then discarded one at a time from this training set to form new reduced sets
for training the MVIM. The number of training epochs! required for each reduced set is shown
in Table 4, with the discarded parameters imposing higher than 9 epochs (obtained for the full

set) marked by a plus sign.

[ Case # 12 (Test # 3 and #4) l
Parameter Number of Undetected False
Discarded | Training Epochs Faults Alarms

None 9 0 0
#1 9 0 0
#2 : 9 0 0
#3t 25 0 0
#4 9 0 0
#5 9 0 0
#0 9 0 0
#7 8 0 0
#8 9 0 0
#9 9 0 0
#10 9 0 0

#1171 10 0 0

#12% 100* 0 6

#13* 11 0 0

#14F 10 0 0

#15F 37 0 0

#167* 10 0 0

#17% 22 0 2
#18 8 0 0
#19 9 0 0

Table 4: The eflect of discarded parameters on training time and test results. The
particular sets that required a longer training time than the full set are
marked by ‘4+’. The ‘+’ denotes that full detection within the training set
was never achieved.

'passes through the training set



Based on the results in Table 4, the elimination of Parameters #3 (crest factor), #11 (TM1-
P), #12 (CEP(1911)), #13 (CEP(572)), #14 (TON(1911)), #15 (TON(572)), #16 (BE), and
#17 (BKV) from the training set adversely affected training. This could imply that these cight
parameters are particularly important in characterizing the signatures for the no-fault and fault
case, and that Parameter #12, whose elimination jeopardized training, is critical. By the same
analogy, the results in Table 4 indicate that discarding Parameters #7 and #18 may be even
beneficial to training of MVIM.

In order to validate the above findings, various combinations of parameters from Tests #3
and #4 were grouped into training subsets. Training started with the smallest possible subset
which included only two parameters. As the MVIM did not converge with this subset, the
subset was expanded further until successful training was obtained for the MVIM. The first
subset that resulted in perfect training for the MVIM was one with twelve parameters, of which
eight parameters were those that were identified as ‘important’ before (i.e., Parameters #3, #11,
#12, #13, #14, #15, #16, and #17). In fact, through further analysis it was ascertained that
the smallest subset of parameters that would provide perfect training for the MVIM consists of
these eight parameters, and that discarding or replacing any of these eight parameters results in
a non-trainable situation. Addition of more parameters to this subset did not make a difference.

The same type of analysis performed with the MVIM method could potentially be performed
with a neural net. However, neural nets provide different detection results with different number
of hidden units. As such, for each number of inputs (parameters) the optimal number of hidden
units need to be selected, which would then affect the number of epochs required for training.
This will complicate the criteria for measurement selection of the type described above. The
advantage of the MVIM method over a neural net is that its structure is fixed based on the num-
ber of its inputs, and thus the number of training epochs would directly reflect the significarnce

of individual measurements.
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7 CONCLUSION

Fault detection of helicopter power transmissions through pattern classification is demonstrated.
For this purpose, the MVIM detection method is used to construct no-fault and fault signatures
based on vibration data reflecting the effect of various faults in an OH-58A main rotor trans-
mission. Implementation results indicate that the MVIM can provide perfect detection when
the full range of fault effects are extracted through appropriate signal processing. The MVIM
method can also assess the significance of individual measurements. Based on this assessment,
it is shown that an optimal subset of measurements can be selected so as to reduce processing

time for in-flight implementation purposes.
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