NASA Technical Memorandum 106168

IN-18 167254 P. 23

Enhanced Plasma Current Collection From Weakly Conducting Solar Array Blankets

G. Barry Hillard Lewis Research Center Cleveland, Ohio

May 1993

(NASA-TM-106168) ENHANCED PLASMA N93-27081 CURRENT COLLECTION FROM WEAKLY CONDUCTING SOLAR ARRAY BLANKETS Unclas (NASA) 23 p

> 0167254 **G3/1**8

۰. ۲^۰

· · · · · ·

•

•

ENHANCED PLASMA CURRENT COLLECTION FROM WEAKLY CONDUCTING SOLAR ARRAY BLANKETS

G. Barry Hillard National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

SUMMARY

Among the solar cell technologies to be tested in space as part of the Solar Array Module Plasma Interactions Experiment (SAMPIE) will be the Advanced Photovoltaic Solar Array (APSA). Several prototype twelve cell coupons were built for NASA using different blanket materials and mounting techniques. The first conforms to the baseline design for APSA which calls for the cells to be mounted on a carbon loaded Kapton® blanket to control charging in GEO. When deployed, this design has a flexible blanket supported around the edges. A second coupon was built with the cells mounted on Kapton-H, which was in turn cemented to a solid aluminum substrate. A final coupon was identical to the latter but used germanium coated Kapton to control atomic oxygen attack in LEO. Ground testing of these coupons in a plasma chamber showed considerable differences in plasma current collection. The Kapton-H coupon demonstrated current collection consistent with exposed interconnects and some degree of cell snapover. The other two coupons experienced anomalously large collection currents. This behavior is believed to be a consequence of enhanced plasma sheaths supported by the weakly conducting carbon and germanium used in these coupons. The results reported here are the first experimental evidence that the use of such materials can result in power losses to high voltage space power systems.

INTRODUCTION

The Solar Array Module Plasma Interactions Experiment (SAMPIE)¹⁻³ is an approved NASA flight experiment manifested for shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. Among its various experiment samples, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. One of the principal objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA)⁴.

APSA is characterized principally by the use of very thin (60 micron) solar cells mounted on a flexible deployable blanket. The resulting array has very high specific power, exceeding 130 W/kg beginning-of-life (BOL) even using silicon solar cells. To meet SAMPIE's objective, three twelve-cell prototype coupons of 2 cm by 4 cm silicon cells have been constructed. Originally designed for deployment in Geosynchronous orbit (GEO), APSA normally uses a flexible blanket of carbon loaded Kapton mounted in an external frame. The carbon loaded material provides a blanket which is slightly conducting and serves as an active charge control measure in geostationary applications. The first test sample was constructed as a flexible blanket using this material.

A second coupon, more appropriate for use in low Earth orbit (LEO), has a blanket of germanium coated Kapton for protection from atomic oxygen attack. The germanium coating

provides a higher resistance than carbon loading but is still weakly conductive. Unlike the carbon loaded material, for which conductivity is a bulk property, this material uses germanium as a thin film deposited on a substrate of Kapton. On SAMPIE, a flexible, deployable geometry is not practical and the cell coupon will be hard mounted to a piece of aluminum. It was expected that the mounting scheme would have no impact on the plasma interactions SAMPIE is designed to test since all cells, interconnects, and bus bars are on the front side. As the data below show, this assumption is not strictly true.

A final coupon uses Kapton-H, which we will henceforth refer to simply as "Kapton", cemented to an aluminum plate. This provides a baseline reference for comparison of plasma interactions of the two weakly conducting blankets. While the germanium coupon has been baselined and will be flown, it is necessary to test all three coupons in a space simulation chamber to quantify enhanced plasma current collection resulting from the use of these two materials.

SAMPLE CONSTRUCTION

All three coupons were constructed using 2 cm by 4 cm silicon cells. The flexible module, designed to approximate baseline technology, used a 15.24 cm by 17.78 cm (6 inch by 7 inch) carbon loaded Kapton blanket. The outer 1.27 cm (.5) inch perimeter was covered front and back with Kapton tape to increase mechanical strength leaving a 12.7 cm by 15.24 cm (5 by 6 inch) area of carbon loaded material. The solar cells were wired as three parallel strings each having 4 cells in series. The module was suspended by 4 nonconducting bands in a frame made from nonconducting material.

The Kapton module used the same cells and wiring as above. The cells were mounted on a 15.24 cm by 17.78 cm (6 inch by 7 inch) piece of Kapton bonded to an aluminum substrate.

The germanium module used a 12.7 cm by 15.24 cm (5 by 6 inch) piece of Kapton with 150 nanometers of germanium coating on both sides. The aluminum substrate was anodized on the top and conversion coated on the back. This renders the top surface insulating and the bottom surface conducting. The Kapton was bonded using a nonconductive adhesive. The coupon is designed to allow it to be either grounded to the experiment or to be floating during operation. The grounding scheme was implemented by removing the anodization from a corner to expose bare metal, then covering this spot with nonconductive Kapton tape. Metal tabs were attached to both the upper and lower germanium coatings with conductive epoxy. This was done on two opposite corners of the coupon. The coupon in this condition, which is how it was received, is therefore isolated from the aluminum substrate. To ground it, one would remove the Kapton tape and use conductive epoxy to bond the tabs to the bare metal. The solar cells for this module were wired as a single series string.

In all three cases, electrical wires were attached to the two busbars and shorted together. Exposed busbars and turn-around strips are a major source of plasma current collection. All busbars were made from .32 cm (1/8 inch) wide strips but differed slightly in length because of the different wiring schemes. These properties are summarized in Table I.

For the germanium and carbon loaded samples, which have weakly conductive blankets, an additional operational mode was added. These two coupons were normally tested with their blankets electrically isolated from earth ground so that the only currents measured are due to the

plasma, i.e. no leakage to ground is possible through the material. To test the importance of such ground leakage, a small metal clip was added to the corner of each of these two samples. By allowing this clip, which we will refer to as the "ground clip", to float freely or by grounding it to the tank wall, a direct measurement of the contribution from leakage is straightforward.

Blan	ket Properties	; 	Array parameters			
Material	Thickness (10 ⁻⁵ m)	Exposed area (cm ²)	Wiring scheme	bus-bar area (mm ²)		
Kapton - H	5.08 (2 mil)	145.7	series/ parallel	775		
Carbon loaded	7.62 (3 mil)	Front: 70.3 Back: 189.2	series/ parallel	<i>7</i> 75		
Ge coated	5.08 (2 mil)	76.8	series	692		

Table I: Coupon parameters

TEST FACILITY AND PROCEDURES

Testing was done in the Plasma Interaction Facility (PIF) at the Lewis Research Center. All measurements were made in a space simulation chamber offering a cylindrical volume 1.8 m (six feet) in diameter by 1.8 m long. A 91.4 cm (thirty six inch) diffusion pump provided an initial pumpdown to approximately 5×10^{-7} torr. Plasma was generated by a hollow cathode discharge source with a continuous flow of Argon. Pressure in the tank during operation of the plasma source was approximately 5×10^{-5} torr.

An electrometer, a Keithley model 237, was used to apply a bias voltage to the test sample and measure the resulting collected current. Ion currents were measured with applied biases from 0 to -200 V in 10 V increments while electron currents were measured with applied biases from 0 to +600 volts in 25 V increments. Ion and electron current collection sweeps were made separately, always beginning with zero volts bias and increasing the applied voltage magnitude. The negative bias range was restricted to -200 volts to avoid arcing and possible damage to the sample. A complete data set consisted of ten runs which were averaged to smooth random fluctuations in plasma density. Plasma density during the operation of hollow cathode sources is characterized by a relatively stable mean value with random fluctuation ranging from a few percent to occasional "bursts" which can exceed 15 or 20 percent. Additional precautions were taken to account for the small systematic drifts in plasma density caused by changing conditions in the plasma source. To this end, plasma density was monitored using a 1.9 cm (3/4 inch) Langmuir probe. At the beginning of each data run, the plasma source was adjusted to result in a current of 1.65 milliamps when this probe was biased to +100 volts. Plasma conditions corresponding to this value were measured and are shown in Table II. The procedure effectively normalizes all data to the plasma density indicated.

$7.96 \times 10^5 \text{ cm}^{-3}$
1.75 eV
.56 eV
4.83 eV

Table II - Plasma Parameters

RESULTS AND DISCUSSION

Measurements of ion current were made from all three samples. The Kapton sample was measured only in a "floating" mode, i.e. with no attempt to account for leakage currents, which are assumed to be negligible. As will be shown below, equivalent measurements with the germanium coupon justify this assumption. The carbon and germanium coupons were also measured with the ground clip grounded to the tank wall. Table III shows a summary of the data.

Inspection of Table III shows several immediately apparent features. In particular, there is little difference in collected currents between floating and grounding the germanium coupon. By contrast, the carbon coupon shows a significant difference between these two operational modes. In both cases, current collected is significantly larger than for the Kapton coupon.

Applied	Kar	ton H	Carb	on float	Carbor	ground	Ge	Ge float		Ge ground	
Bias	mean	Standard	mean	Standard	mean	Standard	mean	Standard	mean	Standard	
volts	μA	Error	μA	Error	μА	Error	μА	Error	μΑ	Елтог	
								0.021	0.40	0.020	
10	1.04	0.034	5.20	0.112	9.71	0.051	2.50	0.031	4.49	0.030	
20	1.40	0.046	8.09	0.076	18.84	0.093	4.25	0.036	4.24	0.036	
30	1.71	0.048	10.56	0.125	28.62	0.183	5.60	0.034	5.60	0.037	
40	2.00	0.065	12.98	0.073	38.98	0.203	6.69	0.035	6.69	0.037	
50	2.28	0.067	15.12	0.049	50.06	0.229	7.65	0.037	7.66	0.037	
60	2.52	0.073	17.18	0.066	61.50	0.295	8.56	0.041	8.58	0.039	
70	2.74	0.072	18.82	0.183	72.98	0.315	9.42	0.042	9.46	0.043	
80 (2.94	0.077	20.62	0.049	84.80	0.281	10.26	0.051	10.32	0.037	
90	3.19	0.097	22.18	0.080	97.24	0.194	11.06	0.051	11.14	0.051	
100	3.36	0.101	23.10	0.427	109.80	0.200	11.86	0.051	11.94	0.051	
110	3.56	0.108	24.98	0.159	121.60	0.400	12.58	0.037	12.68	0.058	
120	3.72	0.116	26.08	0.136	135.40	0.245	13.30	0.045	13.48	0.058	
130	3.91	0.109	27.66	0.147	148.60	0.400	14.00	0.045	14.18	0.058	
140	4.09	0.094	28.68	0.080	162.00	0.316	14.66	0.051	14.88	0.058	
150	4.24	0.126	29.72	0.139	177.20	1.158	15.34	0.060	15.54	0.051	
160	4.41	0.133	31.00	0.089	189.40	0.245	15.96	0.051	16.20	0.055	
170	4.56	0.142	31.76	0.437	203.40	0.245	16.58	0.037	16.88	0.058	
180	4.78	0.129	33.18	0.177	218.20	0.374	17.22	0.058	17.52	0.037	
190	4.91	0.152	34.10	0.297	233.20	0.200	17.84	0.060	18.16	0.051	
200	5.10	0.155	35.32	0.206	247.20	0.200	18.34	0.098	18.78	0.058	

Table III: Ion Current Vs Applied Bias

At this point it would seem well to clarify and quantify the several mechanisms operating for leakage current. For the Kapton coupon, the blanket is a uniform, highly insulating material.

Leakage currents would consist of current flowing from the busbars, through the 2 mils of Kapton, to the metal substrate. For the carbon loaded case, we have a material which has been impregnated with carbon and may be expected to behave as a carbon resistor with bulk conduction occurring throughout the material. The germanium coupon is different from either of the others in that a highly insulating blanket has been coated with a weakly conducting semiconductor. Conduction through the blanket to the metal substrate should be comparable to that for the Kapton coupon. This mechanism can be quantified by biasing the coupon with the ground clip floating, turning the plasma sources off, and measuring the current with the back of the substrate grounded. When this was done, a maximum current of a little less than one microamp was recorded at the maximum bias of 600 volts. This effectively measures the resistance of the 2 mil Kapton to be in excess of 600 megohms. This mechanism, conduction through Kapton, is judged negligible and will not be considered further.

Mechanisms for leakage current can then be summarized as follows. For the Kapton coupon, no leakage path exists. Since the Kapton blanket has such high resistance, its surface potential in a plasma environment will remain uniformly close to the plasma potential. For the carbon loaded coupon, bulk conduction will occur through the material. If the ground clip is grounded, this will result in current to ground which is seen as enhanced collection during the measurements. Regardless of whether the coupon is floating or grounded, a complicated potential distribution will exist on the blanket surface which will affect plasma current collection. Since there is no substrate, such a potential distribution will occur through the front surface layer. As with the carbon loaded sample, current will flow to ground when the clip is grounded and a complicated potential distribution distribution on the surface will affect plasma current collection in all cases.

For the carbon loaded coupon, it remains to demonstrate explicitly that the difference in collected current between floating and grounded operation is due to leakage. To do this, we turn off the plasma source and use the electrometer to measure the collected current. This measurement was made for both polarities of applied bias. There was no difference in measured currents for the two polarities so only the negative bias results are presented. These results are shown in Table IV.

Bias	Current	Bias	Current
Volts	μA	Volts	μΑ
10	5.7	110	97.8
20	12.5	120	109.0
30	20.1	130	120.7
40	28.1	140	133.3
50	36.7	150	146.0
60	45.9	160	157.0
70	55.6	170	169.4
80	65.8	180	182.2
9 0	76.0	190	195.1
100	86.6	200	208.3

Table IV Ground Current Vs Bias - Carbon loaded coupon

Comparison of Tables III and IV shows that the significantly larger current collection observed when the carbon loaded coupon is grounded is entirely accounted for by simple leakage through the material to ground. Applying Ohms' law to the data in Table IV shows that the effective resistance from the array to the ground clip is approximately 1 megohm. By comparison, a similar measurement for the germanium coupon yielded less than one microamp at 200 V implying that the effective resistance from the biased array to the ground clip is approximately 150 megohms.

Leakage current, as discussed above, is independent of the polarity of applied bias. Table V gives results for electron current collection for all three coupons. In this case, we are dealing with currents two to three orders of magnitude larger than for ion current. The effect of leakage current is negligible under these conditions.

Having accounted for the effects of leakage current, we turn our attention back to comparing the characteristics of the three coupons. Since there is no other difference between floating and grounded operation, we will arbitrarily use the floating data for the remainder of our analysis.

The electrometer used for the measurements has a maximum current capacity of 10 milliamps.

Applied	Kar	ton H	Carbo	on float	Carbor	ground	Ge	Ge float		Ge ground	
Rise	mean	Standard	mean	Standard	mean	Standard	mean	Standard	mean	Standard	
volts	mA	Error	mA	Елтог	mA	Error	mA	Error	mA	Error	
										<u> </u>	
25	0.11	0.005	0.20	0.004	0.19	0.007	0.13	0.001	0.13	0.001	
50	0.25	0.009	0.66	0.003	0.63	0.022	0.27	0.001	0.27	0.002	
75	0.38	0.011	1.26	0.017	1.25	0.016	0.40	0.001	0.40	0.003	
100	0.50	0.016	2.09	0.016	2.09	0.013	0.53	0.001	0.53	0.004	
125	0.61	0.016	3.15	0.020	3.15	0.022	0.90	0.013	0.77	0.042	
150	0.73	0.023	4.27	0.017	4.23	0.016	1.67	0.069	1.59	0.027	
175	0.87	0.031	5.54	0.023	5.55	0.018	2.23	0.023	2.19	0.030	
200	1.01	0.036	6.91	0.041	6.93	0.052	2.56	0.019	2.55	0.016	
225	1.14	0.044	8.68	0.109	8.61	0.076	2.89	0.029	2.88	800.0	
250	1.29	0.034	10.00	0.000	10.00	0.000	3.27	0.037	3.28	0.016	
275	1.44	0.035	10.00	0.000	10.00	0.000	3.76	0.059	3.69	0.022	
300	1.62	0.034	10.00	0.000	10.00	0.000	4.30	0.055	4.26	0.027	
325	1.86	0.053	10.00	0.000	10.00	0.000	4.88	0.015	4.83	0.056	
350	2.15	0.041	10.00	0.000	10.00	0.000	6.54	0.874	5.60	0.097	
375	2.56	0.054	10.00	0.000	10.00	0.000	8.71	0.789	7.93	0.789	
400	3.10	0.076	10.00	0.000	10.00	0.000	9.96	0.040	9.91	0.026	
425	4.02	0.165	10.00	0.000	10.00	0.000	9.95	0.054	10.00	0.002	
450	8.79	1.093	10.00	0.000	10.00	0.000	9.97	0.033	10.00	0.003	
475	9.94	0.045	10.00	0.000	10.00	0.000	9.96	0.045	9.99	0.005	
500	9.96	0.032	10.00	0.000	10.00	0.000	9.96	0.044	10.00	0.001	
525	9.98	0.011	10.00	0.000	10.00	0.000	9.95	0.045	10.00	0.000	
550	9.98	0.014	10.00	0.000	10.00	0.000	9.95	0.049	10.00	0.002	
575	9.99	0.005	10.00	0.000	10.00	0.000	9.95	0.049	10.00	0.000	
600	9.98	0.016	10.00	0.000	10.00	0.000	9.95	0.046	10.00	0.000	

Table V Electron Current Vs Applied Bias

The data displayed in Table V exceeds this value at high voltages and saturates the instrument. Results for both electron and ion current are presented in graphical form in Figures 1 and 2.

As is immediately apparent from Figures 1 and 2, electron collection shows the effects of

"snapover" in the steep increases in current that follow the sudden onset of this now well-known effect. Ion current, as is generally expected, is linear with bias. Comparing the behavior of the three coupons, we see that the same trend is present for both electron and ion collection. In particular, Kapton, which is highly insulating, collects the least current while the carbon loaded material, which has the least resistance, collects the most. The germanium coupon is a more complicated case. For ion collection, germanium is about midway between Kapton and carbon, collecting approximately 3 times as much current as kapton. For electron collection, it behaves as an insulator up to about 100 volts, being indistinguishable from kapton. Above this potential, current increases rapidly and the germanium coupon collects substantially more than the kapton blanket array.

Figure 1 - Ion Current vs Bias

In understanding these results we recall the point, mentioned above, that the highly insulating kapton will tend to remain near plasma potential at all points on its surface. The other two materials, since they are weakly conducting, will support potential distributions that are complicated by the geometry but in general will be close to the bias potential in the vicinity of the cell array and busbars while dropping to the plasma potential further away.

Such a potential distribution on the surface of the blanket may result in two different effects that can contribute to the enhanced current flow. First, charge may be simply collected by the blanket and conducted to the busbars. Second, such potential distributions will be expected to modify the plasma sheaths. For the Kapton case, the sheath is not likely to extend much beyond the area occupied by the actual cell array while for the two conducting coupons it may well cover the entire blanket. The effect of a large plasma sheath may be to "funnel" a significant current to the busbars and cell interconnects.

Our data were not able to quantitatively distinguish between these two effects which are undoubtedly both occurring. The data from the germanium coupon, however, strongly suggests that the sheath effect is the more important. This follows from the observation that there is no significant difference in current collection for the floating and grounded operating modes. As reported above, current from the cell array to the busbars in the absence of plasma was less that one microamp at 200 V bias. Yet Table V shows that at 200 V this coupon collected 2.5 milliamps compared to 1 milliamp for the Kapton module. The complicated geometry does not allow us to confidently bound current conduction through the entire blanket to the cell array from this fact. Nevertheless, we believe that conduction through the material is the lesser of the two effects and that the enhanced current collection we report is primarily a plasma phenomena.

Figure 2 - Electron Current vs Bias

One hopes eventually to gain insight into these effects through modeling. Unfortunately, the principal computer code available to the community, NASCAP/LEO⁵, is unable to deal with weakly conductive blanket materials at this time.

FUTURE WORK

In order to better understand the effects reported here, it is desirable to replace the solar cell array with a simpler mockup. There are two reasons for this. First, the solar cells are themselves complicated objects involving exposed semiconductors, glass coverslides, and exposed interconnects. The cells are well known to be susceptible to snapover which makes it impossible to differentiate enhanced cell collection from collection by the blanket. Second, the geometry of cells, with exposed interconnects and busbars, in a rectangular array is fundamentally two dimensional.

We are now constructing a simple one dimensional experiment to study these effects. In essence, we will use a circular piece of the blanket material to be tested, tentatively chosen to be 24 cm in diameter. The center 2 cm will be covered by a metal disk. On the outer perimeter will be a metal ring with a 1 cm width, both metal parts being bonded with conductive epoxy. The center disk will be biased from the back and the ring can be either floated or grounded. This arrangement eliminates all the complications of solar cells since it has only metal and blanket material. In polar coordinates, it has symmetry in the angular variable and will offer a surface potential distribution that depends only on radius. The use of surface probes during operation will allow the surface potential to be mapped as a function of radius. It is hoped that the role of material conduction and plasma sheaths can be better sorted from such data. In any event, the one dimensional nature of the experiment will greatly facilitate efforts to model the relevant effects.

CONCLUSIONS

For the designer of real power systems, the relative importance of the two mechanisms discussed above may well be academic. Regardless of what is eventually shown to be the exact mechanism involved, it is clear that the use of weakly conductive blankets leads to enhanced plasma current collection. This is true even if the material has what is normally considered to be a large resistance, as does the germanium coating reported here. This enhanced current collection appears as a power loss to the system and is obviously of importance to the designer.

The magnitude of the loss that a photovoltaic power system may expect to incur as a result of this effect depends on its design. In particular, spacecraft are generally grounded to the negative end of the solar array which means that the majority of the system, including the spacecraft structure, will "float" negative with respect to the plasma and therefore collect ions. As our data shows, ion collection is enhanced with weakly conductive coatings but, as is always true of ion collection, the absolute magnitudes are small and the overall effect may be negligible. The use of a negative ground with a high voltage system, however, has serious implications for the final floating potential of the spacecraft², as has been amply demonstrated with Space Station Freedom (SSF). In the case of SSF, a plasma contactor had to be added to the baseline design to control potentially severe effects resulting from the grounding scheme. The final potential distribution on the solar arrays and structure resulting from the interplay of such a device with the power system is extremely complicated and beyond the scope of the present work, but we will point out that this is one case when large areas on the array can be driven to large positive potentials. It is in such a situation, however it occurs, that our results will need to be considered and the use of such coatings carefully evaluated.

The research community most affected by these results deals with atomic oxygen protective coatings. It was for this purpose that the germanium was initially added to the APSA coupon. Such coatings are not routinely tested for the effects we report and our results argue that they should be. For traditional low voltage systems this may not be necessary, but for solar arrays which will operate at 100 volts or more there is a clear potential for such coatings to lead directly to power losses on the array.

The simple apparatus discussed above, under future work, will offer an ideal way to test

proposed coatings in a simulated space environment.

ACKNOWLEDGMENTS

All of the solar cell coupons used in this work as well as the flight versions for SAMPIE were fabricated for NASA by TRW Engineering & Test Division, One Space Park. Redondo Beach, CA.

R Kapton is a registered trademark of Dupont de Nemours, Inc.

REFERENCES

- 1. Hillard, G.B. and Ferguson, D.C., "The Solar Array Module Plasma Interaction Experiment: Technical Requirements Document", NASA TM-105660, May, 1992.
- 2. Hillard, G.B. and Ferguson, D.C., "The Solar Array Module Plasma Interaction Experiment (SAMPIE): Science and Technology Objectives", submitted to Journal of Spacecraft and Rockets.
- 3. Wald, L.W. and Hillard G.B., "The Solar Array Module Plasma Interactions Experiment (SAMPIE): A Shuttle-Based Plasma Interactions Experiment", the Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA August 4-9, Vol 1 p385, 1991.
- 4. Kurland, R.M., "Advanced Photovoltaic Solar Array Design", TRW Report No. 46810-6004-UT-00, November, 1986.
- 5. Mandell, M.J. and Davis, V.A., "User's Guide to NASCAP/LEO", S-CUBED Division of Maxwell Laboratories inc., report SS-R-85-7300-R2, 1990.

APPENDIX - Raw Data

Kapton-H

_

Ion Current

-

BIAS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10
	μA	μA	μA	μA	μΑ	μA	μA	μΑ	μΑ	μΑ
0	-0.32	-0.51	-0.64	-0.59	-0.60	-0.67	-0.63	-0.49	-0.66	-0.68
-10	-0.80	-0.89	-0.93	-1.01	-1.03	-1.10	-1.11	-0.80	-1.10	-1.19
-20	-1.14	-1.19	-1.24	-1.37	-1.39	-1.49	-1.49	-1.04	-1.47	-1.60
-30	-1.42	-1.46	-1.56	-1.68	-1.70	-1.81	-1.82	-1.21	-1.79	-1.90
-40	-1.68	-1.70	-1.78	-1.96	-1.98	-2.15	-2.11	-2.01	-2.09	-2.21
-50	-1.93	-1.93	-2.09	-2.21	-2.23	-2.43	-2.43	-2.34	-2.35	-2.50
-60	-2.16	-2.14	-2.31	-2.47	-2.45	-2.68	-2.69	-2.52	-2.60	-2.75
-70	-2.39	-2.33	-2.52	-2.70	-2.68	-2.91	-2.89	-2.41	-2.84	-3.03
-80	-2.60	-2.51	-2.71	-2.87	-2.90	-3.12	-3.10	-2.17	-3.06	-3.27
-90	-5.29	-2.68	-2.93	-3.09	-3.10	-3.33	-3.48	-2.21	-3.37	-3.41
-100	-6.12	-2.86	-3.06	-3.28	-3.29	-3.53	-3.63	-2.99	-3.79	-3.62
-110	-6.62	-3.01	-3.24	-3.52	-3.46	-3.75	-3.85	-3.48	-4.04	-3.82
-120	-5.86	-3.17	-3.36	-3.67	-3.64	-3.95	-4.00	-3.83	-4.20	-4.03
-130	-5.78	-3.31	-3.57	-3.86	-3.81	-4.13	-4.16	-3.97	-4.38	-4.53
-140	-4.19	-3.45	-3.86	-4.00	-3.97	-4.31	-4.32	-4.37	-4.56	-4.47
-150	-5.80	-3.60	-3.89	-4.13	-4.13	-4.49	-4.57	-3.76	-4.70	-4.64
-160	-6.65	-3.84	-4.03	-4.30	-4.29	-4.66	-4.76	-3.45	-4.83	-4.84
-170	-7.22	-3.94	-4.15	-4.44	-4.44	-4.82	-4.93	-3.26	-5.03	-4.96
-180	-8.12	-4.08	-4.37	-4.91	-4.58	-5.00	-5.02	-3.33	-5.23	-5.16
-190	-8.91	-4.28	-4.42	-4.96	-4.73	-5.21	-5.22	-3.42	-5.42	-5.37
-200	-11.63	-4.41	-4.67	-5.04	-4.88	-5.51	-5.38	-3.50	-5.59	-5.51

				Kapto	<u>n H</u>					
	<u> </u>		E	Electron C	Current					
DIAC	DINI	DINO		RINA	RIN5	RUN6	RUN7	RUN8	RUN9	RUN10
BIAS	MUNI mA	m A	m A	mA	mA	mA	mA	mA	mA	mA
 			<u> </u>							
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.08	0.00	0.11	0.11	0.12	0.12	0.12	0.13	0.14
23 50	0.07	0.00	0.22	0.24	0.26	0.27	0.27	0.27	0.28	0.28
50 75	0.21	0.33	0.34	0.36	0.37	0.40	0.40	0.40	0.41	0.40
100	0.55	0.43	0.45	0.48	0.49	0.52	0.55	0.53	0.53	0.51
125	0.65	0.53	0.55	0.60	0.60	0.63	0.65	0.65	0.66	0.65
150	0.86	0.62	0.65	0.70	0.77	0.76	0.77	0.78	0.78	0.79
175	1 12	0.71	0.78	0.81	0.92	0.92	0.92	0.96	0.97	0.97
200	1.83	0.81	0.89	0.96	1.04	1.08	1.07	1.13	1.10	1.14
225	2.83	0.92	0.99	1.10	1.18	1.23	1.21	1.29	1.26	1.31
250	10.00	1.08	1.17	1.25	1.35	1.35	1.31	1.47	1.43	1.48
220	10.00	1.28	1.33	1.39	1.52	1.50	1.44	1.60	1.60	1.68
300	10.00	1.58	1.51	1.58	1.70	1.69	1.61	1.85	1.79	2.00
325	10.00	1.85	1.71	1.84	2.03	1.92	1.81	2.16	2.01	2.20
350	10.00	2.27	2.04	2.10	2.28	2.19	2.15	2.36	2.34	2.46
375	10.00	2.95	2.52	2.45	2.75	2.59	2.49	2.85	2.84	3.05
400	10.00	4.13	3.10	3.03	3.39	3.03	2.95	3.35	3.31	3.49
425	10.00	9.83	4.32	4.14	4.30	3.96	3.42	3.95	3.72	4.18
450	10.00	9.96	10.00	9.88	9.91	9.74	4.42	5.14	4.49	5.45
475	10.00	10.00	10.00	9.92	10.00	10.00	9.77	10.00	9.27	10.00
500	10.00	9.99	10.00	9.95	10.00	10.00	9.83	10.00	9.83	10.00
525	10.00	9.99	10.00	9.94	10.00	10.00	9.98	9.74	9.97	10.00
550	10.00	10.00	10.00	9.93	10.00	10.00	9.98	9.71	9.95	10.00
575	10.00	10.00	10.00	9.99	10.00	10.00	9.97	9.71	9.93	10.00
600	10.00	10.00	10.00	10.00	10.00	10.00	9.92	9.67	9.99	10.00

Ion Current										
BIAS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10
	μА	΄ μΑ	μA	μA	μΑ	μA	μΑ	μА	μΑ	μΑ
0	-0 48	-0.80	-1 19	-1.22	_1 13	-1 24	-1 18	-131	-1 42	-1.61
-10	-6 39	-8.25	-9.05	-931	-9 44	-9.75	-9 57	-9.81	-9.60	-1.01
-20	-14 00	-17 20	-17 80	-18 30	-18 10	-18 50	-18 80	-19.00	-18 90	-19.00
-30	-23.30	-26.90	-27.50	-28.20	-27.90	-28.10	-28.30	-28 80	-28 80	-29 10
-40	-32.90	-36.90	-37.80	-38.70	-38.20	-38.20	-39.00	-39.30	-39.30	-39.10
-50	-42.90	-47.70	-48.70	-49.50	-49.20	-49.50	-50.90	-50.00	-49.90	-50.00
-60	-53.30	-58.80	-59.10	-60.50	-60.30	-60,90	-62.40	-61.10	-61.10	-62.00
-70	-63.80	-70.20	-70.90	-72.50	-71.80	-72.70	-74.10	-72.60	-72.30	-73.20
-80	-74.70	-81.90	-82.60	-84 .00	-83.60	-84.30	-85.50	-85.20	-84.00	-85.00
-90	-86.50	-94.10	-94 .60	-96.20	-95.80	-96.60	-97.20	-97.40	-97.80	-97.20
-100	-98 .30	-106.00	-107.00	-110.00	-108.00	-109.00	-110.00	-110.00	-110.00	-110.00
-110	-110.00	-119.00	-120.00	-121.00	-121.00	-122.00	-122.00	-120.00	-122.00	-122.00
-120	-125.00	-132.00	-133.00	-134.00	-134.00	-135.00	-135.00	-136.00	-136.00	-135.00
-130	-140.00	-145.00	-146.00	-147.00	-147.00	-148.00	-148.00	-149.00	-150.00	-148.00
-140	-151.00	-160.00	-160.00	-161.00	-160.00	-161.00	-162.00	-163.00	-162.00	-162.00
-150	-165.00	-173.00	-174.00	-174.00	-174.00	-175.00	-176.00	-180.00	-175.00	-180.00
-160	-179.00	-187.00	-188.00	-190.00	-188.00	-190.00	-189.00	-189.00	-190.00	-189.00
-170	-193.00	-201.00	-202.00	-202.00	-202.00	-203.00	-203.00	-204.00	-203.00	-204.00
-180	-210.00	-216.00	-216.00	-217.00	-216.00	-219.00	-217.00	-218.00	-218.00	-219.00
-190	-226.00	-230.00	-231.00	-232.00	-230.00	-233.00	-233.00	-234.00	-233.00	-233.00
-200	-241.00	-247.00	-246.00	-250.00	-245.00	-248.00	-247.00	-247.00	-247.00	-247.00

Carbon Kapton - Grounded

Electron Current										
BIAS	RUNI	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10
	mA									
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.11	0.14	0.15	0.15	0.14	0.17	0.17	0.20	0.21	0.19
50	0.45	0.56	0.60	0.58	0.70	0.63	0.63	0.55	0.66	0.68
75	0.94	1.14	1.17	1.14	1.20	1.21	1.23	1.25	1.29	1.29
100	1.67	1.89	1.97	1.97	2.04	2.06	2.08	2.10	2.12	2.12
125	3.60	2.81	2.96	3.00	3.03	3.09	3.14	3.12	3.19	3.20
150	4.67	3.84	4.12	4.09	4.21	4.19	4.23	4.19	4.27	4.26
175	6.10	5.15	5.42	5,46	5.50	5.48	5.57	5.56	5.57	5.57
200	8.06	6.64	6.98	7.00	6.92	7.00	7.06	6.75	6.89	6.94
225	10.00	8.18	8.42	8.65	8.44	8.61	8.84	8.37	8.58	8.64
250	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
275	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
300	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
325	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
350	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
375	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
400	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
400	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
425	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
430	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
500	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
500	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
525	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
220	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
575	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
600	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00

Carbon Kapton - Grounded

				Ion Cu	irrent					
BIA	S RUNI	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10
	μΑ	μΑ	μΑ	μΑ	μΑ	μΑ	μΑ	μА	μΑ	μ A
			1 17	1.40	1 60	1.26	2 10	1.0	1 47	1 5 1
-	0 -0.93	-1.04	-1.17	-1.40	-1.58	-1.30	-2.19	-1.01	-1.4/	-1.51
-1	0 -3.71	-4.35	-4.47	-4.88	-5.08	-4.86	-5.32	-5.49	-5.03	-5.28
-2	0 -6.56	-7.09	-7.34	-7.75	-7.90	-7.86	-8.27	-8.25	-8.05	-8.03
-3	0 -9.32	-9.77	-9.64	-10.20	-10.20	-10.30	-10.80	-10.90	-10.50	-10.30
-4	0 -11.50	-12.20	-12.20	-12.70	-12.90	-12.90	-12.90	-13.20	-13.10	-12.80
-5	0 -13.70	-14.10	-14.40	-14.90	-14.40	-15.10	-15.10	-15.30	-15.00	-15.10
-6	0 -15.80	-16.30	-16.40	-16.90	-16.80	-17.20	-17.20	-17.40	-17.10	-17.00
· -7	0 -17.60	-18.20	-18.30	-18.70	-18.70	-18.90	-19.00	-19.30	-18.70	-18.20
-8	0 -19.40	-20.10	-20.10	-20.50	-20.10	-20.70	-20.70	-20.70	-20.50	-20.50
-9	0 -21.20	-21.60	-21.80	-22.10	-21.70	-22.20	-22.30	-22.00	-22.00	-22.40
-10	0 -22.80	-23.20	-23.30	-23.60	-23.10	-21.40	-23.50	-23.60	-23.60	-23.40
-11	0 -24.10	-24.70	-24.70	-24.90	-24.50	-25.20	-24.90	-25.10	-24.40	-25.30
-12	0 -25.60	-25.90	-26.10	-26.30	-24.90	-25.60	-26.00	-26.20	-26.20	-26.40
-13	0 -27.20	-27.20	-27.60	-27.50	-27.30	-28.10	-27.50	-27.50	-27.30	-27.90
-14	0 -29.10	-28.30	-28.70	-28.80	-27.90	-28.90	-28.40	-28.70	-28.70	-28.70
-15	0 -29.90	-29.80	-30.00	-30.10	-29.80	-29.80	-30.00	-29.30	-29.50	-30.00
-16	0 -31.80	-30.90	-31.10	-31.20	-30.80	-30.80	-30.90	-31.10	-30.90	-31.30
-17	0 -32.90	-32.00	-32.40	-32.30	-31.90	-33.20	-30.50	-31.60	-31.50	-32.00
-18	-34.20	-33.50	-33.50	-33.30	-32.90	-33.10	-33.50	-33.10	-32.60	-33.60
-19	0 -35.90	-33.90	-34.40	-34.40	-34.10	-33.50	-35.10	-34.10	-33.50	-34.30
-20	0 -36.70	-35.00	-35.50	-35.50	-35.00	-34.90	-35.30	-35.10	-35.20	-36.10

Carbon Kapton - Floating

]	Electron	Current					
	BIAS	RUN1 mA	RUN2 mA	RUN3 mA	RUN4 mA	RUN5 mA	RUN6 mA	RUN7 mA	RUN8 mA	RUN9 mA	RUN10 mA
-											
	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	25	0.12	0.14	0.13	0.16	0.15	0.19	0.19	0.21	0.19	0.20
	50	0.53	0.61	0.55	0.61	0.60	0.65	0.65	0.67	0.67	0.66
	75	1.06	1.14	1.10	1.20	1.17	1.23	1.22	1.31	1.30	1.26
	100	1.80	1.93	1.91	2.01	2.02	2.03	2.08	2.12	2.12	2.09
	125	2.70	2.89	2.88	2.98	3.06	3.07	3.15	3.15	3.17	3.19
	150	3.73	3.94	3.99	4.18	4.17	4.21	4.31	4.28	4.27	4.30
	175	5.05	5.23	5.34	5.49	5.54	5.45	5.57	5.58	5.54	5.56
	200	6.64	6.65	6.96	6.97	7.07	6.90	6.89	7.06	6.90	6.81
	225	8.12	8.16	8.54	8.47	8.71	8.35	8.57	8.90	8.67	8.93
	250	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	275	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	300	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	325	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	350	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	375	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	400	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	425	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	450	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	450	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	500	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	525	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	525	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	530	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	5/5	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	600	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00

Carbon Kapton - Floating

	Ion Current										
BIAS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	
	μA	μA	μΑ	μA	μÀ	μΑ	μΑ	μΑ	μΑ	μΑ	
0	0.21	-0.01	0.04	0.17	0.18	0.17	0.15	0.09	0.01	-0.57	
-10	-2.21	-2.38	-2.40	-2.47	-2.48	-2.54	-2.57	-2.64	-2.68	-2.96	
-20	-4.02	-4.07	-4.12	-4.22	-4.24	-4.30	-4.33	-4.41	-4.45	-4.74	
-30	-5.46	-5.42	-5.47	-5.57	-5.61	-5.66	-5.68	-5.77	-5.80	-6.09	
-40	-6.59	-6.52	-6.56	-6.67	-6.70	-6.75	-6.77	-6.87	-6.89	-7.25	
-50	-7.63	-7.49	-7.54	-7.63	-7.67	-7.72	-7.75	-7.85	-7.87	-8.29	
-60	-8.58	-8.39	-8.45	-8.55	-8.59	-8.65	-8.67	-8.78	-8.82	-9.28	
-70	-9.50	-9.27	-9.32	-9.43	-9.47	-9.54	-9.56	-9.69	-9.72	-10.20	
-80	-10.40	-10.10	-10.20	-10.30	-10.30	-10.40	-10.40	-10.60	-10.60	-11.10	
-90	-11.30	-10.90	-11.00	-11.10	-11.10	-11.20	-11.30	-11.40	-11.40	-12.00	
-100	-12.10	-11.70	-11.80	-11.90	-11.90	-12.00	-12.10	-12.20	-12.20	-12.90	
-110	-12.90	-12.50	-12.50	-12.60	-12.70	-12.80	-12.80	-13.00	-13.00	-13.70	
-120	-13.70	-13.20	-13.30	-13.40	-13.50	-13.60	-13.60	-13.70	-13.80	-14.50	
-130	-14.40	-13.90	-14.00	-14.10	-14.20	-14.30	-14.30	-14.50	-14.50	-15.30	
-140	-15.20	-14.60	-14.70	-14.80	-14.90	-15.00	-15.00	-15.20	-15.20	-16.00	
-150	-16.10	-15.30	-15.40	-15.50	-15.50	-15.60	-15.70	-15.80	-15.90	-16.80	
-160	-16 80	-15.90	-16.00	-16.20	-16.20	-16.30	-16.30	-16.50	-16.60	-17.50	
-170	-17.40	-16.60	-16.70	-16.80	-16.90	-17.00	-17.00	-17.20	-17.30	-18.20	
-180	-18 20	-17 20	-17.40	-17.50	-17.50	-17.60	-17.60	-17.80	-17.90	-18.80	
_190	-18 80	-17.90	-18.00	-18.10	-18.20	-18.20	-18.30	-18.50	-18.60	-19.50	
-200	-19.50	-18.50	-18.60	-18.70	-18.80	-18.90	-18.90	-19.10	-19.20	-20.20	

Germanium Kapton - Grounded

.

-

Electron Current										
RUN10	RUN9	RUN8	RUN7	RUN6	RUN5	RUN4	RUN3	RUN2	RUNI	BIAS
mA	mA	mA	mA	mA	mA	mA	mA	mA	mA	
0.00	0.00	0.00	0.00				_			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0.14	0.13	0.13	0.13	0.13	0.13	0.13	0.12	0.12	0.12	25
0.29	0.27	0.27	0.27	0.27	0.27	0.26	0.25	0.25	0.28	50
0.42	0.40	0.41	0.40	0.40	0.39	0.39	0.38	0.38	0.64	75
0.50	0.53	0.54	0.53	0.53	0.52	0.52	0.51	0.50	1.57	100
0.94	0.91	0.93	0.76	0.76	0.70	0.70	0.66	0.69	5.21	125
1.67	1.65	1.68	1.58	1.60	1.55	1.53	1.42	1.51	6.76	150
2.22	2.19	2.24	2.23	2.22	2.15	2.08	1.87	2.07	10.00	175
2,56	2.53	2.60	2.55	2.54	2.50	2.56	2.47	2.54	10.00	200
2.88	2.82	2.91	2.89	2.87	2.86	2.89	2.82	2.95	10.00	225
3.20	3.21	3.34	3.25	3.26	3.27	3.29	3.28	3.42	10.00	250
3.79	3.67	3.74	3.61	3.68	3.67	3.73	3.81	4.11	10.00	275
4.37	4.14	4.31	4.30	4.17	4.22	4.29	4.41	4.75	10.00	300
5.30	4.79	5.04	4.80	4.83	4.70	4.78	5.46	6.06	10.00	325
10.00	5.39	5.68	5.38	5.37	5.72	5.84	7.59	9.89	10.00	350
10.00	10.00	7.04	6.21	6.74	9.97	9.70	10.00	10.00	10.00	375
10.00	10.00	9.91	9.84	9.92	10.00	9.89	10.00	10.00	10.00	400
10.00	9.96	10.00	10.00	9.99	10.00	10.00	10.00	10.00	10.00	425
10.00	10.00	10.00	10.00	9.99	10.00	10.00	10.00	10.00	10.00	450
10.00	10.00	10.00	10.00	9.97	10.00	10.00	10.00	10.00	10.00	475
10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	500
10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	525
10.0	10.00	9.99	10.00	10.00	10.00	10.00	10.00	10.00	10.00	550
10.0	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	550
10.0	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	200

Germanium Kapton - Grounded

				Ion Cu	rrent					
BIAS	RUNI	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10
. <u> </u>	μΑ	μΑ	μΑ	μΑ	μA	μΑ	μΑ	μ A	μA	μΑ
0	-0.12	-0.08	0.10	0.18	0.19	0.21	0.15	0.11	-0.10	-0.50
-10	-2.30	-2.34	-2.43	-2.44	-2.51	-2.51	-2.60	-2.62	-2.69	-2.93
-20	-3.97	-4.02	-4.16	-4.19	-4.26	-4.27	-4.37	-4.40	-4.46	-4.72
-30	-5 .33	-5.37	-5.52	-5.54	-5.61	-5.63	-5.71	-5.75	-5.78	-6.08
-40	-6.41	-6.46	-6.60	-6.62	-6.71	-6.72	-6.79	-6.84	-6.86	-7.22
-50	-7.37	-7.43	-7.56	-7.59	-7.67	-7.68	-7.77	-7.82	-7.84	-8.24
-60	-8.26	-8.33	-8.45	-8.48	-8.58	-8.59	-8.68	-8.73	-8.77	-9.22
-70	-9.12	-9.19	-9.32	-9.34	-9.44	-9.46	-9.55	-9.63	-9.66	-10.10
-80	-9.94	-10.00	-10.10	-10.20	-10.30	-10.30	-10.40	-10.50	-10.50	-11.00
-90	-10.70	-10.80	-10.90	-11.00	-11.10	-11.10	-11.20	-11.30	-11.30	-11.90
-100	-11.50	-11.60	-11.70	-11.80	-11.90	-11.90	-12.00	-12.10	-12.10	-12.70
-110	-12.30	-12.30	-12.50	-12.50	-12.60	-12.60	-12.70	-12.80	-12.80	-13.50
-120	-13.00	-13.00	-13.20	-13.20	-13.30	-13.40	-13.40	-13.50	-13.60	-14.30
-130	-13.70	-13.70	-13.90	-13.90	-14.00	-14.10	-14.10	-14.20	-14.20	-15.00
-140	-14.40	-14.40	-14.50	-14.60	-14.70	-14.70	-14.80	-14.90	-14.90	-15.70
-150	-15.00	-15.10	-15.20	-15.20	-15.40	-15.40	-15.50	-15.60	-15.60	-16.40
-160	-15.70	-15.70	-15.80	-15.90	-16.00	-16.00	-16.10	-16.20	-16.30	-17.10
-170	-16.30	-16.30	-16.50	-16.50	-16.60	-16.60	-16.70	-16.80	-16 90	-17 70
-180	-16.90	-17.00	-17.10	-17.10	-17.20	-17.30	-17.40	-17.40	-17.50	-18 50
-190	-17.60	-17.60	-17.70	-17.70	-17.90	-17.90	-18.00	-18.00	-18.20	-19.10
-200	-18.10	-18.20	-18.30	-18.00	-18.40	-18.40	-18.60	-18.60	-18.80	-19.80

Germanium Kapton - Floating

٠

.

.

				JULINIUL.			11040	<u>8</u>			
Electron Current											
	BIAS	RUNI mA	RUN2 mA	RUN3 mA	RUN4 mA	RUN5 mA	RUN6 mA	RUN7 mA	RUN8 mA	RUN9 mA	RUN10 mA
	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	25	0.11	0.11	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13
	50	0.25	0.25	0.26	0.26	0.27	0.27	0.27	0.27	0.27	0.27
	75	0.37	0.38	0.38	0.39	0.40	0.40	0.40	0.40	0.40	0.40
	100	0.50	0.50	0.51	0.52	0.53	0.53	0.53	0.53	0.53	0.54
	125	0.81	0.69	0.67	0.83	0.95	0.88	0.88	0.90	0.90	0.92
	150	1.89	1.57	1.53	1.59	1.94	1.60	1.60	1.58	1.60	1.65
	175	2.28	2.14	2.06	2.12	2.30	2.22	2.25	2.22	2.15	2.11
	200	2.70	2.52	2.55	2.55	2.62	2.55	2.58	2.55	2.50	2.45
	225	3.15	2.89	2.92	2.92	2.98	2.89	2.91	2.89	2.80	2.74
	250	3.91	3.48	3.36	3.34	3.35	3.34	3.27	3.24	3.15	3.06
	275	5.10	4.21	3.85	3.83	3.97	3.80	3.66	3.72	3.65	3.58
	300	9.95	5.87	4.38	4.32	4.42	4.30	4.41	4.21	4.14	4.01
	325	10.00	10.00	5.01	4.91	4.93	4.86	4.88	4.88	4.85	4.73
	350	10.00	10.00	9.97	10.00	9.99	6.25	5.44	5.46	5.57	10.00
	375	10.00	10.00	10.00	10.00	10.00	9.93	6.19	7.50	9.92	10.00
	400	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.8 0	10.00
	425	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.73	10.00
	450	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.83	10.00
	475	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.78	10.00
	500	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.78	10.00
	525	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.77	9.90
	550	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.76	9.90
	575	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.76	9.91
	600	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	9.77	9.86

Germanium Kapton - Floating

.

			Form Approved						
REPORT D	OMB No. 0704-0188								
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.									
1. AGENCY USE ONLY (Leave blank)	GENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATE								
	May 1993								
4. TITLE AND SUBTITLE			, FUNDING NUMBERS						
Enhanced Plasma Current Co Array Blankets	ollection From Weakly Conducti	ng Solar	WIL-506_48_2B						
6. AUTHOR(S)			WU-300-40-2D						
G. Barry Hillard									
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	1	B. PERFORMING ORGANIZATION						
			REPORT NUMBER						
National Aeronautics and Sp	bace Administration		E 7860						
Cleveland Ohio 44135-31	91		E=7800						
Chevenand, Child (1999 01									
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	1	0. SPONSORING/MONITORING AGENCY REPORT NUMBER						
National Aeronautics and Sp	pace Administration								
Washington, D.C. 20546-0	001		NASA 1M-106168						
11. SUPPLEMENTARY NOTES									
	- Hillard (216) 422 2220								
Responsible person, G. Bar	ry Hillard, (210) 455–2220.								
	TATEMENT	T·	12b. DISTRIBUTION CODE						
122. DISTRIBUTION/AVAILABILITTS									
Unclassified - Unlimited									
Subject Category 18									
13. ABSTRACT (Meximum 200 words	s)								
Among the solar cell technol (SAMPIE) will be the Adva NASA using different blank which calls for the cells to be this design has a flexible bla Kapton-H, which was in tur germanium coated Kapton to showed considerable different consistent with exposed into large collection currents. To weakly conducting carbon a evidence that the use of succ	plogies to be tested in space as particle of the photovoltaic Solar Array (a test materials and mounting technics mounted on a carbon loaded K anket supported around the edges of the control atomic oxygen attack is ences in plasma current collection erconnects and some degree of the behavior is believed to be a control atomic used in these couch materials can result in power load to be a control atomic oxygen attack is behavior is believed to be a control atomic oxygen the couch materials can result in power load to be a control atomic oxygen attack is and germanium used in these couch materials can result in power load to be a control atomic oxygen attack is and germanium used in these couch materials can result in power load to be a control atomic oxygen attack is a control a	art of the Solar Array Mo APSA). Several prototy iques. The first conform Capton [®] blanket to contri- s. A second coupon was substrate. A final coupon n LEO. Ground testing n. The Kapton-H coupon cell snapover. The other onsequence of enhanced upons. The results repor- posses to high voltage spa	bodule Plasama Interactions Experiment pe twelve cell coupons were built for ins to the baseline design for APSA ol charging in GEO. When deployed, is built with the cells mounted on on was identical to the latter but used of these coupons in a plasma chamber in demonstrated current collection two coupons experienced anomalously d plasma sheaths supported by the ted here are the first experimental ace power systems.						
14. SUBJECT TERMS			15. NUMBER OF PAGES						
Space experiments: Solar o									
Space experiments, Solar C			A03						
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	TION 20. LIMITATION OF ABSTRACT						
OF REPORT	OF THIS PAGE	OF ABSTRACT							

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 •

·

 National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

Official Business Penalty for Private Use \$300 FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

