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ABSTRACT

Radial basis function (RBF) neural networks were trained using the data from 273

Si3N4 modulus of rupture (MOR) bars which were tested at room temperature and 135

MOR bars which were tested at 1370 °C. Milling time, sintering time, and Sintering gas

pressure were the processing parameters used as the input features. Flexural strength and

density were the outputs by which the RBF networks were assessed. The "nodes-at-data-

points" method was used to set the hidden layer centers and output layer training used the

gradient descent method. The RBF network predicted strength with an average error of

less than 12% and density with an average error of less than 2%. Further, the RBF network

demonstrated a potential for optimizing and accelerating the development and processing of

emerging ceramic materials.

INTRODUCTION

Ceramics such as silicon nitride (Si3N4) are under investigation as a candidate

material for heat engine applications due to their high operating temperatures, reduced

weight, resistance to oxidization, and thermal shock resistance [1]. The major drawback

currently encountered with this type of ceramic is its widely varying strength and low

fracture toughness, which occur due to discrete defects introduced into the material during

processing [1, 2, 3]. In their work, Sanders and Baaklini [3], were concerned with the
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problem of designing a silicon nitride ceramic with the goal of achieving fully dense material

that possesses high strength with the lowest amount of scatter. In the process of

manufacturing they tried to optimize several varaiables such as milling time, sintering

temperature, sintering time, nitrogen pressure and setter contact. In addition, they

investigated the effect of sintering and temperature variations and whether wet powder

sieving was superior to dry sieving. Hence, in their work, they were trying to optimize the

manufacturing process by using sound engineering judgement coupled with trial and error

methodology.

In our work we are interested in finding whether it is possible to utilize neural

networks to help in the process design of ceramics. Neural networks excel in function

approximation making it easy to identify variables that contribute most toward a desired

output parameter, say strength, from a few trials. This Should help in speeding up process

modelling for new materials. Designers can usually comprehend the combined effects of a

few variables but it becomes very difficult to do so for a large number of variables. From the

data collected by Sanders and Baaklini [3], we selected three input varaiables, namely, the

milling time of the Si3N4-Si02-Y203 powder, the sintering time, and the nitrogen pressure

employed during sintering of the modulus of rupture (MOR) test bars. From the output

variables we selected flexural strength and density. The rationale for using the above

mentioned variables is that there were not enough training pairs (outputs asociated with

inputs) for processing variables such as temperature and sieving. It should be noted that the

available data was not originally obtained nor intended for neural network analysis.

However, we expected that an RBF network would give reasonably accurate predictions

despite the fact that the data points are unevenly distributed in the input space.

In this paper we attempt to find the effects of milling time, sintering time and

nitrogen pressure on resultant strength and density with the aid of a neural network. We

make use of the data obtained from the previous study [3] for training and testing the neural

network. The original data had exhibited MOR test bar strength and density variations for

different combinations of milling times, sintering times, nitrogen pressure, powder wet

sieving, etc. Thus, the data set used in this study is based on 273 MOR bars tested at room

temperature and 135MOR bars tested at 1370 °C. Therefore, the purpose of this study is to

determine how effectively a neural network can be trained to predict the resultant strength

and density of a batch of MOR bars.
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RADIAL BASIS FUNCTION NETWORKS

One of the common uses of feedforward neural networks is the approximation of

complex, non-linear functions. Theoretically, a neural network canbe made to approximate

any given function provided that the network has a sufficient number of processing elements

(nodes). The traditional backpropagation network has been shown to be successful in this

area. However, its major disadvantage is the fact that the iterative gradient descent method

it employs to optimize the weights is computationally demanding and slow and results in

long training times.

A three layer network with "locally-tuned" processing units in the hidden layer has

been proposed as an alternative to backpropagation [4]. Also known as the radial basis

function (RBF) network, this type of network requires less training time because the

approach uses a combination of self-organization and supervised learning. The network is

considered as self-organized because the hidden layer nodes are RBF nodes centered at the

training data points (or some subset of it) and each node only responds to an input which is

close to its center. The output layer nodes are usually linear or sigmoidal functions and their

weights may be obtained using some form of supervised learning method, such as an

iterative error reduction scheme, similar to that used in backpropagation. In the case of

linear outputs, direct approches involving matrix inversion can be used in place of the

slower iterative methods.

Description of the RBF Network

Figure 1 shows a general RBF network with n inputs and one linear output. This

network performs a mapping f: R n -- R given by the following equation [5] :

11 r

f(x) -- a0 + 2E ,li_o(J Ix-oil I) (1)
i=l

where x _ R n is the input vector, _,(.) is a function from R n -- R, I I.II denotes the

Euclidean norm, Jli (0 < = i < = nr) are the weights of the output node, ci (0 < = i < =

nr) are the RBF centers, and nr is the number of centers. As a variation of the linear output,
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Figure 1: Single linear output radial basis function network



the output node may be given the sigmoidal function, if required. In this case, the mapping

function would be:

1.0
f(x) = (2)

1.0 + e -[_-o+E J.i_'(llx-eill)]
i----'l

Studies have shown [5] that the choice of the nonlinear function _,(.) is not crucial to the

overall performance of the network. One of the more common functions used for _ (.) is the

Gaussian function:

Ix-oil I) = exp (- I Ix-oil 12
a2 ) (3)

where ai is a constant which determines the width of the input space of the i-th node. A

heuristic method to determine the value of ai will be described later. It is obvious that this

function has a maximum value of 1 when []X-ell I is 0, and this value drops off to 0 as

[ Ix-ei[ I approaches infinity. Other functions may be used in place of the Gaussian function,

such as the thin-plate spline function [2].

Setting the Hidden Layer Parameters

The centers of the RBF functions ci are usually chosen from the training data points

xt (1 < = t < = N). This method, known as the "nodes at data points" method [6], is suitable

for small to medium sized training data sets. For larger data sets, it is not practical to have

an RBF center at each data point as the network would become too big. Some of the

methods used for reducing of the number of RBF centers are: the random selection of

centers, clustering of data points, and orthogonal least squares reduction [5].

The random selection method simply uses a random selection of nr centers from N

data points, where nr < N. While this method is simple, it has its drawbacks. First of all, the

data points in the training set might not be evenly distributed over the input space. The

concentration of data points in some regions may be sparse to begin with, and random

selection might end up with some regions having too few data points or even none at all.

Second, the desired output of the mapping function might change drastically over certain

regions of the input space, while at the same time it may remain relatively constant over

other regions. We intuitively know that a larger concentration of RBF centers would be



required in regions where the function changes rapidly, and that in regions where the

function changes little a lesser number of centers would be required. Unfortunately, the

random selection method ignores this fact.

If the desired outputs are discrete and represent, say, C different classes, then

clustering methods [3] may be used to cluster the data points within each class. Algorithms

such as k-means clustering may be used on each class of data, and the resulting duster

centers (prototype vectors) are used as the RBF centers. If ki (1 < = i < =C) are the

number of dusters in each class, then the number of RBF centers, nr, would be:

C

nr= _ ki (4)
i=l

Although clustering methods result in a choice of centers which cover the input space

evenly, it still does not take into account the portions of the input space where the function

changes rapidly and thus require a higher concentration of centers. This is true, for example,

in regions at or near class boundaries.

For the case of linear output nodes, one very effective method of choosing a set of

RBF centers from the training data set is the orthogonal least squares (OLS) reduction

method. The OLS reduction method, which is described in [5], enables the selection of the

most significant RBF centers from a given training data set. The OLS reduction algorithm is

an extension of the OLS learning method of which a very general description is given next.

Output layer training - Orthogonal Least Squares Learning

The OLS learning algorithm is best explained by viewing the RBF network as a

linear regression model [5]. For the case of a single node output, this will be:

M

d(t) = ]E pi(t)0i + e(t) (5)
i=l

where d(t) is the desired output, oi are the parameters corresponding to the weights Ji in

Figure 1, • (t) is the error signal, and pi(t) are the regressors given by:

pi(t) = PiCx(t)) = _'(I Ix(t)-cil l) (6)

6



Each nonlinearity _,(.) with its center ci corresponds to a pi(t). The mapping of the

regressors to the output space can then be represented in the matrix form:

where

d = PO + E (7)

d = [d(1)...d(N)] T

P = [t!1... pM], pi -- [pi(1)... pi(N)] T,

0 -- [01...OM] T

E -" [e(1)..._(N)] T

The matrix P can then be decomposed into:

l<=i<=M

P = WA (8)

where W is a set of orthogonal vectors spanning the identical space spanned by P, and A is

an upper triangular matrix. W and A may be obtained in several ways, such as by using the

Gram-Schmldt method [7]. Equation (7) can thus be rewritten as:

d = Wg + E (9)

A

The orthogonal least squares solution g which minmizes E is given by:

g-- H-1wTd (10)

where H is a diagonal matrix with elements hii = w_wi. Then the solution for the parameters

6 can be found from the following relation:

= A-lg " (11)

We then set each 2i to 0i and the network is complete.



Although the method just described is for an RBF network with one output node,

solving for the weights with several output nodes simply requires that the process be

repeated several times. The weights for each output node may be solved separately, one

node at a time, without regard for the other output nodes. This is so because unlike

backpropagation, the previous layer parameters are already determined and, hence, are

unaffected by changes in output layer weights.

Output layer training - Gradient Descent (Delta Rule)

When the output node has a non-linear function, it usually is not possible to use

direct approaches, like the one described above, to obtain the values for the weights,l i which

would give the least error over the entire training data set. Hence, for output nodes with

transfer functions such as the sigmoidal or hyperbolic-tangent functions, a gradient descent

method has to be used instead. Given an output node with a transfer function g(), the

mapping function can be expressed as:

f(X) -- g(_o 1(X) ,.../p M(X) ,21,...,2 M) (12)

For a given input x, the raw error is merely the difference between the desired output, d,

and the network output, f(x), which is simply (d - f(x)). To ensure that learning is biased

towards those nodes that can make more significant contributions towards reducing the

current error, gradient descent algorithms make use of the scaled error rather than the raw

error, which is given by:

e -- (d - f(x)) * g'(_ol(x),...,_oM(x),21,...ClM) (13)

Having obtained the scaled error, each weight may be incrementally updated by a small

amount _ i (hence the name "delta rule") in an attempt to reduce the error:

A,1i ffi Learning_Coefficient • r • ,1i (14)

This process is repeated iteratively for all values of x in the training set until the value of

some global error function has been reduced to an acceptable level. One function that may

be used is the mean squared error (MSE) function:

1 K

Mean Squared Error ffi _ k___t(dk - f(xk)) 2
(15)



or the RMS error, which is the square root of _e MSE.

As with the OLS learning method, this method can be easily extended for networks

with more than one output node. As with backpropagation techniqes, several improvements

to the method may be added. Using a momentum term will speed up the learning process

and incorporating simulated annealing [8] will reduce the likelihood of the network

becoming trapped in a local mimima. Although the gradient descent method is slower in

training the output layer of RBF networks than the OLS method, it is still much quicker

than backpropagation since the weights that are being updated are only the output layer

weights ,l i.

APPROACH AND DATA FORMATTING

In order to validate the results in terms of confidence which can be associated with

predictions of new untried combinations of input parameters, we calculate errors for the

following steps.

Firstly, the maximum-strength value batch is removed from the data and used as the

test data. Next, 70%, and later 60%, of the data is reserved for training, and the remaining

data for testing. The 60% size of training data gives indication as to how much processing

information is required to make accurate predictions.

Secondly, several combinations of the three input parameters are used to determine

whether a material having equal or higher values of flexural strength and density can be

obtained. Although the first experiment validates to some degree the results obtained from

the second, it needs to be confu-med by real experiments to find whether the new

combinations of variables agree with actual material strength and density. Comments on the

validity of the resultant predictions are given in the Discussion section of the paper.

For the room temperature, 18 different combinations of milling time, sintering time,

and nitrogen pressure yield the composition strengths and densities listed in Table I. Also

listed in Table I are the strengths and densities for 9 combinations at 1370 °C.



Table I: Strength/Density at Room Temperature and 1370 °C for different

Processing/Sintering conditions

Room No. of

Temperature Specimens
Batch no.

MHling Time,
hr

6Y 1B 30 24

6Y2B 30 24

6Yll 15 100
6Y12 15 300

6Y13 ..... !5 100
6Y14 ........... 14 300

19 246Y15 r 6Y16
6Y17 10 100
6Y18 10 100

.6Y19 ., 10 I 100
6Y20 10

15

100

Sinterlng
Time, hr

2
2

1.5
1.5
2

Nitrogen
Pressure,

MPa

2.5

2.5
2.5
2.5

2.5
2.5
5

5
5

Actual

Density,
g/cm°
3.12

3.18
3.23

3.25
3.24
3.24

Actual
Strength, MPa

556

532
490

579
684

.. 746
. , , 66=4

646
608

570
650
631
586

619
714
479

503
671

i

3.22

3.23
3.21
3.22

3.22
6Y23 100 1.25 5 3.24

6Y24A 15 100 1.25 3.5 3.26
6Y24B 15 100 2 3.5 3.26

6Y25 10 300 2 5 3.28
6Y26A 15 100 1 3.5 3.20
6Y26B 15 100 1 5 3.18

382

445
417
405
424

402
441
46O
467

1006Y28
1370 °C

Batch no.

,2
itt

10 3.21

6Y9B 29 24 1 2.5 3.12

6Yll 13 ............ 100 1 2.5 3.23
6Y12 14 300 1 2.5 3.25
6Y13 15 100 1 2.5 3.24
6Y14 14 300 1 2.5 3.24

6Y15,6Y16 20 24 2 5 3.22
6Y17 10 100 2 5 3.23

6Y18 ..... 10 100 1.5 .....5 3.21
3OO 56Y25 210 3.28

In order to determine the validity of the network predictions, it is necessary to test

the network using known test vectors and then calculate the error of the predictions. Of

particular interest is the ability of the network to predict the output values for batch number

6Y25, as this batch number represents the optimum combination for the processing

variables from the available data set.

Batch number 6Y25 was first removed from the data sets. The data sets were then

pseudo-randomly divided into a ratio of approximatey 70 % training to 30 % testing. Batch
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number 6Y25 was then inserted into the test data set. This was repeated for 5 times in order

to have 5 different pairs of training and test data sets which were labeled as combinations A

through E (Table IT). This entire process was then repeated using a ratio of approximately

60 % training to 40 % testing.

Table I1: Selected batch numbers for 70% and 60% trainin_l sets A throu_lh E
Room

Temp.
Batch

no.

6Y11

A
Training Sets 60%

E A B C D

6Y1 B * * * * *

6Y2B * * *

6Y14

Training Sets 70%

B C D

t

t

6Y12 * * * * *

6Y13 * *

6Y15

6Y16

6Y17 * * * * *

6Y18 * *

6Y19 * * * *

6Y20 * * * * * *

6Y23 * * * * * * *

6Y24A * * * *

6Y24B * * * *

6Y25

6Y26A * * * * *

6Y26B * * * * *
• * * * _" .

lit * *

6Y28

1370°C

Batch

no.

6Y14

6Y9B * * * * *

6Yll * * * *

6Y12 * * * * *

6Y13 * * * * * *

6Y15
6Y16

6Y17 *

6Y18 *

6Y25

11



Next, a training data set consisting of all the batch numbers (100 %) except 6Y25 was

created. Batch number 6Y25 was placed in the test data set as the sole vector. Finally, all the

batch numbers were placed in a training data set and the test data set was constructed using

vectors for which we do not know the outputs in order to demonstrate the capability of the

RBF network in material process optimization. This gives us a total of 12 pairs of training

and test data sets for room temperature tested materials, and another 12 for materials tested

at 1370 °C.

RESULTS

The RBF networks were trained using different training sets described above. The

"nodes at data points" method were used to set up the hidden layer. The gradient descent

(delta n_e) method was used to train the output layer nodes, which used the sigmoidal

function. The RBF networks used consisted of three input nodes and two output nodes. The

number of nodes in the hidden layer ranged from 5 to 18, depending upon the number of

training vectors in the data set. Tables 1II and VIII show the detailed results for the 70%

training and 30% test data set, for combination (A). The overall results for combinations A

through E are shown in Table IV for 70% training, and in Table V for 60% training. Table

VI shows the results obtained to predict 6Y25 strength and density using 100% of the data.

Table VII shows predictions made for selected sets of processing and sintering variables that

resulted in strengths and densities similar to that of the optimum batch 6Y25.
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Table II1: Predicted room temperature stren_h with 70% trainin{
Batch Actual Predicted % Error Actual

Number Strength, MPa Strength, MPa

6Y2B 556 544 2.26

6Y12 579 752 29.84 3.25
. 7,

6Y17 646 660 2.13 3.23

6Y18 608 616 1.37 3.21
6Y24A 586 507 13.51 3.26

6Y25 714 681 4.85 3,28
Average Error 8.95

Dense,
.... g/cm_

3.18

, Combination A

Predicted

Dense,
_cm"
3,17

% Error

0.46
3.24 0.27

3.21 0.49

3.24 0.91
3.23 0.88
3.21 2.28

0,88

Table IV: Overall

Combination
results for room temperature, 70% training

Strength - average Strength - % error Density - average
for 6Y25 % error for all test

vectors
% error for all test

vectors

Density - % error
for 6Y25

A 8.95 4.85 0.88 2.28

B 7.84 12.95 1.41 2.86
C 10.78 3.67 0.87 2.30
D 10.21 11.90 0.73 1.89
E 15.63 17.74 1.07 3.04

Combined Average 10.54 10.17 0.98 2.50
% error

Table V: Overall results for room temperature, 60% training

Combination Strength - average Strength - % error Density - average Density- % error
% error for all test

vectors
for 6Y25 % error for all test

vectors
for 6Y25

A 9.50 0.04 1.09 1.73
B 12.24 8.32 1.02 1.49
C 8.72 5.26 1.03 1.61

D 11.31 6.88 0.85 1.14
E 15.41 9.30 1.16 2.71

i

Combined Average 11.34 5.96 1.03 1.74
% error

Table Vl: Prediction for 6Y25 density and strength at room tem oerature, 100% training
Batch Actual Predicted % Error Actual Predicted % Error

Number Strength, MPa Strength, MPa Density, Density,
g/cm_ g/cm"

6Y25 714 614 13.99 3.28 3.19 2.67

13



Table Vii: Prediction of selected processing and sintering variables for optimum room

tem 3erature strength md density, 100 % plus 6Y25 training

Milling Time, hr Sintedng Time, hr Nitrogen Pressure, Predicted Strength, Predicted Density,
MPa MPa g/cm3

150

175

1.5

300

300

1.5

692

7OO

3.28
3.28

200 ....I 1.5 3 706- 3.28
200 1.75 4 689 3.27

250 1.5 3 709 3.28
, ,, , ,

250 1.5 4 705 3.28

250 1.75 4 705 3.28
300 1.5 4 711 3.28

1.75 4 713 3.28
,ira i i

712 3.28

Tables VIII-XII show the results obtained for 1370 °C.

Table VIII: Predicted strength at 1370 °C with 70% training, Combination A

Batch Actual % Error Actual Predicted
Number Strength, MPa

6Y11 445

6Y15 6Y16 4O2
6Y25 467

Average Error

Predicted

Strength, MPa

399 10.32

Dense,
g]cm_
3.23

Dense,
_cm"
3.21

% Error

0.56

442 10.16 3.22 3.20 0.64
440 5.8 3.28 3.24 1.28

8.77 0.83
i i

Table IX: Overall results for 1370 °C, 70% training

Combination strength - average Strength - % error

A

% error for all test
vectors

E

8.77

Density - average
% error for all test

vectors

0.83

6.69

Density - % error
for 6Y25for 6Y25

5.80

11.88
11.17
16.45

3.80
9.82

1.28

B 7.61 1.50 2.71

C 7.22 1.69 1.14
D 10.36 1.62 2.34

1.52 2.82

1.43Combined Average
% error

8.21 2.06

14



Table X: Overall results for 1370 °C

Combination Strength - average
% error for all test

vectors

60% training
Strength - % error Density - average

for 6Y25 % error for all test
vectors

Density - % error
for 6Y25

A 7.19 3.40 1.56 0.96
B 10.78 12.13 1.21 0.60

C 7.53 14.70 1.30 - 1.23
D 8.96 17.82 2.83 3.64

E 8.07 1.50 1.71 3.03

Combined Average 8.52 9.91 1.72 1.89
% error

Table XI: Prediction for 6Y25 dens_ and stren_h at 1370 °C with 100% training
Batch Actual Predicted % Error Actual Predicted % Error

Number Strength, MPa Strength, MPa Density, Density,
g/cm° g/cm"

6Y25 467 402 13.83 3.28 3.20 2.46

Table Xll: Prediction of selected processing and sintering variables for optimum density
and

Milling Time
150

strength at 1370 °C with 100 % plus 6Y25 training

Sintering Time Nitrogen Pressure Predicted Strength
1.5 4

175 1.5 4

200 1.5 4
200 1.5 5

200 1.75 5
250 2 5
300 1.5 4
300 1.5 5

3OO 1.75
2

5
5300

466

469
470
471

471
467
468

470
471

467

Predicted Density
3.24
3.25

3.26
3.25
3.27

3.27
3.27
3.26

3.27
3.27

Using 60% of the room temperature data for training, the strength and density values

were predicted with an average percentage error of less than 11.4% and 1.1%, respectively.

When the slightly larger training set of 70% was used, the average percentage errors for

strength and density either remained the same or dropped slightly to less than 10.6% and

1.0%, respectively. Similar results were obtained for the 1370 °C data. With 60% training

the average percentage errors for strength and density were less than 8.6% and 1.8%,

respectively. With 70% training these values were 8.3% and 1.5%, respectively.
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DISCUSSION

Relatively large errors occured in several cases. In Table 1/I, the error of 29.84% on

the predicted strength can be explained by the fact that the training vector from batch 6Y14

biased the results of 6Y12 and this was totally due to a sintering variable that was not

included as an input feature. In Table IV, the error of 17.74% on tile predicted strength was

due to the bias in the training set which incorporated a majority of training vectors with 24

hours grinding time. In Tables VI and XI, the 13.99% and 13.83% errors with 100% training

can be attributed to biased regions and sharp gradients in the data set; many of the training

vectors are concentrated within regions of the input hyperspace which correspond to shorter

grinding times. In Table IX, the 16.45% error for combination "13" can be attributed to the

absence of training vectors with 300 hours grinding time. Similarly, in Table X, the errors of

14.7% and 17.82% in combinations "C" and "D", respectively, can be attributed to the

absence of training vectors with 300 hours grinding time, whereas the other cases performed

well because they had at least one such vector.

Bias in the training sets may also result in a very good prediction. In Table V, for

instance, the result of an error of only 0.04% for 6Y25 was obtained because the training

data set did not have any vectors having grinding times of 24 hours, meaning that most of the

training vectors are relatively close to 6Y25 in the input hyperspace.

The information in Tables VII and XII suggest that there may be other combinations

of sintering and processing variables that will produce results almost as good as that

obtained for 6Y25 but more efficiently. For example, in Table VII, using a milling time of

250 hours, a sintering time of 1.5 hours, and a nitrogen pressure of 3 MPa, the network

predicts that a strength of 709 MPa can be obtained. This is only slightly less than the 6Y25

value of 712 MPa, but with a reduction in milling time of 50 hours.

Similary, Table XII indicates that a slightly higher than optimal for 6Y25 value of

471 MPa can be achieved with milling time of 200 hours, sintering time of 1.5 hours, and

nitrogen pressure of 5 Mpa, which is a 100 hours saving in milling time over 6Y25.A word of

caution here. Although the confidence in prediction results for strength and density lies

within 12% and 2%, respectively, these predictions need to be confLrmed by manufacturing

of ceramics using the same input parameters.From the theoretical point of view, if there is a

steady trend in data, namely, if increase in the value of one input variable leads to an

increase (or decrease) in value of the output parameter, than RBF predictions will be very
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accurate and valid. In other words, if the function between the input and output variables is

smooth and either increasingor decreasingthe RBF network, and other neural networks as

well, will makevalid predictionsfrom asufficiently largetraining data.

Using eventhe smaller training data set of 60% did not increase the prediction errors

in a significant way. This suggests a potential for speeding up the optimization of processing

by using neural networks. Apparently, correlations between the input and desired output

variables can be established by diminished training sets when using significant input

variables.

In this study we have used only a small subset of input and output variables, and still

the results achieved were quite reasonable. If larger number of input and output variables

could be used that would certainly improve the predictions and their reliability.

CONCLUSIONS

The radial basis function (RBF) network was found to be applicable for learning

silicon nltride processing and consequently predicting strength and density using three

processing variables as input features. Predicting strength and density values for the 30% or

40% of the modulus of rupture batches subsets which were not used for training was

successful with an average error of less than 12% for strength and 2% for density for both

room and high temperatures. Predicting strength for the optimum batch was only successful

(less than 12% error) where the training set reflected a reduced gradient and less biased

regions. Predicting bulk density was more successful than predicting strength. This was due

to the fact that bulk density is directly related to milling time, sintering time and pressure,

whereas the flexural strength is additionally dependent on pore morphology, microstructure,

and the presence of failure causing defects. This work shows that RBF neural networks have

a potential for accelerating improvements in ceramic materials processing.
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