https://ntrs.nasa.gov/search.jsp?R=19930017959 2020-03-17T06:09:55+00:00Z

1N-7] 165869 7.176

NASA Contractor Report + 19/034

User's Manual fo<u>r UCAP:</u> Unified Counter-rotation Aero-acoustics Program

E. M. Culver, C. J. McColgan United Technologies Corporation Hamilton Standard Division Windsor Locks, Connecticut

April 1993

Prepared for Lewis Research Center Under Contract Number NAS3-24222

National Aeronautics and Space Administration

(NASA-CR-191034 USER'S MANUAL FOR UCAP: UNIFIED COUNTER-ROTATION AERO-ACOUSTICS PROGRAM Final Report (United Technologies Corp.) 176 p N93-27148

Unclas

G3/71 0165069

····· - -----

NASA Contractor Report- 19/034

User's Manual for UCAP: Unified Counter-rotation Aero-acoustics Program

E. M. Culver, C. J. McColgan United Technologies Corporation Hamilton Standard Division Windsor Locks, Connecticut

April 1993

Prepared for Lewis Research Center Under Contract Number NAS3-24222

.

Table of Contents

ź

E-7

= : ____

	List of Figures	iv
	Summary	. 1
I.	Introduction	. 2
II.	Theory	. 4
III.	Program Organization	. 6
IV.	Input Description	.9 .9
v.	Output Description	44
VI.	Noise Outputs	56
VII.	Program Installation	58
VIII.	File Requirements	59
IX.	Error Messages	62
	References	66
	Appendices	
Α.	Example QWMU Generating Program and Modified Block Data CRPBLK	67

iii

Er fulliget and a state of the state of the

List of Figures

• <

/ 💰

-

- r - 14 . R

•

-

: _____

<u>Page No.</u>

Figure 1 (part a)	Forward Rotor Velocity Diagram
(part b)	Rear Rotor Velocity Diagram
Figure 2	-
Figure 3 (part a)	UCAP Calling Tree
(part b)	
(part c)	
(part d)	THAT THE AND COMMON ATER RELEICE DISCING FOR
Figure 4	an analysis load papels and CONTION DUTILS . The
	- $ -$
Figure 6	plade geometry nomenclature (2-D COULDS) · 10.
Figure 5 Figure 6 Figure 7	plade geometry nomenclature (KAI COULU) + 100
Figure 8 · · · ·	nindo geometry nomenclature (KAI COULU) , 100
Figure 9	niede geometry nomenclature (KAI COULU) · · · ·
Figure 10	plade meantry nomenclature (XIZ COOLU) , 100
Figure 11	
Figure 12	
Figure 13	
Figure 14 · · ·	
Figure 15	BLADEGEO output (2-DCOFWD: 2-D 114
rigure 10 t t t	
Figure 16	
Figure $17 \cdot \cdot \cdot$	
Figure 18	VELGRADS output
Figure 19	VELGRADS output
Figure 20	\mathbf{W}
Figure 21	INTERPRM output
Figure $22 \cdot \cdot \cdot$	AEROEXEC output (GETXMB section 1) 123
Figure $23 \cdot \cdot \cdot$	AEROEXEC output (GETXMB section 2) 124
Figure 24	Cylindrical "cutting" surface for blade
	section definition and for definition
	of advance coordinate, γ
Figure 25	AFPOFYFC output (GETXMB SECTION 3) · · · · · ·
Figure 26	\mathbf{x}
Figure 27	ARRADITED ANTIMIT ICRIXME SPECIOU DI DI DOUT
2	AEROEXEC output (GETXMB Section 7) 129 AEROEXEC output (GETXMB section 7) 130
Figure 28	AEROEXEC output (GETXMB section 7) 130
	\mathbf{v}
(part b	
Figure 30	AEROEXEC output (lifting surface solver) . 133 AEROEXEC output (lifting surface solver) . 134
Figure 31	AEROEXEC output (1st camber table) 134
Figure 32	AEROEXEC output (ANSO)
Figure 33	AEROEXEC output (individual rotor
-	performance summary)
Figure 34	AEROEXEC output (vortex calculations:
	operating conditions)
Figure 35	elemental data)
	elemental uata)

Figure						AEROEXEC output (vortex calculations: coefficients from potential calculation) . 141
Figure	37	•	•	•	•	AEROEXEC output (vortex calculations:
						lift coefficients and incremental lifts
						and drags)
Figure	38					AEROEXEC output (vortex calculations:
						performance summary)
Figure	39		_	-	-	AFROFIE output (individual rotor perfor-
Tigure		•	•	•	•	mance summary, after vortex calculations) 144
Figure	40					AEROEXEC output (steady interference
rigure	40	•	•	•	•	velocity field calculation) 145
	. 1					AEROEXEC output (PRTPRF: counter-rotation
Figure	41	•	•	•	•	performance summary)
Figure	42	•	•	•	•	
Figure	43	•	•	•	•	AEROEXEC OULDUL (CPMAF, Tear rocor onco
_						front rotor)
Figure	44	٠	•	•	•	AEROEXEC output (CPMAP, front rotor onto
						rear rotor)
Figure	45	٠	•		•	AEROEXEC output (steady WMU vector
_						calculation)
Figure	46			•	•	AFROEXEC output (unsteady WMU vector
						calculation)
Figure	47				•	NOTSEXEC output (observer position
						simmary
Figure	48				•	NOTSEXEC output (front and rear rotor
						operating conditions) 166
Figure	49					NOISEXEC output (summary of noise
1 1 9 4 2 9	• •	•	•	-		results, by directivity) $\dots \dots \dots$
Figure	50	_	_		-	NOISEXEC output (summary of noise results
TIGULC	50	•	•	•	•	at each frequency)
Figure	51		_	_	-	Listing of sample program to generate QWMU
Tyure		•	•	•	•	vector for sinusoidal gust
Figure	52				_	Listing of CRPBLK with changed default
rigule	52	•	•	•	•	value for CRP tolerance CRPTOL 170
						Autric for our cordinated and the state is a set of the

. - -

> =.: •

- **V**

-

Summary

This is the user's manual for UCAP (Unified Counter-rotation Aeroacoustics Program), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady airloading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for non-linearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counterrotation.

ΙĦ

1 63

17

ni Linuali

-

Major sections of this volume include a general code overview, descriptions of input and output, installation instructions, and a listing of error codes.

I Introduction

This document describes the use and general structure of the Unified Counter-rotation propeller Aeroacoustic Program (UCAP), developed under NASA Contract NAS3-24222, Task Order 10. UCAP is the single and counter-rotation successor to the single rotation UAAP, which is a computer program to predict the aerodynamic and acoustic performance of Prop-Fans using helicoidal lifting surface theory and a frequency-domain acoustic theory developed at Hamilton Standard in the 1980's (reference 1).

The major improvements of this version of UCAP over UAAP are:

The inclusion of counter-rotation. The steady interaction is modelled by perturbing the solution for one rotor by the mean velocity field caused by the other. These interaction velocities are assumed to follow streamlines.

Calculation of induced drag from blade Δc_p data instead of in the Trefftz plane. This was changed to include loading from the leading edge vortex and the tip edge vortex.

Inclusion of the vortex loading effects into the calculations of the induced velocity and the wake. The time average, non-linear axial momentum is satisfied by iteration.

Streamline contraction is added. This is modelled by forcing continuity along annuli defined by flow-field data.

Steady aerodynamic boundary conditions on the blades are calculated on conical surfaces defined by the local streamline angle.

The calculation of the required turning angle (for the flow tangency boundary correlation on the blades) has been revised. Instead of treating the axisymmetric disturbances (for example, those from the other rotor or from an external flow field) as perturbation angles, these are incorporated into the mean velocity triangle (see Figure 1).

The axisymmetric interaction component of the rotor-to-rotor interaction velocity is calculated from $\partial C_i/\partial x$, the local thrust loading, and $\partial C_p/\partial x$, the local power loading. This method requires less CPU time than the near wake formula-tions and will not significantly change interaction velocities at normal rotor spacings.

2.

-

[•] Unified Aero-Acoustic Program.

Iterative correction for interaction velocity on both rotors of a counter-rotation Prop-Fan is included.

 $\overline{\mathbf{x}}$

II Theory

UCAP is a derivative of the earlier UAAP work; the details of the theory behind UAAP can be found in reference 1. The two major improvements over the interim version of UCAP, produced under Tasks I and II of this contract, are the incorporation of vortex loading into the induced flow calculation and the wake calculations, for both single and counter-rotation operation, and the modeling of contraction in rotor-rotor interference, which will be described below. UCAP works on the basis of perturbing each rotor with the velocity field produced by the other rotor. The steady loading upon a blade is divided into several parts: the potential part (subscript PoT) is directly from lifting surface theory; it is calculated from

 $\{\mathbf{L}_{POT}\} = [K]^{-1} \times \{W\}$

Ī

where $\{L_{por}\}$ is a vector representing the potential loading, $[K]^{-1}$ is the influence coefficient matrix, and {W} is the turning angles required to maintain flow tangency along the blade surface. The secondary loading (that portion of loading due to induced flow) is calculated based on momentum theory using the thrust and torque at each control point and the mass flux through the rotor. The methods for calculating the secondary loading and vortex loading (the portion of the loading from the leading edge, side edge, and tip edge vortices) are described in reference 1, but the application is different. In UAAP, the calculation of the induced flow and the wake depended only upon the potential loading, $\{L_{por}\}$. The steady potential loading was the result of non-linear iterations, where the C_p and C_i resulting from each step were used to compute a new induced flow. This was repeated until the change in C, was small. The final potential load was then used to drive the Near Wake Calculation. The vortex loading was attached to the final performance values but never included in either the loading to drive the Near Wake Calculation or in the induced flow calculation. In the present program, the induced flow is calculated before and after the calculation of the vortex loads, so the influence of non-linear lift is included in the inflow field. The Near Wake routine calculations are driven by {L}, which includes the vortex load and is obtained by:

$$\{L\} = \{L_{por}\} \cdot ((\partial C_{*}^{*}/\partial x) / (\partial C_{i}/\partial x))$$

where $\partial C_{*}/\partial x$ includes the effect of vortex loading and $\partial C_{i}/\partial x$ includes potential loads only.

The flow chart in Figure 2 shows a schematic of the method used in counter-rotation operation for the steady aerodynamic solution. Single rotation operation bypasses steps M through V, but is otherwise similar. Streamline contraction is a result of the conservation of mass. In UCAP this is done by dividing the flow into streamtubes which are defined by the flow field entered by means of the VELGRADS command (see Section IV, "Input Description"). If no external flow field is defined, initial streamlines will be based on the hub and tip radii of the front and rear rotors. The locations where these streamlines intersect the rotors are calculated after every steady iteration. The new locations of the streamlines at the rear rotor are computed by calculating the flow rate in each streamtube and adjusting the annular areas in order to enforce incompressible continuity. For the streamline locations on the rear rotor, the flow rate in each streamtube where it crosses the forward rotor is calculated from the induced velocity, the interference velocity caused by the rear rotor, the velocity due to the external flow field, and the streamtube area. Since the velocity where that stream-tube crosses the rear rotor is known, continuity will determine the stream tube area at that location. This is repeated until all streamlines on the rear rotor are relocated. The new locations of the streamlines where they intersect the front rotor are calculated in a similar manner: the streamtube areas on the rear rotor are held fixed while the streamlines on the front rotor are adjusted to satisfy continuity.

14

5.27

雷劳

The streamtubes defined by the last steady iteration are used for the calculation of the unsteady rotor-to-rotor interferences. A separate document (reference 4) contains a more detailed explanation of the theory used in UCAP.

III Program Organization

UCAP is a large program, with about 30000 lines of source code excluding comments. It is divided into several modules, which communicate via common blocks, argument lists, or files. These are:

Control Module — Controls the program flow, monitors convergence of the steady aerodynamic iterations, and performs some housekeeping functions, such as assuring that the common blocks are properly loaded with default data.

Input Module — Reads the data entered by the user. Entered data are placed into named common blocks for access by the rest of the program. The input module will also set the default values for the appropriate input parameters which have them.

Blade Geometry Module — Converts the geometry data entered in any of the three available coordinate systems to the coordinate system used internally.

Steady Aerodynamics Module — Performs the calculations required for the solution of the steady aerodynamics, and passes the Δc_p 's calculated to the Steady Loads Module, which performs the integrations needed to get C_p , C_i , and applies the vortex loading to get C^{*} and C^{*}_p. The influence coefficient matrices and thickness vectors are calculated here. The forward rotor influence coefficient matrix is written to file FWD000. The rear rotor is written to file AFT000. For single rotation, the file will be SRP000.

Steady Loads Module — Integrates Δc_p 's to get C_p , C_i , $\partial C_p/\partial x$, and $\partial C_i/\partial x$, and applies the vortex loading corrections, as in UAAP, to get C_{\dagger} , C_{\dagger}^* , $\partial C_{\dagger}^*/\partial x$, and $\partial C_{\dagger}^*/\partial x$. This module also writes the steady portion of the input data file for the Noise Module.

Unsteady Aerodynamic Module — Calculates the complex Δc_p 's resulting from a given disturbance field and writes the unsteady portion of the input data file for the Noise Module. The unsteady influence coefficient matrices calculated in this module are written to external files with names of the form AFT001, AFT002, FWD001, FWD002, etc., where the number is the interaction harmonic order. For single rotation all matrices will be written to a file named SRP000.

Steady Interaction Wake Module — Uses $\partial C_p^*/\partial x$ and $\partial C_n^*/\partial x$ to calculate the velocity field caused by one rotor upon the other. This approach discards influence of the chordwise

loading distribution on the velocity field, which is considered negligible at reasonable rotor-to-rotor spacings.

Near Wake Module — Uses complex loading information supplied by the Steady Aerodynamics Module, with a correction for the vortex loads, to calculate the unsteady perturbation terms caused by one rotor upon the other. While the perturbations are unsteady, the wake is steady when viewed by an observer moving with the rotor generating the wake. When an inflow field incorporating unsteady components is input, the UCAP wake is based on the steady component only. The unsteady portion does not impact the wake. For single rotor operation, only, this module will calculate the velocities caused by the rotor at specified upstream or downstream points (WAKEEXEC command).

Noise Module — Calculates the radiated noise from data contained in an input data file at locations requested by the user.

Utility Routines — Includes sub-programs for interpolation, splining, data management, and printout. These routines are called from many places in the program.

Figure 3A shows the subroutine calling tree of the program. Figure 3B shows the subroutine cross reference listing. Figure 3C is a subroutine reference and purpose listing. Figure 3D shows the labeled common area reference listing.

UCAP uses a large number of named common blocks, but no unnamed (blank) common blocks, for data storage and for data exchange between modules. These are listed in Table I. Further information concerning the actual system requirements is in Section VII, "Program Installation".

÷

IV Input Description

The primary input mode is expected to be a predefined input data set. Upon program execution the primary input file, file number 5, is immediately read and echoed to both the primary output file, file number 6, (to obtain a complete copy of the input on the output file) and to a scratch file, file number 11. All subsequent primary input is obtained by reading file number 11.

No other input files are required by the code except as the user may define for restart capabilities. Several scratch files are generated by the program; they are defined in the Section VIII, "File Requirements".

There are many input values which act as tolerances on iterations, or convergence criteria. These have been defaulted within the code to "recommended" values. Although they explicitly appear in the input description, they need not be input. Input data which need not be input appears at the end of each section, and the input location number appears within parentheses.

The next sections present a description of all the input necessary to run the code.

Commands

The code is command driven. Commands are used to identify the input sections, the input values, and to execute various functions of the code. Sub-commands are used to execute options within functions. The general input format of the command is:

(starting in column 1) COMMANDX(SUBCOMMD) wh

where "COMMANDX" is an 8 character word, including trailing blanks, and "SUBCOMMD" is also an 8 character word, including trailing blanks.

<u>Load</u>

Some commands require that numerical input must be read in next. For this purpose a location-specified, free-field input routine is used which reads between columns 1 and 72. Locations for input are indicated by "L" followed by a number indicating the desired start of a location.

Some of the location specified input controls integration mesh sizes, Fourier series convergence, and other program tolerances. These locations have been identified by parenthesis () around the location number and can usually be ignored by the user. However, if these values are input, the parenthesis () should be omitted from the location field.

Input for this "LOAD" format is illustrated below:

(starting in column 1) C THIS IS AN OPTIONAL COMMENT RECORD (or Records) L 10 1.1 2 3.5 C THIS IS ANOTHER OPTIONAL COMMENT RECORD (or Records) 12.7 13.1 L 91 6.5 END

This will cause the locations shown below to have the following values:

LOCATION	VALUE
10	1.1
11	2.0
12	3.5
13	12.7
14	13.1
91	6.5

Notes: "Scientific notation" is not allowed, e.g. 2.1 E+03 is not allowed. Implied repetitions are not allowed, e.g. 3*2.1 is not allowed. The "END" record is required to terminate each entry into the LOAD routine.

Command Summary

A list of accepted commands is shown below. Since this is a command driven code, command order is important, and therefore the commands are listed below in the required logical sequence for execution.

- HEADER Input page header cards
- RUNPARMS Input flight parameters
- CRPPARMS Input counter-rotation parameters
- AIRPARMS Input options for 2-D drag look-up.
- BLADEGEO Input propeller/blade geometry (2-D,RXY or XYZ coordinates).
- LSTPARMS Input options to panel aero code.
- NOIZPARM Input options to the noise portion of the code.
- VELGRADS Input axial velocity field on a defined grid.
- **VORTPARM** Input options to vortex flow calculation.
- WAKEPARM Input options to wake calculation.
- INTERPRM Input options for rotor-to-rotor interaction calculations
- AEROEXEC Execute the aero code.
- WAKEEXEC Execute the wake calculation.
- NOIZEXEC Execute the noise portion of the code.
- ENDCASE End of input and calculations for the current case.
- ENDJOB End of job, terminate the program.

Specific Input Description

Input requirements/options are provided below for each command, in the order listed above.

HEADER:

13

-

-

This command enters page heading records. Records following the HEADER command are sequentially read until an "END" command is found. Up to 10 page heading records may be entered.

RUNPARMS:

This command enters run parameters using "LOAD" format. The location, default, and input descriptions are:

. . .

LOC.	Default	Variable	Description
1	0	RUNBUG	Debug Option, 1 turns on.
2	59.0	QDEGF	Ambient temperature, °F.
3	1.0	QRHOR	Ambient density/Sea Level Std. density.
4	0	QADVF	Advance ratio, J = V _o /nD, for a single rotor or for the forward rotor of a counter-rotation Prop- Fan.
5	0	QMX	Free-stream Mach number.
16	0	QADVR	Advance ratio, J = V _o /nD, for the aft rotor of a counter-rotation Prop- Fan.

.

CRPPARMS:

This command is used to control counter-rotation operation of the program and to enter certain parameters specific to counter-rotation, such as the rotor-to-rotor spacing. If this command is omitted, UCAP will run in single rotation mode; this is to permit existing UAAP input data to be used for single rotation without change.

LOC 1	Default 0.0	Variable CRPBUG	Descriptions Printout control. 0: Minimal printout 1: Printout specific data after each front/r- ear rotor iteration
2	0.0	SWITCH	0.0: Run single ro- tation. This was chosen to ensure compatibility with UAAP data decks. 1.0: Run counter- rotation
3	-1.0	SPACE	Distance between rotor pitch change axes, nor- malized by forward rotor diameter. For counter- rotation cases, this must be entered by the user; if nothing is entered the program will stop.
4	0.0	COUNT	Number of front-rear ro- tor iterations. Maximum is 25.
6	1000.0	CRPTOL	Tolerance. When the change in power coeffi- cient between iterations is less than this value, the steady performance is considered converged. Values less than 1.0×10^{-5} will be reset to 10000. This value was selected for convenience in pro- gram debugging. The user must enter a value less than 1. for iteration to occur. See Appendix for recommended values.

-

Į

ł

۳

7	0.0	FWDHRM	Highest forward rotor wake harmonic to use for the excitation of the rear rotor.
8	0.0	AFTHRM	Highest rear rotor induc- tion field harmonic to use for the excitation of the forward rotor.

LSTPARMS:

*

Ę ქ

÷.

i en i

z::

This command enters input options to the panel aero portion of the code using "LOAD" format. This command has two sub-commands: AFT and FWD. Use LSTPARMS(FWD) to enter parameters for the forward rotor in counter-rotation cases. Use LSTPARMS(AFT) to enter parameters for the rear rotor in a counter-rotation case. Use LSTPARMS, with no sub-commands, for single rotation cases. The location, default value and input description are:

(* See Figure 4 for pictorial description)

LOC.	Default	Variable	Description
1	0	ZSTBUG	Debug Option, 1 turns on.
2	10	QNCP	Number of chordwise pan- els, maximum of 10.
4	8	QNSM	Number of spanwise modes (control point radii). Maximum of 10.
20	1	QPART1	0 generate $[K]^{-1}$ and W_T . 1 generate $[K]^{-1}$ and read W_T . 2 read $[K]^{-1}$ and generate W_T . 3 read in $[K]^{-1}$ and W_T . The code requires an in-

verse kernel matrix $[K]^{-1}$ and thickness vector, W_T , to obtain the aerodynamic loading on the blade. The $[K]^{-1}$ matrix and W_T vector require a significant amount of CPU time, and an option to utilize

previously generated $[K]^{-1}$ matrices and W_T vectors has been incorporated into the code. Note: For counter-rotation operation, the program requires that the [K]⁻¹ matrix be available for every QQ and QK (see below). If any $[K]^{-1}$ matrix is required for a given rotor, all [K]⁻¹ matrices must be calculated for that rotor. 21 0 QQ Order of unsteady loading, harmonic, = 0 for steady loading. For single rotation operation, this parameter must be set to a value greater than zero for unsteady aerodynamics. For counter-rotation, enter 0, as this parameter is calculated for the unsteady rotor-to-rotor interactions. 22 0 QK Number of circumferential modes for unsteady loading, = 0 for steady loading. For single rotation operation, this parameter must be set to a value greater than zero for unsteady aerodynamics. For counter-rotation, enter 0, as this parameter is calculated for the unsteady rotor-to-rotor interactions.

ŧ

3 Ξ

ŧ

	28	2	QNBOPT	 = 1 for supersonic lead- ing edge element, use when supersonic flow ex- pected at leading edge. = 2 for subsonic leading edge element.
	29	10	QITNON	Max number of non-linear iterations, for single rotation operation. =0 for linear cal- culation. This parameter is ignored for counter-rotation op- eration.
*	101	.2, .35, .45,.55, .65,.75, .85,.95	QZAR	Spanwise locations of control point radii, The number of these must agree with QNSM, fraction of R _{up} .
*	141	.5,.5, .5,.5, .5,.5 .5,.5	QCONTP	Chordwise location of control points within each panel normalized to the panel width. There must be QNSM of these. All control points are at the same location at a given radi- us.
	181	.4,.4 .4,.4 .4,.4, .4,.4, .4,.4,	QCHW	Width for chordwise averaging of downwash, normalized to panel width. There must be QNSM of these input. The downwash averaging width is constant at a given radius.

 \sim . -د . سب ----. . _^_ . . * - -- -- -_ . ••• _^{rs}.

51 0, 0 QWMU Complex downwash vector for flowfield for external to propeller unsteady loading calculation. These can be obtained from Section 13, equation (13.8) of reference 1. A routine to generate these is in the appendix. The values of QWMU must be input sequentially starting in location 351, as real part, imaginary part for each control point across the 1st spanwise station, and then proceeding outward along the blade span. Thus, there must be (QNCP*QNSM) pairs of values input for QWMU. The following input locations may be ignored. 121 Radial extent of singular 02 ססס

=

×

Ī

(3)	.02	QDR	Radial extent of singular integral at control point radius for wake calcula- tion radius.
(5)	1024	QN	Number of points in FFT for terms in kernel inte- gration, max. of 2048, must be a power of 2.
(6)	.004	QDELTA	Axial step size for FFT.
(7)	4	QMODOP	Spanwise mode shape op- tion (use default value).
(8)	.0001	QTOLF	Tolerance for W (omega) integration.
(9)	.001	QTOLT	Tolerance for other inte- grations.
(10)	.005	QTOLS	Tolerance for summations
(11)	20	QMM1	Loop limit for harmonic summation in wake kernel.

(12)	30 (M. H. A)	QMM2	Löop limit for harmonic summation in bound ker- nel.
(13)	10	QMM3	Loop limit for harmonic summation in thickness vector.
(14)		QITABK	File number allocated for $[K]^{-1}$ matrix storage. The default is 8 for sin- gle rotation or for the FWD sub-command and 18 for the AFT sub-command.
(15)		QITABT	File number allocated for W_T (thickness vector) storage. The default is 9 for single rotation or for the FWD sub-command and 19 for the AFT sub- command.
(16)		QINT4	Not currently used.
(17)	0	QPRINT	Additional debug print - not recommended.
(18)	0	QPRIN1	Additional debug print - not recommended.
(19)	0	QPRIN2	Additional debug print - not recommended.
(23)	.025	QKDOWN	Radial step size for non- -singular bound kernel
(24)	.010	QKSTART	Width of singular region for bound kernel integra- tion
(25)	5	QMM4	Loop limit for summation in sound power calcula- tion.
(26)	.9	QMBLEN	Trailing edge effective Mach number for blending to supersonic trailing edge elements.

P

U

ет. 1947

(27)	1024	QNO	Number of points in FFT intégration for n = 0 term in kernel, max = 2048, must be a power of 2.
(221)	.002	QINMES	Step size for radial in- tegration in wake kernel.

Ī

_____ ;

BLADEGEO:

<u>----</u>

ب

This command enters the propeller/blade geometry using the "LOAD" format. For any propeller and flight condition, the shaft power required, and the thrust produced by the propeller are a function of the blade angle. In using this code it is recommended that the blade angle be adjusted so that the power or thrust calculated by this program matches a desired value. (see Sections 3 and 6 of reference 2 for further explanation).

Nine sub-commands exist to allow input of the geometry in different forms:

For single rotation these are:

BLADEGEO(2-DCOORD), BLADEGEO(RXYCOORD), and BLADEGEO(XYZCOORD). For the forward rotor in counter-rotation these are: BLADEGEO(2-DCOFWD), BLADEGEO(RXYCOFWD), and BLADEGEO(XYZCOFWD). For the aft rotor in counter-rotation these are: BLADEGEO(2-DCOAFT), BLADEGEO(RXYCOAFT), and BLADEGEO(XYZCOAFT)

The 2-DCOORD, RXYCOORD, and XYZCOORD sub-commands must not be used in counter-rotation operation. The 2-DCOFWD, RXYCOFWD, XYZCOFWD, 2-DCOAFT, RXYCOAFT, and XYZCOAFT sub-commands must not be used in single rotation. These are described below.

BLADEGEO(2-DCOORD) BLADEGEO(2-DCOFWD) BLADEGEO(2-DCOAFT):

These sub-commands all use the same form of the blade geometry, which is expected to be the most widely used. The 2-DCOORD subcommand is used for single rotation cases, 2-DCOFWD is used for the forward rotor of a counter-rotation Prop-Fan, and 2-DCOAFT is used for the aft rotor of a counter-rotation Prop-Fan. Input takes the form of the spanwise variation of thickness ratio, chord/diameter ratio, twist, airfoil section designation and stacking axis coordinates. This command(sub-command) will calculate the blade surface coordinates and interpolate these into a form required by the other parts of the program. То insure that there are no errors in the blade output description, only a limited amount of extrapolation of the input blade coordinates is allowed. Thus, it is best to provide input stations, X, and streamline angles, SLA, which will define the root and tip sections of the blade such that the output stations, ZBLDST, can be interpolated and not extrapolated. The code requires exactly ten (10) inputs defining X. The input described below is illustrated in Figures 5 and 6.

Note that there are empty locations in the input. These are not used by the program.

LOC.	Default	Variable	Description
1	0	BLDBUG	Debug option, 0 is off, 1 is on.
31	0	BLADE	Number of blades
32	0	D	Propeller diameter, ft.
33	0	SCO	Propeller hub/tip ratio
41-50	0	Х	Spanwise input stations, 10 are required, frac- tions of R _{up} .
51-60	0	HOB	Spanwise airfoil maximum thickness/chord ratio.
61-70	0	BOD	Spanwise chord/diameter variation.
71-80	0	CLD	Spanwise variation of design lift coefficients.
81-90	Ο	DTHET	Spanwise twist variation, in degrees. Twist should be input such that twist at the 75% radius is 0.
347	0	THTDES	The 75% radius value of blade angle at which the blade is to be "de- signed", degrees.
348	0	THTCUT .	The 75% radius value of blade angle at which this calculation is to be run, degrees.

,

Ţ

Ī

	■ .42 F.1.		Note: Propeller blades are assumed to be "de- signed" at one value of blade angle. The input values of thickness/ chord, chord/diameter, camber, twist and stack- ing line are assumed to be defined at the value of blade angle in Loca- tion 347. Location 348 defines the blade angle at which this calculation is to be run.
381-390	0	SLA	Spanwise variation of streamline angle, degrees. Blade airfoil sections are assumed to be on cones which approx- imate the streamlines through the propeller. This input is the cone half-angle, positive as shown in Figure 5.
711-720	0	XSWP	Spanwise variation of X coordinate of mid-chord stacking line, fraction of R _{up} , see Figure 6.
721-730	0	YSWP	Spanwise variation of Y coordinate of mid-chord stacking line, fraction of R _{up} , see Figure 6.
731-740	0	ZSWP	Spanwise variation of Z coordinate of mid-chord stacking line, fraction of R _{up} , see Figure 6.
900	21	ZNPCOV	Number of output stations in the chordwise direc- tion, max 49.

<u>i</u> ŢŢ

901-949	0., 5., PCTCHD 10, 15, 20 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100	Chordwise location of output stations. Both upper and lower airfoil surfaces are output at the same chordwise locations, % chord.
950	21 ZNIS	Number of output stations in the spanwise dir- ection, max of 49.
951-999	.10,.30, ZBLDST .40,.50, .55,.60, .65,.70, .75,.80, .825,.85, .875,.90, .925,.95, .96, .97, .98, .99	Spanwise location stations at which the blade surface will be defined, radius ratios, r/R _{up} .

1

1.0

The following input locations may be ignored.

(346)	2	SWPOPT	Input sweep option. The default value is re- quired.
(349)	1	ZKCUT	Type of airfoil section defined 0 planar, 1 conical. (default). 2 cylindrical
(741-751	1) 1	BAFL	Integer characterizing the 2-D airfoil at each spanwise station. Only NACA 16 series airfoils can be generated with this deck.

<u>BLADEGEO (RXYCOORD)</u> <u>BLADEGEO (RXYCOAFT)</u>: An optional method for input of the blade geometry has been provided. This form allows for up to 50 input stations. Additionally, it requires a table of the displacement of the mean camber line from the chord line. The RXYCOORD sub-command is used to enter data for single rotation cases. The RXYCOFWD and RXYCOAFT sub-commands are used to enter data for the forward and

aft rotor, respectively, of a counter-rotation Prop-Fan. This option requires that the blade sections being described be on cylinders whose axis is the centerline of rotation. The input is illustrated in Figures 7 through 9.

. .

-

100

_____ ____

LOC. I	Default	Variable	Description
1	0	BLSBUG	Debug Option, 0 is off, 1 is on.
2	0	STANO	Number of spanwise input stations, max of 50.
3	0	PCTNO	Number of chordwise input stations, max of 50.
4	0	DIAMET	Propeller diameter, ft.
5	0	SPINNER	Propeller hub/tip ratio.
6	0	BLADES	Number of propeller blades.
51-100) ()	CTSTA	Spanwise input stations, r/R _{up} .
101-150) 0	PCTCD	Chordwise input stations, %chord.
At each	n spanwise :	station	
151-200) 0	тнков	Maximum blade thickness, fraction of chord.
201-250	0	CHDOD	Blade chord, fraction of diameter.

251-300 0	CAMBR	Equivalent NACA Series 16 camber. Obtained by tak- ing the non-dimensional maximum height of the blade mean camber line / .05515, fraction of chord.
301-350 0	TWIST	Blade section chord an- gle, deg.
351-400 0	ХМС	X-coordinate of mid-chord stacking line, fraction of R _{up} .
401-450 0	үмс	Y-coordinate of mid-chord stacking line, fraction of R _{up} .
451-500 0	ZMC	Z-coordinate of mid-chord stacking line, fraction of R _{up} .
501-550 0	XSLA	Streamline angle, deg. This is the flow angle relative to the center- line of rotation, and is used in the sweep angle calculation.

Blade mean camber line displacement table.

1003	0	PCTND	Number of chordwise points in mean camber line displacement table.
1004	0	STAND	Number of spanwise points in mean camber line dis- placement table.
1005	0	CAMLN	Ascending array of chord fractions, PCTND values.

Followed immediately by :

-

Ĩ

Ē

Ē

ij

Ī

1005 + PCTND	0	CAMLN	Ascending array of spanwise radii, fraction of R_{ip} . Starting after last input location, STAND values.
			Followed immediately by :
1005 + PCTND+:		CAMLN(I,K) I=1,STAND K=1,PCTND	Array (PCTND*STAND) of mean camber line displacements from chord line at each radial station, at 1st chordwise location, frac- tion of chord. This is followed by a similar array for the 2nd chord- wise location, and con- tinues through the PCTND chordwise location.

BLADEGEO (XYZCOORD) BLADEGEO (XYZCOFWD)

_____. ___. ¥

Ų

÷

BLADEGEO (XYZCOAFT):

This form of blade geometry inputs the blade description in XYZ coordinates of each blade surface. The XYZCOORD sub-command is to be used for single rotation. For counter-rotation operation use the XYZCOFWD sub-command to enter data for the forward rotor; use the XYZCOAFT sub-command to enter data for the aft rotor. Figure 10 illustrates the coordinate system used. Note that this XYZ coordinate system is different than the 2-D or the RXY system.

LOC.	Default	Variable	Description
1	0	BLDBUG	Print option. 0 is minimal 1 is additional.
2	0	DIAME	Propeller Diameter, ft.
3	0	SPINN	Hub to tip ratio.
4	0	BLADE	Number of blades
5	0	STINN	Number of radial stations in input.

6	0	CDINN	Number of chordwise sta- tions in input.
7	0	STOUTN	Number of output radial stations needed to define the blade.
8	0	CDOUTN	Number of output chord- wise stations needed to define the blade.
51	0	STOUTV	Values of radial sta- tions, fraction of radi- us.
101	0	CDOUTV	Values of chordwise sta- tions fraction of chord.

An "END" record is required to terminate the "LOAD" input. The "END" record is immediately followed by the xyz coordinates of the blade as follows:

For each of the STINN radial input stations the following input records are required:

- a) A label record
- b) For each of the CDINN chordwise input stations the X, Y, and Z coordinates of the face (pressure) side of the blade are input. With one set of X, Y, Z, coordinates in free-field format per record. The units are inches.
- c) Another label record
- d) For each of the CDINN chordwise input stations the X, Y, and Z coordinates of the camber (suction) side of the blade surface are input. With one set of X, Y, Z coordinates in free-field format per record. The units are inches.

VELGRADS:

11

1

. .

—

Ş

÷

This command will input or initialize the axial velocity ratio at the propeller. These ratio may be due to the spinner-hub and or nacelle effects on the freestream flow, but the result must appear to the code as an axisymmetric flowfield.

LOC.	Default	Variable	Description
1	0	V1BUG	Debug option
2	0	V10PT	Velocity ratio input op- tion, 0 : initialize velocity field to 1.0, fraction of freestream velocity. No further input is required. 1 : input the velocity ratio.
For opt	ion V10PT=	1. only:	The axisymmetric velocity ratio is input on a grid of radial and axial points which encompass the blade outer bound- aries. The flowfield values are interpolated at specific "nodal" points required by the code.
3	0	VINRD	Number of radial stations in grid.
4	0	VINAS	Number of axial stations in grid.
5	0	VIVRF	Reference velocity, by which local velocities are normalized, same units as VIRD, VIVV, and VIAX.
6	0	VITIP	Reference radius, by which local radii are normalized, same units as VIRD and VIAX.

7 0 VICLL

Centerline location. The axial location of the forward (or only) blade pitch axis is assumed to be 0. This value is subtracted from the input values of VIAX after input so that the axial location of the forward (or only) blade centerline will be at 0. Same units as VIAX. =

۲

The following inputs are repeated for each of the axial stations in the grid, (K=1,VINAS).

25	0	VIRD(I,K) I=1,VINRD	Radial locations of 1st set of up-stream grid up-stream grid points, same units as VITIP.
25+		VIVV(I,K) I=1,VINRD	Velocities at VIAX(I), VIRD(I), I=1,VINRD same units as VIVRF.
25+		VIAX(I,K) I=1,VINRD	Axial locations of VIVV(I), same units as VITIP.

WAKEPARM:

This command provides input parameters to the propeller wake calculation procedure. This input is used in both the performance calculations, and in the "Wake" calculation option. The variables used for propeller efficiency and wake calculation are listed below.

LOC.	Default	Variable	Description
1	0	WAKBUG	Debug option. 1 print WAKEPARM input data. 0 do not print data.
6	1	YIPLOT	Wake output. 1 is on 0 is off.
8	1	YNPSKN	Skin friction drag. 1 : included, 0 : not included.

20	Ο	YIPRT	Output option: 0 : no output 1 : V_r/V and V_x/V 2 : Fluctuating lift
23	0	YIVWK	The viscous wake shape is described by 1 of 3 op- tions: 0 : gauss pulse 1 : cosine squared 2 : cosine
25	11	YNORPE	No. of output radii.
751	.24,.35,YROUTP .45,.55, .65,.75, .80,.85, .90,.95, .98		Output radii, r/R _{up} .

The following input locations may be ignored.

F

ļ

· ·

- -- ---

(2)	.05	YK	Spanwise integration mesh size, fraction of radius.
(9)	.0001	YTOL	Fourier series sum con- vergence tolerance.
(10)	99	YMM1	Max. no. of Fourier coef- ficients to calculate, max. of 99.
(12)	.001	YTOL1	Tolerance for high fre- quency form of Fourier coefficient.
(13)	0	YLASTM	Last Fourier coefficient for detailed output.
(16)	0.7	YZO	Origin of special routine for interpolation of cir- culation curve.
(17)	0.5	YZNORM	Circulation curve normal- izing factor.
(18)	1.0	YAOPT	0 to not iterate on in- duced angle.

YMM2

Turns on diagnostic print for Fourier coefficient up to YMM2 when YIPRT = 2.

ļ

.

Ē

The following inputs are required in addition to the above if wakes are to be calculated. Output radii are divided into those within the tip radius, YNOR, and those beyond the tip radius, YNPX.

. . .

. 19447

.

-

. J

- -

j

. P

LOC.	Default	Variable	Description
4	0	YNOR	Number of output radii which are less than or equal to 1.0 (within tip radius).
5	0	YNPX	Number of output radii which are greater than 1.0 (outside of tip).
50	0	YXNCS	No. of output axial loca- tions, max of 10 at each radius.
51	0	YXMMU	No. of Fourier coeffi- cients used in calcula- tion of chordwise wake component.
52	0	YXMMV	No. of Fourier coeffi- cients used in calcula- tion of radial wake com- ponent.
53	0	YXMMW	No. of Fourier coeffi- cients used in calcula- tion of downwash wake component.
351		ROUT	Output radii, fraction of radius. There should be YNOR+YNPX of these.
701	0	YARRY(I,K) I=1,YXNCS	Output axial locations, fraction of radius, for 1st output radius. There should be YXNCS of these.

11	0	YARRY(I,K) I=1,YXNCS	Output axial locations, fraction of radius, for second output radius. There should be YXNCS of these.	
721	0	YARRY(I,K) I=1,YXNCS	Output axial locations, fraction of R _{up} , for third output radius. There should be YXNCS of these.	
		For K=1, YNOR+YNP	x	
The followi	ng input lo	ocation may be ign	ored.	
(54)	0.01	YFPHW	Width of averaging func- tion for wake calcula- tions = X/R _{up} .	
<u>AIRPARMS:</u> This command will input options which are used to obtain the 2-D airfoil drag from built-in tables of lift and drag coefficients.				
LOC.	Default	Variable	Description	
LOC.	Default 0	Variable AIRBUG	Description Debug Option, 1 to print	
1	0		Debug Option, 1 to print	
1	0	AIRBUG	Debug Option, 1 to print	
1 The follo	0 wing input	AIRBUG locations may be	Debug Option, 1 to print ignored. 2-D Airfoil data pack number wanted for this run. Currently, only NACA 16 is available in this	

Ţ

≣

Ī

4

(15)	0	CDMLT	2D drag multiplier, used if AIRCOR = 1.
(17)	0	DCDT	2D drag increment, used if AIRCOR = 1.

.

ي.

. L

)

. . ~

- . ليا

....

ر . جين

------ .a CDMLT and DCDT are used to alter the drag of the stored airfoil data. They may be used to simulate another airfoil, to account for a rough airfoil or provide a better match with test efficiency. The altered drag coefficient is computed as:

 $C_{D(altered)} = C_D * CDMLT + DCDT$

.

NOIZPARM: This command will input the options which are used to control the acoustic calculations.

Ī

-

-

NOTES:	B is number of blades, M is noise harmonic order
	B * ZMMAX must be less than 1001
	MX is flight Mach number (may not be 0 for near-field
	calculation)

LOC.	Default	Variable	Description
1	0	ZNZDBG	Debug option : 0 no print; 1 print input parameters; 2 print file 50 input.
2	0	ZNFIND	0 for far-field theory 1 for near-field theory
3	1	ZMMAX	Max noise harmonic order group to calculate.
4		ALT	Distance from prop axis to observer, ft.
9		ZNX	Number of axial directiv- ities for noise calcula- tions, 20 max.
10	1	ZXORX1	Axial directivities are 1 : visual or 0 : retarded.
11		Xl	Visual observer positions along axis (+ ahead of prop),ft. (calculated if X is input).
		or	
31		X	Retarded positions ob- server, ft. (calculated if X1 is input).

59) 1		ZIBLW		1 to add boundary layer and wake displacement thickness to blade thick- ness monopole noise. 0 to omit (for comparison with other predictions).
69	90).	PHIF		Azimuthal observer dir- ectivity angle for un- steady loading, degrees to front rotor — normally use the default. PHIF increases in the direc- tion of rotation; zero corresponds to the phase reference position for calculation of unsteady air loads. Thus, the ob- server position is speci- fied relative to the un- steady flow field refer- ence.
70	90		PHIR		Azimuthal observer direc- tivity angle for unsteady loading, degrees to rear rotor. Important only when BPFF = BPFR. Gives the phase difference be- tween rotors. PHIR in- creases in the direction of rotation; zero cor- responds to the phase reference position for calculation of unsteady air loads. Thus, the ob- server position is speci- fied relative to the un- steady flow field refer- ence.
The	followin	g input	locations ma	ay be :	ignored.
(5	1) 10		ZJMINI		With ZNJ1, controls chordwise integration mesh.
(5	2) 8		ZNJ1		Number of chordwise points = ZJMINI + M + B * ZNJ1, 1001 max pts.

÷

. . آب

. •____

. .

÷

- -

÷

: 74

(53)	10	ZJMIN2	Used with ZNJ2, controls spanwise integration mesh.
(54)	10	ZNJ2	Number of spanwise points is JMAX (must be less than 2001) which is cal- culated as follows : if ZNJ2 > 0, JMAX = ZJMIN2 + M*B*ZNJ2; if ZNJ2 < 0, JMAX = ZJMIN2 - ZNJ2 if ZNJ2 = 0, JMAX = ZJMIN2 + ZNJ2 points/phase cycle.
(55)	6	ZIW	Output file number.
(56)	1	ZSTART	Start harmonic order.
(57)	1	ZMINC	Increment in harmonic order.
(58)	2	ZLHSOR	Indicates what type of unsteady flow: 1 = blade wakes; 2 = flowfield.
(60)	0	ZPRUNS	If not 0, print diagnos- tic unsteady loading noise table.
(61)	0	ZITRAP	If not 0, max diagnostic print.
(62)	0	ZNFOUT	If not 0, print harmonic table to file number ZNFOUT; allocate appro- priately.
(63)	0	ZKK	See note below.
(64)	0	ZKXTND	See note below.
(65)	10	ZKMIN	See note below.
(66)	10	ZOMEGA	See note below.
(67)	0	ZIPEXT	If not 0, print load di- agnostics.

If not 0, do "instant" ZIPSIC (68) 0 quadrupole noise calculation (not recommended). ZNAIR 1

Code for airfoil thickness distribution (specify for all radial stations): 1 = series 163 = series 645 = series 657 = biconvex parabolic (analytic) 8 = 4 digit series

ZKK, ZKXTND, ZKMIN, and ZOMEGA :

(71)

In the near-field option, the program evaluates a Fourier transform numerically using rectangular integration. The range for this frequency integration is 1/(1+MX) to 1/(1-MX), where MX is the flight Mach number. The number of steps in the integration range determines the trade-off between precision and running time. The integrand is typically a fluctuating quantity whose rate of oscillation, dI/dw, is computed by the program as a function of several factors such as harmonic order, Mach number, and observer position. To achieve uniform precision over a range of conditions, the program determines the number of points (ZKK) in the frequency integration range from two input numbers: the first is the minimum points in the range (ZKMIN) and the second is the number of mesh points per oscillation of the integrand (ZOMEGA). The number of integration points is then ZKK = ZKMIN + ZOMEGA * dI/dw. Default values are ZKMIN = 10 and ZOMEGA = 10, which from numerical tests give a reasonable compromise between precision and running time. If the user wishes to experiment, he can override either of the two default values.

Reducing the number of points will reduce running time and storage requirements, but also reduce the precision of the calculation. Determining the satisfactory level of tradeoff between precision and running time for other than the defaults is up to the user.

In some cases a significant contribution to the noise can be caused by frequencies outside the range of frequency integration noted above. To account for this, ZKXTND points are included outside both the upper and lower bounds of the integration. If ZKXTND equals zero then it is automatically computed by the program, otherwise the input value of ZKXTND is used. However, ZKK + 2*ZKXTND must be less than 401. If this is not true then the code will reduce ZMMAX by one until this condition is met.

<u>.</u>

en Bristophica and a complete and a second and a

INTERPRM:

J

U

-

This command inputs parameters for the control of the non-zero harmonic terms in the calculation of the interference between the front and rear rotors in counter-rotation cases. These are a sub-set of the WAKEPARM parameters. Normally, these default values should be used.

	LOC	Default	Variable	Description
The	followir	ng location	s are optional and	d may be ignored:
	(1)	0.0	INTBUG	Printout control: set to 1 to increase amount of printout regarding inter- rotor wake.
	(2)	0.05	INTXK	Spanwise integration mesh size, fraction of R _{up} .
	(3)	0.7	INTZO	Origin of special routine for interpolation of cir- culation curve.
	(4)	0.5	INTZNM	Circulation curve normal- ization factor.
	(5)	1.0	INTAPT	0 to not iterate on in- duced angle.
	(6)	1.0	INTVWK	The viscous wake shape is described by one of three options: 0: Gaussian pulse 1: cosine squared pulse 2: cosine pulse
	(7)	0.01	INTFPH	Width of averaging func- tion for wake calcula- tion, in terms of R _{up} .
	(8)	1.0	INTSKN	Skin friction drag. 1: included 2: not included
	(9)	0.001	INTTOL	Fourier series sum con- vergence tolerance.
	(10)	0.0001	INTOL1	Tolerance for high fre- quency form of Fourier series.

(11)	99.0	INTMM1	Maximum number of Fourier coefficients to calcu- late, limit of 99.
(12)	0.0	INTMMU	Number of Fourier coeffi- cients used in calculat- ing the chordwise compo- nent of the wake.
(13)	0.0	INTMMV	Number of Fourier coeffi- cients to be used in cal- culating the radial por- tion of the wake.
(14)	0.0	INTMMW	Number of Fourier coeffi- cients to be used in cal- culating the downwash portion of the wake.
(15)	0.0	INTPLT	Wake output; 1 is on; 0 is off.
(16)	0.0	INTPRT	Output option. 0: no output 1: print V _r /V and V _x /V 2: print fluctuating lift.

VORTPARM:

1

This command inputs the options which are available to control the Vortex Flow Aerodynamic calculations. This command has two sub-commands: FWD and AFT. Use VORTPARM(FWD) to enter parameters for the front rotor in a counter-rotation case. Use VORTPARM(AFT) to enter parameters for the rear rotor in counter-rotation cases. Use VORTPARM, with no sub-commands, for single rotation cases.

LOC.	Default	Variable	Description
1	0	VTXDBG	Debug option: if = 0, input not printed, if = 1, input printed.
2	1	DOLEAD	If = 1, then calculate additional lift due to leading edge vortex.
3	1.	DOSIDE	If = 1, then calculate additional lift or radial force due to tip edge flow.
4	1	DOAUGL	If = 1, then calculate additional lift due to leading edge vortex shed over aft portion of blade at the tip (augmented lift).
5	.97	ZAUGFF	Radius at which augmented lift acts, r/R _{ip} .
6	0	TIPLOR	Indicates whether tip edge flow results in ex- tra lift (0) or radial force (1).
	edge flow	-	to determine the type of where the tip vortex

gives extra flow at the tip. 1 for attached tip flow which produces a radial tip edge force.

*The AFT and FWD subcommands are eight characters long. The trailing blanks are not required.

The following input locations may be ignored:

(7)	0	PRTPRF	1: print results on ev- ery iteration. 0: do not print results on every iteration
(8-57)	0.2, at all radii.	VTXDLX	Chord-wise distance from leading edge at which vortex loads are assumed to act, in terms of frac- tion of local chord. There is one value of VTXDLX for each output station in the spanwise direction, specified as ZNIS (location 950) in the 2-D coordinate inputs under blade geometry (BLADEGEO section above).

42

AEROEXEC (PRNTCASE):

This command(sub-command) will process all of the input and execute the code to the point where the Compressible Panel Method prints the data it has received. The aerodynamic calculations will not be performed. This is useful in verifying the input before doing the actual aero calculations.

<u>AEROEXEC(EXECCASE)</u>:

This command(sub-command) will process all of the input and execute the aerodynamic calculations.

NOIZEXEC(EXECCASE):

This command(sub-command) will execute the noise calculation section of the code. This should be placed after the AEROEXEC record.

WAKEEXEC (EXECCASE):

This command(sub-command) will execute the potential and viscous wake calculations. This should be placed after the AEROEXEC or NOIZEXEC record. This command should only be used with single rotation operation of the code.

ENDCASE:

This command signifies the end of all commands for the current case, and is required.

ENDJOB:

This command will terminate execution, and is required.

V Output Description

This section presents a description of the output from the UCAP program and includes output print from AEROEXEC (the panel code performance calculation). The output from NOISEXEC (the noise calculation) is described in Section VI.

The output of this program expands on the output of the UAAP program (reference 3). The outputs of the blade geometry routines, the vortex routines, and the lifting surface (steady) solution routines have changed due to the improvements in the code: these changes are applicable to single and counter--rotation operation. Also, the program output has been expanded due to the addition of counter-rotation; the outputs for streamline contraction, rotor-to-rotor interference velocities, and rotor control point location are new.

The debug option, described under the various input section commands, controls the scope of output. These options normally have values of either 0.0 (the default), for minimal printout, or 1.0, yielding additional output. Most pages have a title followed by the header information (entered via the HEADER command). The header consists of a brief description of the page contents. This includes, after the first colon, the subroutine name which is doing the printing of this page, 2) the input command option currently in effect, 3) the time and date at the start of the run, and 4) the program/version identification.

<u>Output Description when DEBUG = 1</u>

This output description follows the order shown in Section IV, "Input Description".

OUTPUT:

The output starts with an echo of the input data set, which is discussed in the input description, and shown in Figure 11.

RUNPARMS:

The debug option of 1. will print the page shown in Figure 12, which shows the input parameters, defined in the input section, along with the location number and the input or defaulted value.

CRPPARMS:

The debug option of 1 will print the page shown in Figure 13, which shows the parameters, defined in the input section, to be used for counter-rotation. FWD->AFT HARM. and AFT->FWD HARM specify the number of unsteady interference harmonics for the front rotor upon the aft rotor and the aft rotor upon the front rotor, respectively.

AIRPARMS:

Figure 14 presents the additional output for debug = 1. Again, the parameters are defined in the input section. A few lines of airfoil description are given, defining the airfoil selected, used to determine profile drag.

BLADEGEO:

Setting DEBUG = 1. in the BLADEGEO section of input yields an additional page of input definition, given in Figure 15. The sample shown in Figure 15 is for the forward rotor of a counterrotation Prop-Fan. The items output and the form of the output is the same for either rotor of a counter-rotation Prop-Fan or the rotor of a single rotation Prop-Fan, so samples for those cases will not be included. Definitions of the parameters follow:

DESCRIPTION PARAMETER Debug option for additional printout. DEBUG Number of blades. BLADN Propeller diameter, feet. DIAMETER Inner-most blade station at 50% chord. SCO SWEEP TYPE Defined in input as SWPOPT. Defined in input as THTDES. DESIGN ANGLE RUNNING ANGLE Defined in input as THTCUT. Defined in input as ZKCUT. TYPE CUT Station radius/blade tip radius (R_{in}). Х T/B Blade thickness/blade chord. Blade chord/propeller diameter. B/D Design lift coefficient. CAMBER Blade twist, from plane of rotation, de-DELTA THETA grees. Defined in input. XSWP Defined in input. YSWP Defined in input. ZSWP

AIRFOIL TYPE	Defined	in	input	as	BAFL.
NO. OF % CHORD	Defined	in	input	as	ZNPCOV.
LIST OF % CHORD	Defined	in	input	as	PCTCHD.
NO. OUT STATIONS	Defined	in	input	as	ZNIS.
LIST - STATIONS	Defined	in	input	as	ZBLDST.

<u>LSTPARMS</u>:

Selecting the debug option, LSTBUG = 1, will print additional input definition as shown in Figure 16, which lists the available input options, their location number and the selected or defaulted values. Refer to the input description for more detail on input items. This is repeated for both rotors of a counterrotation Prop-Fan.

NOIZPARM:

The debug option of 1 will print the page shown in Figure 17, which shows the input parameters, defined in the input section.

VELGRADS:

The debug option of 1 will result in the printout shown in Figure 18. Note that this input is not from the same test case as most of the other output sections and the positions and velocities are not normalized.

VORTPARM:

The debug option of 1 will print the page shown in Figure 19, which shows the input parameters, defined in the input section. The form of the VORTPARM output is identical for both the front and rear rotor in counter-rotation cases. Values of "X FOR LEV ACTION" are the chordwise positions (VTXDLX) at which the vortex loads act (see inputs).

WAKEPARM:

For counter-rotation operation, no items should be entered under the WAKEPARMS command: this description is superfluous. For single rotation, the printout in Figure 20 will be obtained. The input parameters are defined in the input section.

INTERPRM:

Ţ

÷

-

-

----_

Ų

. .

If the debug parameter for INTERPRM is set to 1, the output in Figure 21 results. The input parameters are defined in the input section. The following table relates the input and output designations.

OUTPUT ITEM	CORRESPONDING INPUT ITEM
Debug Switch	INTBUG
K	INTXK
ZO	INTZO
ZNORM	INTZNM
AOPT	INTAPT
IVWK	INTVWK
FPHW	INTFPH
NPSKN	INTSKN
TOL	INTTOL
TOLI	INTOLI
MMI	INTMMI
IPLOT	INTPLT
IPRT	INTPRT

Aerodynamic Output

AEROEXEC:

Figures 22 through 28 show the printout when LSTPARMS and CRPPARMS debug variables are set to one. Figure 22 shows the output for the GETXMB routine, which calculates the locations of the control points on each rotor relative to the other. This routine prints out seven blocks of information: some general propeller information, the geometry information for the forward rotor, the location of the forward rotor control points relative to the rear rotor, the forward rotor leading edge sweep information, the geometry for the rear rotor, the location of the rear rotor control points relative to the forward rotor, and the rear rotor leading edge sweep information.

Figure 23 shows the blade description. MCA and FA are shown in Figure 24. These describe the location, in space, of the mid chord line of the blade.

Figure 25 shows the locations of the front row control points relative to the pitch change axis of the rear rotor. DELTA PHI is the angle measured from the helicoidal surface to the control point. XMBAR is the distance, parallel to the axis of rotation, from the pitch change axis to the control point. MBAR is the control point number at a given radius. MU is the control point number counting from the forward control point at the root to the aft-most at the tip.

.

Figure 26 is the list of forward rotor inner and outer wake points. The inner wake points are those within a circular cylinder defined by the tips of the rear rotor. Outer wake points would be outside this cylinder.

Figure 27 is output of the LESWP routine, which calculates leading edge sweep. The sweep angle is shown in degrees at the stations specified by ZNIS and ZBLDST in the BLADEGEO inputs.

Figure 28 is the list of rear rotor inner and outer wake points. The inner wake points are those within a circular cylinder defined by the tips of the forward rotor. Outer wake points would be outside this cylinder.

Figure 29 shows the re-mapping of each rotor's control points, relative to the other rotor assuming the upstream influence follows streamlines. Since no data were entered under VELGRADS in this case, the default number of 5 streamlines (4 streamtubes) is used, the streamlines are concentric cylinders and the remapping does not move anything. Note that the first control radius is below the spinner cut-off, and therefore outside the inner streamtube (thus has the null streamtube 0 assigned to it), and that the outer 4 control radii are all contained in the outer streamtube (streamtube 4). Figure 30 shows the information passed to the lifting surface solver (F271). This is:

-

—

-

: . : .

PARAMETER	DESCRIPTION
TEMP, DEGF	Ambient temperature, °F
RHO/RHO STD	Ambient density/standard density
SPEED OF SOUND	Ambient speed of sound, fps
ADVANCE RATIO	V/nD, where V is flight velocity, in fps, n is propeller rotation rate in revolu- tions/second, and D is diameter, in feet.
FLIGHT MACH NO.	Flight Mach number
FLIGHT SPD KTS	Flight velocity, knots (nautical miles per hour)
RPM	Propeller rate of rotation, rpm
TIP HEL. MACH	Mach number based on resultant of flight and tip speeds.
START BLENDING	Defined in LSTPARMS input as QMBLEN
DIAMETER	Propeller diameter, feet
NO. BLADES	Number of blades
NO. INPT STA.	Number of input stations
FREQ. OF UNST.	Defined in LSTPARMS input as QQ
NO. NODAL DIA.	Defined in LSTPARMS input as QK
K – DOWN	Defined in LSTPARMS input as QKDOWN
K - START	Defined in LSTPARMS input as QKSTART
INPUT STATIONS	Blade radial station/blade tip radius
B/D	Blade chord/propeller diameter
TOTAL TWIST	Operating twist from plane of rotation, degrees
MCA/D	Distance from pitch change axis to blade mid-chord point along the helix/propeller diameter, see Figure 24. This and FA/D

	(next item) are functions of blade geome- try and advance ratio.
FA/D	Perpendicular distance from helix to the intersection of the blade mid-chord and mid-camber point/diameter, see Figure 24.
T/B	Maximum blade thickness/blade chord
CLD	Blade design lift coefficient
SWEEP	Sweep angle between mid-chord line and resultant inflow velocity

LST CAMBER TABLE:

Another output table is shown in Figure 31. This is a table of the blade camber angle, measured from the plane of rotation as a function of local blade radius (normalized by tip radius) and fraction of the local chord.

ANSO:

Figure 32 gives the initial output from subroutine ANSO. This includes the contributors to the velocity triangle at each radial station and each control point. There are eleven columns; they are describe below.

Parameter	Description
I,MBAR, MU	Indexing information. I is station number, counting from root; MBAR is control point number, counting from leading edge of blade. MU is control point index, counting from lea- ding edge to trailing edge, from root to tip.
R/R	Radial location of station in terms of R/R_{up} .
TH+CAMB	Angle from plane of rotation to camber surface of the blade at

degrees.

this location, measured in

: 2 ' 1497	THICKNESS	W_T , thickness vector or the contribution to turning due to
		airfoil thickness, measured in degrees. In this case the W_T could not be calculated due to numerical problems on the IBM
		3090. Typically the magnitude of this is less than 2°.
l l	V-AXIAL	Axial component of the local change in velocity, $\Delta V/V_o$, due to induced flow and the pres- ence of another rotor. This will be zero for the first pass for the forward rotor.
	V-SWIRL	Tangential component of the local change in velocity, $\Delta V/V_o$, due to induced flow and the presence of another rotor.
-		This will be zero for the first pass through the forward rotor.
	PI*X/J	$\pi \cdot (r/R_{up})/J$, the tangent of the advance angle at each radial station.
	CENTER BODY	The local change in velocity due to the presence of the cen- ter body; this is from the velocity field which has been entered via the VELGRADS com- mand. This is zero as no ve- locities were entered via the
		VELGRADS command. Turning required to ensure the
	WMU	flow is tangent to the camber surface.
	Also printed here is the	e coefficient of sound power, which is:
	acoustic power los	ss/(density*(rev/unit time) ³ *(diam) ⁵)
	PERFORMANCE RESULTS:	

and a second second second

<u>PERFORMANCE RESULTS</u>: Figure 33 shows the performance results for the individual rotor:

 $\begin{array}{rl} C_{p} &= P / \rho \, n^{3} D^{5} \\ C_{t} &= T / \rho \, n^{2} D^{4} \\ \text{Efficiency} &= J \left(C_{t} / C_{p} \right) \end{array}$

where

n is rotor rotational speed D is diameter ρ is fluid density P is power T is thrust

The units of n, D, and ρ , P, and T must be consistent.

Included are potential loads plus profile drag losses and the various non-linear lift terms which may result from leading edge sweep.

VORTEX CALC.:

Figures 34 through 38 show the vortex calculation outputs. Figure 34 shows the operating conditions. Figure 35 shows the angle of attack (A.O.A) at the leading edge, three dimensional angle, (ALPHA 3-D), induced angle, advance angle, and blade angle. Figure 36 shows the coefficients from the potential calculations. CDPOT does not include leading edge thrust. L.E. K, MAG is the leading edge suction force coefficient. This is calculated within the lifting surface portion of the code. It is used to calculate the leading edge force coefficient. Figure 37 shows the lift and drag coefficients which result from the vortex The incremental lift and drag coefficients illuscalculations. trate the relative magnitude of the vortex components. Note that the tip edge vortex can cause lift (separated flow) or radial forces (attached flow). The terms "TIP VORTEX" and "SE VORTEX" (side edge) are used interchangeably. Figure 38 shows the elemental performance. MODOPT and NBOPT are LSTPARMS inputs and are explained in the LSTPARMS input section.

1.1

PERFORMANCE RESULTS:

Figure 39 shows the performance of each individual rotor. CP is the standard propeller power coefficient, $CP=P/(\rho n^3 D^5)$. CT is the standard propeller thrust coefficient, $CT=T/(\rho n^2 D^4)$. This information is repeated for each pass through each rotor.

INTFRS:

Figure 40 shows the velocities calculated as a result of the steady interference between rotors. The first section is a tabulation of the change in axial velocity due to the center body (VX-BODY), which is zero for this case as no velocities were entered with the VELGRADS command, and the rotor's induced velocity. VX-POT is the change in axial velocity, $\Delta V_x/V_o$ due to potential flow. VX-2DARY is the increment due to non-potential loading, e.g., vortex flow. The second section shows the velocity increment due to rotor loading at the rear rotor control points.

PRTPRF:

E I

Figure 41 shows the performance summary at one of the intermediate steps. In part A of this Figure the performance without the vortex loading is shown, in part B the performance with the vortex loading. Both parts are divided into two sections: а coefficient section and a ratio section. In the coefficient section, the power, thrust, and torque coefficient and the efficiency are shown. The last coefficient, ROLLING MOMENT, is defined as

$C_{rm} = (Q_{fwd} - Q_{aft}) (\rho n^2 D^5)$

where Q_{fwd} and Q_{aft} are the forward and rear rotor torque, respectively. All coefficients in the "TOTAL" column are based on the diameter and rotation rate of the forward rotor, hence FWD + AFT do not equal TOTAL. The ratio section has the ratio of tip speed, diameter, and angular speed of the aft rotor to the forward rotor. Also given are ratios of area, power, thrust, and torque for forward rotor to total, aft rotor to total, and aft rotor to forward rotor.

ADJUST:

Figure 42 shows the output of the routine which performs streamline adjustment. The first section shows the axial velocities at each control point. The second section shows the flow rates through each stream tube. The third section shows the new boundaries to the stream tubes after continuity is enforced.

<u>CPMAP</u>:

Figure 43 shows the re-location of the control points which are used for calculation of the flow induced by the rear rotor on the forward rotor.

CPMAP:

Figure 44 shows the relocation of the control points which are used for the calculation of the wake flow from the front rotor upon the rear rotor.

The output produced for each iteration is not included here; there is about 26 pages of printout per iteration with the DEBUG variable set to 1 in all input sections. Due to volume, they are not included here.

PROPELLER EFFICIENCY PROGRAM:

Figure 45 and 46 present the rotor-to-rotor interference field calculated by the near wake module. The information in Figure 45 is the steady calculation. At each station, there are two sets of data. The first is a single line with:

Station number, (1 = innermost) radial STATION location in terms of R_{up} of radius gener-

	ating influence field (here, the forward rotor)			
PHI	Advance angle, degrees			
SIGMA1 SIGMA2 SIGMA1/SIGMA2	Internally calculated values used in calculations of wake velocities which depend on radius and operating condition			
TWIST	Angle between chordline and plane of rota- tion			
Next there are ten li each radius)	nes (One line for each of QNCP points at			
MBAR	Chord-wise control point number			
XMBAR	Axial distance from pitch change axis, normalized by tip radius of rotor generat- ing influence field			
WMU (STEADY)	Perturbation angle produced by field			
DOWN WASH	Down wash component of WMU			
CHORDWISE	Chord-wise component of WMU			
VISCOUS WAKE	Portion of WMU produced by the viscous deficit caused by profile drag of the front rotor			
AXIAL	Axial component of WMU			
SWIRL	Swirl component of WMU			
Figure 46 shows a sample printout for the higher harmonic portion of the rotor-to-rotor interference field.				
mba finat fina linas about				

Ē

The first five lines show: Direction of interference Harmonic of blade pass frequency, m Number of blades, B Harmonic of shaft frequency, described in Section IV, "Input Description", under LSTPARMS as QK, and calculated as:

 $K_{front} = m * B_{aft}$

 $K_{aft} = m * B_{front}$

Q-order, described in Section IV, "Input Description", under LSTPARMS as QQ, and calculated as:

 $Q_{\text{front}} = K_{\text{front}} - (1 + (n_{\text{front}}/n_{\text{aft}}))$

 $Q_{aft} = K_{aft} - (1 + (n_{aft}/n_{front}))$

K and Q are calculated for the rotor receiving the interference.

Next, is one line for information for items which are constant at a given radius:

STATION Station number and distance from center of rotation normalized by R_{up}.

WAKEPNT This is the normalized contracted radius for this station.

PHI Advance Angle, degrees.

- SIGMA1,Internally calculated values used for cal-SIGMA2,culations in the wake. These depend onSIGMA1/SIGMA2radius and operating condition.
- TWIST Angle between chordline and plane of rotation, degrees.

After the line for each radius, there is one line for each chordwise point (QNCP):

MBAR, MU Indexing information.

XMBARDistance from pitch change axis of rotorgenerating interference field.

DPHI Angle from helicoidal surface to control point, degrees.

WMU Unsteady loading downwash vector. This is the QWMU value described under LSTPARMS in Section IV, "Input Description".

DOWNWASH Component of WMU normal to camber line of blade at this radial station.

CHORDWISE Component of WMU tangent to chordline at this radial station.

VISCOUS Component of WMU due to viscous wake.

WAKE

. . .

<u>___</u>

VI. Noise Outputs

NOZOUT:

The first page of the noise program output (see Figure 47) summarizes the observer positions selected by the user. The first few lines repeat the header information. Then, the computer time used is presented. Then, the observer locations selected by the user are printed. First, the sideline distance for the front (or single) and/or rear rotors is printed. Then, for the front rotor, the retarded axial positions, the visual axial positions, and the corresponding retarded and visual radiation angles are printed. The relationships between the visual and retarded distances and angles are also shown in Figure 47. Finally, the front rotor azimuthal observer angle is printed.

 \equiv

Ī

The rear rotor is offset axially from the front rotor by a fraction of the front rotor radius. This fraction is printed, and the corresponding retarded and visual axial positions and radiation angles are printed. Listing of the rear rotor azimuthal observer position completes the observer geometry printout in figure 47.

The local ambient conditions are then listed, giving the temperature, ambient pressure normalized by sea level standard, and local speed of sound.

On the next page, in Figure 48, the front and rear rotor operating conditions are printed. FLIGHT MACH NUMBER is the freestream Mach number. TIP ROTATIONAL MACH is the tip speed divided by the speed of sound. TIP RELATIVE MACH NUMBER is the resultant of the flight and tip rotational Mach numbers. MT/MX is the ratio of tip Mach number to flight Mach number. BPF is the blade passing frequency, measured in Hertz. The FOOT DIAMETER is tip diameter, in feet, of the rotor.

On the next page (Figure 49) is a header indicating the beginning of the noise calculation results. Following the header is a summary of the noise calculation results for the first directiv-This type of page is repeated for as many directivities as ity. were requested by the user. The X POSITION ANGLE for visual and retarded axial position and angles for front and rear rotor is Then, for each possible noise radiation frequency, a shown. summary of the noise radiated by the front and rear rotors is given. The M COUNTER and K COUNTER are given for the front rotor. Thus, K COUNTER = 0 corresponds to steady loading, and the steady sources are also printed. The roles of the M COUNTER and K COUNTER are reversed for the rear rotor, so M COUNTER = 0corresponds to steady loading for the rear rotor. Results are presented for each harmonic up to MMAX, and then a new page (not shown) presents results for the next axial observer location.

北市市

= =

= :

. 1973 - 1

5

÷

装ついい

Finally, a summary of the total noise at each frequency is presented in Figure 50. The header information is followed by a listing of the observer coordinates. The computed radiation frequency and the total combined noise for the front and rear rotors are presented at each frequency. This output format is repeated for all requested directivities and harmonics.

VII. Program Installation

UCAP is written in FORTRAN-77, mostly adhering to ANSI X3.9-1978, with the common additions of the double precision complex (complex*16) data type and the IMAG intrinsic function. UCAP requires the IMSL Libraries, version 1.1 (formerly IMSL 10), mostly for FFT's, Bessel functions, and matrix inversions. The IMSL Libraries are copyrighted; they are not supplied with UCAP. A list of the routines directly called from UCAP is provided in Table II. -

 \equiv

The target operating environments for this program are the Cray series of super-computers. This program was developed on an IBM 3090 running MVS/XA and a Sun workstation running Sun's version Based on experience with the interim (Task 2) version of UNIX. of UCAP and with UAAP, this program is expected to be operated on the Cray with double precision turned off (by a compiler option) and with the single precision version of the IMSL routines. Many complex numbers are operated on within UCAP; Table III presents a list of subprograms where AIMAG or IMAG is used. In the IBM and Sun dialects of FORTRAN-77, the IMAG intrinsic function is required when operating on complex*16 data. This is replaced by AIMAG for Cray FORTRAN, which does not support the complex*16 data type. Because of the different IMSL calls and the need to use AIMAG, directives for cpp (the C pre-processor, a utility supported by UNICOS and most UNIX systems) were included into the distribution source code to select single precision IMSL calls and AIMAG on Cray systems versus double precision IMSL calls and IMAG on other systems.

On Cray systems running UNICOS, selection of single/double precision IMSL subroutine calls and IMAG/AIMAG intrinsic function use would be done by compiling with:

cf77 -DCRAY -c -dp ucap.F

if the FORTRAN compiler supports the C pre-processor or

cpp -DCRAY ucap.F > ucap.f
 cf77 -dp -c ucap.f

where the FORTRAN compiler does not.

On Cray systems, segldr would then be used to link the resulting object code (ucap.o) with the IMSL Libraries in order to produce an executable copy of the program.

VIII. File Requirements

a and

.

ł.

UCAP requires several files for input, output, and data transfer. The input data file (number 5), and the input data files for the noise routines (numbers 49 and 50) are fixed record length files. These must have a minimum of 80 characters per record, excluding the new line or carriage return used to terminate lines in the UNIX system; these will have to be padded with blanks. The input data files for the noise routines generated by UCAP are properly formed for program operation.

 $\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right] \right]$

ter reserved for carriage

10000 lines.

control. This will be about

File Number	File Contents	File Remarks
5	Input Data	Fixed record length, with a minimum of 80 characters per record. A typical input file will contain about 400 lines (32,000 bytes).
6	Printed Output	Standard FORTRAN printed out- put: up to 133 characters per record, with the first charac-

The following files are generated by the program:

11	Copy of Input Data	Fixed record length, 80 char- acters per record. This is a "scratch" file which need not be retained after program execution. This will be the same size as file used for unit number 5.
40	Internal Storage	"Scratch" file for internal use. This must be about eight million bytes (one million Cray words).
41	Internal Storage	"Scratch" file for internal use. This must be about eight million bytes (one million Cray words).

49	Aft Rotor Input Data for Noise Routines	Fixed record length, 80 char- acters per record. This will be about 400 lines for the steady and 200 additional lines for each harmonic speci- fied in CRPPARMS.
50	Forward Rotor Input Data for Noise Routines.	Fixed record length, 80 char- acters per record. This will be about 400 lines for the steady and 200 additional lines for each harmonic speci- fied in CRPPARMS.
51	Internal Storage	"Scratch" file for internal use. This must be about eight million bytes (one million Cray words).
52	Internal Storage	"Scratch" file for internal use. This must be about eight million bytes (one million Cray words).
AFTTHV	Aft Rotor Thick- ness Vector	Unformatted, i.e., written without FORTRAN format con-
FWDTHV	Forward Rotor Thickness Vector	trol. These may be saved for later use. Size is about 800
SRPTHV	Single Rotor Thickness Vector	bytes (100 Cray words).

=

Due to the necessity of generating numerous influence coefficient matrices, UCAP uses the FORTRAN OPEN statement to assign file names at run time, when running counter-rotation. Any influence coefficient matrix file may be retained for use in later program runs. However for counter-rotation the program must re-generate all influence coefficient matrices for a given rotor if any new influence coefficient matrix is required for that rotor.

File Name	File Contents	File Remarks
SRP000	Single rotation influence coefficient matrix. This is used for steady and unsteady matrices.	Unformatted. Ap- proximately 20,000 Cray words (160,000 bytes).
AFT000 FWD000	Counter-rotation steady influence coefficient matrices, for the aft or forward rotor.	Unformatted. Ap- proximately 20,000 Cray words (160,000 bytes) each.

AFT001 through AFT0nn	Counter-rotation unsteady influence coefficient matrices, for the aft rotor. The trailing number (Onn) is incre- mented by one for each unsteady matrix required for the number of inter- action orders (forward to rear rotor) specified in CRPPARMS.	Unformatted. Each is approximately 20,000 Cray words (160,000 bytes) each.
FWD001 through FWD0nn	Counter-rotation unsteady influence coefficient matrices, for the forward rotor. The trailing number (Onn) is incre- mented by one for each unsteady matrix required for the number of inter- action orders (forward to rear rotor) specified in CRPPARMS.	Unformatted. Each is approximately 20,000 Cray words (160,000 bytes) each.

- -

Ţ

Ļ

-

- -

-

- -

. Ţ

—

1

IX. Error Messages

This section contains a description of the printed error messages, along with possible causes and remedies in alphabetized order.

"AIRFOIL NO. = ... OFF AIRFOIL DATA AND IOFF ..." The program obtains profile drag from airfoil data tables as a function of lift, mach number, airfoil thickness ratio, and airfoil chord. This message indicates one or more of the above parameters exceeded the limits of the stored data. Recommendation : check the output for reasonable values of drag coefficients. Use AIRPARMS inputs CDMULT and DCD to correct unreasonable values.

"AIRFOIL ... OFF AIRFOIL DATA " Same as above.

"BDS0 ... "

There are a number of errors, generally resulting in program termination, which are associated with the blade geometry generator; these messages are prefaced with BDSO. They arise because the blade surface generated from user input in BLADEGEO was not sufficient to allow intersection with the output stations (conical surfaces) specified in BLADEGEO variable ZBLDST. Solution: The problem can usually be avoided (with

only a slight loss in program accuracy) by setting THTDES = THTCUT in BLADEGEO, and assuring that X(1) < ZBLDST(1) and X(10) > ZBLDST(ZNIS) in BLADEGEO input.

"*** CONTROL POINT STATIONS NOT WITHIN ..."

The radial difference between control points, QZAR in LSTPARMS, and ZBLDST in BLADEGEO > .02 . Solution : Change the either QZAR or ZBLDST input values.

"FAILED TO CONVERGE ON CL ..."

An iteration failed when trying to obtain the profile drag data from the airfoil tables. Recommendation : check the output for reasonable values of drag coefficients. Use AIRPARMS inputs CDMULT and DCD to correct unreasonable values. "FOR OUTPUT POINT NUMBER"

تغسب

-

Interpolation of the flowfield from VELGRADS is performed in two ways : radial first, axial second, and then axial first, radial second. Usually these interpolations yield the same value of velocity at a fixed radial and axial location. However, for this point the difference in interpolations exceeded 1 %. Probable cause : the flowfield is not smooth in either or both the radial and axial directions.

"FOR OUTPUT POINT NUMBER ... THE AXIAL ..."

The axial extent of coordinates input into VELGRADS was not sufficient to allow interpolation of the flowfield at either the blade leading or trailing edge.

Solution: add more points to the flowfield input in VELGRADS in the axial direction.

"FOR OUTPUT POINT NUMBER ... THE RADIAL ..."

The radial extent of coordinates input into VELGRADS was not sufficient to allow interpolation of the flowfield at either the blade root or tip. Solution : add more points to the flowfield input in VELGRADS in the radial direction.

"INVALID INPUT CHARACTER ..." The load routine has found a character in column 1

which is not an "L","C","E", or blank. Possible causes : "END" record omitted; numeric data in column 1.

"THE INPUT CONTAINS AN UNKNOWN COMMAND ... " A COMMAND was expected at this point in the input, however, the 8 printed characters do not represent a recognizable command. Possible causes : misspelled command; no "END" record in load format, incorrect case (use UPPER CASE only); COMMAND didn't start in column 1.

"THE INPUT CONTAINS AN UNKNOWN SUBCOMMAND.." A sub-command was found which didn't match the acceptable sub-commands. Possible causes : incorrect spelling; incorrect placement of parenthesis.

"THE NUMBER OF HEADER CARDS" More than 10 header records were encountered during processing of the HEADER command. Possible causes : more than 10 records following the HEADER command; no "END" record after the last header record. "V1S1X1 DIMENSIONED 20X20 ..." The flowfield input in VELGRADS was too large; the maximum number of coordinates in the axial or radial direction is 20. Solution : reduce the number VINRD and/or VINAS to 20.

"***** MM2 AND MM3 MUST BE LESS THAN 100 ..." See QMM2 and QMM3 limits in LSTPARMS.

- "***** NBOPT MUST BE 1 OR 2 ..." See QNBOPT limits in LSTPARMS.
- "***** NCP GREATER THAN MAX NCP ..." See QNCN limits in LSTPARMS.
- "***** NIS GREATER THAN MAX NIS ... " See ZNIS limits in BLADEGEO.

"** NOIZEXEC CALLED WITH KEYWORD ..." An unrecognizable sub-command was found. The subcommand must be "EXECCASE".

.

i i

- "***** NSM GREATER THAN MAX NSM ... " See QNSM limits in LSTPARMS.
- "***** NSM * NCP GREATER THAN ..." Ensure that QNSM * QNCP < 1000 in LSTPARMS.

"*** NUMBER OF NODAL DIAMETERS (K) MUST ..."
 If QQ = 0 then QK must equal zero in the LSTPARMS
 input.

"***** NX GREATER THAN ..." See ZNPCOV limits in BLADEGEO.

"**** THE DATA FOR THIS RUN & THE DATA ..." A label is attached to the "K-INVERSE" matrix describing the parameters used to create it. The current value of the input variable listed below the error message does not agree with that in the attached label. Cause : This generally arises because a "K-INVERSE" matrix from a previous run was used as input to this run (see QPART1 in LSTPARMS) and the data used to generate that matrix is different than that being used to run the current case.

"*** THE NO. OF DIRECTIVITY POINTS ..." See ZNX limits in NOIZPARM. "*** THE NO. OF HARMONICS IS GREATER ..." See ZMMAX limits in NOIZPARM.

"*** THE NO. OF HARMONICS IS GREATER THAN ALLOWED 150" "*** THE NO. OF HARMONICS X THE NO. OF BLADES IS LIMITED TO 1000" "*** THE NO. OF RADIAL INTEGRATION POINTS IS LIMITED TO 2000"

"*** THE NO. OF DIRECTIVITY POINTS IS LIMITED TO 20" Cause - input values larger than permissible Solution - correct input

References

- Hanson, D.B., "Unified Aeroacoustics Analysis for High-speed Turboprop Aerodynamics and Noise: Volume I - Development of Theory for Blade Loading, Wakes, and Noise", NASA Contractor Report 4329, 1991
- Hanson, D.B. etal "Unified Aerocoustics Analysis for High Speed Turboprop Aerodynamics and Noise: Volume III - Application of Theory for Blade Loading Wakes, Noise, and Wing Shielding", NASA Contractor Report 184193, 1991

Ī

3. Menthe, R.W., McColgan, C.J. and Ladden, R.M., "Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise: Volume IV - Computer User's Manual for UAAP Turboprop Aerocoustic Code", NASA Contractor Report 185194, 1991

Appendix A

Example QWMU Generating Program and Modified Block Data CRPBLK

This section has the listing (Figure 51) for a small, stand alone program, QWMUGEN, which will generate the unsteady downwash vector, QWMU, described under LSTPARMS (locations 351 to 550) in the section of this manual describing the inputs.

This program will generate the QWMU vector for sinusoidal gust described in Reference 1, pp 88-90. It requires these inputs:

J, advance ratio

. .

i...i

NCP, number of chordwise panels (LSTPARMS, location 2)

NSM, number of spanwise modes (LSTPARMS, location 4)

QZAR, spanwise locations of control point radii (LSTPARMS, locations

BD, blade chord/diameter at the QZAR points

QQ, order of unsteady loading harmonic (LSTPARMS, location 21)

WZERO, peak amplitude of gust velocity divided by rotor tip speed

This program will print the elements of the QWMU vector, in a form suitable for use in the LSTPARMS section of the input.

The second listing (Figure 52) is the block data, CRPBLK, in which the default values for the items described under the CRPPARMS input section are set. This listing has the default value of CRPTOL (CRPPARMS, location 5) set to 0.01. The default values of the other variables can also be set to different values here. Table I Common block locations Ī

-

Common Block Name	Size in bytes	<pre>subprogram {type}</pre>
airalz	2364	airbk3 {block data} air24 {subroutine} airdrg {subroutine} airflx {subroutine} airoff {subroutine} airp02 {subroutine} casarf {subroutine} drag24 {subroutine} isoafl {subroutine} isoarf {subroutine} lift24 {subroutine} swparf {subroutine} zeroal {subroutine}
aircdf	312	<pre>airbk2 {block data} air24 {subroutine}} airdrg {subroutine} airflx {subroutine} airoff {subroutine} airp02 {subroutine} casarf {subroutine} drag24 {subroutine} isoafl {subroutine} lift24 {subroutine} swparf {subroutine} zeroal {subroutine}</pre>
aircdm	392	airbk3 {block data} air24 {subroutine} airdrg {subroutine} airflx {subroutine} airoff {subroutine} airp02 {subroutine} casarf {subroutine} drag24 {subroutine} isoaf1 {subroutine} lift24 {subroutine} swparf {subroutine} zeroal {subroutine}

		·
airdat	4000	<pre>air24 {subroutine} airdgr {subroutine} airflx {subroutine} airoff {subroutine} airp02 {subroutine} casarf {subroutine} drag24 {subroutine} isoafl {subroutine} lift24 {subroutine} swparf {subroutine}</pre>
airp01	400	airbk1 {block data} airdrg {subroutine} airprm {subroutine} lstuns {subroutine}
bdsc01	644	bds018 {subroutine} bldbk3 {block data}
bdsc02	8	bds018 {subroutine}
bdsc03	3628	bds014 {subroutine} bldbk4 {block data}
besar	6400000	bessav {subroutine} bsint {subroutine} bsjint {subroutine} bsyint {subroutine}
besdel	8	bessav {subroutine} bsint {subroutine} bsjint {subroutine} bsyint {subroutine}
bldg01	4000	bldbk {block data} bldct1 {subroutine} bldgi1 {subroutine} fetch {subroutine} retrev {function} store {subroutine}
bldg02	8000	fetch {subroutine} retrev {function} store {subroutine}

.

bldg03	60800	<pre>bldct3 {subroutine} bldgi3 {subroutine} fetch {subroutine} retrev {function} store {subroutine}</pre>
bldgc3	121600	fetch {subroutine} store {subroutine}
bldgeo	24000	<pre>bldbk2 {block data} bldct1 {subroutine} bldct3 {subroutine} bldgi1 {subroutine} bldgi2 {subroutine} bldgi3 {subroutine} bldgp1 {subroutine} fetch {subroutine} lstuns {subroutine} mcafa {subroutine} retrev {function} store {subroutine}</pre>
bldgxo	48000	fetch {subroutine} retrev {function} store {subroutine}
com002	72	ggs011 {subroutine} ggs107 {subroutine}
crpp01	36	crpblk {block data} crpprm {subroutine} lstuns {subroutine} lstvvc {subroutine} newpg1 {subroutine} nrk001 {subroutine} retrev {function} wak001 {subroutine}
crpsr1	24	velgrd {subroutine}
crpsr2	4	velgrd {subroutine}

dtetme	32	airprm {subroutine} bldgem {subroutine} bldgi1 {subroutine} bldgi2 {subroutine} bldgi3 {subroutine} bldgp1 {subroutine} hdrbk1 {block data} header {subroutine} intfr1 {subroutine} intfr1 {subroutine} lstct1 {subroutine} lstprm {subroutine} lstprm {subroutine} newpg1 {subroutine} noisez {subroutine} vtxprm {subroutine} wakpr1 {subroutine} wakprm {subroutine}
headr1	728	hdrbk2 {block data} header {subroutine} lstctl {subroutine} lstuns {subroutine} newpg1 {subroutine}
headr2	4	hdrbk2 {block data} header {subroutine} lstctl {subroutine} lstuns {subroutine} newpg1 {subroutine}
hsqspl	4424	lstsw1 {subroutine} noznhf {subroutine} qsplin {subroutine} vtxinp {subroutine}
intp01	64	<pre>intblk {block data} intfrs {subroutine} intfr1 {subroutine} lstctl {subroutine} lstuns {subroutine}</pre>
kclsav	40	<pre>isoarf {subroutine}</pre>

-

- ·

Ţ

-

-

÷

- -

lstp01	2800	<pre>fetch {subroutine} lstbk1 {block data} lstprm {subroutine} lstuns {subroutine} retrev {function} store {subroutine}</pre>
lstp02	5600	fetch {subroutine} retrev {function} store {subroutine}
lstr01	29800	airdrg {subroutine} fetch {subroutine} intrf1 {subroutine} lstuns {subroutine} lstvvc {subroutine} store {subroutine}
lstr02	4400	<pre>fetch {subroutine} intfr1 {subroutine} lstuns {subroutine} store {subroutine} wak001 {subroutine}</pre>
lstsr2	8800	fetch {subroutine} store {subroutine}
lstspr	59600	<pre>fetch {subroutine} store {subroutine}</pre>
nozdat	632	nozbk1 {block data} nozclc {subroutine} nozprm {subroutine}
nozs16	6408	nozbk2 {block data} nozffc {subroutine} noznfc {subroutine}
output	4	bds014 {subroutine}
provrs	4	idblk {block data} lstuns {subroutine} newpg1 {subroutine}
rncp01	400	<pre>lstctl {subroutine} lstuns {subroutine} mcafa {subroutine} runblk {block data} runprm {subroutine}</pre>

vliicl	4900	<pre>lstctl {subroutine} lstuns {subroutine} vel002 {subroutine} velbk1 {block data} velgrd {subroutine} vttbin {subroutine}</pre>
vtxc02	480	fetch {subroutine} retrev {function} store {subroutine}
vtxcom	240	<pre>fetch {subroutine} retrev {function} store {subroutine} vtxblk {block data} vtxout {subroutine} vtxprm {subroutine}</pre>
wakp01	4000	<pre>fetch {subroutine} lstuns {subroutine} retrev {function} store {subroutine} wak001 {subroutine} wakblk {block data} wakprm {subroutine}</pre>
wakp02	8000	fetch {subroutine} retrev {function} store {subroutine}
wakr01	24000	<pre>fetch {subroutine} intfr1 {subroutine} lstuns {subroutine} store {subroutine} wak001 {subroutine} wakpr1 {subroutine}</pre>
waksp2	48000	fetch {subroutine} store {subroutine}
work	2119852	<pre>f271 {subroutine} f271no {subroutine} intfr3 {subroutine} lstctl {subroutine} lstuns {subroutine} nrk001 {subroutine} wak003 {subroutine}</pre>
work1	3200	f271 {subroutine}

11 -. . . . •••• **100** --- - --____ **-** .

.

ø

		f271no {subroutine} lstuns {subroutine}
worksp	100000	MAIN {main routine}
xindex	12	bds014 {subroutine]

Table II Locations of IMSL routines used within UCAP

•--- --

4--- 4P

Ţ

_

-

_

: .

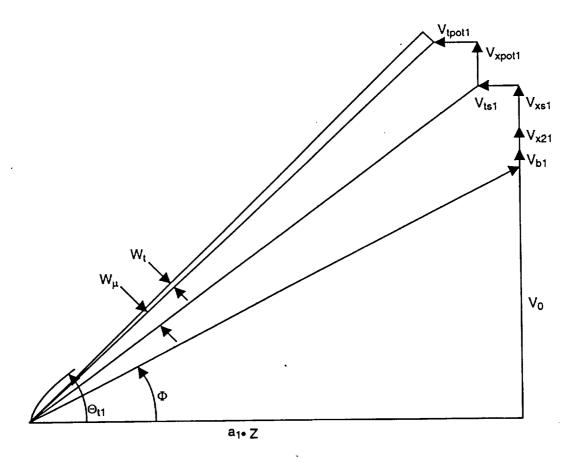

IMSL Routine	Used by
bsi0	ik0, iksub0, stdiki, sum3, sum4, tik0
bsi1	sum3
bsins	nozhnk, wake
bsj0	iksub0
bsj1	wingf
bsjns	bessav, bsint, bsjint, nozffc, nozhnk, noznfc
bsk0	ik0, iksub0, stdiki, sum3, sum4, tik0
bsk1	sum3, wingf
bskes	nozhnk, wake
bsys	bessav, bsint, bsyint, iksub0, nozhnk, wingf
csint	f001
csval	f001, ffun
ctime	jobtim
dtime	MAIN, endjob
erfc	imnsub, imnsin
fftcb	fftcx, fftcx0, fftcxn
iidex	fetch, retrev, store
iicsr	fetch, retrev, store
iwkin	MAIN
lincg	kmatrx
linrg	f271no, kmatr0
tdate	MAIN

Table III Locations where AIMAG is used within UCAP

-

Ē

ansn1 bds024 bound fftcxn iksub iksub0 lstctl nozffc noznj2 noznfc noznj2 nozout nozstt nozunt r4aray wingf

 $V_{xpot1} \Delta V_x / V_0$ due to potential loading of forward rotor.

 V_{tpot1} V_t/V_0 due to potential loading of forward rotor.

 $V_{ts1} = V_t/V_0$ due to secondary (non-potential) loading of forward rotor.

 $V_{xs1} = \Delta V_x / V_0$ due to secondary (non-potential) loading of forward rotor.

 $V_{x21} = \Delta V_x / V_0$ from rear rotor loading at forward rotor.

 $V_{b1} = \Delta V_x / V_0$ due to presence of center body.

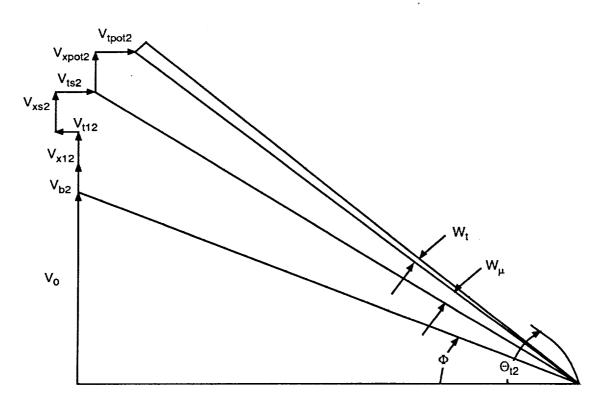
Vo Freestream velocity. Normalized freestream velocity is unity.

 $a_1 \cdot Z$ $(\pi/J_1) \cdot (r/R_1)$, where J is advance ratio, R_1 is tip radius, r is local radius.

 Φ Advance angle, measured from plane of rotation.

 Θ_{t1} Camber plus twist angle for each panel, measured from plane of rotation.

Wt Turning due to blade thickness.


W_µ Turning required for boundary condition (no flow through the blade) to be met.

 ΔV_x Change in axial velocity

Vt Tangential (swirl) velocity

DG1217001ag

Figure 1 (part a) Forward Rotor Velocity Diagram

a₂•Z

V _{xpot2}	$\Delta V_x/V_0$ due to potential loading of rear rotor.
V _{tpot2}	Vt /Vo due to potential loading of rear rotor.
V _{ts2}	V_t/V_0 due to secondary (non-potential) loading of rear rotor.
V _{xs2}	$\Delta V_x/V_0$ due to secondary (non-potential) loading of rear rotor.
V _{x12}	$\Delta V_x/V_0$ from forward rotor loading at rear rotor.
V _{t12}	V_x/V_0 from forward rotor loading at rear rotor.
V _{b2}	$\Delta V_x/V_o$ due to presence of center body.
Vo	Freestream velocity. Normalized freestream velocity is unity.
a₂•Z	$(\pi/J_2) \cdot (r/R_2)$, where J is advance ratio, R_2 is tip radius, r is local radius.
Φ	Advance angle, measured from plane of rotation.
Θ_{t2}	Camber plus twist angle for each panel, measured from plane of rotation.
Wt	Turning due to blade thickness.
Wμ	Turning required for boundary condition (no flow through the blade) to be met.
ΔV _x	Change in axial velocity
v _t	Tangential (swirl) velocity

Figure 1 (part b) Rear Rotor Velocity Diagram

MFC831.002

تل

霋

Ī

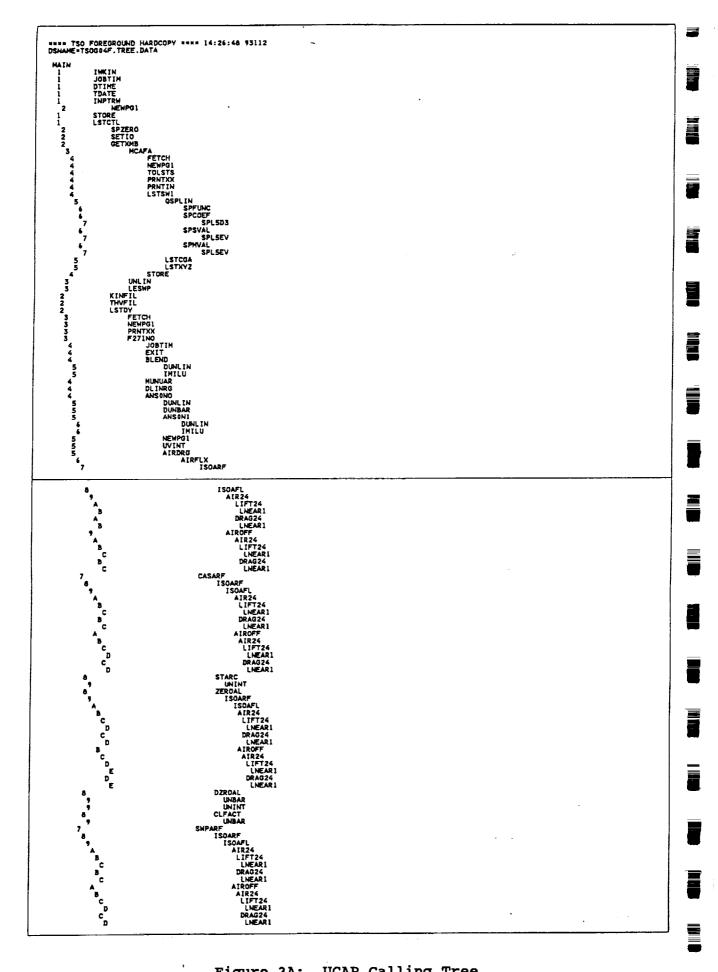
- A Calculate axisymmetric streamlines. This is done off line.
- B Calculate, off line, streamline angles where streamlines cross blade mid-chord line. These angles are measured from the axis of rotation.
- C Calculate table of camber plus twist angles, along conical surfaces defined by streamline angles calculated in step **B**, for front and rear rotors.
- D Calculate the location of the rear rotor control points in relation to stream tubes defined by the axisymmetric streamlines.
- E Calculate forward (or single) rotor influence coefficient matrix. Store for later use.
- F Calculate turning angle due to blade thickness for forward (or single) rotor. Store for later use.
- G Calculate potential loading. L=[K]⁻¹×W, where [K]⁻¹ is influence coefficient matrix, and W is the turning angle required to satisfy the boundary conditions.
- H Calculate induced velocity from potential loading using momentum theory.
- I Calculate total loading, including vortex effects.

1.2

¥ . 3

• •

Rear and


ļ

- K Calculate induced velocity from total loading, including vortex effects.
- L Calculate axial $\Delta V/V^{\circ}$ and swirl, $V \Delta / V_{\circ}$ at rear rotor mapping points, calculated in step D, above. These velocities will be applied at the rear rotor control points, as shown in Figure 1.

Steps M through V are only applied in counter-rotation. For single rotation, jump to step W.

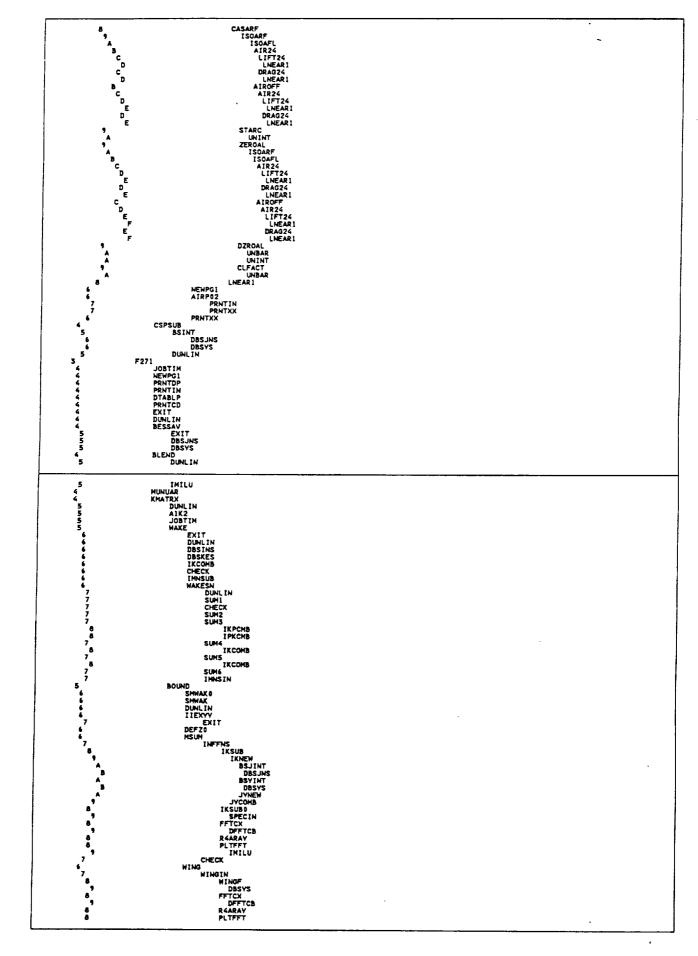

- M Calculate locations of forward rotor control points relative to annular stream tubes defined by the axisymmetric streamlines.
- N Calculate rear rotor influence coefficient matrix. Store it for later use.
- P Calculate turning angle due to blade thickness.
- O Calculate potential loading, as in step G, above.
- R Calculate induced velocity from potential loading, using momentum theory.
- S Calculate total loading, including vortex effects.
- T Calculate induced velocity field from total loading, including vortex effects.
- U Calculate axial $\Delta V/V_{\infty}$ induced by rear rotor at forward rotor mapping points, calculated in step M, above. Note there is no swirl ahead of a rotor.
- V Calculate synthetic streamline radial locations in order to enforce incompressible continuity, $\nabla \cdot v = 0$.
- W Convergence monitor: converged if $\mid c_{p,i}-c_{p,i-1} \mid$ is less than a limiting value for both rotors.
- X Noise module: acoustic analysis

Figure 2: Conceptual flow chart of UCAP

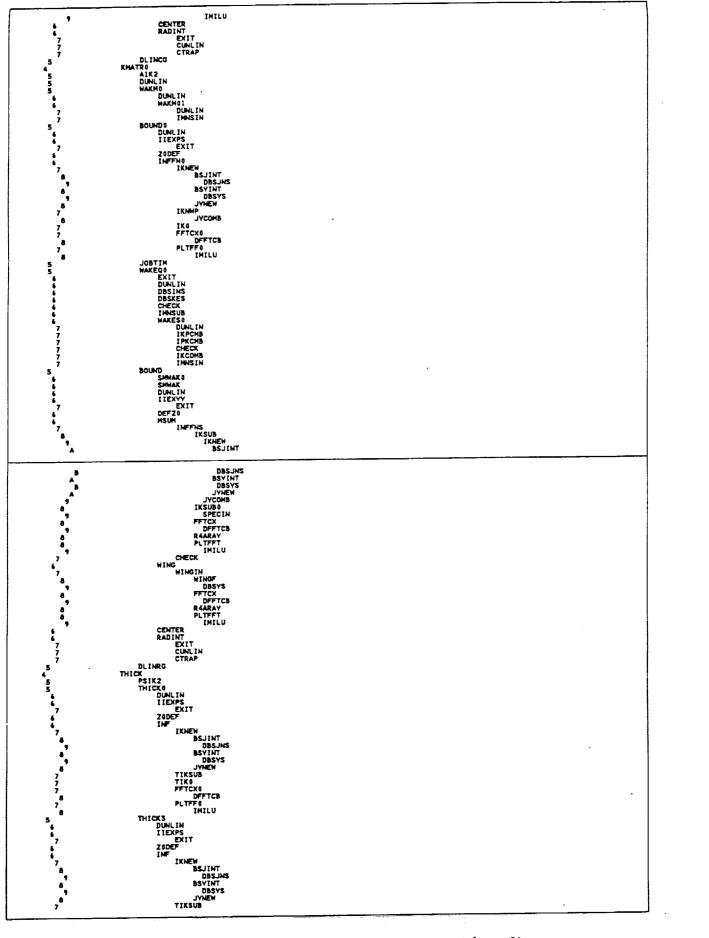
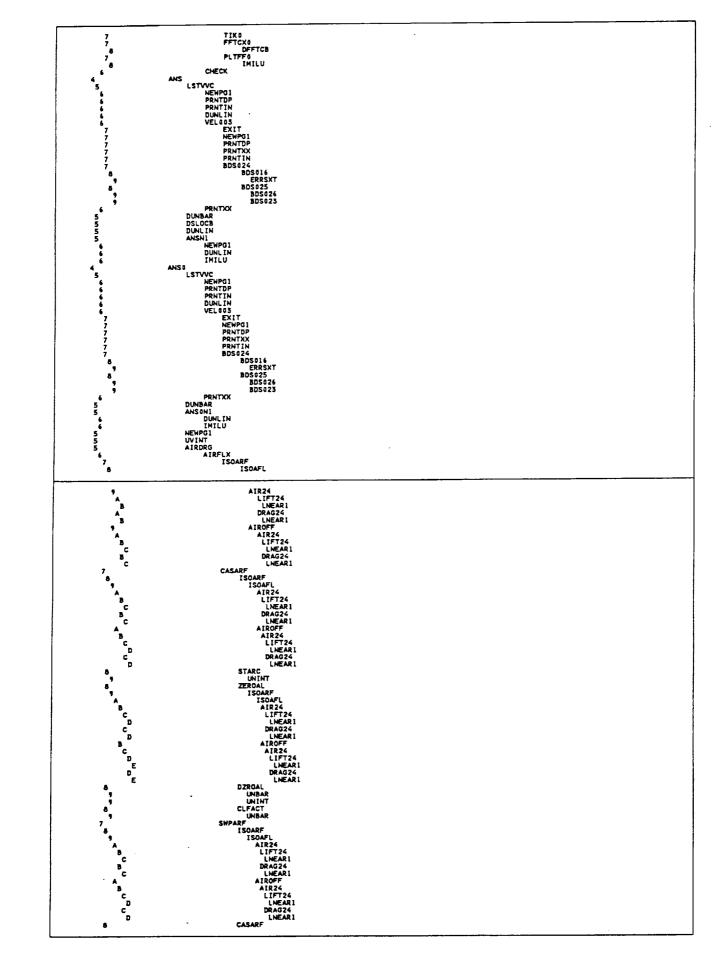
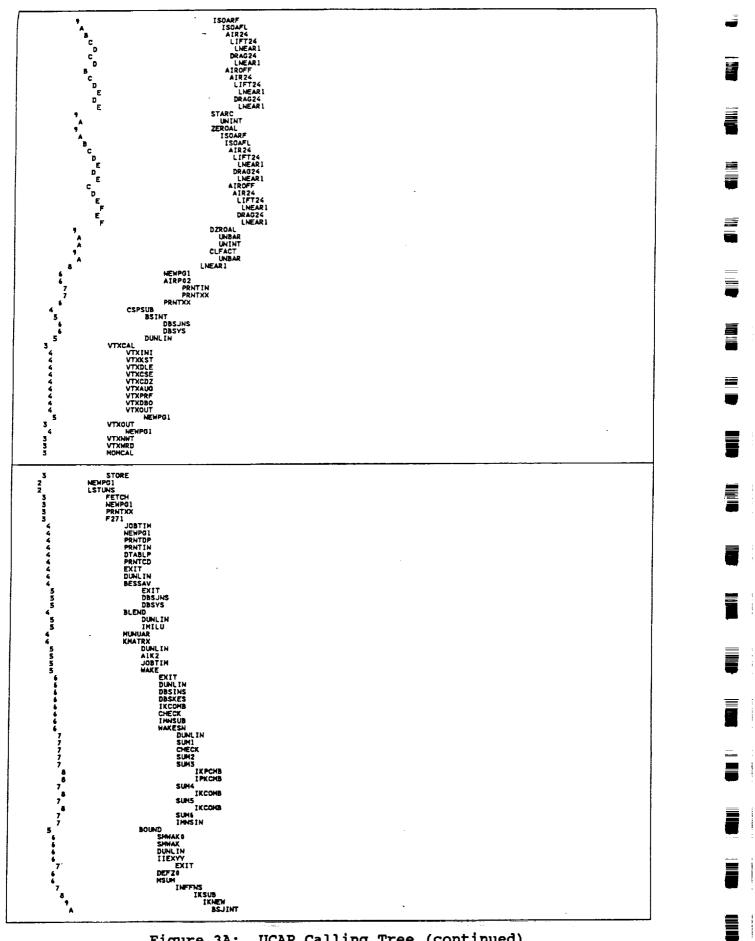


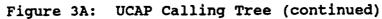
Figure 3A: UCAP Calling Tree

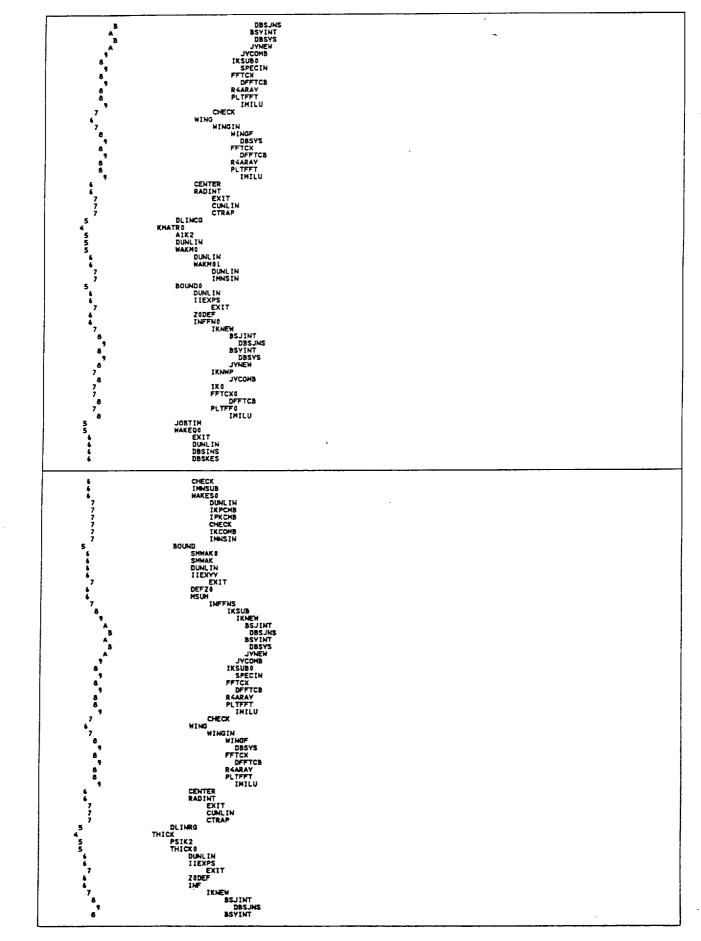
· · · · · ·

E B

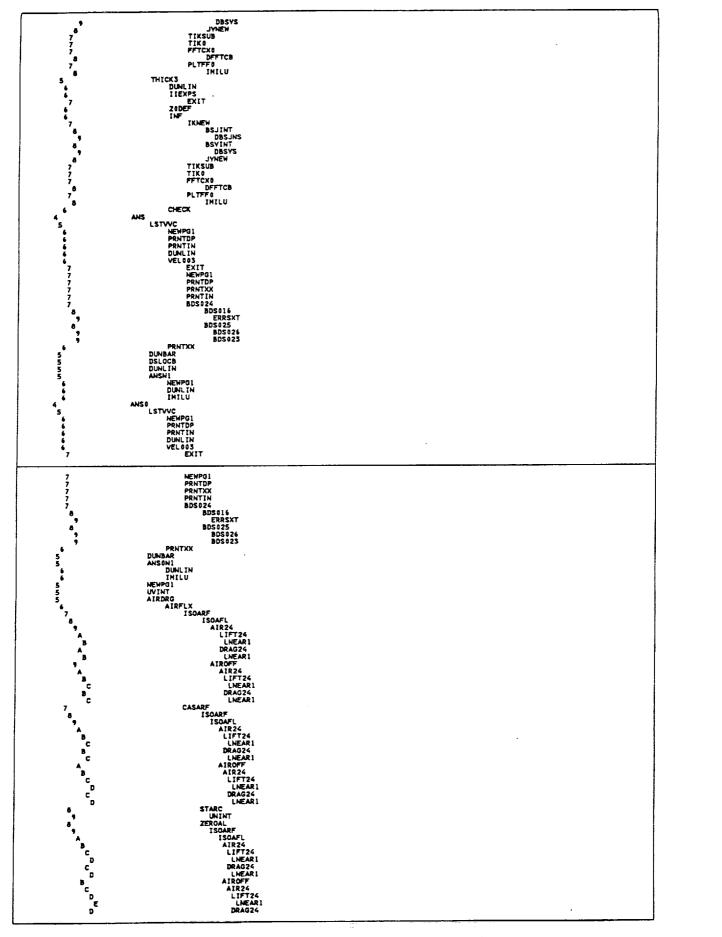


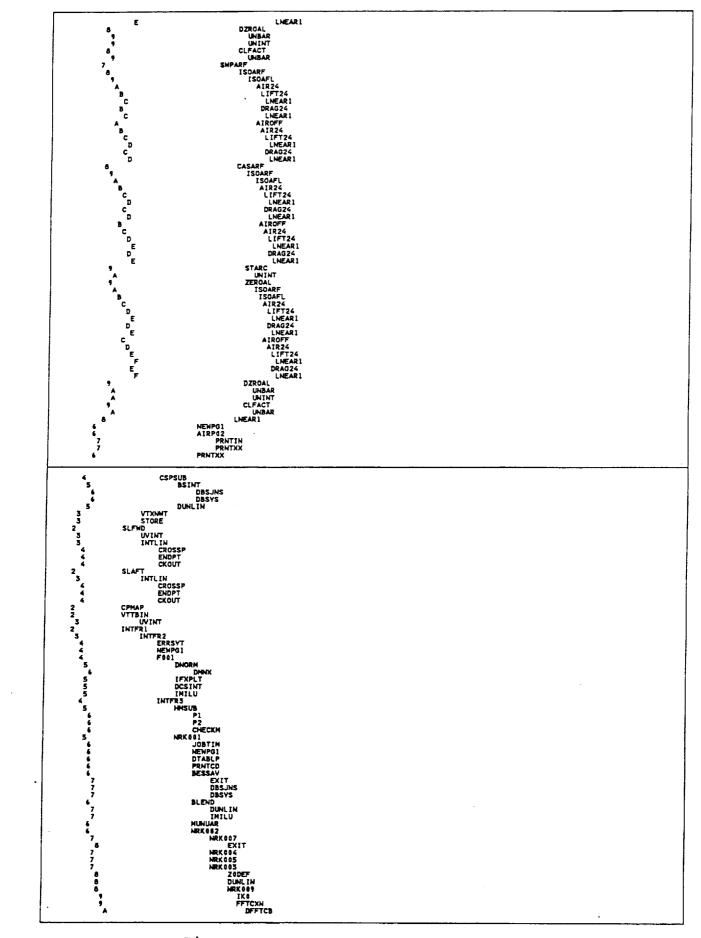

\$t-||


-


2

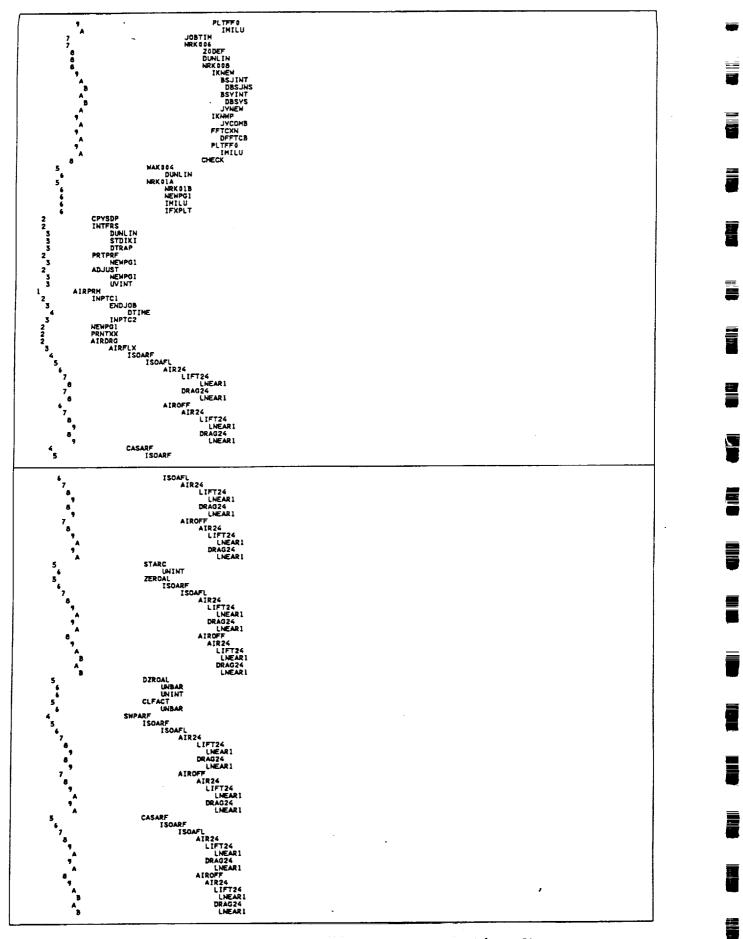
-




÷ .

5

Figure 3A: UCAP Calling Tree (continued)



÷.

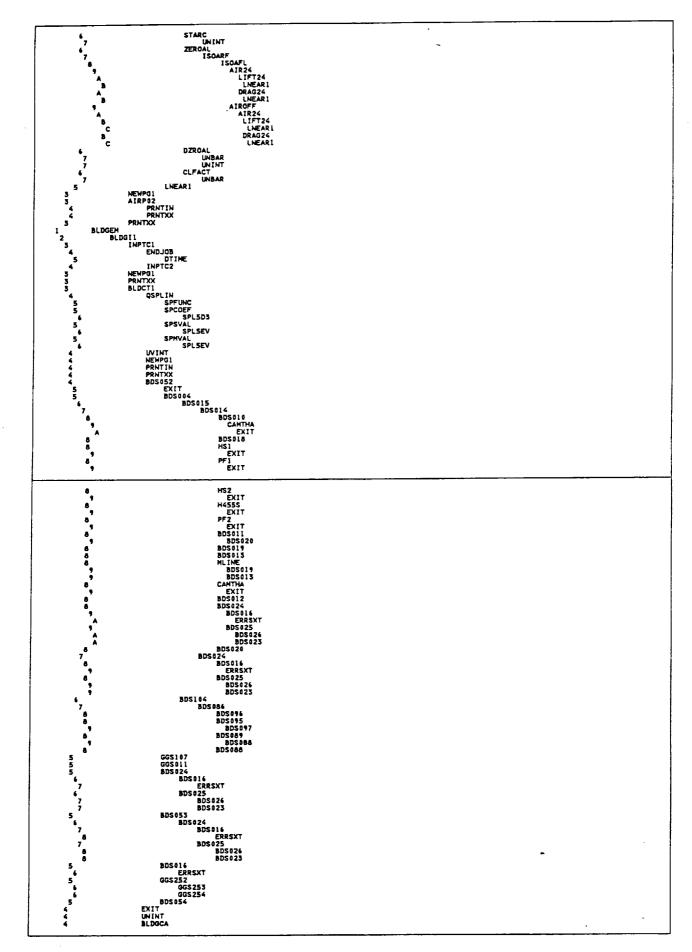
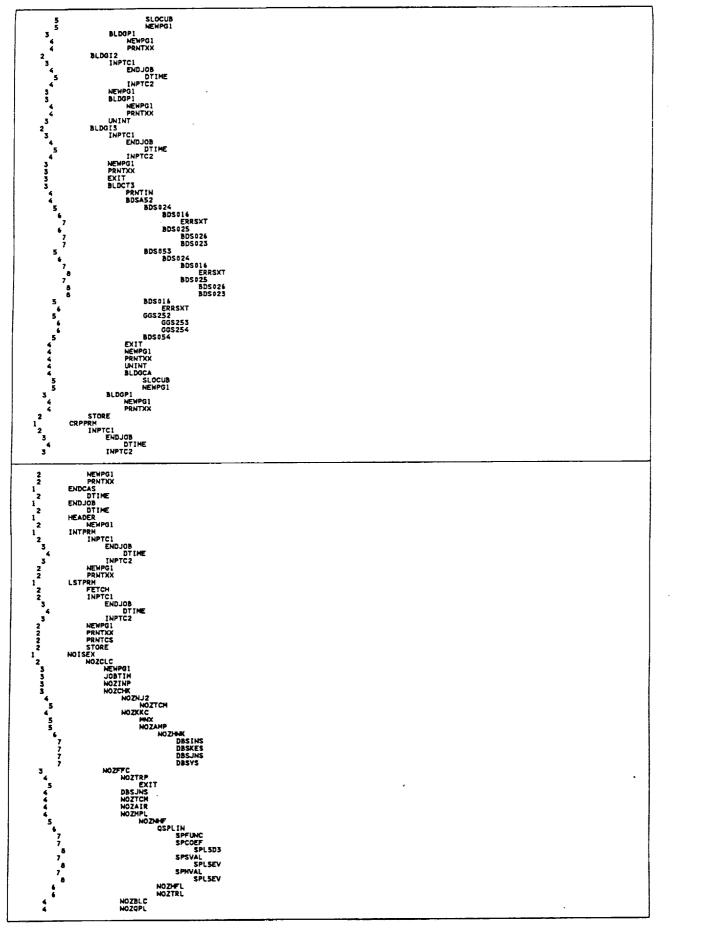

1 7

Figure 3A: UCAP Calling Tree (continued)

3

UCAP Calling Tree (continued) Figure 3A:



:= []

<u>e</u> .=

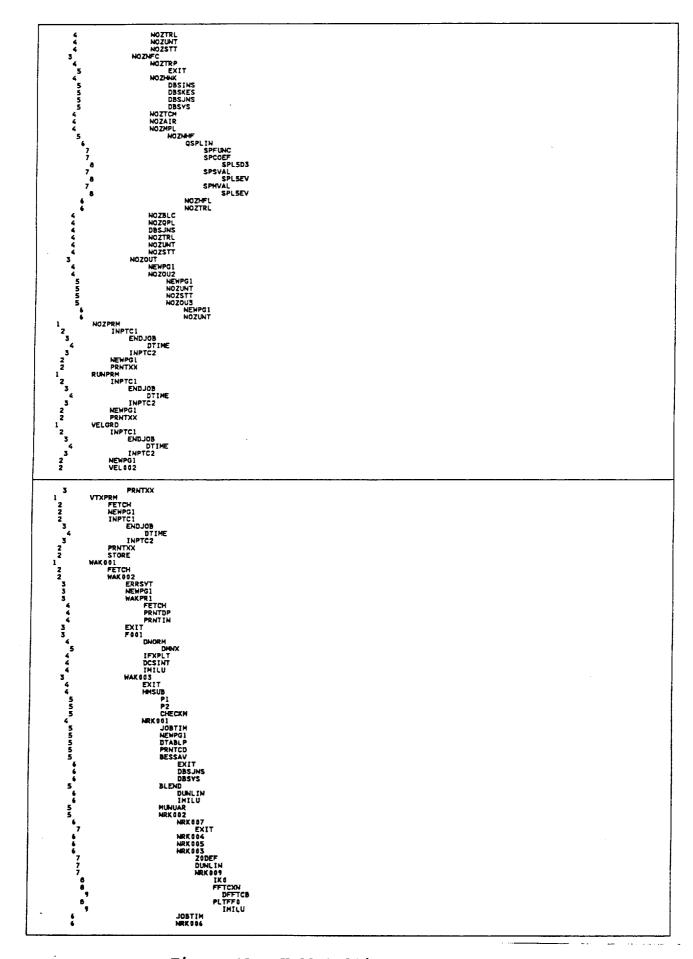
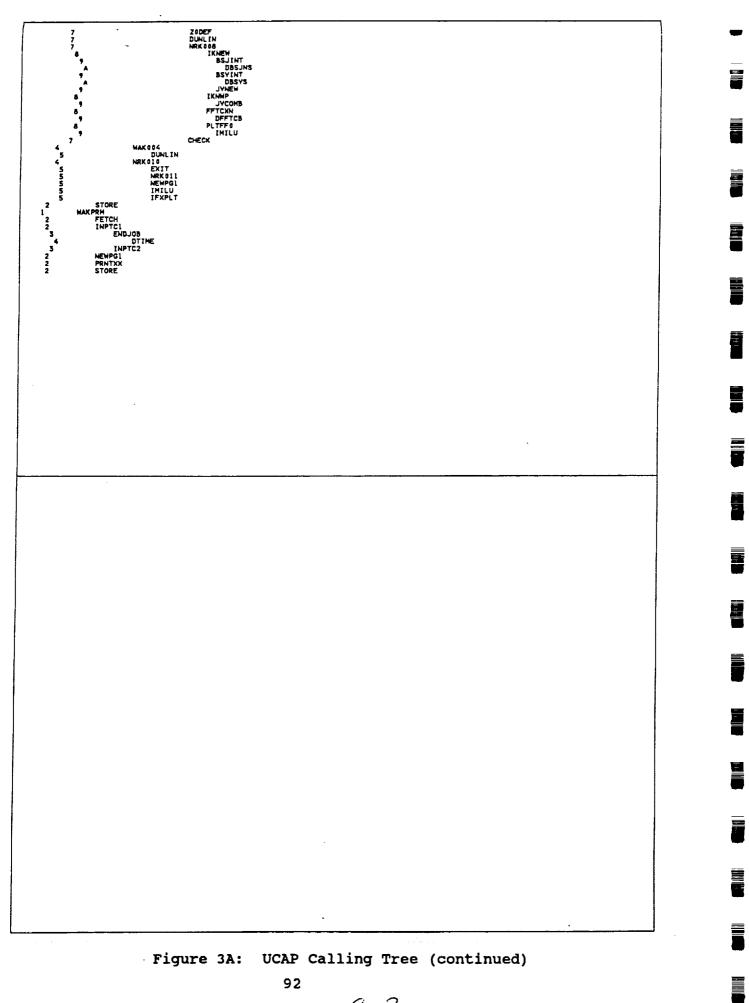


Figure 3A: UCAP Calling Tree (continued)

Ī

3


Figure 3A: UCAP Calling Tree (continued)

÷ ÷

2

, ____,

9

C-2

	· · · · · · · · · · · · · · · · · · ·
HERE TSO FOREGROUND	HARDCOPY **** 18:34:35 93112
DSNAME - TSOGO4I.XREF	1.DATA
SUBROUTINE CROSS RE	
SUBR .	SUBROUTINES NAMED
ABSVAL IS CALLED BY ADJUST IS CALLED BY	: . 1977)
AIRDRG IS CALLED BY AIRFLX IS CALLED BY	: AIRPRM ANSO ANSONO
AIROFF IS CALLED BY AIRPRM IS CALLED BY	: ISOAFL
AIRPO2 IS CALLED BY AIR24 IS CALLED BY	: AIRDRG
ANS IS CALLED BY ANSNI IS CALLED BY	: F271
ANSO IS CALLED BY ANSONO IS CALLED BY	: F271
ANSONI IS CALLED BY ARCTAN IS CALLED BY	: ANS 0 ANS ONC
A1K2 IS CALLED BY BDSA52 IS CALLED BY	: KNATRX KMATRO : BLDCT3
BDS004 IS CALLED BY BDS010 IS CALLED BY	: B05052 : B05014
BDS011 IS CALLED BY BDS012 IS CALLED BY	: BDS014
BDS013 IS CALLED BY BDS014 IS CALLED BY	: BDS014 MLINE : BDS015
BDS015 IS CALLED BY BDS016 IS CALLED BY BDS018 IS CALLED BY	: BD\$004 : BD\$A52 BD\$024 BD\$052
BDS019 IS CALLED BY BDS020 IS CALLED BY	1 BOS014 MLINE
BDS023 IS CALLED BY	
BDS025 IS CALLED BY BDS026 IS CALLED BY	2 BD\$024
BDS052 IS CALLED BY BDS053 IS CALLED BY	: BLOCT1 : BDSA52 BDSA52
BDS054 IS CALLED BY BDS086 IS CALLED BY	: BDSA52 BD5 : BDS104 :
BDS088 IS CALLED BY BDS089 IS CALLED BY	: BDS046 BDS049 :5066 - BDS049
BDS095 IS CALLED BY BDS096 IS CALLED BY	1 BD\$086
BDS097 IS CALLED BY BDS104 IS CALLED BY	: BDS004
BESSAV IS CALLED BY BLDCT1 IS CALLED BY	: BLDGI1
BLDCT3 IS CALLED BY BLDGCA IS CALLED BY BLDGEM IS CALLED BY	: BLDCT1 BLDCT3
BLDGI1 IS CALLED BY BLDGI2 IS CALLED BY	: BLDGEH
BLDGI3 IS CALLED BY	
BLEND IS CALLED BY BOUND IS CALLED BY	: F271 F271NO NRK001 : KMATRX KMATR0
DSLOCD IS CALLED BY : DTABLP IS CALLED BY : DTRAP IS CALLED BY : DUMBAR IS CALLED BY : DUMIN IS CALLED BY : DUMIN IS CALLED BY : DUMIN IS CALLED BY : ENDJOB IS CALLED BY : ENDJOB IS CALLED BY : ENDJOB IS CALLED BY : ENDJOB IS CALLED BY : ETACAAL IS CALLED BY : ETACAAL IS CALLED BY : FFYTCX IS CALLED BY : FFYTCX IS CALLED BY : FFTCX IS CALLED BY : FFICA IS CALLED BY :	MSUM NRK006 THICKS MAKE WAKEQ0 WAKESN WAKESO INTLIN CASARF LSTCTL LSTCTL LSTCTL LSTCTL LSTCTL LSTCTL LSTCTL RADINT BOUND BUORM F001 NTTRS NRK001 NTTRS ANSO ANSONO AMS
GOS254 IS CALLED BY : HEADER IS CALLED BY : HNSUB IS CALLED BY : HSI IS CALLED BY : HSI IS CALLED BY :	GG5252 G03252 Main Intfr3 Hak003 BD5014 BD5014
14555 IS CALLED BY : IBIN IS CALLED BY :	
1455S IS CALLED BY : BIN IS CALLED BY : FXPLT IS CALLED BY : IEXPS IS CALLED BY : IEXYY IS CALLED BY :	FOOL MRKOLA NRKOLO Boundo Thicko Thicks

.

÷

Ç,

÷

-

.

Figure 3B: UCAP Subroutine Cross Reference Listing

													 _		
	IKNEH	IS CALLED BY IS CALLED BY IS CALLED BY	: IKSUB	SUMS INF	WAKE INFFNO	WAKES NRK 80									
	IXPCMB IXSUB	IS CALLED BY IS CALLED BY IS CALLED BY	: SUH3 : INFFNS	WAKESO S											
	INILU	IS CALLED BY IS CALLED BY IS CALLED BY	: INFFN : ANSN1	0 NRK889	BLEND	F001	NRK 01	A NRKØI	D PLTFFT	PLTFF	0				
	I HHNSUB	IS CALLED BY IS CALLED BY IS CALLED BY	: WAKE : THICK	HAKEQO THICK3											
	INFFN6 INPTC1	IS CALLED BY	: BOUNDO	4 BLDGII	BLDGIZ	BLDGI		INTPRI	I LSTPR	NOZPRI		N VELGRD			
	INPTC2	IS CALLED BY IS CALLED BY IS CALLED BY	: INPTCI : MAIN												
	INTER1 INTER2	IS CALLED BY IS CALLED BY IS CALLED BY	: LSTCTL : INTFRI												
	INTLIN INTPRM	S CALLED BY	: SLAFT : MAIN	SLFWD											
	ISOAFL ISOARF	IS CALLED BY IS CALLED BY IS CALLED BY	: ISOARF : AIRFLX	CASARF		ZEROAL									
	JYCOMB 1	IS CALLED BY IS CALLED BY IS CALLED BY	: MAIN : IKNWP : IKNEW	F271 Iksub	F271NO	KMATRX	KMATRI	NOZELO	: NRK001	NRKOOZ	2				
	KINFIL I KMATRX I	IS CALLED BY IS CALLED BY IS CALLED BY	: F271												
	LESWP	S CALLED BY S CALLED BY S CALLED BY	: GETXMB : AIR24		SWPARF										
	LSTCGA	S CALLED BY S CALLED BY S CALLED BY	: LSTSWI : MAIN : LSTCTL												
	LSTPRM 1	S CALLED BY S CALLED BY S CALLED BY	: MAIN : MCAFA												
	LSTVVC I	S CALLED BY S CALLED BY S CALLED BY	: ANS : LSTSW1	ANSO											
	MCAFA I MEAN I	S CALLED BY S CALLED BY S CALLED BY	: GETXMB							•					
	HNX I HOHCAL I	S CALLED BY	: NOZKKC : LSTDY : BOUND												
	MUNUAR I NEWPG1 I	S CALLED BY	: #271 : ADJUST	F271NO AIRDRG	AIRPRH	ANSN1	ANSO	ANSING	BLDCT1	BLDCT3	BLDGCA INTPRH	BLDGI1			
	NEWPG1 I NEWPG1 I	S CALLED BY S CALLED BY	: NRK001	NRKOIA	NRKGIG	PRTPRF	RUNPRM	VELGRD	VELOOS	VTXOUT	VTXPRH	WAKPRM			
	NOISEX I NOZAIR I	S CALLED BY	: MATH	NOZNEC	231043	231774		NOLOLU		NULVUL	HOLOGO				
	NOZBLC I	S CALLED BY S CALLED BY	: NOZFFC	NOZNEC											
ľ	NOZCLC I	S CALLED BY S CALLED BY	NOISEX									• • •			
	NOZHFL I NOZHNK I	S CALLED BY S CALLED BY S CALLED BY	: NOZNHF	NOZNEC											
	NOZKKC I Nozmpl I	S CALLED BY S CALLED BY S CALLED BY	: NOZCHK	NOZNEC											
	NOZNHF I NOZNJ2 I	S CALLED BY S CALLED BY S CALLED BY	: NOZMPL										•		
	NOZOU2 I	S CALLED BY S CALLED BY S CALLED BY	NOZOUT												
	NOZOPL I	S CALLED BY S CALLED BY S CALLED BY	: NOZFFC	NOZNEC	NO20U2										
	NOZTRL I	S CALLED BY	: NOZFFC	NOZNEC	NOZNHF										
	NRKODI IS	S CALLED BY	: INTERS : NRK001	WAK 003	NU2002	NO20U3									
	NRK004 11 NRK005 11	CALLED BY CALLED BY CALLED BY	NRK002												
	NRK007 IS NRK008 IS		NRKOO2												
	NRKOLA IS NRKOLB IS	CALLED BY CALLED BY CALLED BY	INTFR3												
	NRKOLL IS PF1 IS	CALLED BY :	NRK010												
	PF2 IS PLTFFT IS	CALLED BY :	BDS014 INFFNS	WINGIN INFFN&)		#K609									
	PRNTCD IS PRNTCS IS PRNTOP IS	CALLED BY : CALLED BY : CALLED BY :	F271 LSTPRH F271	NRKODI LSTVVC \	/EL 803 W	AK PR 1									
	PRNTIN IS PRNTXX IS PRNTXX IS	CALLED BY : CALLED BY : CALLED BY :	A [RP02 WAKPRH LSTDY	LSTPRM L	STUNS L	STVVC		NOZPRH	RUNPRH	VEL 002	VEL 803	VTXPRH			
	PRNTXX IS PRTPRF IS	CALLED BY : CALLED BY : CALLED BY :	LSTCTL	AIRPRM A	IRP02 B	LDCT1	BLDCT3	BLDGIL	BLDGI3	BLDGP1	CRPPRM	INTPRM			
	P1 IS P2 IS	CALLED BY : CALLED BY : CALLED BY :	HMISUB HMISUB	LSTSWI N	io znef										
1	RADINT IS RETREV IS	CALLED BY : CALLED BY : CALLED BY :	BOUND												
	RUNPRM IS	CALLED BY : CALLED BY : CALLED BY :	MAIN	INCLU											
	SETIO IS SETLMT IS	CALLED BY : CALLED BY :	LSTCTL	-10414											
	SLFWD IS	CALLED BY : CALLED BY : CALLED BY :	LSTCTL BLDGCA												
L	əmak 13	CALLED BY :	au unu									<u> </u>	 	·	

Ë

4

Figure 3B: UCAP Subroutine Cross Reference Listing (continued) 94

SPECIAC IS CALLED BY SPL5D3 IS CALLED BY SPL5EV IS CALLED BY SPMVAL IS CALLED BY SPXVAL IS CALLED BY SPZERO IS CALLED BY STARC IS CALLED BY	: QSPLIN : SPSUE : SPSUE : SPSUE : SPSUE : SPSUE : SPSUE : SPSUE : SSELIN : QSPLIN : CSSELIN : CASARF
STDDEV IS CALLED BY STDIKI IS CALLED BY STORE IS CALLED BY SUM1 IS CALLED BY SUM2 IS CALLED BY SUM4 IS CALLED BY	: INTERS : MAIN BLDGEM LSTDY LSTPRM LSTUMS MCAFA VTXPRM WAKPRM WAK001 : WAKESN : WAKESN : WAKESM : WAKESN : AIREFLX : AIRFLX : AIRFLX : F271
THICKO IS CALLED BY THICKO IS CALLED BY THVFTL IS CALLED BY TIKSUB IS CALLED BY UNBAR IS CALLED BY UNIAR IS CALLED BY UNIT IS CALLED BY UVIT IS CALLED BY UVISC IS CALLED BY VFLOOP IS CALLED BY	: THICK : THICK : INF : INF : CLFACT DZROAL : BLOCTI BLDGI2 DZROAL STARC : GETXMB : GETXMB : ADJUST ANSØ ANSØNØ BLDCTI SLFWD VTTBIN : : MAIN
VEL002 IS CALLED BY VEL003 IS CALLED BY VTTBIN IS CALLED BY VTXCAL IS CALLED BY VTXCAL IS CALLED BY VTXCDZ IS CALLED BY VTXCBS IS CALLED BY VTXDB0 IS CALLED BY VTXDB0 IS CALLED BY VTXINI IS CALLED BY	: VELGRD : LSTVVC : LSTVVC : LSTDY : VTXCAL : VTXCAL : VTXCAL : VTXCAL : VTXCAL : VTXCAL : VTXCAL : VTXCAL
VTXNWT IS CALLED BY : VTXOUT IS CALLED BY : VTXPRF IS CALLED BY : VTXPRF IS CALLED BY : VTXPRF IS CALLED BY : WAKE IS CALLED BY : WAKEG0 IS CALLED BY :	E LSTDY LSTUMS LSTDY LSTUMS VTXCAL I MATN I MATN I KMATRX I KMATRX I MARE I MARE I MAREO I M
HAKPRM IS CALLED BY HAKPRI IS CALLED BY HAK001 IS CALLED BY HAK002 IS CALLED BY HAK005 IS CALLED BY HAK004 IS CALLED BY WING IS CALLED BY WINGF IS CALLED BY	: MAIN : MAIN : MAIN : MAIN : WAK002 : INTERS MAK003 : BOUND : WINGIN
WINGIN IS CALLED BY : Zeroal is called by : Zodef is called by :	CASARF : BOUNDS WRKSSS NRKSS6 THICKS : BOUNDS WRKSSS NRKSS6
	-

113

÷

•

Ţ

. . ,..., Figure 3B: UCAP Subroutine Cross Reference Listing (continued)

	-
~	^
ч	h

	803027	CALL (S)	: BDS014	BDS025							
SUBROUTINE	BDS#25	PURPOSE									
		CALL (S)		BDS023							
SUBROUTINE	BDS#26	PURPOSE	:								
SUBROUTINE	BDS052	PURPOSE	:								
								<u></u>	<u></u>		
		CALL (S)	EVIT		000107	GGS011	BBCASC	BREAKY	BREALL	008383	805464
SUBROUTINE	BDCAE I	PURPOSE		802664	003107	002011	PD3424	503433	803010	003232	803034
SUBROUTINE	802622	CALL (S)									
SUBROUTINE	BREAK	PURPOSE									
SUBROUTINE	BUSASA	PURPOSE	-								
SOBKOULTHE	803464	CALL (S)		BOGASE	BOSOAS	BOSDAA					
SUBROUTINE	305444	PURPOSE			203007	203000					
SUBROUTINE		PURPOSE									
SOBROOTINE	803407	CALL (S)	BOSAAA								
SUBROUTINE	BBC 445	PURPOSE									
SUBROUTTINE	803075	CALL (S) :	BDCART	,							
SUBROUTINE	BDCARS	PURPOSE									
SUBROUTINE		PURPOSE :									
		PURPOSE :									
SUBROUTINE	DN3144	CALL (S) :	-								
SUBBOUTTHE	BECCAV	PURPOSE :	903400								
SUBROUTINE	DEJJAV	CALL (S) :	EVIT	DBSJNS	REVE						
			EATI	DB27H2	UBATA						
SUBROUTINE	BLUCII	PURPOSE :	-	INTAT	NEWDOI	80 MT 7 M	DONTVY	BOSAFS	EVIT	UNINT	BLDGCA
		CALL (S) :		UATH	MERFUL	PRNIIN	FRRIAR	9N243%	EVII	ON THE !	PLUGCA
SUBROUTINE	BLUCIS	PURPOSE :			PUTT		-	1017177			
		CALL (S) :		#DSA52	EX11	NEWPGI	PKNIXX	UNINT	BLUGCA		
SUBROUTINE	BLDGCA	PURPOSE :		URWACT							
		CALL (S) :	SLOCUB	NEWP01							
SUBROUTINE	BLDGEM	PURPOSE :									
		CALL (S) :	SLDGII	SLDG12	BLDG[3	STORE					
SUBROUTINE	BLDGII	PURPOSE :									
		CALL (S) :	INPTCI	NEWPGI	PRNTXX	BLDCT1	BLDGP1				
SUBROUTINE	BLDGI2	PURPOSE :									
		CALL (\$) :	INPTCI	NEWPG1	BLDGPI	UNINT		-			
SUBROUTINE	BLDGI3	PURPOSE :									
		CALL (S) :	INPTCI	NEWPGI	PRNTXX	EXIT	BLDCT3	BL DGP 1			
SUBROUTINE	BLDGP1	PURPOSE :									
		CALL (S) :	NEWPG1	PRNTXX							
SUBROUTINE	BLEND	PURPOSE :									
		CALL (S) :	DUNLIN	IHILU							
SUBROUTINE	BOUND	PURPOSE :									
		CALL (S) :	SHHAKO	SHWAK	DUNLIN	IIEXYY	DEFZO	MSUM	WING	CENTER	RADINT
SUBROUTINE	BOUNDO	PURPOSE :									
		CALL (S) :	DUNLIN	TIEXPS	ZODEF	INFFNG					
SUBROUTINE !	BSINT	PURPOSE :									
		CALL (S) :	DBSJNS	DBSYS							
SUBROUTINE I	TAILS	PURPOSE :									
		CALL (S) :	DBSJNS								
UBROUTINE I	REVINT	PURPOSE									
		CALL (S) :	DBSYS								
UBROUTINE (*AMTHA	PURPOSE :									
POPROVITINE (umm i rúði	CALL (\$) :	FXIT								
UBROUTINE (-45405	PURPOSE									
UDROUTHE (un un un f	CALL (S) :	TSOAPE	STARC	7EDOAL	D7ROA!	CLEACT				
UBROUTINE (PURPOSE :	. availe			- LAVAL					
UBROUTINE (PURPOSE :									
		PURPOSE :								_	
UBROUTINE (PURPOSE :								-	
UBROUTINE (
SUBROUTINE (UL AUT	PURPOSE :									
		CALL (S) :	UNBAK								
SUBROUTINE C		PURPOSE :									
UBROUTINE C		PURPOSE :									
UBROUTINE C		PURPOSE :						_			
	MARCO .	PURPOSE :						-			
UBROUTINE C	AV33F										
UBROUTINE C		PURPOSE : CALL (S) :									

CALL (S) : AIRFLX CALL (S) : AIRFLX NEWPOI AIRPO2 PRNTXX PUBROUTINE AIRPFLX CALL (S) : ISOAR CASARF SHPARF PUBROUTINE AIROFF CALL (S) : ISOARF CASARF SHPARF PUBROSE : NUBROUTINE AIROFF CALL (S) : AIR24 PUBROSE : NUBROUTINE AIRPAN PUBROSE : NUBROUTINE AIRSAN PURPOSE : NUBROUTINE ANSAN PURPOSE : NUBROUTINE ASSAN PURPOSE : NUBROUTINE BDSOS4 PURPOSE : NUBROS5 : BDSOS4 BDSOS5 BDSOS6 BDSOS5 BDSOS5 PF2 BDSOS1 BDSOS5 PF2 BDSOS1 BDSOS1 BDSOS1 BDSOS4 BDSOS2 PURPOSE : NUBROSE : NUBROS	SUBROUTINE I	REFERENCE	AND	PURPOSE	LISTING
UBROUTINE ALUST CALL (S) : MEMPOL UVINT CALL (S) : MEMPOL UVINT SUBROUTINE AIRPG PURPOSE SUBROUTINE AIRPLX PURPOSE SUBROUTINE AIRPRN PURPOSE SUBROUTINE AIRPRN PURPOSE SUBROUTINE AIRPRN CALL (S) : AIR24 SUBROUTINE AIRPRN CALL (S) : AIR24 SUBROUTINE AIRPRN CALL (S) : INPFCI NEWPOI PRNTXX AIRDRG CALL (S) : NPFCI NEWPOI PRNTXX AIRDRG SUBROUTINE AIRPRN CALL (S) : NPFCI NEWPOI PRNTXX AIRDRG SUBROUTINE AIRPRO CALL (S) : NEWPOI DUNLAR DSLOCB DUNLIN ANSNI UBROUTINE ANSO CALL (S) : NEWPOI DUNLAR DSLOCB DUNLIN ANSNI UBROUTINE ANSO PURPOSE SUBROUTINE ANSON PURPOSE SUBROUTINE ANSON PURPOSE SUBROUTINE AIRPRN PURPOSE SUBROUTINE AIRPRN PURPOSE SUBROUTINE BUSSON UBROUTINE AIRPRN PURPOSE SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE ANSON PURPOSE SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE BUSSON CALL (S) : DUNLIN DUNBAR SUBSON SUBSON SUBROUTINE BUSSON SUBROUTINE BUSSO		ABSVAL		PURPOSE	1
SUBROUTINE AIRDRO PURPOSE SUBROUTINE AIRPLX PURPOSE SUBROUTINE AIROFF PURPOSE SUBROUTINE AIROFF PURPOSE SUBROUTINE AIROFF PURPOSE SUBROUTINE AIROFF PURPOSE SUBROUTINE AIROF PURPOSE SUBROUTINE ANSNI CALL (S) INPAGE SUBROUTINE ANSON PURPOSE INNIN SUBROUTINE ANSON PURPOSE INNIN SUBROUTINE ANSON PURPOSE INNIN					
CALL (S) : AIRFLX HEMPOSE SUBROUTINE AIROFF CALL (S) : ISOAR CASAF SHPARF SUBROUTINE AIROFF CALL (S) : ISOAR CASAF SHPARF SUBROUTINE AIROFF CALL (S) : INPCI NEMPOI PRITXX AIRORG CALL (S) : INPCI NEMPOI PRITXX AIRORG CALL (S) : INPCI NEMPOI PRITXX AIRORG SUBROUTINE AIROF CALL (S) : INPCI NEMPOI PRITXX AIRORG CALL (S) : INPCI NEMPOI PRITXX AIRORG CALL (S) : INPCI NEMPOI PRITXX AIRORG SUBROUTINE AIRS PURPOSE : SUBROUTINE ANS PURPOSE : SUBROUTINE ANS PURPOSE : SUBROUTINE ANSO PURPOSE : SUBROUTINE ANSON PURPOSE : SUBROUTINE ANSON PURPOSE : SUBROUTINE ANSON PURPOSE : SUBROUTINE ARCTAN PURPOSE : SUBROUTINE AIRSAN PURPOSE : SUBROUTINE BISSO14 PURPOSE : SUBROUTINE BISSO15 PURPOSE : SUBROUTINE BISSO14 PURPOSE : SUBROUTINE BISSO15 PURPOSE : SUBROUTINE BISSO15 PURPOSE : SUBROUTINE BISSO15 PURPOSE : SUBROUTINE BISSO14 PURPOSE : SUBROUTINE BISSO15 PURPOSE : SUBROUTINE BISSO15 PURPOSE : SUBROUTINE BISSO16 PURPOSE : SUBROSE P					
SUBROUTINE AIRPLX PURPOSE I SOARF CASARF SHPARF SUBROUTINE AIROFF PURPOSE I STARF SUBROUTINE AIROFF PURPOSE I NPTC1 NEWPG1 PRNTXX AIRDRO SUBROUTINE AIRPM PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRO SUBROUTINE AIRPM PURPOSE PRNTIN PRNTXX SUBROUTINE ANS PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRO SUBROUTINE ANS PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRO SUBROUTINE ANS PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRO SUBROUTINE ANS PURPOSE INEWPG1 DUNLIN INILU SUBROUTINE ANSO PURPOSE INEWPG1 UVINT AIRDRO SUBROUTINE ANSON PURPOSE INEWPG1 UVINT AIRDRO SUBROUTINE ANSON PURPOSE INEWPG1 UVINT AIRDRO SUBROUTINE ANSON PURPOSE INNENGE SUBROUTINE BDS014 PURP	SUBROUTINE /	AIRDRG			
CALL (13)CALL (13)I SOARF CASARF SHPARFSUBROUTINE AIROFFPLRPOSECALL (3)I RP7C1SUBROUTINE AIRPRHPLRPOSECALL (3)I NPTC1 NEWPG1 PRNTXX AIRDRGSUBROUTINE AIRP2CALL (3)I NPTC1 NEWPG1 PRNTXX AIRDRGSUBROUTINE AIR24PLRPOSECALL (3)I NPTC1 NEWPG1 PRNTXXSUBROUTINE AIR24CALL (3)I NPTC1 NEWPG1 PRNTXXSUBROUTINE ANSPLRPOSEI STVVC DUNBAR DSLOCB DUNLIN ANSN1SUBROUTINE ANSAPLRPOSEI STVVC DUNBAR ANSONI NEWPG1 UVINT AIRDRGSUBROUTINE ANSANOPLRPOSEI DUNLIN INILUSUBROUTINE ANSANIPLRPOSEI DUNLIN INILUSUBROUTINE ARCTANPLRPOSEI DUNLIN INILUSUBROUTINE BDS014PLRPOSEI DUNLIN INILUSUBROUTINE BDS014CALL (3)I BDS024SUBROUTINE BDS014PLRPOSEI CANTHASUBROUTINE BDS014PLRPOSEI CANTHASUBROUTINE BDS015PLRPOSEI CANTHASUBROUTINE BDS016PLRPOSEI CANTHASUBROUTINE BDS016PLRPOSEI CANTHASUBROUTINE BDS016PLRPOSEI CALL (3)SUBROUTINE BDS016PLRPOSEI CALL (3)SUBROUTINE BDS016PLRPOSEI CALL (3)SUBROUTINE BDS016PLRPOSEI CALL (3)SUBROUTINE BDS016PLR					
SUBROUTINE AIROFF PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRG SUBROUTINE AIRPRH PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRG SUBROUTINE AIRPA PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRG SUBROUTINE AIRPA PURPOSE INPTC1 NEWPG1 PRNTXX AIRDRG SUBROUTINE AIRPA PURPOSE INPTC1 NEWPG1 DUNITNE ANSNI SUBROUTINE ANSNI PURPOSE INEVPG1 DUNITN ANSNI SUBROUTINE ANSNI PURPOSE INEVPG1 DUNITN INTLU SUBROUTINE ANSO PURPOSE INEVPG1 DUNITN INTLU SUBROUTINE ANSON PURPOSE INEVPG1 DUNITN INTLU SUBROUTINE ANSON PURPOSE INEVPG1 DUNITN INTLU SUBROUTINE ANSON PURPOSE INEVPG1 DUNITN AIRDRG SUBROUTINE ANSON PURPOSE INNEVEG1 UVINT AIRDRG SUBROUTINE BDS014 PURPOSE INNEVEG1 UVINT AIRDRG SUBROUTINE BDS015 CALL (S) INNEVEG1 UVINT AIRDRG SUBROUTINE BDS016 PURPOSE INNEVEG1 INNEVEG1 <	SUBROUTINE /	AIKPLA			
CALL (S) : ATR24 SUBROUTINE ATRPHH PURPOSE CALL (S) : IMPTCI NEWPO1 PNTXX ATRDRG PURPOSE SUBROUTINE ATR24 SUBROUTINE ATR24 SUBROUTINE ATR24 SUBROUTINE ANSNI PARYSE SUBROUTINE ANSNI PALYSE SUBROUTINE ANSO PURPOSE SUBROUTINE ANSO PURPOSE SUBROUTINE ANSO PURPOSE SUBROUTINE ANSO PURPOSE SUBROUTINE ANSO PURPOSE SUBROUTINE ANSON PURPOSE SUBROUTINE BOSO12 SUBROUTINE BOSO12 SUBROUTINE BOSO13 SUBROUTINE BOSO13 SUBROUTINE BOSO15 CALL (S) : BOSO12 SUBROUTINE BOSO15 CALL (S) : BOSO14 SUBROUTINE BOSO15 CALL (S) : BOSO15 CALL (S) : BOSO14 SUBROUTINE BOSO15 CALL (S) : BOSO15 CALL (S) : BOSO15 CALL (S) : BOSO14 SUBROUTINE BOSO15 CALL (S) : BOSO15 CALL (S) : BOSO15 CALL (S) : BOSO16 SUBROUTINE BOSO15 CALL (S) : BOSO16 SUBROUTINE BOSO15 CALL (S) : BOSO16 SUBROUTINE BOSO15 CALL (S) : BOSO16 SUBROUTINE BOSO25 SUBROSE SUBROUTINE BOSO15 CALL (S) : BOSO14 SUBROSE SUBROS		TROFF			
CALL (S): IMPTC1 NEWPG1 PRNTXX AIRDRG SUBROUTINE AIRPG2 CALL (S): PRNTIN PRNTXX SUBROUTINE AIR24 PUPPGE SUBROUTINE ANS CALL (S): SUBROUTINE BDSSS2 PUPPGE SUBROUTINE BDSSS2 CALL (S): SUBROUTINE BDSSS12 PUPPGE SUBROUTINE BDSSSS13 PUPPGE SUBROUTINE BDSSSS13 PUPPGE SUBROUTINE BDSSSS13 PUPPGE SUBROUTINE BDSSSS CALL (S): SUBROUTINE BDSSSS CALL (S): SUBROUTINE BDSSSS CALL (S): SUBROUTINE BDSSSSS PF2 BDSSSSSSSSSSSS SUBROUTINE BDSSSSS PF2 BDSSSSS PF2 BDSSSSSSSSSSSSSSSSS SUBROUTINE BDSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS					
SUBROUTINE AIRP02 PURPOSE : PURPOSE : SUBROUTINE AIR24 PURPOSE : SUBROUTINE ANS PURPOSE : CALL (S) : LIFT24 DRA024 PURPOSE : SUBROUTINE ANS	SUBROUTINE /	AIRPRM		PURPOSE	
CALL (S) : PRNTIN PRNTXX SUBROUTINE AIR24 CALL (S) : LIFT24 DRAG24 CALL (S) : LIFT24 DRAG24 SUBROUTINE ANSN PURPOSE SUBROUTINE ANSO PURPOSE SUBROUTINE ANSON PURPOSE SUBROUTINE ANSON PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS014 CALL (S) : DUNLIN UNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE AIR27 PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS014 CALL (S) : BDS024 BDS015 BDS014 GGS252 BDS054 SUBROUTINE BDS014 CALL (S) : BDS024 BDS015 BDS014 GGS252 BDS054 SUBROUTINE BDS014 CALL (S) : BDS026 CANTHA SUBROUTINE BDS014 CALL (S) : BDS026 CANTHA SUBROUTINE BDS015 PURPOSE SUBROUTINE BDS015 PURPOSE SUBROUTINE BDS015 PURPOSE SUBROUTINE BDS015 PURPOSE SUBROUTINE BDS015 CALL (S) : BDS026 CANTHA SUBROUTINE BDS015 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS018 PURPOSE SUBROUTINE BDS018 PURPOSE SUBROUTINE BDS018 PURPOSE SUBROUTINE BDS019 PURPOSE SUBROUTINE BDS019 PURPOSE SUBROUTINE BDS024 PURPOSE SUBROUTINE BDS025 PURPOSE SUBROUTINE					: INPTC1 NEWPG1 PRNTXX AIRDRG
SUBROUTINE AIR24 PURPOSE : SUBROUTINE ANS PURPOSE : SUBROUTINE ANS PURPOSE : SUBROUTINE ANS PURPOSE : SUBROUTINE ANS PURPOSE : SUBROUTINE ANSO CALL (S) : SUBROUTINE ANSO PURPOSE : SUBROUTINE ANSON CALL (S) : SUBROUTINE ANSON PURPOSE : SUBROUTINE ANSON CALL (S) : SUBROUTINE ANSON PURPOSE : SUBROUTINE ANSON CALL (S) : SUBROUTINE ANSON PURPOSE : SUBROUTINE ANSON CALL (S) : SUBROUTINE ANSON PURPOSE : SUBROUTINE ANSON PURPOSE : SUBROUTINE BASS2 PURPOSE : SUBROUTINE BDS014 PURPOSE : SUBROUTINE BDS015 PURPOSE : SUBROUTINE BDS016 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS013 PURPOSE : SUBROUTINE BDS014 PURPOSE : SUBROUTINE BDS015 PURPOSE : SUBROUTINE BDS016 PURPOSE : S	SUBROUTINE /	AIRP02			
CALL (S) : LIFT24 DRAG24 SUBROUTINE ANS SUBROUTINE ANSA SUBROUTINE ANSA SUBROUTINE ANSA SUBROUTINE ANSA SUBROUTINE ANSA SUBROUTINE ANSAN SUBROUTINE BDSO14 SUBROUTINE BDSO14 SUBROUTINE BDSO12 SUBROUTINE BDSO15 SUBROUTINE BDSO12 SUBROUTINE BDSO14 SUBROUTINE BDSO15 SUBROUTINE BDSO16 SUBROUTINE BDSO16 SUBROUTINE BDSO15 SUBROUTINE BDSO16 SUBROUTINE BDSO25 SUBROUTINE BDS025 SUBROUTINE BDS025				CALL (S)	PRNIIN PRNIAA
BUBROUTINE ANS PURPOSE I SUBROUTINE ANSNI PURPOSE I SUBROUTINE ANSNI PURPOSE I SUBROUTINE ANSO PURPOSE I SUBROUTINE ANSO PURPOSE I SUBROUTINE ANSO PURPOSE I SUBROUTINE ANSON PURPOSE I SUBROUTINE BDS010 PURPOSE I SUBROUTINE BDS011 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS013 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS015 CALL (S) IIINE CANTHA SUBROUTINE BDS016 PURPOSE I <tr< td=""><td>SOBROUTINE P</td><td>41824</td><td></td><td></td><td>• • 1 1 1774 194024</td></tr<>	SOBROUTINE P	41824			• • 1 1 1774 194024
CALL (S) :CTVVC DUNBAR DSLOCB DUNLIN ANSN1SUBROUTINE ANSN1PURPOSE iSUBROUTINE ANSONPURPOSE iSUBROUTINE ANSONPURPOSE iSUBROUTINE ANSONPURPOSE iDUBOUTINE ANSONPURPOSE iDUBOUTINE ARCTANPURPOSE iSUBROUTINE ANSAPURPOSE iSUBROUTINE ANSAPURPOSE iSUBROUTINE ANSANIPURPOSE iSUBROUTINE BUSO14PURPOSE iSUBROUTINE BUSO14PURPOSE iSUBROUTINE BUSO14PURPOSE iCALL (S) :EDS015 BDS016 GGS252 BDS054SUBROUTINE BDS011PURPOSE iCALL (S) :EDS015 BDS016 GGS252 BDS054SUBROUTINE BDS012PURPOSE iCALL (S) :EDS015 BDS016 GGS252 BDS024 BDS020 CALL (S) :SUBROUTINE BDS011PURPOSE iCALL (S) :BDS016 BDS012 BDS024 BDS026 BDS020 CALL (S) :SUBROUTINE BDS015PURPOSE iCALL (S) :BDS016 BDS016 BDS016 BDS026 BDS026 BDS020 CALL (S) :SUBROUTINE BDS016PURPOSE iCALL (S) :BDS016 BDS016 BDS026 BDS023SUBROUTINE BDS015PURPOSE iCALL (S) :BDS016 BDS025SUBROUTINE BDS024PURPOSE iCALL (S) :BDS016 BDS025SUBROUTINE BDS025PURPOSE iCALL (S) :BDS016 BDS025 <td< td=""><td>UBROUTINE A</td><td>MS.</td><td></td><td></td><td></td></td<>	UBROUTINE A	MS.			
CALL (S) : NEWPGI DUNLIN IMILU SUBROUTINE ANSON SUBROUTINE ANSONO CALL (S) : LSTVVC DUNBAR ANSONI NEWPGI UVINT AIRDRG DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE ANSONO CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE ANSONI CALL (S) : DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE ANSONI CALL (S) : DUNLIN IMILU SUBROUTINE AIK2 PURPOSE : SUBROUTINE BDS014 CALL (S) : BDS015 BDS016 GGS252 BDS054 SUBROUTINE BDS014 CALL (S) : BDS015 BDS016 GGS252 BDS054 SUBROUTINE BDS014 CALL (S) : BDS015 BDS016 GGS252 BDS054 SUBROUTINE BDS010 CALL (S) : BDS015 BDS016 GGS252 BDS054 SUBROUTINE BDS011 CALL (S) : BDS015 BDS016 GGS252 BDS054 SUBROUTINE BDS013 PURPOSE : SUBROUTINE BDS013 PURPOSE : SUBROUTINE BDS015 CALL (S) : BDS016 BDS012 BDS016 HS1 PF1 HS2 H4553 PF2 BDS011 BDS019 BDS013 SUBROUTINE BDS016 PURPOSE : SUBROUTINE BDS018 PURPOSE : SUBROUTINE BDS028 PURPOSE : SUBROUTINE BDS028 PURPOSE : SUBROUTINE BDS028 PURPOSE : SUBROUTINE BDS028 PURPOSE : SUBROUTINE BDS028					
SUBROUTINE ANS0 PURPOSE i SUBROUTINE ANS0N0 PURPOSE i SUBROUTINE ANS0N0 PURPOSE i SUBROUTINE ANS0N1 PURPOSE i SUBROUTINE ANS0N1 PURPOSE i SUBROUTINE ANS0N1 PURPOSE i SUBROUTINE ARCTAN PURPOSE i SUBROUTINE AIK2 PURPOSE i SUBROUTINE BDSA52 PURPOSE i SUBROUTINE BDS014 PURPOSE i SUBROUTINE BDS013 PURPOSE i SUBROUTINE BDS014 PURPOSE i SUBROUTINE BDS015 CALL (3) BDS016 HS1 SUBROUTINE BDS014 PURPOSE i CALL (3) BDS013 SUBROUTINE BDS015 CALL (3) BDS014 HS1 PF1 HS2 H4555 PF2 BDS013 BD	SUBROUTINE /	wsn1			
CALL (S) LSTVVC DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE ANSONO PURPOSE SUBROUTINE ANSONO CALL (S) DUNLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE ANSONI PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS015 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS017 PURPOSE SUBROUTINE BDS018 PURPOSE SUBROUTINE BDS014 PURPOSE SUBROUTINE BDS015 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS016 PURPOSE SUBROUTINE BDS018 PURPOSE SUBROUTINE BDS018 PURPOSE					
SUBROUTINE ANSONO PURPOSE I SUBROUTINE ANSONI PURPOSE I SUBROUTINE ANSONI PURPOSE I SUBROUTINE ANSONI PURPOSE I SUBROUTINE ARCTAN PURPOSE I SUBROUTINE ARCTAN PURPOSE I SUBROUTINE AIK2 PURPOSE I SUBROUTINE BDS32 CALL (3) BDS024 BDS035 BDS016 GOS252 BDS054 SUBROUTINE BDS04 PURPOSE I SUBROUTINE BDS010 PURPOSE I SUBROUTINE BDS010 PURPOSE I SUBROUTINE BDS010 PURPOSE I SUBROUTINE BDS011 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS013 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS013 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS016 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS016 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS016 PURPOSE I SUBROUTINE BDS016	SUBROUTINE A	NNS 0			
CALL (S) : DUALLIN DUNBAR ANSONI NEWPGI UVINT AIRDRG SUBROUTINE ANSONI PURPOSE : SUBROUTINE ARCTAN PURPOSE : SUBROUTINE BDSA52 PURPOSE : SUBROUTINE BDS064 PURPOSE : SUBROUTINE BDS064 PURPOSE : SUBROUTINE BDS010 PURPOSE : SUBROUTINE BDS010 PURPOSE : SUBROUTINE BDS011 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS013 PURPOSE : SUBROUTINE BDS014 PURPOSE : SUBROUTINE BDS015 PURPOSE : SUBROUTINE BDS015 PURPOSE : SUBROUTINE BDS016 PURPOSE : SUBROUTINE BDS017 PURPOSE : SUBROUTINE BDS018 PURPOSE : SUBROUTINE BDS018 PURPOSE : SUBROUTINE BDS018 PURPOSE : SUBROUTINE BDS018 PURPOSE : SUBROUTINE BDS019 PURPOSE : SUBROUTINE BDS016 PURPOSE : SUBROUTINE BDS026 PU					
SUBROUTINE ANSGN1 PURPOSE I SUBROUTINE ARCTAN PURPOSE I SUBROUTINE ARCTAN PURPOSE I SUBROUTINE AIK2 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS014 GGS252 BDS054 SUBROUTINE BDS014 CALL IS SUBROUTINE BDS014 CALL IS SUBROUTINE BDS014 CALL IS SUBROUTINE BDS014 CALL IS SUBROUTINE BDS015 CALL IS SUBROUTINE BDS012 CALL IS SUBROUTINE BDS013 PURPOSE I CALL IS BDS010 BDS012 BDS024 UBROUTINE BDS015 PURPOSE I CALL IS BDS010 BDS012 BDS026 UBROUTINE BDS016	SUBROUTINE A	INSUNU		CALL (\$)	DIAH TA DIABAD ANSANI NEWPOI IVINT AIRDRG
CALL (S) : DUNLIN IMILU SUBROUTINE ARCTAN PURPOSE : SUBROUTINE ARCTAN PURPOSE : SUBROUTINE BDS04 PURPOSE : SUBROUTINE BDS04 CALL (S) : BDS014 GGS252 BDS054 CALL (S) : BDS015 BDS104 PURPOSE : SUBROUTINE BDS010 CALL (S) : CANTHA BDS012 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS013 PURPOSE : SUBROUTINE BDS014 PURPOSE : SUBROUTINE BDS015 PURPOSE : SUBROUTINE BDS016 PURPOSE : SUBROUTINE BDS018 PURPOSE : SUBROUTINE BDS028 P		ME AN 1		PURPOSE	
SUBROUTINE ARCTAN PURPOSE : SUBROUTINE AIX2 PURPOSE : SUBROUTINE BDS04 BDS024 BDS016 GGS252 BDS054 SUBROUTINE BDS014 CALL (S) 2 BDS015 BDS016 SUBROUTINE BDS014 CALL (S) 2 BDS015 BDS016 SUBROUTINE BDS014 CALL (S) 2 BDS015 BDS016 SUBROUTINE BDS014 CALL (S) CANTHA CALL (S) SUBROUTINE BDS012 PURPOSE CALL (S) CALL (S) SUBROUTINE BDS013 PURPOSE CALL (S) BDS016 BDS012 SUBROUTINE BDS014 PURPOSE CALL (S) BDS015 BDS015 UBROUTINE BDS015 PURPOSE CALL (S) BDS016 BDS012 UBROUTINE BDS016 PURPOSE CALL (S) BDS016 BDS015 <td>NORCOLLING P</td> <td></td> <td></td> <td></td> <td></td>	NORCOLLING P				
SUBROUTINE AIX2 PURPOSE I SUBROUTINE BDSA52 PURPOSE I SUBROUTINE BDS044 PURPOSE I SUBROUTINE BDS044 PURPOSE I SUBROUTINE BDS044 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS013 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS016 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS016 PURPOSE I SUBROUTINE BDS016 PURPOSE I SUBROUTINE BDS016 PURPOSE I <td>UBROUTINE /</td> <td>RCTAN</td> <td></td> <td></td> <td></td>	UBROUTINE /	RCTAN			
CALL (S) : BDS024 BDS035 BDS016 GGS252 BDS054 SUBROUTINE BDS014 PURPOSE : CALL (S) : BDS015 BDS104 CALL (S) : BDS015 BDS104 CALL (S) : CANTHA SUBROUTINE BDS011 PURPOSE : UBROUTINE BDS012 PURPOSE : UBROUTINE BDS013 PURPOSE : UBROUTINE BDS014 PURPOSE : UBROUTINE BDS015 PURPOSE : UBROUTINE BDS015 PURPOSE : UBROUTINE BDS015 CALL (S) : BDS016 BDS012 BDS024 BDS020 CALL (S) : BDS016 BDS016 BDS026 BDS020 CALL (S) : BDS016 BDS026 E UBROUTINE BDS016 PURPOSE : UBROUTINE BDS018 PURPOSE : UBROUTINE BDS018 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS025 PURPOSE : CALL (S) : BDS016 BDS023 PURPOSE : DS016 BDS025 PURPOSE : CALL (S) : BDS016 BDS025 PURPOSE : CALL (S) : BDS026 BDS023 PURPOSE :					
SUBROUTINE BUS004 PURPOSE I SUBROUTINE BDS010 PURPOSE I SUBROUTINE BDS010 PURPOSE I SUBROUTINE BDS011 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS012 PURPOSE I SUBROUTINE BDS013 PURPOSE I SUBROUTINE BDS014 PURPOSE I SUBROUTINE BDS015 PURPOSE I SUBROUTINE BDS016 PURPOSE I SUBROUTINE BDS017 PURPOSE I SUBROUTINE BDS018 PURPOSE I SUBROUTINE BDS015 PURPOSE	SUBROUTINE B	SDSA52		PURPOSE :	
CALL (S) : BDS015 BDS054 FURROUTINE BDS010 CALL (S) : CANTHA SUBROUTINE BDS011 CALL (S) : CANTHA SUBROUTINE BDS012 FURROUTINE BDS012 CALL (S) : BDS020 CALL (S) : BDS012 BDS024 BDS020 CALL (S) : BDS016 BDS012 BDS024 BDS020 CALL (S) : BDS016 BDS016 BDS026 CALL (S) : BDS016 BDS016 BDS026 SUBROUTINE BDS016 FURROUSE : SUBROUTINE BDS016 FURROUSE : SUBROUTINE BDS016 FURROUSE : SUBROUTINE BDS016 FURROUSE : SUBROUTINE BDS017 FURROUTINE BDS018 FURROUTINE BDS018 FURROUTINE BDS018 FURROUTINE BDS018 FURROUTINE BDS018 FURROUTINE BDS028 FURROUTINE BDS028 FURROUTIN					
SUBROUTINE BDS010 PURPOSE : SUBROUTINE BDS011 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS012 PURPOSE : SUBROUTINE BDS013 PURPOSE : SUBROUTINE BDS014 PURPOSE : CALL (3) BDS010 BDS012 BDS020 CALL (3) BDS010 BDS012 BDS024 BDS020 CALL (3) BDS010 BDS014 BDS012 BDS024 BDS013 UBROUTINE BDS016 PURPOSE : : : : UBBOUTINE BDS016 PURPOSE : </td <td>SUBROUTINE E</td> <td>105004</td> <td></td> <td></td> <td></td>	SUBROUTINE E	105004			
CALL (S) : CAMTHA SUBROUTINE BDS011 PURPOSE : UDBOUTINE BDS012 PURPOSE : UDBOUTINE BDS013 PURPOSE : UDBOUTINE BDS014 PURPOSE : CALL (S) : BDS016 BDS012 BDS024 BDS020 CALL (S) : BDS016 BDS016 HS1 PF1 HS2 H4355 PF2 BDS011 BDS019 BDS013 :UBROUTINE BDS015 CALL (S) : BDS016 BDS024 :UBROUTINE BDS016 PURPOSE : UBROUTINE BDS016 PURPOSE : UBROUTINE BDS016 PURPOSE : UBROUTINE BDS018 PURPOSE : UBROUTINE BDS018 PURPOSE : UBROUTINE BDS018 PURPOSE : UBROUTINE BDS019 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS025 PURPOSE : UBROUTINE BDS026 PURPOSE :		05010			
CALL (3): BDS020 UBROUTTINE BDS013 PURPOSE: UBROUTTINE BDS013 PURPOSE: UBROUTINE BDS013 PURPOSE: CALL (3): MLINE CANTHA BDS012 BDS024 BDS020 CALL (3): BDS016 BDS016 HS1 PURPOSE: CALL (3): UBROUTINE BDS015 PURPOSE: UBROUTINE BDS016 PURPOSE: UBROUTINE BDS016 PURPOSE: UBROUTINE BDS016 PURPOSE: UBROUTINE BDS017 PURPOSE: UBROUTINE BDS018 PURPOSE: UBROUTINE BDS019 PURPOSE: UBROUTINE BDS020 PURPOSE: UBROUTINE BDS021 PURPOSE: UBROUTINE BDS023 PURPOSE: UBROUTINE BDS025 PURPOSE: UBROUTINE BDS025 PURPOSE: UBROUTINE BDS026 PURPOSE: UBROUTINE BDS026 PURPOSE: UBROUTINE BDS026 PURPOSE:					
HUBROUTINE BDS012 PURPOSE HUBROUTINE BDS013 PURPOSE HUBROUTINE BDS014 PURPOSE LUBROUTINE BDS014 PURPOSE LUBROUTINE BDS015 PURPOSE LUBROUTINE BDS016 PURPOSE LUBROUTINE BDS017 PURPOSE LUBROUTINE BDS018 PURPOSE LUBROUTINE BDS018 PURPOSE LUBROUTINE BDS019 PURPOSE LUBROUTINE BDS020 PURPOSE LUBROUTINE BDS021 PURPOSE LUBROUTINE BDS023 PURPOSE LUBROUTINE BDS024 PURPOSE LUBROUTINE BDS025 PURPOSE LUBROUTINE BDS025 PURPOSE LUBROUTINE BDS025 PURPOSE LUBROUTINE BDS026 CALL (S) : BDS016 BDS023 UBROUTINE BDS026 PURPOSE : LUBROUTINE BDS026 PURPOSE : CALL (S) : BDS026 BDS023 PURPO	UBROUTINE B	DS011		PURPOSE :	
UDBROUTINE BDS013 PURPOSE : UBROUTINE BDS014 PURPOSE : CALL (3) : HLINE CANTHA BDS012 BDS024 BDS020 CALL (3) : HLINE CANTHA BDS012 BDS024 BDS020 CALL (3) : BDS016 BDS016 PS1 HS2 H4355 PF2 BDS011 BDS019 BDS013 UBROUTINE BDS016 PURPOSE : BDS014 BDS024 H4355 PF2 BDS011 BDS019 BDS013 UBROUTINE BDS016 PURPOSE : ERRSXT :					: BD\$020
UDBROUTINE DDS014 PURPOSE : CALL (S) HLINE CANTHA BDS012 BDS024 BDS020 CALL (S) : BDS010 BDS014 HS1 PF1 HS2 H4355 PF2 BDS011 BDS013 UBROUTINE BDS016 PURPOSE : CALL (S) : BDS014 BDS024 BDS014 BDS013 : BDS013 : BDS013 :<					
CALL (5) : HLINE CANTHA BDS012 BDS024 BDS024 BDS010 BDS011 BDS012 E BBR0UTINE BDS020 PURPOSE E CALL (S) E BDS016 BDS025 CALL (S) E BDS014 BDS025 CALL (S) E BDS016 BDS023 BDS023 BDS023 BDS023 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS024 BDS023 BDS024 BDS023 BDS024 BDS024 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS024 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS024 BDS023 BDS024 BDS023 BDS024 BDS023 BDS024 BDS024 BDS024 BDS024 BDS023 BDS024 BD					
CALL (3) : BDS010 BD\$010 HS1 PFI HS2 H4355 PF2 BDS011 BDS019 BDS013 UBROUTINE BDS016 CALL (3) : BDS016 BDS024 CALL (3) : BDS016 BDS026 CALL (3) : BDS016 BDS016 CALL (3) : BDS016 BDS026 CALL (3) : BDS016 BDS026 CALL (3) : BDS026 E : UBROUTINE BDS020 PURPOSE : UBROUTINE BDS020 PURPOSE : UBROUTINE BDS024 PURPOSE : CALL (3) : BDS016 BDS025 CALL (3) : BDS016 BDS025 CALL (3) : BDS016 BDS025 CALL (3) : BDS026 BDS025 CALL (3) : BDS026 BDS023	UBROUTINE S	02014		CALL (S) -	
UBROUTINE BDS015 PURPOSE : UBROUTINE BDS016 PURPOSE : UBROUTINE BDS016 PURPOSE : UBROUTINE BDS018 PURPOSE : UBROUTINE BDS020 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS025 PURPOSE : UBROUTINE BDS025 PURPOSE : UBROUTINE BDS025 PURPOSE : CALL (S) : BDS026 BDS025 UBROUTINE BDS025 PURPOSE : CALL (S) : BDS026 BDS023					
CALL (\$) : BD\$014 BD\$024 UBROUTINE BD\$016 PURPOSE : UBROUTINE BD\$016 PURPOSE : UBROUTINE BD\$015 PURPOSE : UBROUTINE BD\$020 PURPOSE : UBROUTINE BD\$022 PURPOSE : UBROUTINE BD\$024 PURPOSE : UBROUTINE BD\$025 PURPOSE : UBROUTINE BD\$025 PURPOSE : CALL (\$) : BD\$016 BD\$025 UBROUTINE BD\$026 PURPOSE : CALL (\$) : BD\$026 BD\$023	UBROUTINE B	D\$015			
CALL CS) ERRSXT UBROUTINE BDS016 PURPOSE : UBROUTINE BDS019 PURPOSE : UBROUTINE BDS020 PURPOSE : UBROUTINE BDS020 PURPOSE : UBROUTINE BDS020 PURPOSE : UBROUTINE BDS024 PURPOSE : UBROUTINE BDS024 PURPOSE : UBROUTINE BDS025 PURPOSE : UBROUTINE BDS025 PURPOSE : UBROUTINE BDS026 : : UBROUTINE BDS025 PURPOSE : CALL (3) : BDS026 : UBROUTINE BDS026 PURPOSE : :				CALL (S) :	
UBROUTTINE BDS016 PURPOSE : UBROUTTINE BDS020 PURPOSE : UBROUTTINE BDS020 PURPOSE : UBROUTTINE BDS023 PURPOSE : UBROUTTINE BDS024 PURPOSE : UBROUTTINE BDS025 PURPOSE : CALL (S) : BDS026 BDS023 UBROUTTINE BDS026 PURPOSE :	UBROUTINE B	DS016			
UBROUTINE BDS026 PURPOSE : UBROUTINE BDS020 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS024 PURPOSE : UBROUTINE BDS025 PURPOSE : UBROUTINE BDS025 CALL (S) : BDS026 BDS023 UBROUTINE BDS026 PURPOSE :					
UBROUTINE BDS026 PURPOSE : UBROUTINE BDS023 PURPOSE : UBROUTINE BDS024 PURPOSE : UBROUTINE BDS025 CALL (S) : BDS016 BDS025 UBROUTINE BDS025 PURPOSE : CALL (S) : BDS026 BDS023 UBROUTINE BDS026 PURPOSE :					
ÚBROUTINE BDS023 PURPOSE : UBROUTINE BDS024 PURPOSE : CALL (S) : BDS016 BDS025 UBROUTINE BDS025 PURPOSE : UBROUTINE BDS026 CALL (S) : BDS026 BDS023 UBROUTINE BDS026 PURPOSE :					
UBROUTINE BDS024 PURPOSE : CALL (S) : BDS016 BDS025 UBROUTINE BDS025 PURPOSE : CALL (S) : BDS026 BDS023 UBROUTINE BDS026 PURPOSE :					
CALL (S) : BDS016 BDS025 UBROUTINE BDS025 PURPOSE : CALL (S) : BDS026 BDS023 UBROUTINE BDS026 PURPOSE :					
CALL (S) : BDS026 BDS023 UBROUTINE BDS026 PURPOSE :					BDS016 BDS025
UBROUTINE BD3026 PURPOSE :	UBROUTINE B	DS#25			
UDRUVIINE DUSVJI PURPUSE :					
	DACULINE B	19432		FURFUSE 1	
CALL (S) : EXIT BDS064 GGS107 GGS011 BDS024 BDS053 BDS014 GGS252 BDS054 UBROUTINE BDS053 PURPOSE :					

-

.....

-

_	_
q	7
~	

CUBROUTINE IKSUB9 CALL (S) : IKNEW JYCOHB SUBROUTINE IKSUB9 CALL (S) : SPECIN SUBROUTINE IKSUB9 CALL (S) : SPECIN SUBROUTINE INFTNS PURPOSE SUBROUTINE INFTNS CALL (S) : IKNEW TIKSUB TIK9 FFTCX 9 LTFF0 SUBROUTINE INFTNS CALL (S) : IKNEW TIKSUB TIK9 FFTCX 9 LTFF0 SUBROUTINE INFTNS CALL (S) : IKNEW TIKSUB TIK9 FFTCX 9 LTFF0 SUBROUTINE INFTNS CALL (S) : IKNEW IKNUP IK0 FFTCX 9 LFF0 SUBROUTINE INFTR1 CALL (S) : IKNEW IKNUP IK0 SUBROUTINE INFTR3 SUBROUTINE INTTR1 CALL (S) : INFTN2 SUBROUTINE INTTR2 CALL (S) : INFTN2 SUBROUTINE INTTR3 SUBROUTINE INTTR3 SUBROUTINE INTTR3 SUBROUTINE INTTR3 SUBROUTINE INTTR3 SUBROUTINE INTTR4 FRIPOSE SUBROUTINE INTTA FRIPOSE SUBROUTINE INTTA FRIPOSE SUBROUTINE INTTA FRIPOSE SUBROUTINE INTA FRIPOSE SUBROUTINE INTA FRIPOSE SUBROUTINE INTA F		CALL (3) : CENAR VIIBIN INIERI CETADE INIERA ERIERE NOODAI
CLLL (S) CLLL (S) SPECIN SUBROUTINE IKSUB FURPOSE SPECIN SUBROUTINE IKS CALL (S) SPECIN SUBROUTINE INTUIN FURPOSE SPECIN SUBROUTINE INTUIN FURPOSE SPECIN SUBROUTINE INTE FURPOSE SPECIN SUBROUTINE INFINS FURPOSE SUBROUTINE INFINS SUBROUTINE INFINS FURPOSE SUBROUTINE INFINS SUBROUTINE INFINS FURPOSE IKSUB IKSUB FFTCX R4ARAY FLTFFT SUBROUTINE INFINS FURPOSE IKSUB IKSUB OFFTCX R4ARAY FLTFFT SUBROUTINE INFINS FURPOSE IKSUB IKSUB OFFTCX R4ARAY FLTFFT SUBROUTINE INFINS FURPOSE IKSUB IKSUB OFFTCX R4ARAY FLTFFT SUBROUTINE INFINS FURPOSE IKSUB INFIC2 SUBROUTINE INFINS FURPOSE IKSUB INFIC2 SUBROUTINE INFIR FURPOSE INFINS SUBROUTINE INFIRS FURPOSE INFINS SUBROUTINE INFIRS FURPOSE INFINS SUBROUTINE INFIRS FURPOSE INFINS SUBROUTINE INFIRS FURPOSE INFINS SUBROUTINE INTFRS FURPOSE	OUTINE LSTOTL	PURPOSE : Call (5) : CPMAP VITBIN INTERI CPYSOP INTERS PRIPRE ADJUST
CALL (S) I IXEW JYCOMB SUBROUTINE IXSUB9 CALL (S) SPECIN SUBROUTINE IXE PURPOSE SUBROUTINE IXE PURPOSE SUBROUTINE INF SUBROUTINE INFTNS CALL (S) I IXEW TIKSUB TIK8 FTCX8 PLTFF0 SUBROUTINE INFTNS CALL (S) I IXEW TIKSUB TIK8 FTCX8 PLTFF0 SUBROUTINE INFTNS CALL (S) I IXEW TIKSUB TIK8 FTCX8 PLTFF0 SUBROUTINE INFTNS CALL (S) I IXEW TIKSUB TIK8 FTCX8 PLTFF0 SUBROUTINE INFTNS CALL (S) I IXEW TIKSUB TIK8 FTCX8 PLTFF0 SUBROUTINE INFTNS CALL (S) I IXEW TIKSUB TIK8 FTCX8 PLTFF0 SUBROUTINE INFTNS CALL (S) I IXEW TIKSUB TIK8 FTCX8 PLTFF0 SUBROUTINE INFTC1 PURPOSE SUBROUTINE INFTC1 PURPOSE SUBROUTINE INFTRN CALL (S) I IXEW TIK8 FTCX8 PLTFF0 SUBROUTINE INTTRS PURPOSE SUBROUTINE INTTRS CALL (S) I INTTR2 SUBROUTINE INTTR1 CALL (S) I INTTR2 SUBROUTINE INTTR3 CALL (S) I INTTR2 SUBROUTINE INTTR3 CALL (S) I INTTR2 SUBROUTINE INTTR4 CALL (S) I INTTR2 SUBROUTINE INTTR4 CALL (S) I INTTR2 SUBROUTINE INTTR4 CALL (S) I INTTC1 MEMPG1 F001 INTTR3 SUBROUTINE INTERM PURPOSE SUBROUTINE INTER PURPOSE SUBROUTINE INTER PURPOSE SUBROUTINE INTERM PURPOSE SUBROUTINE FOR PURPOSE SUBROUTINE		
CALL (S) I INTEN SUBROUTINE INSUB SUBROUTINE INSUB SUBROUTINE INSUB SUBROUTINE INF SUBROUTINE INT SUBROUTINE SOAFL SUBROUTINE SOAFL		
CALL [3]: IKNEW JYCOMB SUBROUTINE IKSUBB CALL [3]: SPECIN SUBROUTINE IK PURPOSE SPECIN SUBROUTINE INTU PURPOSE SPECIN SUBROUTINE INTU PURPOSE SUBROUTINE INTU SUBROUTINE INF PURPOSE SUBROUTINE INF SUBROUTINE INF CALL [3]: IKNEW TIKSUB TIKØ SUBROUTINE INF PURPOSE SUBROUTINE INF SUBROUTINE INF CALL [3]: IKNEW TIKSUB TIKØ SUBROUTINE INFTNS PURPOSE SUBROUTINE INFTNS SUBROUTINE INFTNS PURPOSE SUBROUTINE INFTNS SUBROUTINE INFTN PURPOSE SUBROUTINE INFTN SUBROUTINE INFTR PURPOSE SUBROUTINE INFTR SUBROUTINE INFTR PURPOSE SUBROUTINE INTTRS SUBROUTINE INTTRS CALL [3]: NEMPOI SUBROUTINE INTFRS CALL [3]: INTTR2 SUBRO	_	
CALL (S) CALL (S) IKNEW JYCONB SUBROUTINE IKSUBØ CALL (S) SPECIN SUBROUTINE IKG PURPOSE SPECIN SUBROUTINE ING PURPOSE SUBROUTINE ING SUBROUTINE INF PURPOSE SUBROUTINE INF SUBROUTINE INFFNS PURPOSE SUBROUTINE INFFNS SUBROUTINE INFFNS PURPOSE SUBROUTINE INFFNG SUBROUTINE INFFNG PURPOSE SUBJOSE SUBROUTINE INFFNS PURPOSE SUBJOSE SUBROUTINE INFFNS PURPOSE SUBJOSE SUBROUTINE INFFNS CALL (S) INFF2 SUBROUTINE INTFR1 PURPOSE SUBROUTINE INTFR2 SUBROUTINE INTFR3 PURPOSE SUBSOUTINE INTFR3 SUBROUTINE INTFR4 PURPOSE SUBSOUTINE INTFR3 SUBROUTINE INTFR4 PURPOSE SUBROUTINE INTFR4 SUBROUTINE INTFR4 PURPOSE SUBROUTINE INTFR4 SUBROUTINE INTFR4 PURPOSE SUBSOUTINE INTF		PURPOSE :
CALL (S) I KNEW JYCOMB SUBROUTINE IKSUB0 CALL (S) SPECIN SUBROUTINE IKG PURPOSE SUBROUTINE INTU SUBROUTINE INTU SUBROUTINE INFINS SUBROUTINE INFFNS SUBROUTINE SOAFL SUBROUTINE SOAFL SUBROUTIN	OUTINE LESWP	
CALL (S) I KAWA JYCOMB SUBROUTINE IKSUB0 CALL (S) SPECIN SUBROUTINE IK (S) PURPOSE SUBROUTINE INTU PURPOSE SUBROUTINE INTU PURPOSE SUBROUTINE INFINS PURPOSE SUBROUTINE INFINS CALL (S) I KNUB TIKSUB TIKG FFTCX & PLTFF0 SUBROUTINE INFFNS CALL (S) I KNUB FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB IKSUB0 FTCX & CAARAY PLTFFT SUBROUTINE INFFNS CALL (S) I KNUB INFOC2 SUBROUTINE INFFNS CALL (S) I KNUB INFCC2 SUBROUTINE INFFNS CALL (S) I NEWPOI SUBROUTINE INTFR1 PURPOSE SUBROUTINE INTFR2 CALL (S) I NTFR2 SUBROUTINE INTFR3 CALL (S) I NTFR2 SUBROUTINE INTFR3 CALL (S) I NEWPOI F001 F001 INTFR3 SUBROUTINE INTFRM CALL (S) I NFFC1 NEWPOI F001 F001 INTFR3 SUBROUTINE INTFRM CALL (S) I NFFC1 NEWPOI PROXE SUBROUTINE ISQAFF PURPOSE SUBROUTINE INTFRM PURPOSE SUBROUTINE INTFRM PURPOSE SUBROUTINE INTFRM PURPOSE SUBROUTINE SOARF PURP		
CALL (S) I KAUPA JYCOMB SUBROUTINE IKSUB0 CALL (S) SPECIN SUBROUTINE IKSUB0 CALL (S) SPECIN SUBROUTINE IKSUB0 PURPOSE I SUBROUTINE INSUB PURPOSE I SUBROUTINE INFINS PURPOSE I SUBROUTINE INFFNS CALL (S) IKSUB0 FFTCX R4ARAY PLTFF0 SUBROUTINE INFFNS CALL (S) IKSUB0 FFTCX R4ARAY PLTFF7 SUBROUTINE INFFNS CALL (S) IKSUB0 FFTCX R4ARAY PLTFF7 SUBROUTINE INFFNS CALL (S) IKSUB0 FFTCX R4ARAY PLTFF7 SUBROUTINE INFFN0 FURPOSE I SUBROUTINE INFFN1 FURPOSE I SUBROUTINE INFFN2 FURPOSE I SUBROUTINE INFFN2 FURPOSE I SUBROUTINE INFFN2 FURPOSE I SUBROUTINE INFFN2 FURPOSE I SUBROUTINE INFFN3 FURPOSE I SUBROUTINE INFFN4 FURPOSE I SUBROUTINE INFFN5 FURPOSE I SUBROUTINE INFFN5 FURPOSE I SUBROUTINE ISOAFL FURPOSE I SUBROUTINE INFFN5 FUR	OUTINE KMATRS	PURPOSE :
CALL (13)CALL (13)CALL (13)SUBROUTINE IKSUB0PURPOSESUBROUTINE IKPURPOSESUBROUTINE INTLUPURPOSESUBROUTINE INTLUPURPOSESUBROUTINE INFINPURPOSESUBROUTINE INFINSUBPURPOSESUBROUTINE INFINSUBPURPOSESUBROUTINE INFINSUBPURPOSESUBROUTINE INFINSUBPURPOSESUBROUTINE INFINSUBPURPOSESUBROUTINE INFINSUBPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INTFRSPURPOSESUBROUTINE INTFRMPURPOSECALL (3)INFTCI NEWPGI PRNTXXSUBROUTINE INTFRHPURPOSESUBROUTINE INTFRHPURPOSESUBROUTINE INTFRHPURPOSESUBROUTINE INTFRHPURPOSESUBROUTINE INTFRHPURPOSESUBROUTINE INTFRHPURPOSESUBROUTINE INTFRHPURPOSESUBROUTINE INTERNEPURPOSESUBROUTINE INTERNE<		
CALL (S)CALL (S)INEMEJYCOMBSUBROUTINE IKFURPOSESPECINSUBROUTINE INLUPURPOSESUBROUTINE INLUPURPOSESUBROUTINE INFINSPURPOSESUBROUTINE INFFNSPURPOSESUBROUTINE INFFRSPURPOSESUBROUTINE INTFRSPURPOSESUBROUTINE INTFRSPURPOSESUBROUTINE INTFRSPURPOSESUBROUTINE INTFRSPURPOSESUBROUTINE INTFRSPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE INTFRNPURPOSESUBROUTINE ISSAFLPURPOSESUBROUTINE ISSAFLPURPOSESUBROUTINE ISSAFLPURPOSESUBROUTINE ISSAFLPURPOSESUBROUTINE ISSAFLPURPOSESUBROUTINE IN		
CALL (S) CALL (S) SUBROUTINE IKSUB0 PURPOSE SUBROUTINE IK1 PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INISUB PURPOSE SUBROUTINE INFNS PURPOSE SUBROUTINE INFFNS PURPOSE SUBROUTINE INFFNS CALL (S) SUBROUTINE INFFC1 PURPOSE SUBROUTINE INFFC2 PURPOSE SUBROUTINE INFFRS CALL (S) SUBROUTINE INTFRS CALL (S) SUBROUTINE INTFRS CALL (S) SUBROUTINE INTFRS CALL (S) SUBROUTINE INTFRS CALL (S)		
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE INILU PURPOSE : SUBROUTINE INILU PURPOSE : SUBROUTINE INILU PURPOSE : SUBROUTINE INILU PURPOSE : SUBROUTINE INISIN PURPOSE : SUBROUTINE INFINO PURPOSE : SUBROUTINE INFTC1 PURPOSE : SUBROUTINE INFTC2 PURPOSE : SUBROUTINE INFTRS PURPOSE : SUBROUTINE INTERS CALL (S) : INTFR2 SUBROUTINE IN		
CALL (5): IKNEW JVCOMB SUBROUTINE IKSUBØ PURPOSE: SUBROUTINE IKI PURPOSE: SUBROUTINE IKI PURPOSE: SUBROUTINE INILU PURPOSE: SUBROUTINE INILU PURPOSE: SUBROUTINE INILU PURPOSE: SUBROUTINE INISUB PURPOSE: SUBROUTINE INF PURPOSE: SUBROUTINE INF PURPOSE: SUBROUTINE INF CALL (S): SUBROUTINE INF PURPOSE: SUBROUTINE INFFNG CALL (S): SUBROUTINE INFFNG CALL (S): SUBROUTINE INFFNG CALL (S): SUBROUTINE INFFNG CALL (S): SUBROUTINE INFFC: CALL (S): SUBROUTINE INFFRS CALL (S): SUBROUTINE INFFRS CALL (S): SUBROUTINE INTFRS CALL (S):		
CALL TG3 : IKNEW JYCONB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE INU PURPOSE : SPECIN SUBROUTINE INU PURPOSE : SUBROUTINE INU PURPOSE : SUBROUTINE INUSIN PURPOSE : SUBROUTINE INUS PURPOSE : SUBROUTINE INUSCE : EALL (S) : SUBROUTINE INUSCE : EALL (S) : SUBROUTINE INUSCE : PURPOSE : SUBROUTINE INUSCE : CALL (S) : SUBROUTINE INTERS PURPOSE : SUBROUTINE INTERS CALL (S) : </td <td>OUTINE IGSTIN</td> <td></td>	OUTINE IGSTIN	
GALL (S) IKNEW JYCOMB SUBROUTINE IKSUBØ PURPOSE SUBROUTINE IKSUBØ PURPOSE SUBROUTINE IMILU PURPOSE SUBROUTINE IMILU PURPOSE SUBROUTINE IMISIN PURPOSE SUBROUTINE IMISIN PURPOSE SUBROUTINE IMISIN PURPOSE SUBROUTINE INFYNS PURPOSE SUBROUTINE INFYNG PURPOSE SUBROUTINE INFYNG PURPOSE SUBROUTINE INFYNG PURPOSE SUBROUTINE INFYNG PURPOSE SUBROUTINE INFYC1 PURPOSE SUBROUTINE INFYC2 PURPOSE SUBROUTINE INFYRS PURPOSE SUBROUTINE INTFRS PURPOSE	UUTINE ISUARP	
GALL (S) IKNEW JYCOHB SUBROUTINE IKSUBØ PURPOSE SUBROUTINE IKU PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INILU PURPOSE SUBROUTINE INISIN PURPOSE SUBROUTINE INISIN PURPOSE SUBROUTINE INIF CALL (S) SUBROUTINE INIF PURPOSE SUBROUTINE INIF CALL (S) SUBROUTINE INIF PURPOSE SUBROUTINE INIF PURPOSE SUBROUTINE INIFRS PURPOSE SUBROUTINE INIFRS PURPOSE SUBROUTINE INIFRS CALL (S) SUBROUTINE	ANTINE TRANE	
CALL (S) : IKNEW JYCONB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE INLU PURPOSE : SUBROUTINE INLU PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNG CALL (S) : IKNEW IKSUBØ FFTCX R4ARAY PLTFFT SUBROUTINE INFFNØ CALL (S) : IKNEW IKNMP IKØ FFTCXØ PLTFFØ SUBROUTINE INFFNØ CALL (S) : ENDJØB INFC2 SUBROUTINE INFTC2 PURPOSE : SUBROUTINE INFFNØ CALL (S) : ENDJØB INFC2 SUBROUTINE INFFNØ CALL (S) : DUNLIN STDIKI DTRAP SUBROUTINE INTFR1 PURPOSE : SUBROUTINE INTFR2 PURPOSE : SUBROUTINE INTFR3 PURPOSE : SUBROUTINE INTFR3 PURPOSE : SUBROUTINE INTFR3 PURPOSE : SUBROUTINE INTFR3 PURPOSE : SUBROUTINE INTFR4 PURPOSE : <td< td=""><td>OUTINE ISOAPL</td><td></td></td<>	OUTINE ISOAPL	
CALL (5) : IKNEW JYCONB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE INILU PURPOSE : SUBROUTINE INILU PURPOSE : SUBROUTINE INILU PURPOSE : SUBROUTINE INISIN PURPOSE : SUBROUTINE INISIN PURPOSE : SUBROUTINE INISIN PURPOSE : SUBROUTINE INFS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFRS PURPOSE : SUBROUTINE INTFRS CALL (3) : NEWPOI SUBROUTINE INTFRS CALL (3) : DUNLIN STDIKI DTRAP SUBROUTINE INTFR1 PURPOSE : SUBROUTINE INTFR2 CALL (5) : ERSYT NEHPOI F001 INTFR3 SUBROUTINE INTFR3 PURPOSE : SUBROUTINE INTFR4 PURPOSE : SUBROUTINE INTFR5 CALL (5) : ERSYT NEHPOI F0		
CALL (S) : IKNEW JYCONB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNG PURPOSE : SUBROUTINE INFFC2 PURPOSE : SUBROUTINE INFFRS PURPOSE : SUBROUTINE INTFRS P		
GALL (S) IKNEW JYCOHB SUBROUTINE IKSUBØ PURPOSE SUBROUTINE IKU PURPOSE SUBROUTINE IMILU PURPOSE SUBROUTINE IMILU PURPOSE SUBROUTINE IMILU PURPOSE SUBROUTINE IMISIN PURPOSE SUBROUTINE IMISIN PURPOSE SUBROUTINE IMISIN PURPOSE SUBROUTINE INFTNS PURPOSE SUBROUTINE INFTC1 PURPOSE SUBROUTINE INFTR1 PURPOSE SUBROUTINE INFTR1 PURPOSE SUBROUTINE INTFR2 CALL (S) SUBROUTINE INTFR1 PURPOSE SUBROUTINE INTFR2 CALL (S) SUBROUTINE INTFR3 CALL (S) SUBROUTINE INTFR2 CALL (S) SUBROUTINE INTFR2 CALL (S) SUBROUTINE INTFR2 CALL (S)	OUTINE INTERM	
CALL (5) : IKNEW JVCOMB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IK PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMIC CALL (S) : IKNEW TIKSUB TIK® FFTCX® PLTFF@ SUBROUTINE INF CALL (S) : IKNEW TIKSUB OFFTCX R4ARAY PLTFFT SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS CALL (S) : ENDJOB INPTC2 SUBROUTINE INFFR CALL (S) : ENDJOB INPTC2 SUBROUTINE INFFNS CALL (S) : DUMLIN STDIKI DTRAP SUBROUTINE INTFR1 CALL (S) : INFFR2 SUBROUTINE INTFR2 CALL (S) : INTFR2 SUBROUTINE INTFR3 CALL (S) : ERSYT NEMPGI F001 INTFR3 SUBROUTINE INTFR5 CALL		
CALL (S) : IKNEW JYCONB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IKIU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE INNYSN PURPOSE : SUBROUTINE INNYSN PURPOSE : SUBROUTINE INNYSN PURPOSE : SUBROUTINE INNYSN PURPOSE : SUBROUTINE INFYNS PURPOSE : SUBROUTINE INFYC2 PURPOSE : SUBROUTINE INFYC2 PURPOSE : SUBROUTINE INFYR CALL (S) : IKNEM IKNMP IKØ FFTCXØ PLTFFØ SUBROUTINE INFYC2 PURPOSE : SUBROUTINE INFYR CALL (S) : NEWPG1 SUBROUTINE INTYR CALL (S) : DUNLIN STDIKI DTRAP SUBROUTINE INTFR1 PURPOSE : SUBROUTINE INTFR2 PURPOSE : SUBROUTINE INTFR2 PURPOSE : SUBROUTINE INTFR2 CALL (S) : INTFR2 SUBROUTINE INTFR2 PURPOSE : SUBROUTINE INTFR2 PURPOSE : CALL (S) : INTFR2 SUBROUTINE INTFR2 PURPOSE : CALL (S) : INTFR2 SUBROUTINE INTFR3 PURPOSE : CALL (S) : INTFR3 PURPOSE : CALL (S) : INTFR3 PURPOSE : CALL (S) : INTFR2 PURPOSE : CALL (S) : INTFR3	OUTINE INTLIN	
CALL (5) : IKNEW JYCONB SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE INTU SUBROUTINE INTU SUBROUTINE INTU SUBROUTINE INTU SUBROUTINE INTU SUBROUTINE INTU SUBROUTINE INT CALL (5) : IKNEM TIKSUB TIKØ FTCX8 SUBROUTINE INT SUBROUTINE INTENS PURPOSE SUBROUTINE INTENS PURPOSE SUBROUTINE INTENS PURPOSE SUBROUTINE INTENS CALL (5) : IKNEM IKSUB FFTCX R4ARAY PLTFFT SUBROUTINE INTERN PURPOSE SUBROUTINE INTERS PURPOSE SUBROUTINE INTERS PURPOSE SUBROUTINE INTERS PURPOSE CALL (5) : INTENS SUBROUTINE INTERS PURPOSE CALL (5) : INTER2 SUBROUTINE INTERS <td></td> <td></td>		
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IKI PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMP CALL (S) : IKNEW TIKSUB TIKØ SUBROUTINE INF CALL (S) : IKNEW TIKSUB TIKØ SUBROUTINE INF CALL (S) : IKNEW TIKSUB TIKØ SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS CALL (S) : IKNEW IKSUBØ FFTCX R4ARAY PLTFFT SUBROUTINE INFFNG CALL (S) : IKNEW IKNMP IKØ FFTCXØ PLTFFØ SUBROUTINE INFFNG CALL (S) : IKNEW IKNMP IKØ FFTCXØ PLTFFØ SUBROUTINE INFFNG CALL (S) : ENDJØB INPTC2 SUBROUTINE INFFC CALL (S) : ENDJØB INPTC2 SUBROUTINE INFFR CALL (S) : ENDØB INPTC2 SUBROUTINE INTFR CALL (S) : DUNLIN STDIKI DTRAP SUBROUTINE INTFR1 PURPOSE : SUBROUTINE INTFR2 PURPOSE : SUBROUTINE INTFR2 PURPOSE :	OUTINE INTERS	PURPOSE t
CALL [S] : IKNEW JYCOMB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IKI CALL (S) : SPECIN SUBROUTINE IMILU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE INFYNS PURPOSE : SUBROUTINE INFYC1 PURPOSE : SUBROUTINE INPTC2 PURPOSE : SUBROUTINE INPTC3 PURPOSE : SUBROUTINE INPTRM PURPOSE : SUBROUTINE INTFRS CALL (S) : NEWPOI SUBROUTINE INTFRS CALL (S) : DUNI IN STDIKI DTRAP SUBROUTINE INTFR1 PURPOSE :		
CALL (5) : IKNEW JYCOMB SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE INTLU PURPOSE SUBROUTINE INTSIN PURPOSE SUBROUTINE INFINS PURPOSE SUBROUTINE INFFNS CALL (5) SUBROUTINE INTFRI CALL (5) SUBROUTINE INTFRI <	OUTINE INTER2	
CALL [S] : IKNEW JYCOMB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IKI CALL (S) : SPECIN SUBROUTINE IMILU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE INFS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNG PURPOSE : SUBROUTINE INPTC1 PURPOSE : SUBROUTINE INPTC2 PURPOSE : SUBROUTINE INPTC3 PURPOSE : SUBROUTINE INTFRS PURPOSE : SUBROUTINE INTFRS <t< td=""><td>WALTHE THICKT</td><td></td></t<>	WALTHE THICKT	
CALL [5] : IKNEW JYCOMB SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IMILU SUBROUTINE IMILU SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN SUBROUTINE IMISIN PURPOSE : SUBROUTINE INF CALL (S) : IKNEM TIKSUB TIKØ FTCX8 SUBROUTINE INFFNS CALL (S) : IKSUB FTCX RAARY PLTFFT SUBROUTINE INFFNG CALL (S) : IKNEM IKNMP IKØ SUBROUTINE INFFNG CALL (S) : IKNEM IKNMP IKØ SUBROUTINE INFFNG CALL (S) : ENDJOB INPTC2 SUBROUTINE INFFR SUBROUTINE INFFR CALL (S) : INFE SUBROUTINE INFFR CALL (S) : INFERS SUBROUTINE INFFRS SUBROUTINE INFFRS CALL (S) : INFERS SUBROUTINE INFFRS	OUTTINE INTERI	
CALL [S] : IKNEW JYCOMB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IKI PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE INFINS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNG PURPOSE : SUBROUTINE INFFC1 PURPOSE : SUBROUTINE INFFC2 PURPOSE : SUBROUTINE INFFC3 PURPOSE : SUBROUTINE INFFRM PURPOSE : SUBROUTINE INFFRM CALL (S) : NEWPOI	COLLEC THILES	
CALL [5] : IKNEW JYCONB SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IMILU SUBROUTINE IMILU SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE INFSID PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS CALL (S) : IKSUB TIKSUB FFTCX R4ARAY PLTFFT SUBROUTINE INFFNG CALL (S) : IKNEM IKNMP IKS PURPOSE : SUBROUTINE INFFNG CALL (S) : IKNEM INHP IKS PURPOSE : SUBROUTINE INFFNG CALL (S) : SUBROUTINE INFFNG CALL (S) : SUBROUTINE INFTC1 PURPOSE : SUBROUTINE INFTC2 SUBROUTINE INFTC2 SUBROUTINE INFTC3 SUBROUTINE INFTC4	OUTTINE INTERS	
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IK1 PURPOSE : SUBROUTINE INUSIN PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS CALL (S) : IKSUB IKSUBØ FFTCX R4ARAY PLTFFT SUBROUTINE INFFNØ PURPOSE : SUBROUTINE INFFNØ CALL (S) : IKNEW IKNMP IKØ FFTCXØ PLTFFØ SUBROUTINE INPTC1 PURPOSE : SUBROUTINE INPTC1 PURPOSE : SUBROUTINE INPTC2 PURPOSE :	WUITHE INFIRM	
CALL [5] : IKNEW JYCOMB SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IMILU SUBROUTINE IMILU SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN SUBROUTINE IMISIN PURPOSE : SUBROUTINE INF CALL (S) : IKSUB TIK\$ PURPOSE : SUBROUTINE INFFNS CALL (S) : IKSUB FFTCX R4ARAY PLTFFT SUBROUTINE INFFN9 CALL (S) : IKNEM IKNMP IK\$ FFTCX\$ PURPOSE : SUBROUTINE INFFN9 CALL (S) : IKNEM IKNMP IK\$ FFTCX\$ PURPOSE : SUBROUTINE INFTC1 PURPOSE : CALL (S) : ENDJOB INPTC2		
CALL [S] : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE IK0 PURPOSE : SUBROUTINE INISIN PURPOSE : SUBROUTINE INHSIN PURPOSE : SUBROUTINE INHSIN PURPOSE : SUBROUTINE INHSIN PURPOSE : SUBROUTINE INHSIN PURPOSE : SUBROUTINE INFS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNG PURPOSE : SUBROUTINE INFFNG PURPOSE : SUBROUTINE INFFNG PURPOSE : SUBROUTINE INFFNG PURPOSE : SUBROUTINE INPTC1 PURPOSE :	OUT THE INPICS	
CALL (S) : IKNEW JYCOHB SUBROUTINE IKSUBØ SUBROUTINE IKSUBØ SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN SUBROUTINE INFF CALL (S) : IKNEW TIKSUB TIKØ FTCX8 PURPOSE : SUBROUTINE INFFNS CALL (S) : IKSUB FTCX R4ARAY PLTFFT SUBROUTINE INFFNØ CALL (S) : IKNEW IKNIP KUBROUTINE INFFNØ	COLLNE INFICI	
SUBROUTINE IKSUB0 CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE INU PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INNSIN PURPOSE : SUBROUTINE INF PURPOSE : SUBROUTINE INF CALL (S) : IKNEW TIKSUB TIK0 SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : SUBROUTINE INFFNS PURPOSE : CALL (S) : IKSUB TIKSUB FFTCX R4ARAY PLTFFT SUBROUTINE INFFN0 PURPOSE :	OUTTINE INPICI	
SUBROUTINE IKSUB0 CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN PURPOSE : CALL (S) : IKNEW TIKSUB TIK0 FFTCX8 PLTFF0 CALL (S) : IKSUB IKSUB0 FFTCX R4ARAY PLTFFT	CUTINE INFEND	
SUBROUTINE IKSUB0 CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE IK0 PURPOSE : SUBROUTINE IMIL PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE INF PURPOSE : SUBROUTINE INF PURPOSE : SUBROUTINE INF PURPOSE : SUBROUTINE INFFNS PURPOSE :		
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUBØ PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMNSIN PURPOSE : SUBROUTINE IMNSIN PURPOSE : SUBROUTINE IMF PURPOSE : SUBROUTINE IMF CALL (S) : IKNEW TIKSUB TIKØ FFTCX8 PLTFFØ	OUTINE INFENS	
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISUB PURPOSE : SUBROUTINE IMISUB PURPOSE :		
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE IKG PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMISIN PURPOSE : SUBROUTINE IMISIN PURPOSE :	COUTINE INF	
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE IK0 PURPOSE : SUBROUTINE IMILU PURPOSE : SUBROUTINE IMNSIN PURPOSE :		
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUB0 PURPOSE : SUBROUTINE IK0 PURPOSE : SUBROUTINE IK10 PURPOSE :		
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUBO PURPOSE : CALL (S) : SPECIN	OUTINE IMILU	
CALL (S) : IKNEW JYCOMB SUBROUTINE IKSUBO PURPOSE :	OUTINE IKO	
CALL (S) : IKNEW JYCOMB		
	OUTTHE INSURA	
	COULTNE INSUB	
SUBROUTINE IKPOMB PURPOSE : SUBROUTINE IKSUB PURPOSE :		
CALL (S) : JYCOMB SUBROUTINE IKPCMB PURPOSE :		

SUBROUTINE CSPSUB	PURPOSE : CALL (S) : BSI)	
	PURPOSE	
SUBROUTINE CTRAP SUBROUTINE CUNLIN	PURPOSE	
	PURPOSE	
SUBROUTINE DEF 20		· ·
SUBROUTINE DHNX	PURPOSE :	
SUBROUTINE DNORM	PURPOSE :	v .
	CALL (S) : DHN)	A
SUBROUTINE DRAG24	PURPOSE :	
	CALL (S) : LNEA	AR I
SUBROUTINE DELOCE	PURPOSE :	
SUBROUTINE DTABLP	PURPOSE :	
SUBROUT INE DTRAP	PURPOSE :	
SUBROUTINE DUNBAR	PURPOSE :	
SUBROUTINE DUNLIN	PURPOSE :	
SUBROUTINE DZROAL	PURPOSE :	
	CALL (S) : UNBA	AR UNINT
SUBROUTINE ENDCAS	PURPOSE :	
	CALL (S) : DTIM	ME
SUBROUTINE ENDJOB	PURPOSE :	
	CALL (\$) : DTIM	AE
SUBROUTINE ENDPT	PURPOSE :	
SUBROUTINE ERRSXT	PURPOSE :	
UBROUTINE ERRSYT	PURPOSE :	
SUBROUTINE ETACAL	PURPOSE :	
SUBROUTINE FETCH	PURPOSE :	
SUBROUTINE FEXP	PURPOSE :	
	PURPOSE :	
SUBROUTINE FFTCX	CALL (S) : DFFT	
	CALL (S) : UFFI	
SUBROUTINE FFTCXN	PURPOSE	
	CALL (S) : DFFT	
SUBROUTINE FFTCXS	PURPOSE :	
	CALL (S) : DEFT	
SUBROUTINE FFUN	PURPOSE :	
SUBROUTINE FOOL	PURPOSE :	
		RM IFXPLT DCSINT IMILU
UBROUTINE F271	PURPOSE :	
	CALL (S) : JOBT	TIM NEWPGI PRNTDP PRNTIN DTABLP PRNTCD EXIT DUNLIN BESSAV BLEND
	CALL (S) : MUNU	UAR KMATRX KMATRO THICK ANS ANSO CSPSUB
SUBROUTINE F271NO	PURPOSE :	
	CALL (S) : JOBT	TIM EXIT BLEND MUNUAR DLINRG ANSONO CSPSUB
SUBROUTINE GETXMB	PURPOSE :	
	CALL (S) : MCAF	FA UNLIN LESWP
SUBROUTINE GGS011	PURPOSE :	
SUBROUTINE GGS107	PURPOSE :	
UBROUTINE GGS252	PURPOSE :	
	CALL (S) : GOS2	253 GGS254
SUBROUTINE GGS253	PURPOSE :	
SUBROUTINE GGS254	PURPOSE :	
SUBROUTINE HEADER	PURPOSE :	
repries to the inpresent	CALL (S) : NEWP	-41
SUBROUTINE HMSUB	PURPOSE :	
JORGOLINE HUSOD	CALL (S) : P1	P2 CHECKM
	PURPOSE :	
SUBROUTINE HS1	CALL (S) : EXIT	
SUBROUTINE HS2	PURPOSE :	
	CALL (S) : EXIT	
SUBROUTINE H455S	PURPOSE :	- · · · ·
	CALL (S) : EXIT	
UBROUTINE IBIN	PURPOSE :	
UBROUTINE IFXPLT	PURPOSE :	
UBROUTINE LIEXPS	PURPOSE :	
	CALL (S) : EXIT	
UBROUTINE IIEXYY	PURPOSE :	
	CALL (S) : EXIT	
UBROUTINE IKCOMB	PURPOSE :	
UBROUTINE IKNEW	PURPOSE :	/
	CALL (S) : BSJI	NT BSYINT JYNEW
UBROUTINE IKNWP	PURPOSE :	
	CALL (S) : JYCO	#B
UBROUTINE IKPCMB	PURPOSE :	
URDAUTINE IKSUR	PURPOSE	

SUBROUTINE LATDY	CALL (S) : SPZERO SETIO GETXMB KINFIL THVFIL LSTDY NEWPGI LSTUNS SLFWD SLAFT Purpose :
SUBROUTINE LSTPRM	CALL (S) : STORE Call (S) : FETCH NEWPOL PRNTXX F271NO F271 VTXCAL VTXOUT VTXNWT VTXWRD MOMCAL Purpose :
SUBROUTINE LSTSHI	CALL (S) : FETCH INPTC1 NEWPG1 PRNTXX PRNTCS STORE Purpose :
SUBROUTINE LATUNS	CALL (S) : QSPLIN LSTCGA LSTXYZ PURPOSE :
SUBROUTINE LSTVVC	CALL (S) : FETCH NEWPG] PRHTXX F271 VTXNWT STORE Purpose ;
SUBROUTINE LSTXYZ	CALL (S) : NEHPGI PRNTDP PRNTIN DUNLIN VELOOB PRNTXX Purpose :
SUBROUTINE MAIN	PURPOSE : Call (S) : ENDCAS ENDJOB HEADER INTPRH LSTPRH NOISEX NOZPRH RUNPRH VELGRD VTXPRH Call (S) : Havada Havben
SUBROUTINE HCAFA	CALL (S) : WAKDOI WAKPOM Call (S) : Wakin Jobtim Dtime tdate inptrw store lstctl Airprm Bldgem Crpprm Purpose :
SUBROUTINE MEAN	CALL [S] : FETCH NEWPG1 TOLSTS PRNTXX PRNTIN LSTSW1 STORE PURPOSE :
SUBROUTINE HLINE	PURPOSE : Call (S) : BDS019 BDS013
SUBROUTINE MNX SUBROUTINE MOMCAL	PURPOSE : PURPOSE :
SUBROUTINE HSUH	PURPOSE : CALL (S) : INFFNS CHECK
SUBROUTINE NUNUAR SUBROUTINE NEWPOI	PURPOSE : Purpose : Purpose :
SUBROUTINE NOISEX SUBROUTINE NOZAIR	PORFUSE I CALL (S) : NOZCLC PURPOSE I
SUBROUTINE NOZAHP	PURPOSE : CALL (S) : NOZHNK
SUBROUTINE NOZBLC SUBROUTINE NOZCHK	PURPOSE :
SUBROUTINE NOZCLC	CALL (\$) : NOZNJZ NOZKKC PURPOSE :
SUBROUTINE NOZEFC	CALL (S) : NEWPG1 JOBTIH NOZIHP NOZCHK NGZFFC NOZNFC NOZOUT Purpose t
SUBROUTINE NOZHFL SUBROUTINE NOZHNK	CALL (S) : NOZTRP DBSJNS NOZTCH NOZAIR NOZMPL NOZBLC NOZQPL NOZTRL NOZUNT NOZSTT Purpose : Purpose :
SUBROUTINE NOZINP	PURPOSE : CALL (S) : DBSINS DBSKES DBSJNS DBSYS PURPOSE :
SUBROUTINE NOZKKC	PURPOSE : CALL (S) : MNX NOZAMP
SUBROUTINE NOZHPL	PURPOSE : CALL (S) : NOZNHF
SUBROUTINE NOZNEC	PURPOSE : CALL (S) : HOZSTT
SUBROUTINE NOZNHE	CALL (S) : HOZTRP NOZHNK NOZTCH NOZAIR NOZMPL NOZBLC NOZQPL DBSJNS NOZTRL NOZUNT Purpose :
SUBROUTINE NOZNJ2	CALL (S) : QSPLIN NOZHFL NOZTRL PURPOSE : CALL (S) : NOZTCH
SUBROUTINE NOZOUT	CALL (S) : NOZTCH Purpose : CALL (S) : Newpgi Nozouz
SUBROUTINE NOZOU2	PURPOSE : CALL (S) : NEWPGI NOZUNT NOZSTT NOZOU3
SUBROUTINE NOZOUS	PURPOSE : CALL (S) : NEWPG1 NOZUNT
SUBROUTINE NOZPRH	PURPOSE : Call (S) : INPTCI NEWPGI PRNTXX Purpose :
SUBROUTINE NOZOPL SUBROUTINE NOZSTT SUBROUTINE NOZTCM	PURPOSE : PURPOSE : PURPOSE :
SUBROUTINE NOZTRL SUBROUTINE NOZTRP	PURPOSE : PURPOSE :
SUBROUTINE NOZUNT	CALL (S) : EXIT PURPOSE :
SUBROUTINE NRK001	PURPOSE : Call (S) : Jobtim Newpg1 dtablp prntcd bessav blend munuar Nrkqqz
SUBROUTINE NRK 002	PURPOSE : Call (S) : NRK007 NRK004 NRK005 NRK003 JOBTIN NRK006
SUBROUTINE NRK003 Subroutine Nrk004	PURPOSE : Call (S) : Zodef Dunlin Nrkog9 Purpose :
SUBROUTINE NRK 005 SUBROUTINE NRK 006	PURPOSE : PURPOSE :
SUBROUTINE NRK 007	CALL (S) : 20DEF DUNLIN NRK008 CHECK Purpose :
SUBROUTINE NRKSDA	CALL (S) : EXIT Purpose :
SUBROUTINE NRKOOP	CALL (S) : IKNEW IKNNP FFTCKN PLTFF0 Purpose : Pall fe the fetomen ster
SUBROUTINE NRKOLA	CALL (S) : IK0 FFTCIN PLTFF0 Purpose : Call (S) : Nrk01B Newp01 IHILU IFXPLT
SUBROUTINE NRKOIB Subroutine Nrkoig	CALL (S) : NRKGIB NEWPGI IMILU IFXPLT Purpose : Purpose :
SUBROUTINE NRK011	CALL (S) : EXIT NRKAII NEWPGI INILU IFXPLT Purpose :
SUBROUTINE PF1	PURPOSE : CALL (S) : EXIT
SUBROUTINE PF2	PURPOSE : CALL (S) : EXIT
SUBROUTINE PLTEFT	PURPOSE : CALL (3) : INILU
SUBROUTINE PLTFF	PURPOSE : CALL (S) : IMILU
SUBROUTINE PRNTCD SUBROUTINE PRNTCS SUBROUTINE PRNTDP	PURPOSE : PURPOSE : PURPOSE :
SUBROUTINE PRNTIN SUBROUTINE PRNTXX	PURPOSE : PURPOSE : PURPOSE :
SUBROUTINE PRTPRF	PURPOSE : Call (S) : Newpol
SUBROUTINE PSIK2 SUBROUTINE PI	PURPOSE : PURPOSE :
SUBROUTINE P2 SUBROUTINE QSPLIN	PURPOSE : PURPOSE :
SUBROUTINE RADINT	CALL (S) : SPFUNC SPCOEF SPSVAL SPNVAL PURPOSE : Patrose :
SUBROUTINE RETREV	CALL (S) : EXIT CUNLIN CTRAP Purpose : Purpose :
SUBROUTINE RJF SUBROUTINE RLCODE SUBROUTINE RUNPRM	PURPOSE : Purpose : Purpose :
SUBROUTINE RUNPRH SUBROUTINE R4ARAY	PURFUSE : Call (S) : INPTCI NEWPGI PRNTXX Purpose :
SUBROUTINE SETIO SUBROUTINE SETLMT	PURPOSE : Purpose -

11.11.1

41. (t. j.

Figure 3C: UCAP Subroutine Reference and Purpose Listing (cont)

SUBROUTINE SLAFT	PURPOSE :
SUBROUTINE SLEWD	CALL (S) : INTLIN PURPOSE :
	CALL (S) : UVINT INTLIN
SUBROUTINE SLOCUB SUBROUTINE SMWAK	PURPOSE : PURPOSE :
SUBROUTINE SHWAKU	PURPOSE I
SUBROUTINE SPCOEF	PURPOSE i Call (S) : SPL5D3
SUBROUTINE SPECIN	PURPOSE : PURPOSE :
SUBROUTINE SPEUNC SUBROUTINE SPL5D3	PURPOSE :
SUBROUTINE SPLSEV	PURPOSE I PURPOSE I
SUBROUTINE SPHVAL	CALL (S) : SPLSEV
SUBROUTINE SPSVAL	PURPOSE : CALL (S) : SPL5EV
SUBROUTINE SPZERO	PURPOSE :
SUBROUTINE STARC	PURPOSE : Call (S) : UNINT
SUBROUTINE STDDEV	PURPOSE : Purpose :
SUBROUTINE STDIKI SUBROUTINE STORE	PURPOSE : Purpose :
SUBROUTINE SUM1	PURPOSE : PURPOSE :
SUBROUTINE SUM2 SUBROUTINE SUM3	PURPOSE :
SUBROUTINE SUM4	CALL (S) : IKPCMB IPKCMB Purpose :
	CALL (S) : IKCOMB
SUBROUTINE SUNS	PURPOSE : CALL (S) : IKCOMB
SUBROUTINE SUNG	PURPOSE :
SUBROUTINE SWPARF	PURPOSE : Call (S) : ISDARF CASARF LNEARI
SUBROUTINE THICK	PURPOSE :
SUBROUTINE THICKO	CALL (S) : PSIKZ THICKO THICKS PURPOSE :
	CALL (S) : DUNLIN IIEXPS ZODEF INF
SUBROUTINE THICKS	PURPOSE : CALL (S) : DUNLIN IIEXPS 20DEF INF CHECK
SUBROUTINE THVFIL SUBROUTINE TIKSUB	PURPOSE : PURPOSE :
SUBROUTINE TIKS	PURPOSE 1
SUBROUTINE UNBAR SUBROUTINE UNINT	PURPOSE : PURPOSE :
SUBROUTINE UNLIN	PURPOSE I
SUBROUTINE UVINT SUBROUTINE UVISC	PURPOSE 1 PURPOSE 1
SUBROUTINE VELGED	PURPOSE :
SUBROUTINE VELODZ	CALL (S) : INPTCI NEWPGI VEL002 Purpose :
	CALL (S) : PRNTXX
SUBROUTINE VEL003	PURPOSE : Call (S) : Exit Newpgi Prntdp Prntxx Prntin BDS024
SUBROUTINE VITBIN	PURPOSE :
SUBROUTINE VTXAUG	CALL (S) : UVINT PURPOSE :
SUBROUTINE VTXCAL	PURPOSE : Call (s) : Vtxini vtxkst vtxdle vtxcse vtxcdz vtxaug vtxprf vtxdbg vtxout
SUBROUTINE VTXCDZ	PURPOSE =
SUBROUTINE VTXCSE	PURPOSE :
	3193025
SUBROUTINE VTXDBO SUBROUTINE VTXDLE	PURPOSE : / / PURPOSE T
SUBROUTINE VTXINI SUBROUTINE VTXKST	PURPOSE : PURPOSE :
SUBROUTINE VTXNWT	PURPOSE :
SUBROUTINE VTXOUT	PURPOSE : CALL (S) : NEWPG1
SUBROUTINE VTXPRF	PURPOSE :
SUBROUTINE VTXPRM	PURPOSE : Call (3) : Fetch Newpgi inptci prntxx store
SUBROUTINE VTXWRD	PURPOSE :
SUBROUTINE WAKE	PURPOSE : Call (S) : Exit dunlin desins deskes ikcome check ihnsue makeen
SUBROUTINE WAKEQ0	PURPOSE :
SUBROUTINE WAKESN	PURPOSE :
	CALL (S) : DUNLIN SUMI CHECK SUM2 SUM3 SUM4 SUM5 SUM6 IMNSIN Purpose :
SUBROUTINE WAKESO	CALL (S) : DUNLIN IKPCHB IPKCHB CHECK IKCOMB IMNSIN
SUBROUTINE WAKHO	PURPOSE : Call (S) : DUNLIN WAKMOI
SUBROUTINE WAKHOI	PURPOSE :
SUBROUTINE WAKPRM	CALL (S) : DUNLIN INNSIN PURPOSE :
	CALL (S) : FETCH INPTCI NEWPGI PRNTXX STORE
SUBROUTINE WARPRI	PURPOSE : Call (S) : FETCH PRNTDP PRNTIN
SUBROUTINE WAKODI	PURPOSE : CALL (S) : FETCH WAK002 STORE
SUBROUTINE WAK202	PURPOSE :
SUBROUTINE WAK003	CALL (S) : ERRSYT NEWPG1 WAKPR1 EXIT F001 WAK003 PURPOSE :
	CALL (S) ; EXIT HMSUB NRKOOI WAKOO4 NRKOIO
SUBROUTINE WAK004	PURPOSE : CALL (S) : DUNLIN
SUBROUTINE WING	PURPOSE :
SUBROUTINE WINGF	CALL (S) : WINOIN PURPOSE :
	CALL (S) : DBSYS
SUBROUTINE WINGIN	PURPOSE : Call (3) : WINOF FFTCX R4ARAY PLTFFT
SUBROUTINE ZEROAL	PURPOSE : CALL (\$) : ISOARF
SUBROUTINE ZODEF	CALL (3) : ISUARF PURPOSE :

تحجة 100 100 100 -----ļ -----

Figure 3C: UCAP Subroutine Reference and Purpose Listing (cont) 99

.

AREA CROSS REFERENCE LISTING SUBARUTINE BY : MAIN BY : AIRDRO AIRFLX AIROFF AIRPO2 AIR24 CASARF DRAG24 ISOAFL ISOARF LIFT24 BY : SMPARF ZEROAL BY : SMPARF ZEROAL BY : SMPARF ZEROAL BY : AIRDRO AIRFLX AIROFF AIRPO2 AIR24 CASARF DRAG24 ISOAFL ISOARF LIFT24 BY : AIRDRO AIRFLX AIROFF AIRPO2 AIR24 CASARF DRAG24 ISOAFL ISOARF LIFT24 BY : AIRDRO AIRFLX AIROFF AIRPO2 AIR24 CASARF DRAG24 ISOAFL ISOARF LIFT24 BY : AIRDRO AIRFLX AIROFF AIRPO2 AIR24 CASARF DRAG24 ISOAFL ISOARF LIFT24 BY : AIRDRO AIRFH LSTDY LSTUNS BY : BOSO16 BY : BOCTI BLDGT3 BLDGT1 BLDD12 BLDGIS BLDGPI FETCH RETREV STORE LSTDY BY : LSTUNS MCAFA BY : FETCH RETREV STORE BY : BLDGT1 BLDGT3 BLDG11 BLDD12 BLDGIS BLDGPI FETCH RETREV STORE LSTDY BY : BLDGT1 BLDG13 FETCH RETREV STORE MCAFA BY : FETCH RETREV STORE BY : BLDGT1 BLDG13 FETCH STORE BY : BLDGT1 BLDG13 FETCH STORE BY : BLDGT1 BLDG13 FETCH RETREV STORE MCAFA BY : FETCH RETREV LSTCH LSTDY LSTUNS LSTVVC MEWPGI MRKG01 WAK001 BY : AIROPM BLDGG1 BLDG13 BLDG12 BLDG13 BLDG14 HEADER INNTRH INTFR1 INTFRM BY : MAG01 BY : CAPPRM RETREV LSTCH LSTDY LSTUNS MEWPG1 BY : LSTSHI NO2NHF GSPLIN BY : LSTSHI NO2NHF GSPLIN BY : ISTSHI NO2NHF GSPLIN BY : ISTORE FETCH STORE INTFRI LSTDY LSTUNS MEWFG1 BY : STORE STORE INTFRI LSTDY LSTUNS MAK001 BY : STORE STORE STORE INTFRI LSTDY LSTUNS MAK001 BY : STCH LSTDY LSTUNS MEAFG1 BY : FETCH RETREV STORE LSTDY LSTUNS MAK001 BY : FETCH RETREV STORE BY : FETCH RETREV STORE LSTDY LSTUNS MAK001 WAK001 BY : FETCH RETREV STORE LSTDY LSTUNS MAK001 WAK001 BY : FETCH RETREV STORE BY : FETCH RETREV STORE LSTDY LSTUNS MAK001 WAK003 BY : FETCH STORE INTF IS USED AIRALZ IS USED AIRALZ IS USED AIRACDF IS USED AIRCDF IS USED AIRCDF IS USED AIRCDF IS USED AIRCDT IS USED BIDSCO2 IS USED BDSCO2 IS USED BDDCCO IS USED BDCCO IS USED BDCCO IS USED BDTETME IS USED DTETME IS USED DTETME IS USED DTETME IS USED LSTP01 IS USED LSTP01 IS USED LSTP01 IS USED DTST02 IS USED DTST02 IS USED LSTP01 IS USED DTST02 IS USED DTTT01 IS USED DTTT01 IS USED DTTT01 IS USED DTTT01 IS USED DTTT02 IS USED DTT02 IS USED DT02 I APPH TSO FOREGROUND MARDCOPY #### 10:34:35 93112 DSNAME *TSOG041.XREF4.DATA LABEL COMMON AREA REFERENCE LISTING SUBROUTINE USES : LABELED COMMON : LSTRGI AIROPOI AIRODA AIRCDF AIRCDM AIRALZ : AIROAT AIRCOF AIRCDM AIRALZ : AIROAT AIRCOF AIRCDM AIRALZ : AIRDAT AIRCOF AIRCDM AIRALZ : AIRDAT AIRCOF AIRCDM AIRALZ : BDSC03 XINDEX OUTPUT : BDSC01 BDSC02 : BLSAR BESDEL : BLD003 BLD0E0 : DTETME HEADRI HEADR2 : DTETME INTPOI : LSTR02 LSTR01 INTPOI WAKR01 DTETME : MORK I DTETME INTPOI I LABELED COMMON USES RRRRR AIRDRG AIRFLX AIROFF AIRPRM AIRP02 AIR24 BDS014 BDS 818 BESSAV BLDCT1 BLDCT1 BLDGI1 BLDGI2 BLDGI3 BLDGI1 BSJINT BSJINT BSJINT BSJINT BSJINT BSJINT BSJINT BSJINT FETCH USES USES USES RRR F271 F271NO GGS011 GGS107 GGS107 HEADER INPTRW INTFRS IN LETROZ LSTROI INTPOI WAKROI DTETHE WORK WORK WORK AIRDAT AIRCDF AIRCDH AIRALZ AIRDAT AIRCDF AIRCDH AIRALZ KIRDAT AIRCDF AIRCDH AIRALZ IRDAT AIRCDF AIRCDH AIRALZ IRDAT AIRCDF AIRCDH AIRALZ IRDAT AIRCDF AIRCDH AIRALZ INTPOI CRPBI PROVRS HEADRI HEADRI DTETHE WAKROI VIIICI LSTROI LSTROZ NACPOI AIRPOI LSTROI WORK WORKI VTXCOH DTETHE LSTROZ INTPOI CRPBOI PROVRS HEADRI HEADR2 DTETHE WAKROI WAKROI BLDGEO VIIICI LSTROI CRPBOI PROVRS HEADRI HEADR2 DTETHE WAKROI WAKROI BLDGEO VIIICI LSTROI CRPBOI PROVRS HEADRI HEADR2 DTETHE WAKROI WAKROI BLDGEO VIIICI LSTROI CRPBOI PROVRS HEADRI LSTROI WORK WORKI 我我说我说我说我 USES USES **良孜及父父党及及及及及**民民民民 LSTPRH LSTSW1 LSTUNS LSTUNS LSTVVC MATH MAIN MCAFA NEWPG1 NOISEX NOZCLC NOZFFC NOZNFC NOZNFC BLDG01 BLDGEO RNCP01 PROVRS DTETME HEADR1 HEADR2 CRPP01 DTETME NIZDAT USES USES USES USES USES NOZS16 NOZS16 HSOSPL

.

WHAN TSO FOREGROUND HARDCOPY HHAN 18:34:35 93112 DSNAME-TSOG641.XREF3.DATA LABELED CONNON AREA CROSS REFERENCE LISTING LABEL SUBROUTINE

Figure 3D: UCAP Labeled Common Area Reference Listing

£ £ £ F F F F F F F F F F	NRK 0 1 OSPLIN RETREV RETREV RUNPRM STORE STORE STORE STORE STORE VEL 002 VTTBIN VTXGUT VTXGUT VTXGUT VTXGUT	USES USES USES USES USES USES USES USES	: HIGSPL : GROPOL HAKPOI WAKPO2 LSTPOI LSTPO2 VTXCOM VTXC02 BLDG01 BLDG02 BLDGEO : BLDGXO : DTETME ENCPDI : WAKPO1 WAKP02 LSTPOI LSTPO2 VTXCOM VTXC02 BLDG01 BLDG02 BLDGEO BLDGKO : BLD033 BLDG3L STROI LSTSPR LSTR02 LSTR32 WAKR01 WAKSP2 : AIRDAT AIRCDF AIRCDM AIRALZ : VIIIC1 : VIIIC1 : VIIIC1 : VITCOM : VTXCOM : DTETME VTXCOM : DTETME WAKP01 : MARR01 DTETME	
R R R R R R R R	VTIPRM Wakpph Wakodi Wakodi Wakodi Yeroal	USES USES USES USES USES USES	I DIETAE WARDON I DIETAE WARDON I WARROI DIETAE I WARROI LSTRO2 LSTROI DTETME CRPPOI I WARROI LSTRO2 LSTROI DTETME CRPPOI I WARK I MORK I AIRDAT AIRCDF AIRCDM AIRALZ	
			~	
			-	

ī,

1

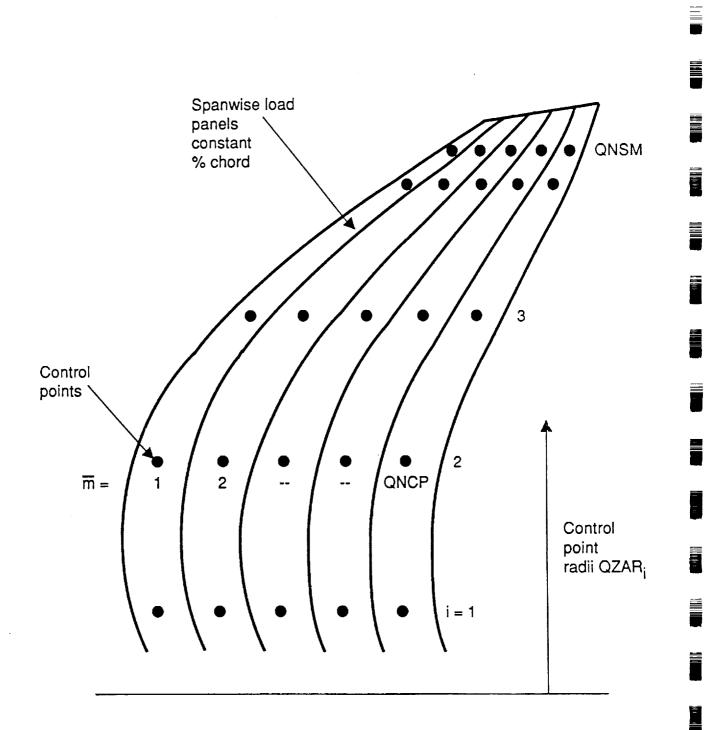
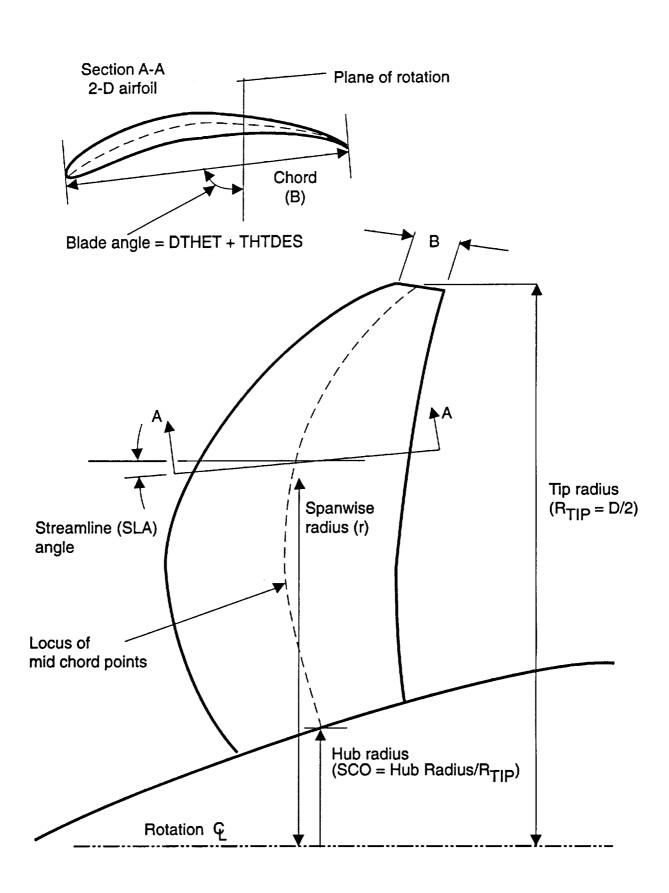
سبا

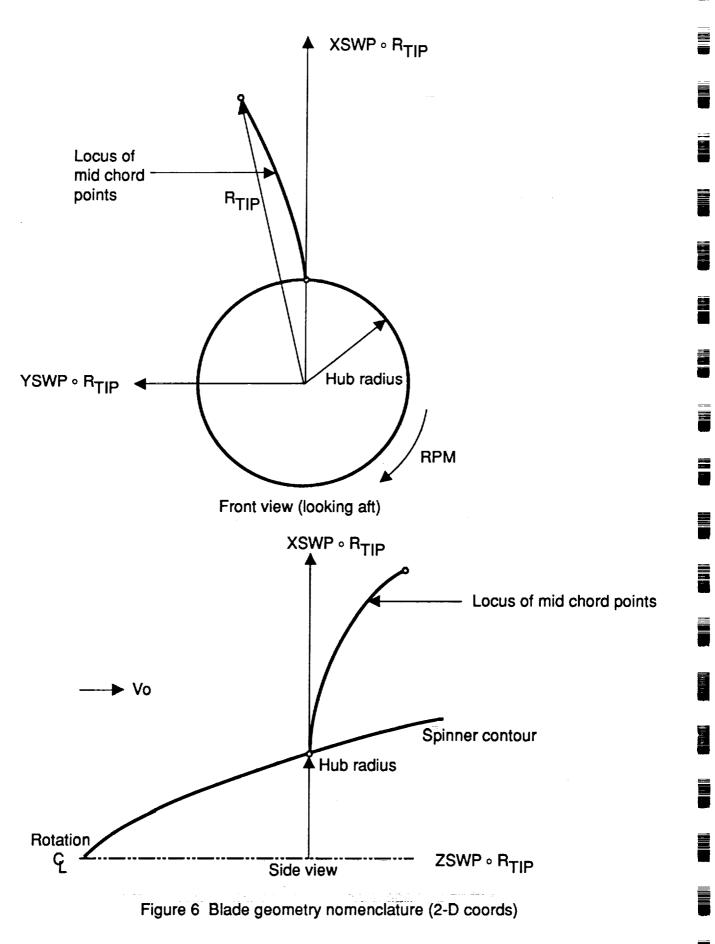
٢

.

E a • • • • •

- -


Figure 4 Spanwise load panels and control points

=

Figure 5 Blade geometry nomenclature (2-D coords)

-

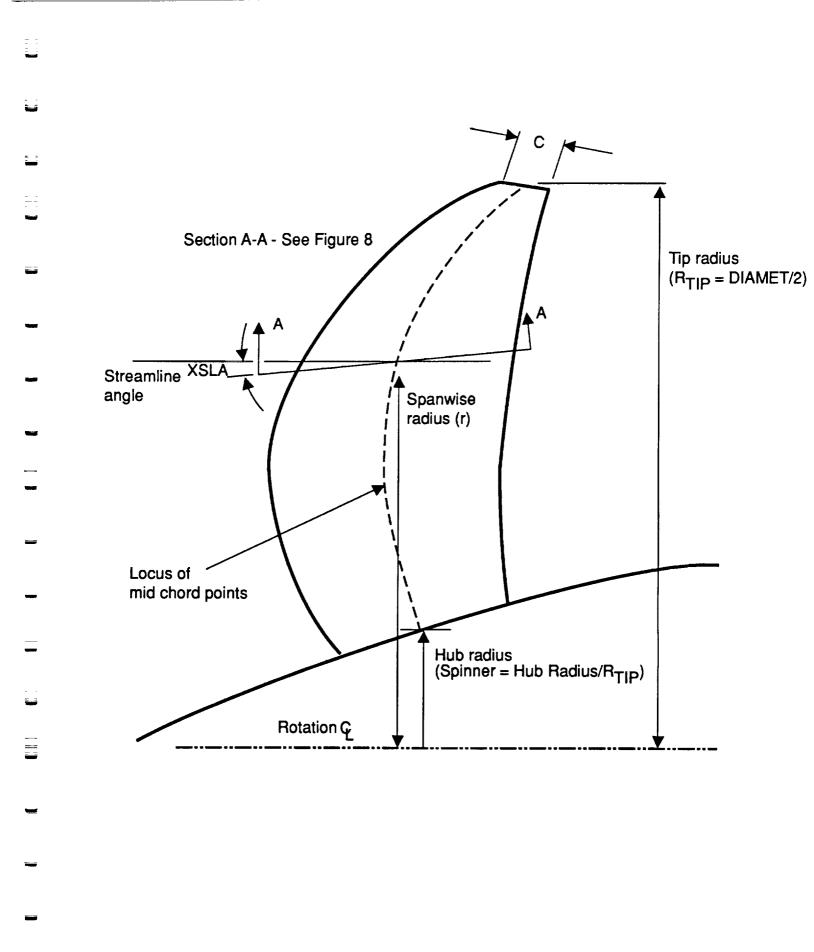


Figure 7 Blade geometry nomenclature (RXY coord)

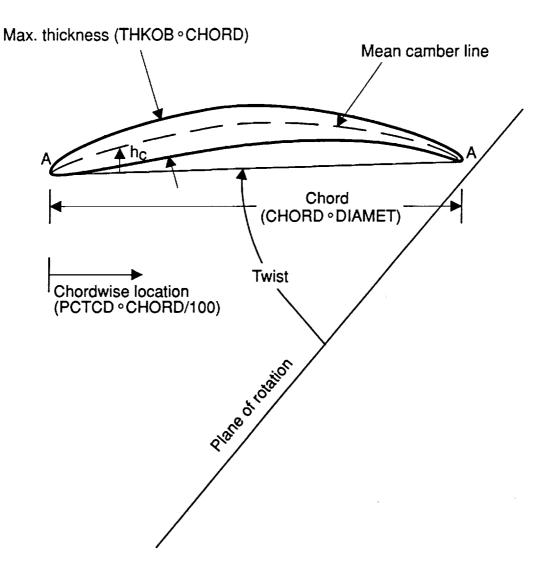
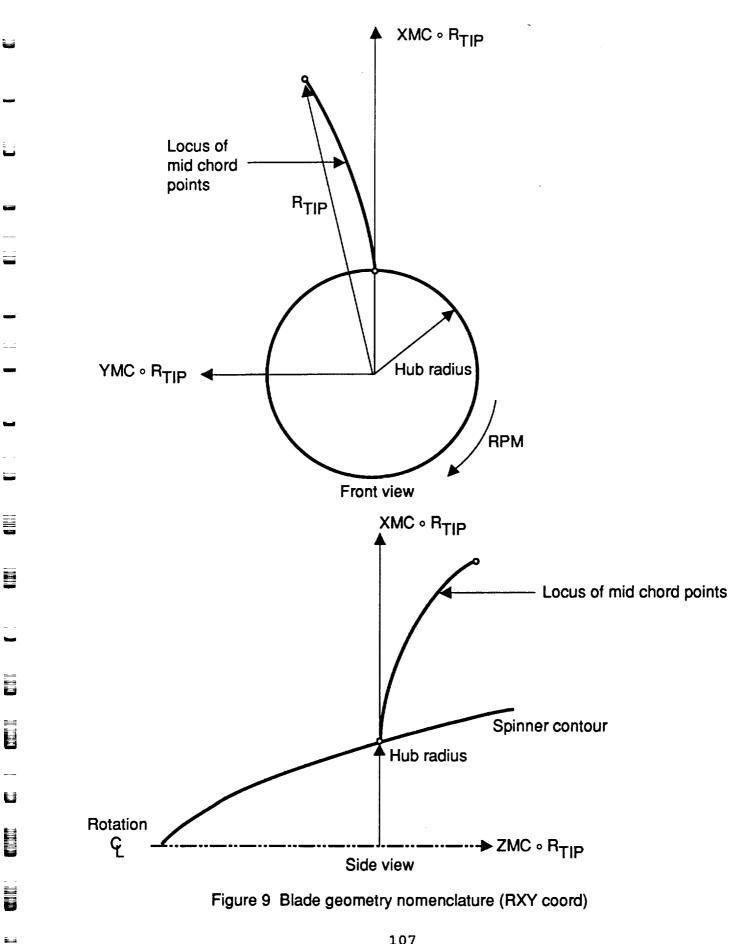
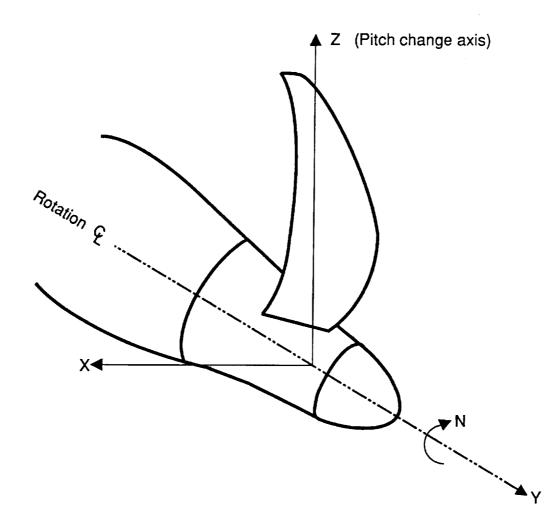
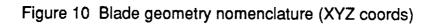




Figure 8 Blade geometry nomenclature (RXY coord)

2

-


ک ک

-Minte

e le le ster

-

MEA0104 010

È i

2

4 TIME: 17:00.20 DATE: 1/15/92 UCAP --- NASA Input Echo Figure 11 : L61 0.1650 0.1717 0.1860 0.1960 0.2040 0.1952 0.1740 0.1220 0.1050 0.652 L71 0.0500 0.0690 0.0950 0.1320 0.1710 0.2070 0.2310 0.2210 0.2200 2000 L81 23.500 21.400 17.790 13.000 7.600 2.598 -1.500 -4.500 -6.159 -7.59 L91 4. 4. 2. 2. 2. 1. 1. 1. 1. L346 5.03 4.22 3.42 2.69 1.90 1.35 0.65 0.468 0.21 0.02 0.02 .9811 .1936 .1832 .1832 .1 0.020 1.1000 CRP-X2 : BLADING DEFINITION AGREES WITH "BLADE DESIGN DATA BASE" UCAP FOR CR-2 INPUT -- R252INPT.DATA UCAP FOR CR-2 INPUT -- R252INPT.DATA HX = 0.2665, J = 1.46, TEHP = 56.2, P/PREF = .9627, VTIP = 636 FPS 6XS CONFICURATION, RUN 252.3 - 50/50 POWER SPLIT ***** FIRST ATTENPT AT POMER ANGLE = 48.07 FOUR FROMT BLADE ANGLE = 48.07 DEG. - HEASURED - CP MATCH = 48.57 REAR BLADE ANGLE = 48.54 DEG. - HEASURED - CP MATCH = 48.54 5.03 4.22 3.42 2.69 1.96 1.35 0.05 0.468 0.21 .25528 .29627 .36590 .45068 .56651 .67910 .70403 .87114 .9352 -.0030 -.0097 -.0195 -.0257 -.0180 .0115 .0635 .1210 .1640 -.0055 -.0165 -.0370 -.0417 -.0251 .01367 .06978 .1220 .15875 0.0795 0.9495 020'. .265 0.01 0.100 0.300 0.400 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.960 0.970 0.980 0.990 0.0218 IS GEOMETRIC VERSION OF BLADE Blade HAS 65/CA AND 16 SERIES AIRFOILS 1.4601 20.0 INPUTRW 0.0248 0.7866 0.6792 564 0.0490 0.0380 0.0301 .9662 0.257 : INPTWR 5.0 FRONT & REAR BLADES ASSUMED IDENTICAL 0.3665 0.4594 0.5668 ï 0.417 56.18 READ / PRINT ALL INPUT DATA 24.0 2.0467 1.0 N L 1 1. 0. 4. 6.12 L 9 7. 0. L 31 6.360 4.645 2.573 -1.447 -4.112 -0.773 4 THIS THIS 1.0 1.4522 BLADEGEO (2-DCOFWD) L41 0.2553 0.2965 L51 0.1580 0.1030 DATE :06/14/88 0.0 2.0 1.0 HEADER (CR-2 4 END AIRPARHS Looi VELGRADS L002 RUNPARHS CRPPARHS INTERPRM NOIZPARH FRONT L741 4. L016 001 1001 L006 L001 L 0 0 1 L711 L721 L951 Q 2 L031 <u>2</u> 2 END END

.....

0.02 .1632 1.500 -4.300 -6.150 -7.59 .2000 1181 936 .0635 BLADEGED(2-DCOAFT) C CRP-X2 : BLADING DEFINITION AGREES WITH "BLADE DESIGN DATA BASE" C REAR Tuye ** ----. 06970 .1220 .15875 .1060 0.2310 0.2200 9352 1640 0.21 0.100 0.300 0.400 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.625 0.850 0.675 0.900 0.925 0.950 0.960 0.970 0.980 0.990 0.995 1.000 1024. 1024. 403 .87114 IS GEOMETRIC VERSION OF BLADE Blade has 65/ca and 16 series Airfoils 0.0 0.0 .45868 .56651 .67918 . -,0257 -.0180 .0115 . -,0417 -.0251 .01367 . 0.02 L001 1.0 10.0 0.02 C *** PART1 - 0 TO CREATE, 3 TO READ 46 L 001 1.0 10.0 С жиж РАКТІ - 0 TO CREATE, 3 TO READ L020 3.0 51 06 711 .25528 .29627 .36598 721 -.0030 -.0097 -.0195 -.0055 -.0165 -.0370 .0467 THIS THIS 71 0.0500 0.0690 0. 81 23.500 21.400 17 AERDEXEC(EXECCASE) NOIZEXEC(EXECCASE) 1.0 C DATE 106/14/88 C 0.995 1.000 1.0 **VORTPARH (AFT** VORTPARH(FWD L 001 END LSTPARHS(FWD 1650 0.2553 5.03 ENDCASE ENDJOB 1961 L020 1001 301 731 741 950 L001 g g EN0 4 3 5 SN0 23 υ

N

Figure 11 : Input Eçho (continued)

1.1.1.1.1

3 TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA RUNPARMS 1 RUNPRH 1.0 9662 1.460 1.452 0.265 RUNPARMS INPUT / OUTPUT ************** DEBUG (001) TEHP.FDEG (002) RH0/RH0 0 (003) FHD ADV. RATIO (004) AFT ADV. RATIO (004) AFT ADV. RATIO (005) HACH NO. (005)

.....

Figure 12: RUNPARMS output

.

Ľ

l

CFFAMES INVU/UNTSNI, CFFAME CFFAMES INVU/UNTSNI, CFFAME CFFAMES INVU/UNTSNI, CFFAME A TRANS TEAC (TA: T) TEAC (TA: T) <th></th> <th>- - </th> <th></th> <th></th> <th></th>		- - 			
CFFAMME INUT/OUTVITSKI CFFME CFFAMES THE: 17.00.20 LLD MAS A CCP FORT TOT					
CFPANHS INUT/UNITULSN. CRPM CFPANHS THE: 17:00:20 Duff 12:00:20 Duff CCF THE: 10:00:20 Duff THE: 10:00:20 Duff 10:00:20 Duff CCF THE: 10:00:20 Duff THE: 10:00:20 Duff 10:00:20 Duff CCF THE: 10:00:20 Duff THE: 10:00:20 Duff 10:00:20 Duff CCF THE: 10:00:20 Duff THE: 10:00:20 Duff 10:00:20 Duff CCF THE: 10:00:20 Duff 10:00:20 Duff 10:00:20 Duff CCF THE	4				
CFFAMARE IMPUT/OUTPUT581, CFFAMI CFFAMARE THE: 1/10.020 DATE 1/15/0020 DATE 1	NASA .	2 2 2 2 2 2 2 2 2			
CFFRAMES IMPUT/OUTPUT58R1 CEPPANE CEPPANES TIME: 17:00:20 DATE: 1.15:72 UC UCAP PER CF-2 TMUT - TESZENFT.DATA UCAP EX.12 TME: 1.15:72 UCAP		*			
CFEMARIE INFUT/OUTVUTSR1 CEPTANIE TIME: 17:00:20 DATE: 1.01: COMP FOR CH-2 TANUT <	792 UC			-	
CFFA.MES. IMPUT/OUTPUTSN1 CFFA.MES TIME: J.100:20 DATE: CCM FOR FOR <th>1/15</th> <th></th> <th></th> <th></th> <th></th>	1/15				
CFFAAHIS INFUT/OUTRUISN1 CFFPHM CFFAAHIS TIME: 17:00:221 UCAP FOR CR-2 INFUT - FRAZENAMINANANANANANANANANANANANANANANANANANA	DATE:				
CFFARMS INFUL/OUTPUT581. CFFFM CFFAMIS TIME: J.1. CC40 FGR C1-2 INPUT581. CFFFM CFFAMIS IIIE: J.1. CC40 FGR C1-2 INPUT INPUT INPUT S6.2. J.40. TEP S6.2. J.40. TEP S6.2. J.40. TEP S6.5. J.40. TEP S6.5. J.41. TEP S6.5. J.40. TEP S6.5. J.50. TEP	00:20				
CFFAARIS INFUL/OUTPUTSBR1 CRFPRH CFFAARIS INFUL/OUTPUTSBR1 CRFPRH THE UCAP FOR CR-2 INUL - RESSURPT.JAT 36. FP3 UCAP FOR CR-2 INUL - RESSURPT.JAT 46. TEFH - 56.2. FORE UCAP FOR CR-2 INUL - RESSURPT.JAT 46. TEFH - 56.2. FORE UCAP FOR CR-2 INUL - RESSURPT.JAT 46. TEFH - 56.2. FORE UCAP FOR CR-2 INUL - RESSURPT.JAT 40.56 UCAP FOR SLAFE 46.27 75.27 UCAP FOR SLAFE 46.27 40.56 ERMIT BLADE ANGLE = 40.37 95.50 95.50 FRUIT RULE ANGLE = 40.37 95.50 95.50 FRUIT RULE ANGLE = 40.37 10.11 10.50 CPPUG SUICH 1001) 1 1 CPPOSATT HARL.0003) 0.2570 0.2570 CPPOSATT	17:				
CPRPARIS IMPUT/OUTPUTSBR1 CRPPHH CPPAHIS UCAP FOR CR-2 JUNU - SEC.2, JTMPU - SEC.2, JTMPU - 56.6, JF UCAP FOR CR-2 SEC.3 - 1.46, TEPP = 56.2, JTMPU - 56.2, JTMPU - 56.6, JF SSC CONFIGURATION, RM 222.3 - 56.2, JTMPE - 56.2, JTMPE - 56.6, JF FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES ASSURED IDENTICAL - CF MICH = 40.56 FRONT & REAR BLADES - CF MICH = 40.57 CFP-25FB MICH (002) - 1. ROTOR SACCINE (002) - 2.00 FROM-247T MICH (002) - 1. ROTOR SACCINE (002) - 2.00 FIEL LINIT (004) - 2. AFT-5FBD HARH. (007) - 1. AFT-5FBD HARH. (007) - 1. FIEL - FRD HARM. (007) - 1. FIEL - FRD HARM	TIME				
CPRPARHS INFUL/OUTPUTSBR1 CRPPRH CRPPARHS HERRER HARVEN HARVE		ихи 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5			
CPRPARHS INPUT/OUTPUTSBR1 CRPPARH CRPARHS REFERENCE TO TAGE TO T		ж 19 601) ж II 6060 ж I 77			
CPRFARHS INPUT/OUTPUTSBR1 CPRPRM CRPP MINUTATION: WILL MINUT R252XMPT/DATA WCAP FOR CR-2 MINUT R252XMPT/DATA WX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = -962 655 962 KX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = -962 655 900ER SPLIT KX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = -962 655 900ER SPLIT KX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = -962 655 900ER SPLIT KRONT BLADE ANGLE = 48.87 DEG HEASURED - CP H FRONT B REAR BLADES ASSUMED IDENTICAL 1 KRONT B REAR BLADES ASSUMED IDENTICAL 0001 1 1 KRONT S PACLING (001) 1 1 1 KRONT S PACLING (003) 0.2570 1 1 KRONT S PACLING (003) 0.2570 1 2 KRONT S PACLING (003) 0.01000 2 1 1 KRONT S PACLING (005) 0.01000 2 1 1 KT->FUD HARM. (006) 2 1 1 1	ARMS	нжкин 7, VTI Атсн = Атсн =			
CFRFARHS INPUT/OUTPUTSBRI CFFFRM MURANIZANIMANANANANANANANANANANANANANANANANANAN	CRPP	4#НИК DATA - 962 SPLIT - ср М			
CPRPARHS INPUT/OUTPUT5BR1 CPPPS HERMANNANNANNANNANNANNANNANNANNANNANNANNANN	I	FRAMER SZINPT PREF			
CPRPARHS INPUT/OUTPUTSBRI WINNENERRENERRENERRENERRENERRENERRENERRE	СКРР	нинин R25 50/50 50/50 НЕА5 НЕА5 НЕА5 NTICAL			
CPRPARHS INPUT/OUTPUT WYNWHWHWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	SBRI	******* INPUT 2.3 - 56 HER MA DEG. DEG. EDEG.	2570. 1200 1200 1.		
CPRPARHS INPUT/OUTPU WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	н	48 44 44 44 44 44 45 75 45 45 45 45 45 45 45 45 45 45 45 45 45			
CPRPARHS INPUT HAT HAT HAT HAT HAT HAT HAT HAT HAT HAT	JOUTPL	LADES	(1002) (0023) (005) (005) (005) (005) (007)		
CPRPARIS W W W W W W W W W W W W W W W W W W W	INANI	R CR-2 65, J 665, J rst at rst at Ade an Ade an Rear b	HITCH CING HARM. HARM.		
	PARHS	NT BL	1800 1800 1800 1800 1900 1900 1900 1900		
	CPR		AFT-		. 1

Figure 13: CRPPARMS output

i

.6

--

• •

=_,

P

·:_.

_

••••

E È J V **-** 5 **r** 1 Ē

۱

4 TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA UCAF FOR CR-2 INPUT -- R252INFT.DATA HX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = .9627, VIIP = 636 FPS 6X5 CONFIGURATION, RNM 252.3 - 50/50 POWER SPLIT #W#W FIRST ATTENPT AT POWER MAICH #**** FRONT BLADE ANGLE = 48.87 DEG. - MEASURED - CF MATCH = 48.67 FRONT & REAR BAUGE = 48.64 DEG. - MEASURED - CF MATCH = 48.54 FRONT & REAR BAUGE SASSUMED IDENTICAL AIRPARHS : AIRPRH 0.0000 0.0000 ÷ AIRFOIL DATA OPTIONS INPUT (001) (013) (015) (015) (017) DEBUG AIRF.NUHB. AIRF.TYP. AIR. CL/CD CD HULT. DELTA CD 11 I

183

Figure 14: AIRPARMS output

=

.

<u>ين</u>.

TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA BLADEGEO 2-DCOFWD 2-D COORDINATE INPUT---FORWARD: BLDGII

•

UCAP FOR CR-2 INPUT -- R252INTLDATA HX = 0.265, J = 1.46, TEHP = 56.2, P/PREF = .9627, VTIP = 636 FPS 6X5 CONFICURATION, RUM 222.3 - 50.50 POVER SPLIT #WWW FIRST ATTEHPT AT POWER MATCH #WWW REAR BLADE ANGLE = 48.87 PEG. - MESURED - CP MATCH = 48.57 FRONT & REAR BLADE ASSUMED IDENTICAL

K E K K	1.0000	0.0200	0,0635	0.2000	006	1186.0	0.1936	0.1832	г.	90.00	0,8000 0,9900
Ř Ř K K	1.0	0.0	0.0	0.2	-7.5900	6.0	0.1	1.0		06	8.0 9.9
	0,9495	0.0204	0.1060	0.2200	-6.1500	0.9352	0.1640	0.1587	ι.	80.00	0,7500 0,9800
	0.8795	0.0218	0.1420	0.2310	-4.3000	0.6711	0.1210	0.1220	г.	70.00	0.7000 0.9700
	0.7866	0.0248	0.1740	0.2300	-1.5000	0,7840	0,0635	g,0698	1.	60.00	0,6500 0.9600
	0.6792	0.0301	0.1952	0.2070	2.5980	1679.0	0.0115	0.0137	1.	50.00	a. 6000 0. 9500
	0.5668	0.0380	0.2040	0.171.0	7.6000	0.5665	-0.0180	-0.0251	٦.	40.00	0.5500
	\$6S\$	0,0490	0.1980	0.1320	13.0000	0,4587	-0.0257	-0.0417	2.	30,06	0.5000
-	0.3665	0,0664	0.1840	0-030	17.7900	0.3660	-0.0195	-0.0370	4.	20,00	0.4000
	0.2965	0.1030	7171.0	0 , 0690	21.4000	0.2963	-0.007	-0.0165	4	10.00	0.3000 0.8500 1.0000
1. 6. 6.2450 2.05 2.05	55.46 48.87 1.00 0.2553	0.1560	0.1650	0.0500	23.5000	0.2553	-0.0030	-0.0055	4.	11. 0.00 100.00	22. 0.1000 0.8250 0.9950
(001) (031) (032) (033) (346)	(347) (348) (349) (041)	(150)	(190)	(1/0)	(180)	(111)	(121)	(121)	(141)	(106) (006)	(156)
DEBUG BLADN DIAHETER SCO SWEEP TYPE	DESIGN ANGLE RUNNING ANGLE TYPE CUT X	T/B	B/D	CAMBER	DELTA THETA	XSWP	YSHP	temp.	AIRFOIL TYP	NO.OF ZCHORDS LIST -ZCHORDS	NO. DUT STATIONS(950) LIST - STATIONS(951)

Ľ

I

<u>.</u>

ir R

=

Figure 15: BLADEGEO output (2-DCOFWD: 2-D coordinates, forward rotor)

114

-1...4 3 1/15/92 UCAP --- NASA 0.9500 0.5000 0.0000 0.0020 0.8500 0.5000 0.0000 0.0020 TIME: 17:00:20 DATE: 0.7500 0.5000 0.0000 0.0020 0.6500 8.5000 0.0000 0.0020 0.5500 0.5000 0.0000 0.0020 LSTPARMS FWD 0.4500 0.5000 0.0000 0.0020 0.3500 0.5000 0.0000 0.0020 AERO PANEL INPUT PARHS--FORWARD: LSTPRH 0.001000 1024. 0.0040 0.000.0 0. 0.0250 0.0100 5. 0.90 1024. 0.2000 6.5000 0.0000 0.0020 0.020 0.000100 20. ė • ė • 1 (001) (002) (002) (005) (005) (005) (0010) (0000) (0000) (0000) (0000) (DR NSH NSH DELTAX DELTAX HODOP 10LINF 10LINF 111N 111S PRINI PRINI PRINI PRINI KSTART MH4 MBLEND N0 NBOPT ITHON ZAR CONTPT KARRAY INHES KDOWN ίz

Figure 16: LSTPARMS output

1

115

RUN PARAHETERS FOR NOISE CALC. # NOZPRM NOIZPARM

TIME: 17.00:20 DATE: 1/15/92 (ICAP --- NASA

3

UCAF FOR CR-2 INPUT -- R252INTT.DATA HX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = .9627, UTIF = 636 FPS 6X5 CONFIGURATION, RNM 252.3 - 50/50 POWER SPLIT ##### FIRST ATTENPT AT POWER MACH ###### FRONT BLADE ANGLE = 48.37 PGG. - MEAURED - CP MATCH = 48.67 FRONT B REAR BAUGE = 495.49 PGG. - MEAURED - CP MATCH = 48.54 FRONT B REAR BAUGE SAUGE ASSUMED IDEMTICAL 1.0 0.0 6.12 6.12 (100) (200) HARMONICS (003) HIN. OBS. DIST.(004) PRINT PARHS NEAR OR FAR

0.00 0.00
0.00 0.00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 000000
0000 0000 0000

NOIZPARM output

Figure 17:

P

l

. . .

Figure 18 VELGRADS output

SAMPLE PERFORMANCE CAL	IRMANCE CAL Blade Rom = 0.70, Be	ALCULATION FOR	SRP		UAAP		1					
	BLADE RC = 0.70, E			VERSION OF U		:						ŗ
BLADE ROH J = 3.10, M = 0.70, BE		TA 3/4 R	= 55.45 DEC									:
EDGE VORTEX GIVES LIFT Far field Noise	GIVES LI) JISE	FT, NOT RADIAL	ITAL FORCE			-	-	r :	; ; ;			
			******	XXXXXXXXXX	×××××××××××			*****		******		i
DEBUG OPT	1 1 0 0 1											
D. OF RADS.	1 2001	14.0										
NO. OF AX.		20.0	•		•				:			
ier.vel.		251.4										
REF.TIP RAD.	(900)	12.5										
REF.C.L.LUC.		7.6-	3.633	5.038	6.622	8.334	10.062	11.797	13.924	16.260	18.572	-
		21.195	24.021	27.135	31.349							
AXL.LOC-Z/R	(52+)	-14,000	-14.000	-14.000	-14.000	-14.000	-14.000	-14.000	-14.000	-14.000	-14.000	
		-14.000	-14.000	-14.000	-14.000	780 780	24.400	240,990	243.260	245.020	246.290	
VELOCITY N	[5 2+]	207.230	0/6.215	DC/ . 222	006.722	na/*407	201-007					
RAD.LOC /R	(025)	4.130	4,800	5.869	7.198	6.723	10.331	11.988	14.054	16.348	10.635	
		21.239	24.053	27.159	31.366					003 0,	-13 EAA	
AXL.LOC-Z/R	(+25)	-12.500	-12.500	-12.500	-12.500	-12.500	-12.500	-12.500	005.21-	nng'21-	-16.500	
VELICETTY V	(+25)	248.290	247.220	247.200	246.760	246.360	246.180	246.250	246.560	247.070	247.620	
		246.220	248.790	249.350	249.920		10 670	19 187	112 91	16.472	16.734	
RAD.LOC /R	(025)	5,080	5.5/4	404 4	11.402	740*4						
AXL. LOC-Z/R	(+25)	-11.000	-11.000	-11.000	-11.000	-11.000	-11.000	-11.000	-11,000	-11.000	-11.000	
		-11.000	-11.000	-11.000	-11.000			011 010		011 976	148 440	
VELOCITY N	(+25)	275.440	268.570 248 420	260.640 249.A30	254.730	Z50.900	, ULL , 74. 2		ACT - DK7	000.013		
	(026)	5.350	5.614	6.661	7.781	9.164	10.676	12.266	14.275	16.529	13.789	
		21.368	24.159	27.243	31.427		10 460	036 01-	846 UL-	6 (1 0(-	10.01	
AXL.LOC-Z/R	(• 25)	-10.250	-10.250	-10.25u	-9.500	nc7'n1-	ACT					
	(+25)	275.670	269.010	262.360	256.410	252.420	250.340	249.420	249.080	249.160	249.420	
		249.760	•	250.290	250.600			10 110	14 277	129 71	18. A 60	
RAD.LOC /R	(025)	5.550	4.007	6.836	154.7	T42.4	90/ · NT	102:37				
		695.TZ		461 4-	104.15	-9.508	-9.516	-9.469	-9.266	-0.921	-8.458	
AXL.LOC-Z/R	[67 •]		-7.619	-7.540	-7.540							
VELICETTY /V	14751	259.980	256,100	255.650	253.370	251.410	250.140	249.490	249.310	249.580	249.930	
		250.340	250.710	250.990	251.160							
RAD.LOC /R	10251	5.660	6.123	6.955	8.043	9.308	10.667	D69.21	144.41	640.81	164.01	
	1967	21.515	24.200 	242.12	-8.505	-0.648	-8.737	-8.679	-8.441	-7.697	-7.371	
MU-UN-01	10741	142 4-		-6.303	-6.294		•					
VELOCITY //	(+25)	247.760	248.890	249.950	250.280	250.180	249.940	249.790	249.830	250.170	250.530	
		250.010	251.110	251.330	251.400	i		9 T T T	14 660	876 71	10 004	
RAD.LOC /R	(920)	5.700		7.086	8.191 11 676	9.534	200.11	466°21	0+6+17	00 / 10T		-
		944.12		C.C. 13								
	14241	-7.7/0	5	-7.523	-7.665	-7.780	-7.843	-7.776	-7.548	-7.062	-6.589	

. .

. -

L.

ĸ

-

62...3

. _ .

117

t:.:

									•••••						:			:						-			•															•	
261 JCA		19.042		261 610		_ 19.089	-5.025		253.500	19.126		952.9	252,550		19.163	-3.471		250.790	19.225		665'Z-	251.230	14.262		-1.220	251,740		666.11	-0.485	254.540		19.371	0.246		255,150	19.413		0.989	255.560		19.450	1.721	
253.900		16.816	-6.235	254.250		16.874	-5.403		224.220	16.920		225 . 4	252.060		16.963	-3.752		250.240	17.030		BT/ .2-	250.440	17.090		-1.669	250.890	17 166		-0.890	254,890		17.202	-0.124		255.260	17.255		0.654	255.860	:	9D5-/T	1.420	
. 255,080		14.602		255.410		19.673	-5.774		065.442	14.727		-4-806	253.210		19.778	500.4-			14.849	101 2-		249.500	14.907		-2.170	249.670	14 990		-1.344	255.100		15,049	-0.523	956 870	0/4.663	15,114		0.293	256.010		101.61	1.115	
	11 414	12.454		257.300		97/ 77	-5.969	-E4 -00	D00.007	12.779		-5.044	253.450		D50'7T	-4.165		246.650	12.915	-t the		248.590	12.969		\$64'2-	248.220	13.069		-1.637	255.410		767.07	-0.703	964 610	110.000	13.219		2/0.0	255.920		100.64	0.927	
256,060	11 084	900.11	6.947	259.150	11 176		640.9-	958 000		11.245		261.6-	253.530	11 11	CTC.11	-4.255		011-04.7	11.397	A14.7-		247.910	11.450		-2.450	246.760	11.563		-1.764	255.520	077 LL	6 6 8 7 7 7	-0.917	257.000		11.734	190 0-	100.0-	255.770	11 650		0.826	
. 259.610	163.0	C28-1	915	260.980	111 ·		-6.043	754 410		962.6		· • • • • • • • • • • • • • • • • • • •	253.500	9 876		-4.307	147 880	. N.C	9.973	-3,459		247.570	10.027		-2.62.2-	244.870	10.152	•	-1.745	255.380	10.244		0 68.0-	257.710		10.342	-0.047		255.590	10 450		0.600	
261.270	251,550 Å.280	31.536	-6.625	262.310	251.700	31.556	-5, 984	-4.344	251.060	8.481	51.5/0	-169.5-	253.520	Z51.970	31.507	4.299	-3.050	252.100	689 B	619.1c	-1.680	247.490	0.738	51.640	104-0-	242.240	252.630 0.877	31.662	-1.459	254.780	252,770 8,986	31.676	-0.830	258.430		9.087				253,000		0.821	
261.400	7.169	27.391	-6,69 100 200	262.120	7.269	27.414	-5.890	-4.348 258.720	252.020	7.416	12 0 7 0 7 0	-3.699	253.920	7,550	27.452	4.251	-5.050 250 460	252.040	7.669	-3,42	-1.680	248,320	7.703	27.550	-0.453 -0.453	230.070	020.7222 7.850	27.549	-1.551	253.540	021.842 179.7	27.568	-0.738	259.180	253.240	8.001 27 565	0.067	1.472	255.650	059.643 0.207		0.876 2.111	
259.300	040.202 6.282	24.343	-5.017		052.262 6.427	24.372	-5.763	257.000		6.602 20 7 80		-3.705	254.960		•	-4.105	040,6- 254,040	251.860		-3.230	-1.736	252.300	6.922	016.42	-0.460	234.410	124.245 7.063	24.538	0.160	251.240	7.196	24.561	-0.585	259.830	253.830	7.317	0.201	1.470	255.840	1450		0.967 2.110	
254.510	092-363	21.506	-5.319	256.270	5.930	21.624						-3.849			•	-4.150	257.010	251.400	6.500	-3.170	-1.984	251.870	6.490	101.12	-0.792	231.000	6.620	21.827	-0.093	249.000	092.4	21.857	-0.490	260.060	254.560	6.890 21.000	0.280	1.292	255.960 354 010	7.030	21.915	1.050	
(+25)	(925)			(+25)	(025)		(52+)	(+25)		1 670 1	(+25)		(52+)	(025)		(42+)	[+25]		(022)	(425)		(674)	(925)	1476)		(52+)	(025)			(• 25)	(025)		(52+)	(+25)		1 025)	(•22)		(+25)	(025)		(+25)	
VELOCITY N	RAD.LOC /R	4VI 100-778	N1.10-01	VELOCITY /V	RAD.LOC /R		AXL.LUC-2/K	VELOCITY N			AXL.LOC-Z/R		AC LITTOTA	RAD.LOC /R		MAL. LUC-2/H	VELOCITY /V		NAU-LOC /R	- AXL.LOC-Z/R	VELOCITY OF		RAD.LOC /R	AX1 .1 0C-778		VELOCITY //	RAD.LOC /R	AVI 100-270		VELOCITY V	. RAD.LOC /R		AXL. LOC-Z/R	VELOCITY N		KAU.LUC /N	AXL.LOC-2/R		VELOCITY A	RAD.LOC /R	T	AXL.LOC-Z/R	

Figure 18 VELGRADS output (continued)

24 ----- ∇

I į 1 i. į 1 4.250 19.533 254.930 19.483 254.420 2.454 3.377 19.570 255.040 253.300 255.080 17.482 3.266 4.250 17.349 2.195 254.730 255.870 252.790 17.426 ; 253.950 254.850 1. 930 15.238 15.444 4.250 15.350 251.690 3.154 ... 255.050 257.230 13.372 1.781. 3.093 255,380. 13.677 4.250 259.210 249.850 . 13.551 12.327 247,460 3,072 252.580 11.911 1.693 .12.155 4. 253 261.610 255,650 250.520 ... 11.099 10.537 1.647 243.990 3.053 255,740 4.250 .10.064 264.870 410 253 244.320 253.490 8.304 8.304 27.617 1.681 1.681 2.750 2.53.650 2.53.650 2.61 3.019 3.500 3.500 3.500 3.500 2.55.660 2.55.660 273. 253. 6 N 7.146 21.958 2.692 2.692 2.692 2.692 2.699 3.000 3.000 3.469 910 237.5 254.E 7.1 21.9 224. 253. 5.53° (+ 25) (+25) (025) (+25) (+25) (+25) (+25) (025) (+25) 0251 VELOCITY N RAD.LOC /R VELOCITY N RAD.LOC /R AXL.LOC-Z/R VELOCITY /V VELOCITY / ĸ AXL.LOC-Z/R AXL. LOC-Z/R RAD.LOC

i ; ł ÷ ÷ ł

119

1 ţ i ş

i

÷

Ì

,

;

VELGRADS output

Figure 18

ł ÷

VORTPARH FWD VORTEX LOAD PARAMETERS--FORWARD: VTXPRH

TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA

5

UCAP FOR CR-2 INPUT -- R252INPT.DATA HX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = .9627, VTIP = 636 FPS 6X5 CONFIGURATION, RUN 252.3 - 50/50 POWER SPLIT ***** FIRST ATTEMPT AT POWER MATCH ***** FRONT BLADE ANGLE = 48.57 DEG. - MEASURED - CP MATCH = 48.54 FRONT & REAR BLADE ANGLE = 48.54 DEG. - MEASURED - CP MATCH = 48.54 FRONT & REAR BLADE ANGLE 38.54 DEG. - MEASURED - CP MATCH = 48.54 FRONT & REAR BLADE ANGLE 38.54 DEG. - MEASURED - CP MATCH = 48.54

. . . .

1.0

ы. Ч DEBUG (001) LE VORTEX LIFT (002) SIDE VORT LIFT (003)

0.2000 .2000 0.2000 0.2000 0.2000 0.2000 0.0 0.9700 0.2000 AUG LIFT (004) Zeff Auglft (005) 0-Lift:1-Radial(006) X FOR LEV ACTION

Figure 19: VORTPARM output

l

Ţ

-

Ĉ

-

1.

je i

1_1 12. <u>.</u> . . -----

Properties law: Mail Mail The initialise suit i hydroly law - Mail Subject Extransm J = 3.10, H = 0.70, Etxl JA = 8.54 BB. J = 3.10, H = 0.70, Etxl JA = 8.54 BB. J = 3.10, H = 0.70, Etxl JA = 8.54 BB. J = 5.10, H = 0.70, Etxl JA = 8.54 BB. J = 3.10, H = 0.70, Etxl JA = 8.54 BB. J = 1.10, H = 0.70, Etxl JA = 8.54 BB. J = 3.10, H = 0.70, Etxl JA = 8.54 BB. J = 1.10, H = 0.70, Distribution J = 3.10, H = 0.70, Distribution J = 1.10, H = 0.70, Distribution J = 3.10, H = 0.70, Distribution J = 1.10, H = 0.70, Distribution J = 3.10, H = 0.70, Distribution J = 1.10, Distribution J = 0.70, Distribution Distrest J = 0.70, Distrest <	R HAKE ANAL	TUMNI SISY.	HAKPRH	MAKEPARM	•	TIME TIME	MAY STATE I HAV	AAA UAAP			•
	FREDRHANCE	CALCULATION	FOR SRP VE	RSION OF UAAP					-		•
	, M = 0.70,	ROH BETA 3/4 R	= 55.45 DE(ġ							
	TEX GIVES L D Noise	.IFT, NOT RA	DIAL FORCE								
	1001	инининики 1.0000		z z z z z z z z z z z z z z z z z z z		******	x F X X X X X X X X X X X X X X X X X X			•	i
	1 200 1	Ó									
	1900)	-		:			· · · · · · · · · · · · · · · · · · ·	:		:	
	1 005 1										
	1 000										•
	000			-	•	1					
	10161	ò	•			ŧ					
	1201		•		:						
98 98 00300 0.7000 0.7000 0.7000	2201										
94. 0.900 0.7000 0.3910 0.3910	1024 1050		•			-					
9. 30. 0.2000 0.7000 0.3910 0.100 0.1	1052	r									
	(055 (054 (351				•	2 - -		•		·	
	10/1		:	:		:					
			:			ĩ	:		:		
	•		:	•			;	,			
								-			

:

Figure 20: WAKEPARM output

:

•

1 I

			•••		• • - • • •			·	
	۲								
		ž	×						
		X X X	XXX						
		×	XXX						
		×							
	æ	X X X	Ĩ						
	-	×	XXX						
	SA	**	NNN,						
	- NA	x x x x	Ť.						
	1		W M M						
	1/15/92 UCAP NASA	x x x	XXX						
	12 (x x x	***						
	5/3	x x	WWW						
	Ľ	x x x	XXX						
		x x x	N NN						
	DATE	x x	×××						
	50	x x x	× ×						
	:00	x	XXX						
	TIME: 17:00:20 DATE:	x x	***************************************						
	j.	X	XXX						
•	HE I	X X X	X X X						
		μ N S	N N N						
		ж Ш ж ур	XXX						
		жжжжн = 63 48.87 48.54	XX						
			1 M M						
	£	жимкининин 7. UTIP = 63 АТСН = 40.87 АТСН = 40.54	***						
•	INTERPRH	жжж 27, 27 НАТ НАТ	XXX						
	INI	ATA SPLIG	Ń N N						
			N N N				EPA		
	£		XXX				X Y Y		
	INTPRH	TEAS CALEAS	Ĩ.				N OL		
		ИНИНИИ И И И И И И И И И И И И И И И И	Ĩ.				- se		
÷	BR:	**************************************	HWH.		100 100 6 0 0 100 6 0 0 100		£		
	S	IN I	N X X	0.0500 0.7000 0.5000 1.	0.0100 1. 0.00010 0.00100		20 20		
	INTERPRH INPUT/OUTPUTSBR:	ИКИМИМИИКИМИКИМИКИМИМИМИМИКИКИКИКИКИКИК	КИХИМИНИЧИНИКИ КИМИКИМИНИМИНИМИНИМИНИ Dfblig Syttch (001) 1.				VARIABLE DESCRIPTIONS ARE SAME AS FOR WAKEPARM.		
	TPUJ	**************************************				5 7	SNO		
	.10/	LADE CLEM	(100)	(002) (003) (005) (005)	(110) (110) (110)	(015) (016)	[14]		
	Ind	ИНИНИНИНИНИНИНИНИ ИСАР FOR CR-2 ИХ = 0.265, J 6X5 CONFICURAT; 6X5 KITERST AT 1844 HERST AT FRONT BLADE AN FRONT & REAR BI					SCR		
	H IK	ADE COR	NAMANANANA Derlig Suffch				Ŭ,		
	RPR			_	_		BLE		
	NTE	FRONT	HKKI	K Z0 ZNORH ADPT IVHK	FPIN NPSKN TOL TOL1 HM1	IPLOT IPRT	LR I A		
	I	X D Z G X E C C		P N N N N N N N N N N N N N N N N N N N	TOL TOL	11	3		

·

. . .

Figure 21: SNTERPRM output

3

____ 1

.

Ī

יו

..

. جن -

I

•

· ...

SUBROUTINE: GETXHB. DEBUG PRINTOUT STATUS: T ARGUHENT LIST INPUT ITEHS FORMARD ROTOR DIANETER: Aft Rotor Diameter: Formard Rotor Advance Ratio: Max. Number Chorduise Pamels: Hax. Number Spannise Pamels: Rotor to Rotor Spacing:

÷

2.0467 2.0467 1.4522 1.4601 1.4601 0.2570 (Normalized by Forward Rotor Diameter) 0.2570 (Normalized by Forward Rotor Diameter) .. \

Figure 22: AEROEXEC output (GETXMB section 1)

Ľ

=

I

:-.

t		5	5	00224	27	₹.	-	8	0.00253	.0058	56	9110.	. 013	.0154	.017	0.01986	0.02216	F	0.02403	.0249	÷.	. 026	0.02689
FORWARD	5	Ż		حت	02244	ŰŇ.	86	100.	.0150	2	.0514	0.06161	.0718	•	.0920	0.10184	111.	0.11510	0.11879	Š	3	•	ō.
5:		70.004	:	2.5	5.6	2	5.0	ິລ	٦,	5	7	46.344	45.609	۳,	44.236	5	42.912	۳.	42.352	42.064	2	۳,	-
RADIL: 22.	EQ.	.17	174	.189	Ó	0.2026	- H	197	0.1900	0.1805	0.1678	0.1601	0.1516	0.1422	0.1319	0.1202	2	6	0.0924	0.0845	0.0759	0.0713	0,0665
UMBER OF INPUT	UI RADIU	0.1	•	0	0.5	•	0.6	0.6	0.7	0.7	0.0	1 0.8	8.0	8.0.8	¢.0.4	5.0.9	9.0	7 0.9	8 0.9	.0	0.0	1 0.9	7.0

: 1

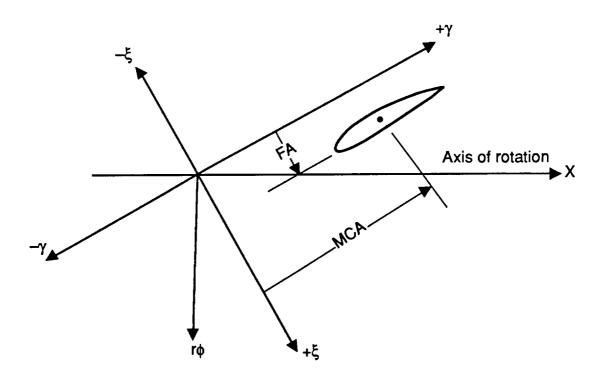
١.

NUMBER OF SPAN-WISE MODES (CONTROL POINTS): Number of Chordwise control points; 10

•0

124

Figure 23: AEROEXEC output (GETXMB section 2)


ł

j

j

ľ

I

Mid chord alignment (MCA) and face alignment (FA) (positive as shown)

 $\boldsymbol{\gamma}$ is the path the pitch change axis has traveled along the advance helix

 ζ is normal to γ and r

= ;

<u>8:3</u>} E-----

<u>।</u> जन

Figure 24 Blade section definition and definition of advance coordinate, γ .

NUMBER RADIUS 01 0.2000 02 0.3500	SU S	CHORD 0 1747	II a	THIST	HCA	FA	XCHORD			
	6 6	0,1747								
			66.717	70.004	0.00367	-0.00060	0.50000 HBAR	ΠH	XHRAR	DEL TA-PHT
							10	100	-0.6555	-95.5010
							02	200	-0.6226	-88.0090
							80	200	-0.5898	-80.5170
							5	500	-0.5570	-73.0250
							50	500	2625.0-	-65.5330 Fe ecte
							0 6		-0.4915	0190.0410
							60	800	-0.4257	6950 E2-
							6	600	-0.3928	6795.52-
							10	010	-0.3600	-28.0729
	005	0.1822	53.010	67.504	-0.01689	-9.00076	0.50000			
		1					HBAR	ñ	XHBAR	DELTA-PHI
							10	110	-0.6934	-99.3447
							20	012	-0.6597	-92.8896
							50	\$10	1929.0-	-86.4346
							5 5	510	-0.5587	-73.5246
							. 90	016	-0.5251	-67.0696
							07	017	-0.4914	-60.6146
							80	810	-0.4577	-54.1596
							60	019	-0.4241	-47.7046
							10	020	-0.3904	-41.2496
4 6	0.4500	1961 A	45 975	49 494	-0.67505	-0.00250	0.50000			
							HBAR	£	XHBAR	DELTA-PHI
		-					10	021	-0.7064	-101.5087
							02	022	-0.6718	-94.9230
							03	023	-0.6371	-00.3372
							4	024	-0.6025	-81.7514
							05	025	-0.5679	-75.1656
							90	026	-0.5333	-68.5798
							20	027	-0.4987	-61.9940
							8	820	1994.0-	2809.66-
							10	020	-0.3948	-48.8224 -42.2366
		7505 0	001 V9	C7 677	-0.01754	A2CN0 A-	00115 0			
C'N +0	00CC.0	0707.0					HLAD	Ĩ	XHRAR	DEL TA-PHT
							10	120	-0.649	-98.7254
							: 6	120	-0.6401	6022.26-
							1.0	033	-0.6259	-85.7164
							2.4	03%	-0.5917	-79.2119
							05	035	-0.5576	-72.7073
							90	136	-0.5234	-66.2028
							20	037	-0.4892	-59.6983
-							80	038	-0.4551	-53.1938
							60	059	-0.4209	-46.6893
							10	140	-0.3867	-40.1847

-

Figure 25: AEROEXEC output (getxmb section 3, continued)

P

Ξ

• -

•••

-

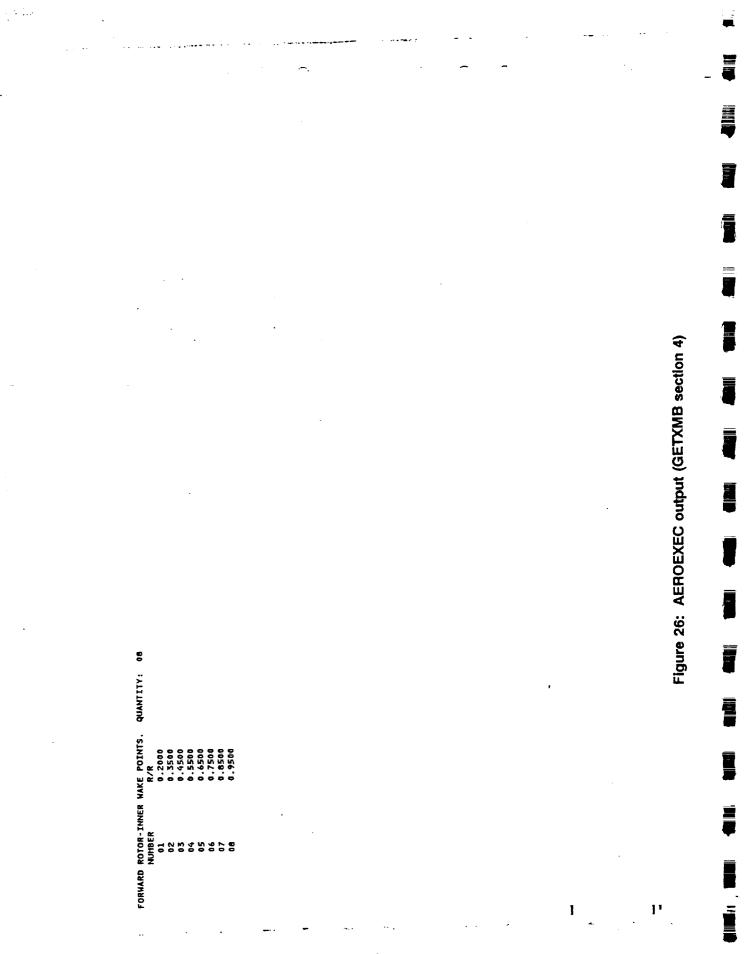
۰-

DELTA-PIII - 90.3371 - 84.3850 - 72.4009 - 72.4009 - 66.4009 - 60.4168 - 69.4327 - 48.4327	-44.4486 -36.4486 -77.8869 -77.8869 -67.5288 -67.5288 -62.3447 -57.1607 -51.16085 -41.6085	-51.2403 DELTA-PHI -53.1348 -63.1348 -54.90203 -54.90203 -54.90203 -54.6768 -46.6768 -38.4478 -38.2188 -34.2188 -36.2333 -30.2188	DELTA-PHI -48.0297 -48.0297 -42.5719 -42.5719 -37.1142 -31.6564 -28.9866 -28.9275 -74.6496
XHBAR - 0.65242 - 0.65242 - 0.5599 - 0.5599 - 0.5585 - 0.4545 - 0.4345	-0.5313 XHBAR XHBAR -0.5925 -0.5531 -0.5531 -0.4556 -0.4294	-0.5479 XHBAR -0.5190 -0.5190 -0.4540 -0.4540 -0.4540 -0.5240 -0.3240	XHBAR -0.4413 -0.4413 -0.4269 -0.5980 -0.5980 -0.5835 -0.3594 -0.3592 -0.3557 -0.3557
HU 041 045 045 045 047 047	959 951 955 955 955 955 955 955 955 955	000 100 000 000 000 000 000 000 000 000	MU 071 073 075 076 076 078 078 078
0.50000 HBAR 1984 01 13 13 13 13 13 13 13 13 13 13 13 13 13	0.59000 HBAR 01 01 01 03 03 05 05 05	0.50000 HBAR 01 01 02 03 05 05 05 05 05 05 05 05	0.50000 HBAR 001 01 03 04 05 05 05 05 05
0,0003	0,00584	0.0]342	0.02216
0.00102	0.03218	0.07163	0.1157
52.872	48.846	45.609	42.912
35.566	31.786	28.669	26.069
1791.0	0.1005	0.1516	0,1061
0.6500	0.7500	0.8500	0.9500
5	90	07	8

....

-

٤. 1


.

e 1

. .

.

⊾ זֿקל	_
·• - ·	
6	
	-
era era	
τ. 	L.E. SWEEP -17.9596 23.1390 23.1390 36.2680 46.5685 49.6258 50.9523 51.4105 53.4105 58.0497 58.0495 58.0495 58.0495 58.0495
	CHORD/DIA 0.1747 0.1747 0.2006 0.2015 0.1678 0.1516 0.1519 0.1519 0.1051 0.0759 0.0759
	Ċ
	. HCA/D -0.0101 -0.0224 -0.0224 0.0151 0.01114 0.1114 0.1114 0.1261 0.1261 0.1297
	BLADE STA. 0.500 0.500 0.700 0.950 0.950 0.950 0.950 0.990 1.000
	70086470086470 700864700 70086470
- 	L.E. SWEEP -15.4217 -15.4217 -14.1844 31.4505 43.5563 43.5563 43.5563 53.1766 53.1766 55.0169 55.0169 5631 58.9631
	0RD/DIA 0.1747 0.1897 0.1897 0.1805 0.1401 0.1401 0.1401 0.1401 0.1626 0.0996 0.0713
C ·	SUBROUTINE LESMP DEBUG PRINTOUT N BLADE STA. PHCA/D CH 1 0.100 0.0175 5 0.550 -0.0176 7 0.656 0.0176 11 0.825 0.0176 13 0.875 0.01616 13 0.875 0.01161 13 0.875 0.1018 17 0.960 0.1151 19 0.995 0.1229
	UTTNE LESHP BLADE STA. 0.100 0.550 0.550 0.555 0.925 0.925 0.925 0.925 0.925 0.925 0.995
	219 213 213 213 213 213 213 213 213 213 213
====	v
-	

Figure 27: AEROEXEC output (GETXMB section 5, LESWP output)

-

P

.

1

1.2

•

.....

Figure 28: AEROEXEC output (GETXMB section 7)

d pilette

	CALCULATION POINTSREAR ROTOR ONTO FWD	FLD CALC. POINT	0.2000	0.3500	0.4500	0.5500	0.6500	0.7500	0.8500	0.9500	
	CALCULATION POIN	STREAMTUBE NO.	•	-	N	'n	4	4	4	4	
SUBROUTINE: CPHAP.	INDUCTION	RADIUS	0.2000	0.3500	0.4500	0.5500	0.6500	0.7500	0.8500	0.9500	
SUBRO		z	-	8	м	4	LA	9	2	•0	

ROTOR

131

·---

Figure 29A: AEROEXEC output (CPMAP, front rotor)

I

1.

=__

ROTOR								
.0000 Rotor Onto Rear	WAKE CALC. POINT	0.3500	0.4500	0.5500	0.6500	0.7500	0.8500	0,9500
SUBROUTINE: CPHAP. DIAHETER RAIIO: 1.0000 Wake Calculation PointsFront Rotor onto rear rotor	STREAMTUBE NO.	8 m	N	ю	4	4	4	4
UTINE: CPHAP. WAKE CALCI	RADIUS	0.3500	0.4500	0.5500	0.6500	0.7500	0.8500	0.9500
SUBRC	z	- 0	м	4	ŝ	9	~	80

:

Figure 29B: AEROEXEC output (CPMAP, rear rotor)

Ī

1 I: 1

1"

I

ŝ 0.7000 0.1900 50.4534 42.5927 0.0151 0.1114 0.0025 0.0218 0.0289 1/100:20 DATE: 1/15/92 UCAP --- NASA 0.0000 0.0195 0.6500 0.9250 0.1971 0.1202 0.1019 0.0319 0.0208 52.5466 43.2569 0.0010 0.6000 0.9000 1.0000 0.1319 0.1319 0.0667 54.7706 -0.0098 0.0921 0.1297 -0.0016 0.0173 0.0264 0.0353 0.0213 43.9170 41.1836 TIME: 0.5000 0.6500 0.9900 0.2006 0.1515 0.0794 41.4581 -0.0779 0.1261 .0255 0.0440 0.0226 0.0132 AERDEXEC EXECCASE 0.4000 0.9800 0.9900 0.1897 0.1897 0.1801 0.0846 441.7455 441.7455 441.7455 41.7455 41.7455 0.0225 0.0237 0.0215 0.0234 0.0234 0.0234 46.8022 46.8023 42.0334 0.1108 0.1108 0.1108 0.0345 0.0245 0.0245 0.0245 0.0745 0.9700 0.1746 0.1677 0.0925 69.6773 0.3000 03 OCT90 PROPELLER LIFTING SURFACE PROGRAM :F271 0.2149 0.0264 1.4522 0.2650 0.5733 638.2822 638.2822 5956.073 0.6316 0.9000 2.0467 0.1000 0.7500 0.9600 0.1746 0.1746 0.1805 0.1805 0.1805 0.1805 0.0996 69.6773 48.5225 48.5225 0.0175 0.0322 0.1151 56.2 0.9662 0.0 LST PROGRAM AND VERSION F271H2.1 0.0250 0.0100 -0.0020 0.0057 0.0227 5 N SPEED OF SOUND ADVANCE RATIO FLIGHT HACH NO. FLIGHT SPD KTS TIP ROT. HACH TIP SPD. FPS ND. BLADES ND. INPT. STA. Freq.of UNST. ND. Nodal DIA. K-domn RPH TIP HEL. MACH START BLENDING DIAHETER K-START INPUT STATIONS RHO/RHO STD TOTAL THIST TEMP, DEGF. FA /0 HCA/D 8/0 T/B

Figure 30: AEROEXEC output (IIf/ing surface solver)

0.2125 0.2199

0.1986 0.2257

0.0200 0.1824 0.2291

0.0201 0.1474 0.2326 0.2043

> 0.1067 0.2326 0.2510 29.3917 56.4733

> > .2312

0.0324 0.2243

0.2166

0.0203

33.2224 30.5831

28.8349 31.9988

23.8473 33.4078 28.8795

13.2020 35.7786 29.1096

0.2128 -10.5796 36.7154

29.7313

-14.4320 35.9356 30.1285

SWEEP

11

22

1

0.2000

LST CAMBER TABLE

:F271

TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA AEROEXEC EXECCASE

••••

٢_ i

۱

UCAP FOR CR-2 INPUT -- R252INPT.DATA HX = 0.265, J = 1.46, TEMP = 56.2, P/PEEF = .9627, VTIP = 636 FPS HX = 0.265 J = 1.46, TEMP = 55.2, POPER SPLIT HXKWW FIRST ATTENPT AT POMER ATCH ###### FRONT BLADE ANGLE = 40.67 DEG. - MEASURED - CP MATCH = 40.67 REAR BLADE ANGLE = 40.54 DEG. - MEASURED - CP MATCH = 40.54

FRONT & REAR BLADES ASSUMED IDENTICAL

CAMBER PLUS TWIST SURFACE ALONG STREAMLINES AS A FUNCTION OF RADIUS (<LOWER CASE R>/RTIP.

UNBAR TABLE FORMAT.

1. DEGREE TABLE NO.

÷

008 - 01 708 - 01 708 - 01 708 - 01 578 - 01 578 - 01 578 - 01 578 - 01 956 - 01 956 - 01 956 - 01 956 - 01 166 - 01	45E+01 74E+01 67E+01 79E+01 22E+01
8.0000 7.0000 6.15000 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.3020 5.40000000000	L 4.255 L 4.275 L 4.279 L 4.267
7.00000E-01 7.07085E+01 7.07085E+01 6.58571E+01 6.58571E+01 6.06830E+01 5.076826+01 5.35962E+01 5.35962E+01 5.35962E+01 4.80368E+01 4.80368E+01 4.5130E+01 4.55250E+01 4.55250E+01 4.55250E+01 4.55250E+01 4.55250E+01 4.55250E+01 4.55250E+01 4.552550E+01 4.552550E+01 4.552550E+01 4.555550E+01 4.555555550E+01 4.555555555555555555555555555555555555	4.32147E+0 4.29032E+0 4.26004E+0 4.24606E+0 4.23309E+0
(.00000E-01) (.00000E-01) (.04111E+01) (.04111E+01) (.54312E+01) (.54312E+01) (.24328E+01) (.253096E+0	4.27588E+01 4.24673E+01 4.21759E+01 4.20352E+01 4.19010E+01
5.000065-01 7.015906401 7.015906401 7.015906401 5.731586401 5.731586401 5.7491586401 5.7491586401 5.491586401 4.655356401 4.655356401 4.655376601 4.655376601 4.551726401 4.267726401 4.2877286401	4.23502E+01 4.20766E+01 4.17955E+01 4.15170E+01 4.15170E+01
4.00006E-01 5.99399E+01 5.99399E+01 5.95075E+01 5.95075E+01 5.45747E+01 5.45747E+01 5.22966E+01 4.501408E+01 4.501408E+01 4.50322E+01 4.50322E+01 4.50322E+01 4.29264E+01 4.29264E+01 4.29264E+01	4.19278E+01 4.16662E+01 4.13943E+01 4.12562E+01 4.11193E+01
5.00000E-01 6.97672E+01 6.97672E+01 5.97672E+01 5.91470E+01 5.43654E+01 5.42261E+01 4.7919476+01 4.59859E+01 4.59859E+01 4.55074E+01 4.55074E+01 4.31797E+01 4.31797E+01 4.19449E+01 4.19449E+01	4.14616E+01 4.12097E+01 4.09460E+01 4.068147E+01 4.068147E+01
<pre>-00000E+00 1.00000E-01 2.00000E-01 4.00000E-01 5.00000E-01 7.00000E-01 7.00000E-01 7.09706+01 -90510E+01 6.94046E+01 6.96023E+01 6.97672E+01 6.99399E+01 7.01590E+01 7.04111E+01 7.07095E+01 7.0970E+01 -90510E+01 6.94046E+01 6.96023E+01 6.97672E+01 6.99399E+01 7.01590E+01 7.04111E+01 7.07095E+01 7.0970E+01 -90510E+01 6.37112E+01 6.96023E+01 6.97672E+01 6.99399E+01 7.01590E+01 7.04111E+01 7.07095E+01 7.0970E+01 -20621E+01 6.37112E+01 6.96073E+01 6.95625E+01 5.73165E+01 6.54312E+01 6.5657E+01 6.1670E+01 -270601E+01 5.50147E+01 5.97636E+01 5.95075E+01 5.73165E+01 5.72034E+01 5.07035E+01 -4006E+01 5.56426E+01 5.03977E+01 5.45261E+01 5.95075E+01 5.73165E+01 5.72034E+01 5.32025E+01 -27058EE+01 5.05346E+01 5.14387E+01 5.42261E+01 5.49158E+01 5.72136E+01 5.72034E+01 5.32025E+01 -4046E+01 5.06346E+01 5.14387E+01 5.42261E+01 5.49158E+01 5.72106E+01 5.52062E+01 5.22057E+01 -412426E+01 4.33751E+01 4.39014E+01 5.22366E+01 4.65032E+01 4.69898E+01 4.074859E+01 4.975686E+01 5.22305E+01 -21437E+01 4.33751E+01 4.39014E+01 4.57186E+01 4.65032E+01 4.65312E+01 4.97568E+01 4.07095E+01 -21437E+01 4.23522E+01 4.53919E+01 4.57166E+01 4.65032E+01 4.6532E+01 4.97686E+01 4.67318E+01 -21437E+01 4.25022E+01 4.53919E+01 4.55186E+01 4.65032E+01 4.65036E+01 4.67318E+01 4.77255E+01 -21437E+01 4.25022E+01 4.39014E+01 4.57166E+01 4.65032E+01 4.65036E+01 4.67368E+01 4.67318E+01 -21437E+01 4.25022E+01 4.53919E+01 4.55186E+01 4.65032E+01 4.65032E+01 4.65236E+01 4.67368E+01 -21437E+01 4.25032E+01 4.25496E+01 4.55146E+01 4.65032E+01 4.5606E+01 4.65312E+01 4.57318E+01 -21437E+01 4.25632E+01 4.25496E+01 4.55146E+01 4.55146E+01 4.55146E+01 4.65436E+01 4.65632E+01 4.95036E+01 -21437E+01 4.25694E+01 4.55496E+01 4.55045E+01 4.55166E+01 4.46532E+01 4.45526E+01 4.46563E+01 -39466E+01 4.05656+01 4.11421E+01 4.17955E+01 4.25496E+01 4.26454E+01 4.35026E+01 4.45526E+01 4.45656E+01 -39466E+01 4.05655E+01 4.13677E+01 4.274546+01 4.26454E+01 4.36147E+01 4.352556E+01 4.497686E+01 -39466E+01 4.156456E+01 4.179777726E+01 4.264545+01 4.4561680E+01 4.455166E+01 4.4552</pre>	4.09038E+01 4.06619E+01 4.02847E+01 4.02847E+01 4.01576E+01
1.000066-01 6.940466+01 6.940466+01 5.019446+01 5.019446+01 5.019446+01 5.013466+01 6.053466+01 4.219526+01 4.219526+01 4.2195626+01 4.2195626+01 4.095626+01 4.095626+01 4.0156406+01	5.99279E+01 5.97009E+01 5.94739E+01 5.95503E+01 5.92323E+01
0.00000E+00 1.00000E+01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 7.00000E-01 7.07065E+01 7.0970E+01 3.000E-01 6.90518E+01 6.9446E+01 6.96023E+01 6.97672E+01 6.99399E+01 7.01590E+01 7.04111E+01 7.07065E+01 7.0970E+01 3.000E-01 6.90518E+01 6.9712E+01 6.97672E+01 6.99399E+01 7.01590E+01 7.04111E+01 7.07065E+01 7.0970E+01 4.000E-01 6.90518E+01 6.9712E+01 6.96023E+01 6.97672E+01 6.95331E+01 6.563312E+01 6.56571E+01 6.1670E+01 5.000E-01 5.70601E+01 5.07494E+01 5.97565E+01 6.97572E+01 5.95075E+01 5.70546+01 5.66577E+01 5.6577E+01 5.000E-01 5.7060E+01 5.0740E+01 5.07566E+01 5.65644E+01 5.95075E+01 5.707366F+01 5.07076E+01 5.05277E+01 5.000E-01 5.7060E+01 5.0740E+01 5.07506E+01 5.65644E+01 5.73166E+01 5.0577E+01 5.72166E+01 5.02507E+01 5.000E-01 5.7046E+01 5.07496E+01 5.14307E+01 5.42261E+01 5.73166E+01 5.72036E+01 5.02200E+01 5.000E-01 5.71004E+01 5.0797E+01 5.42261E+01 5.22966E+01 5.0507E+01 5.7106E+01 5.22032E+01 5.000E-01 5.71004E+01 5.0797E+01 5.17304E+01 5.22966E+01 5.0507E+01 5.7106E+01 5.22062E+01 5.02200E+01 7.000E-01 4.40402E+01 4.71504E+01 4.573166E+01 4.62032E+01 4.6635EF+01 4.97085E+01 4.070856E+01 5.02200E+01 7.200E-01 4.22437E+01 4.5791E+01 4.5904E+01 4.57416E+01 4.62332E+01 4.97085E+01 4.070856E+01 4.02366E+01 4.02366E+01 4.70396E+01 4.770850E+01 4.77085E+01 8.2500E-01 4.21437E+01 4.23937E+01 4.59856E+01 4.557416E+01 4.62372E+01 4.74859E+01 4.74859E+01 4.72556E+01 4.72556E+01 8.2500E-01 4.21437E+01 4.25937E+01 4.53845E+01 4.557416E+01 4.62372E+01 4.74859E+01 4.76850E+01 4.703956E+01 8.2500E-01 5.37106E+01 4.25937E+01 4.38345E+01 4.55045E+01 4.65312E+01 4.67366E+01 4.65736E+01 4.65630E+01 4.65630E+01 4.65630E+01 4.65630E+01 4.76636E+01 4.76636E+01 4.703956E+01 8.2500E-01 5.377056E+01 4.25994E+01 4.55045E+01 4.55045E+01 4.45506E+01 4.45130E+01 4.57046E+01 4.57046E+01 9.260E-01 5.377056E+01 4.25994E+01 4.53045E+01 4.56456E+01 4.46576E+01 4.45130E+01 4.470468E+01 4.45730E+01 4.45630E+01 4.45646E+01 4.4516468E+01 4.45646E+01 4.45646E+01 4.45746E+01 4.45746E+01 4.45746E+01 4.45746E+01 4.	9.700E-01 3.76954E+01 3.99279E+01 4.09030E+01 4.19416E+01 4.19278E+01 4.23502E+01 4.27508E+01 4.32147E+01 4.36145E+01 9.000E-01 3.76919E+01 3.97009E+01 4.06619E+01 4.12097E+01 4.16662E+01 4.20766E+01 4.29673E+01 4.29032E+01 4.2567E+01 9.900E-01 3.74505E+01 3.97332E+01 4.04150E+01 4.09400E+01 4.13943E+01 4.17955E+01 4.2159E+01 4.2604E+01 4.29567E+01 9.950E-01 3.73897E+01 3.93533E+01 4.02197E+01 4.08147E+01 4.13935E+01 4.17955E+01 4.20159E+01 4.2604E+01 4.297979E+01 1.000E+00 3.72915E+01 3.92323E+01 4.01576E+01 4.08147E+01 4.11193E+01 4.15170E+01 4.23309F+01 4.23309E+01 4.26722E+01
1.000E-01 3.000E-01 5.000E-01 5.000E-01 6.000E-01 6.000E-01 7.000E-01 9.250E-01 9.250E-01 9.250E-01 9.250E-01 9.250E-01 9.250E-01	9.700E-01 9.800E-01 9.900E-01 9.950E-01 1.000E+00

.67261E+01 6.76942E+01 5.50825E+01 5.74297E+01 5.32787E+01 5.52878E+01 4.76365E+01 .16871E+01 .70960E+01 5.92833E+01 5.14970E+01 5.35782E+01 .90001E+01 5.22060E+01 16871E+01 .20476E+01 6.30457E+01 .94657E+01 6.09645E+01 ..90107E+01 5.14861E+01 5.06716E+01 4.99209E+01 4.91792E+01 4.84768E+01 .13020E+01 .13028E+01 .82742E+01 .75660E+01 .68876E+01 4.61887E+01 4.54279E+01 000E-01 1.000E-01 ...000E-01 ..500E-01 .500E-01 1.000E-01 .250E-01 .5005-01 9.000E-01 .2506-01 9.500E-01 3.000E-01 4.000E-01 5.000E-01 5.500E-01 3.750E-01 Ľ I

•••

-

۳.

-

Figure 31 .: AEROEXEC output (Ist camber table)

.... ī. -Ų تے۔ ε 3

.....

• . # **h**

.

9.600E-01 4.50911E+01 4.72622E+01 9.700E-01 4.47352E+01 4.68776E+01 9.800E-01 4.43696E+01 4.612349E+01 9.900E-01 4.40262E+01 4.61135E+01 9.900E-01 4.38592E+01 4.57673E+01 1.000E+00 4.37141E+01 4.57673E+01

P

...

=

I

.

.

.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													WHU	NHU:		Ĩ		I UHN	NHU:		WHU: 16.12476		WHU: 14.72212	WHU: 16.27025	WHU: 16.62158 WHI: 14 96276		WMU: 17.67469 WMU: 18.11157		WHU: 20.01570 WHI: 14.13747		- ·	WTU: 16.5285/ WTU: 16.92644		WMU: 17.7770 WW: 18.19100		WHU: 20	WMU: 13.33342 WMU: 14.88673		I NHU		17
The contraction Contraction <thcontraction< th=""></thcontraction<>		0.0000	0.000	0000.0	0.000	0.0000 0.0000	0000	0.000	0.000			0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000 0.0000	0.000	0.000	0.000	0.0000	0.0000 0.0000	0.0000	0.0000		0.0000 0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	• •	0.0000
This can be also a constant of the second co	0.4303	0.4303	0.4303	0.4303	0.4303	0.4303 0.4303	0.4303	0.7531	0.7531	0.7531	0.7531 1 7531	0.7531	0.7531	0.7531 0.7531		•	0.9682	0.9682	•	0.9682 0.9682	0.9682	0.9682	1.1834	1.1834	1.1834	1.1834	1.1834	1.1834	1.1854	1.3966	1.3986		1.3986	1.3986	• •	1.3986	1.6137	1.6137	1.6137	1.6137	1.6137
71. CARD 71. CARD 71. CARD 71. CARD 200 69. 685 0.0000 0.000 200 70. 560 0.0000 0.000 200 69. 685 0.0000 0.000 200 70. 265 0.0000 0.000 200 70. 265 0.0000 0.000 200 70. 265 0.0000 0.000 200 71. 145 0.0000 0.0000 200 71. 145 0.0000 0.0000 250 65. 544 0.0000 0.0000 250 64. 547 0.0000 0.0000 350 65. 544 0.0000 0.0000 350 64. 533 0.0000 0.0000 350 64. 533 0.0000 0.0000 350 64. 533 0.0000 0.0000 350 64. 533 0.0000 0.0000 450 61. 523 0.0000 0.0000 450 61. 523 0.0000 0.0000 550 63. 453 0.0000 0.00000 450	0000.0	0.000.0	0.000	0.0000	0.000	0.000	• •	•			•		•		0.000	0.000	0.0000	0.000.0	0.000	0.0000	0.000	0.000	0000.0	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000.0	0.000	0.0000	0.000	0,0000	0.000.0	0.000	0.000	0.000.0	0.0000 0.0000	0.000	0.000
 200 70.205 200 200<td>0000.0</td><td>0.000</td><td>0.0000</td><td>0.0000</td><td>0.000</td><td>0.000</td><td>0.0000</td><td></td><td></td><td>0.000</td><td>0000,0</td><td>0.000</td><td>0000.0</td><td>0.0000</td><td>0.000</td><td>0.000</td><td></td><td>0.000</td><td>0.000.0</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.0000</td><td>0.0000</td><td>0.000</td><td>0.000</td><td>0.0000</td><td>00000</td><td>0.000</td><td>0.000</td><td>0000.0</td><td>0.000.0</td><td></td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000.0</td><td>0.000</td><td>0.0000</td><td></td>	0000.0	0.000	0.0000	0.0000	0.000	0.000	0.0000			0.000	0000,0	0.000	0000.0	0.0000	0.000	0.000		0.000	0.000.0	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	00000	0.000	0.000	0000.0	0.000.0		0.000	0.000	0.000	0.000.0	0.000	0.0000	
 200 70.205 200 200<td>0.000</td><td>0.000.0</td><td>0.0000</td><td>0.000</td><td>0.000.0</td><td></td><td>0.000</td><td>0.0000</td><td>0.000</td><td>0.000</td><td>0.0000 0 0000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000.0</td><td>00000</td><td>0.000</td><td>0.000</td><td>00000</td><td>0.000</td><td>0.000</td><td>0000 0</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.000</td><td>0.0000</td><td>0.000</td><td>0.000</td><td></td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000.0</td><td>0.000</td><td>0,0000</td><td>.000</td>	0.000	0.000.0	0.0000	0.000	0.000.0		0.000	0.0000	0.000	0.000	0.0000 0 0000	0.000	0.000	0.000	0.000	0.000.0	00000	0.000	0.000	00000	0.000	0.000	0000 0	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000		0.000	0.000	0.000	0.000.0	0.000	0,0000	.000
7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		69.685	69.854	70.265	70.560	70.845	71.495	66.282	66.947	67.191	67.462 47.764	68.102		68.796 69.353	<u>, 4</u>	- 1	626.19 626.19	62.282	62.655	3.05 x 69	50.	1.0	54.922 55.966	56.470	56.821 57.152	57.495	50.311	59.006	60.215 49.704	51.037	51.666 51.666	52.493	52.895	52.757	54.505	ວ່.	ຄ່ອ່	~	r 6	່ຄ	
		00	0.200	0.200	0.200	0.200	0.200	0.350	0.350	0.350	0.350 1.350	0.350	0.350	0.350	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.550	0.550	0.550	0.550	0.55.0	0.550	0.650 0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.750	0.750	0.750	0.750	0.750

Ī

Ī

Ī

Ī

.**_** :

.....

. .

-----۲...:۲ U Ų

. . . .

19.10207	20.75117	13.06657	14.71228	15.53487	16.09927	16.60419	17.09177	17.60468	18.10675	18.97234	20.80339	13.25036	14.81067	15.59152	16.11615	16.57983	17.02709	17.50361	17.97372	18.77498	20.46268
- NHN	: UHN	NHU:	"NHN	"NHH	: UHN	: UMM	: UHM	"NHA	: UHH	: UHU	:UHU:	: UHN	INHU	: NHM	:UHM	INN:	- DHM	- NHU	NHU:	1 UHN	NHN:
0.000	0,000	0.0000	0.000	0.000	0.000	0,000	0.0000	0.000	0.000	0.0000	0,0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000
1.6137	1.6137	1.8289	1.6289	1.8289	1.8289	1.8289	1.8289	1.8289	1.8289	1.8289	1.8289	2.0440	2.0440	2,0440	2.0440	2.0440	2.0440	2.0440	2.0440	2.0440	2.0440
0.000	0.000	0.0000	0,000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0,0000
0.000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0,0000
0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0,000
50.889	52.538	41.736	43.382	44.204	44.769	45.274	45.761	46.274	46.776	47.642	49.473	39.320	40.880	41.661	42.186	42.649	43.097	43.573	44°043	44°.944	46.532
0.750	0.750	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.950	0,950	0.950	0,950	0.950	0.950	0.950	0.950	0.950	0.950
59	69	19	62	63	64	65	66	67	69	69	70	11	72	23	74	75	76	17	78	52	80
6 9	6 10	7 1	7 2	7 3	7 4	7 5	7 6	7 7	7 8	7 9	7 10	8	8	10 10	4	-	8 6	8 7	-		8 10

is state.

COEFFICIENT OF SOUND POWER = 0.000005 - SOUND POWER/ (RHOW RPSM#3# DIAMMMS)

1

P

22.3

Figure 32 : AEROEXEC output (ANS0, continued plus coeffiecient of sound power)

....

117

-

=

LSTDY: PERFORMANCE SUMMARY

TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA AEROEXEC EXECCASE

4

....

TTERATION NUMBER FERFORMANCE WITHOUT VORTEX LIFT CP--FORWARD ROTOR 0.9202 CT--FORWARD ROTOR 0.4716 FERFORMARD ROTOR 0.4716 CF--FORWARD ROTOR 1.6138 CT--FORWARD ROTOR 0.5772

Ē

=

P

I

Figure 33: AEROEXEC output (Individual rotor performance summary)

. J ----- • ...•

ĩ

đ TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA AEROEXEC EXECCASE VORTEX CALC. RESULTS (FWD) 1 VTXOUT UCAP FOR CR-2 INPUT -- R252INPT.DATA HX = 0.265, J = 1.46, TEMP = 56.2, P/PREF = .9627, VTIP = 636 FPS 6X5 configuration, RUN 252.3 - 50/50 power split

REAM DIRECTATION AT POWER MATCH WANNER, CALL Front Blade Angle = 48.87 deg. - Heasured - CP Match = 48.87 Rear blade Angle = 48.54 deg. - Measured - CP Match = 48.54 Front & Rear blades Assumed Identical ***** OPERATING CONDITIONS ****

Èa∣	0.9662
DENSITY RATIO	6. 0
TEMP. DEG F	56.18
ADVANCE Ratio	1.4601
TIP ROT. ADVANCE Mach # Ratio	0.5702
FLIGHT	0.2650

NBOPT	N
HODOPT	4
# SPAN- Wise Modes	•0
# CHORD- WISE STATIONS	10
# RADIAL STATIONS	22

Figure 34: AEROEXEC output (vortex calculations: operating conditions)

I

Ľ

BLADE GEOHETRY : THETA 3/4 11 BLADES DIAMETER SPINNER CUTOFF 40.87 6. 2.047 0.2450

÷

.

•

RADIAL	CHORD/	THICK/	MID-CHORD		COORDINATES	FACE	HID	HID-CHORD	L. E. Succe	L. E. ▲ 0 ▲ .	ALPHA 3-D	INDUCED	ADVANCE ANGLE	BLADE
					2									
0.1000	7971.0	0.2149	0.2208	ī	0.0017	-0.0019	0.0175	1	-15.42	-9.59	-7.85	-17.23		70.00
0.3000	0.1747	0.0995	0.2998	ī	-0.0162	0.0007	-0.0101	•	-17.96	11.10	12.85	9.91	-	70.00
0.4000	0.1697	0.0572	0.3991	ī	-0.0388	-0.0022	-0.0237		-14.16	12.52	15.72	11.47	č	65.00
0.5000	0.2006	0,0440	0.4992	-0.0291	-0.0346	-0.0028	-0.0224	13.18	-0.29	13.38	17.07	12.76	42.91	59.98
0.5500	0.2026	0.0394	0.5495	ī	-0.0265	-0.0025	-0.0176		13.73	13.37	17.28	12.91	Č	57.48
0.6000	0.2015	0.0353	0.5998	ī	-0.0145	-0.0016	8600.0-		23.14	13.18	17.33	12.65	.,	55.10
0.6500	0.1971	0.0319	0.6500	-	0.0012	0.000	0.0010		31.45	12.86	17.31	11.99	.,	52.87
0.7000	0.1900	0.0289	0.6996	-	0.0209	0.0025	0.0151		38.27	12.48	17.20	11.01		50.78
0.7500	0.1805	0.0264	0.7484	-	0.0438	0.0058	0.0322		43.56	12.10	17.06	9.77		48.85
0.8000	0.1670	0.0243	0.7961		0.0683	0.0096	0.0515		46.57	11.91	16.97	8.28		47.12
0.8250	0.1601	0.0234	0.8194	-	0.0805	0.0115	0.0616		48.70	11.89	16.95	7.35		46.34
0.8500	0.1516	0.0226	0.8425		0.0925	0.0134	0.0718		49.63	11.91	16.94	6.20		45.61
0.8750	0.1422	0.0219	0.8653		0.1043	0.0155	0.0820		50.25	11.96	16.94	4.70		44.9I
0.9000	0.1319	0.0213	0.8880		0.1158	0.0176	0.0921		50.93	12.02	16.92	2.67		44.24
0.9250	0.1202	0.0208	0.9105		0.1270	0.0199	0.1015		52.18	12.10	16.90	-0.09		43.58
0.9500	0.1061	0.0204	0.9329		0.1378	0.0222	0.1114		53.41	12.19	16.84	-3.73	••	42.91
0.9600	0.0996	0.0203	0.9418		0.1420	0.0231	0.1151		55.02	12.23	16.80	-5.35		42.64
0.9700	0.0924	0.0202	0.9508		0.1461	0.0240	0.1185		56.08	12.26	16.75	-6.84		42.35
0.980.0	0.0845	0.0201	0.9597		0.1502	0.0250	0.1224		57.19	12.30	16.69	-7.70		42.06
0.9900	0.0759	0.0201	0.9686		0.1542	0.0259	0.1261		50.05	12.35	16.63	-6.33		41.78
0.9950	0.0713	0.0200	0.9731		0.1562	0.0264	0.1279		58.96	12.31	16.60	-3.04		41.64
										11.00		•		

140

ł

Ľ

l

ver i

Figure 35: AEROEXEC output (vortex calculations: elemental data)

ų : 1 , U -IJ Đ U

•

COEFFICIENTS FROM POTENTIAL CALC.: Radial drag drag lift lift L. E. L. E. Relative design stattam cdist copdt clist clpot K. Mag. Thrust Mach # CL

Ľ		0.0324	0.0704	0.1067	0.1474	0.1652	0.1824	0.1986	0.2125	0.2243	0.2312	0.2326	0.2326	0.2314	0.2291	0.2257	0.2199	0.2166	0.2120	0.2086	0.2043	0.2022	0.2000	
		0.2711	0.3154	0.3496	0.3892	0.4106	0.4327	0.4556	0.4791	0.5031	0.5275	0.5399	0.5524	0.5649	0.5775	0.5902	0.6030	0.6081	0,6133	0.6184	0,6236	0.6262	0.6280	
I SUNH I	1	0.0225	0,0140	0,0258	0.0285	0.0299	0.0331	0.0387	0.0467	0.0570	0.0711	0.0807	0.0931	0.1093	0.1302	0.1564	0.1849	0.1932	0.1945	0.1800	0.1301	0.0795	0,0000	
CLPUL K, MAG.		0.2393	0.1885	0.2564	0.2696	0.2758	0.2902	0.3140	0.3449	0.3809	0.4254	0.4533	0.4869	0.5276	0.5759	0.6312	0.6861	0.7013	0.7036	0.6770	0.5757	0.4507	0.0000	
CLTO		0.1611	o	0	0.5406	0.5525	0.5628	0.5728	0.5820	0.5914	0,6048	0.6134	0.6226	0.6306	0.6336	0.6271	0.6014	0.5800	0.5459	0.4882	0.3800	0.2509	0.0000	
CLLST		0.1696	0.4060	0.5235	0.5768	0.5907	0.6012	0.6101	0.6170	0.6234	0.6334	0.6399	0.6465	0.6507	0.6483	0.6344	0.5990	0.5736	0.5362	4774	0.3732	0.2793	0,0000	
CDPOT	1	-0.0499	0.0684	0.1008		•	•	0.1217	0.1132	0.1018	0.0880	0.0792	0.0677	0,0518	0.0296	-0.0010	-0.0392	-0.0543	-0.0655	-0.0660	-0.0421	-0.0149	0.000	
CDLST		0.0072	0.0367	0.0512	0.0473	0.0414	0.0389	0.0428	0.0479	0.0514	0.0522	0.051.0	0.0506	0.0478	0.0420	0.0303	0.0229	0.0194	0.0143	0.0098	0.0052	0.0063	0.0054	
STATION		0,1000	0.3000	0.4000	0.5000	0.5500	0.6000	0.6500	0.7000	0.7500	0.8000	0.8250	0.8500	0.8750	0.9000	0.9250	0.9500	0076.0	0.970.0	0.9800	0000	0 9950		

. } Figure 36: AEROEXEC output (vortex calculations: coefficients from potential calculation)

=

P

I

- ;

																																					2000
					``																																
																																					124
					•																																
	XXXX																																				
																																					1
	ÉCE A																																				
	LOCAL ADVANCE ANGLE																		LAL	9	ļ	.0427	520	.1697	926	123	.2196	10	155	120	.2420	358 258	.7061	.8505	606	.3627	054 004
	DCAL																		10.	DRAG		0.0		0.1		0.2	0.0	0	00		0		0			й. 0	
		-																	0T +	AUGVORT		0499	.1008	1224	1263	1217	1018	0880	0792	0518	.0296	00100	.2603	.3086	.2007	.1258	
	2																		ē.	L AUG	1	P C	Ģ	00		0			• •		0	;		•		0	" =
	CULAF																		POT	3	-	0.0499	.100	122	126	.121.0	0.1018	.088	.079.	.051	1.029	1001	i.	198	1.163	0.1068	
	PENDI																		+	RT SE	; ;	Ŧ -															
	PER																		POT	LE VORT		-0-0499 0-0484	0.10	0.12	0.16	0.16	71.0	0.17	0.18	0.19	0.2000	0.20	0.20	0.19	0.1376	0.0960	calcidatione
	NTED AS PERPENDICULAR TO THE																		01.	0		- 6651	008	224	263	212	0.1018	999	192	518	0.0296	010	1543	655	1231	6510	o.ooo av cal
																			•			-0.0499 0.0684						0	00		5	• •	•	- -		0	0.0 10/1
•	NOT PRESE	!	= *	23	29	20	4 0	n in	2 3	ç	22		65	6 K	15	6.1			ر	-	:	<u>1</u> 2	5	9 u	n M	*	6 M	2	46	2 N	90	27	. 6	5	2 6	5	
NTS	RE NC		1191.0	0.49	0.54	0.59	0.60i 0.60i	0.65	0.69	0.74	12.77.0	0.94	1.48(2.46	2.90	2.09			TOT	LIFT		0.1611	64.0	0.54	0.59	0.60	0.65	69.0	12.0		0.80	99.0	2.46	2.96	2.09	1.29	
FICLE	LIFT COMPONENTS ARE	VORTEX	.0000	000	000			000	000	000	000	000	492	885 978	401	486	000		+	ORT	г 	1191.	964	406 525	629 629	728	970 914	048	134	306	336	271	220	996) 931	531	
COFF	HPONE		00						00				•		. –	00			+ 101	AUGV		0.0	-			- C (0	0.6	0	0	• -				0	۳
LIFT		Ω.	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	5751 9143	9829	7174	0000		+ T0	R I		1191.	4964	5406	5628	5728	5914	6048	6134	6306	6336	6271 6016	1306	4214	4224	6892	ĕС
<u>م</u> ا ۱	, Ë	•			o		0 0	iei	• •	•	0 0		Ö	0 0	0	0 6		RAGS	•	5	1	00	0	•		0			0 0	90	0	0 0	• –	-			- ii
ATION	THAT VORTEX	ORTEX	0000.		0000.	.0360	045	070	.122	.143	.171	.2551	.3102	356	.3321	245	000	AND DRAGS	POT	FON		0.3913	.496	540	290	.608	629	.691	.716	.775	.608.	1.843 845	699	.045	592	.415	7 A D
TCUL	141 -	ן פֿי י	0 6		00		0 C		• •		0 C	••	•	• •		0 0) O			۳																	
			1191.0	0.496														AL LIFTS	P01	h		0.1611	0.49	0.540	0.565	0.572	0.592	0.604	0.61	0.631	0.63	0.62	0.58	0.54	0.380	0.28	
IRHANK	2	•	000	000														tenta	JIAL	LON		.3000					000	000	250	750	000	250	600	002	006	950	- 67
PERFO		STATION																INCREMENT	RAL	STATION		0,10	9.0	0,0	0.0	0.6	0	0.0	6		6.0	6 6 0 0	6.0	00		6.0	1.0
-																		Ħ												I						1'	

. 7

Ĩ

Ī

-

100 100 100

j

Ē

U Ð

.

PERFORMANCE SUMMARY

÷

ELEMENTAL PERFORMANCE

# DETA/DX	2.3687 0.4979 0.5190 0.5294 0.5937 0.5946 0.5116 0.5116 0.5159 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5353 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.5355 0.55555 0.555555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.55555 0.555555 0.555555 0.55555 0.55555 0.55555 0.55555555	
TOTAL DCT/DX	0.0442 0.0941 0.2203 0.2881 0.2881 0.5846 0.6919 0.6919 0.6919 0.6919 1.1733 1.1723 1.1733 1.	
DCP/DX	0.0273 0.2877 1.0702 1.0702 1.0702 2.0307 2.0303 2.0303 2.0303 2.0303 2.0303 2.0303 2.0303 2.0303 3.2925 3.2926 9.8726 9.72666 9.72666 9.726666 9.72666666 9.72666666666666666666666666666666666666	
VORTEX *	2.6158 0.6555 0.6555 0.6549 0.6549 0.6549 0.6539 0.6539 0.6539 0.6539 0.7322 0.7322 0.7323 0.7323 0.6735 0.6755 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.65555 0.655555 0.655555 0.655555 0.65555555555	
~ ~ .	0.02485 0.12255 0.22856 0.25155 0.55256 0.55256 0.55356 1.0556 1.0556 1.0556 1.0556 1.0556 1.0655 1.0655 1.0655 1.0655 1.0655 1.0655 1.0655 1.0655 1.0655 1.0655 1.0050 0.0000 0.0000	
POT+AUGHENTED DCP/DX DCT/D)	0.0270 0.2720 0.2949 0.2949 1.2949 1.2949 1.2954 1.9510 2.0386 2.0386 2.0386 1.9510 1.9510 1.9594 4.7598 4.7598 4.7598 1.7227 1.7227 0.0000	
VORTEX N DETA/UX	2.6159 0.6555 0.65555 0.65549 0.65549 0.656549 0.65549 0.65555 0.65555 0.65555 0.7556 0.7256 0.7256 0.72555 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.7255 0.72555 0.72555 0.75555 0.75555 0.75555 0.75555 0.75555 0.75555 0.75555 0.755555 0.755555 0.75555 0.755555 0.7555555 0.755555 0.7555555555 0.75555555555	
EDGE V DCT/DX	0.0485 0.2255 0.2515 0.5232 0.5232 0.5232 0.5235 0.5235 0.5235 1.0534 1.005 1.0534 1.005 1.0534 1.005 1.2550 1.2550 0.0000 0.0000	
POT+SIDE DCP/DX	0.0270 0.5964 0.5964 1.42182 1.42182 1.42182 1.59592 1.9510 2.0386 2.0386 1.9594 1.9594 1.9594 1.9594 1.9564 1.5654 1.5654 1.56216 2.66216 2.66216 2.66216 2.66216 2.66216 2.66216 2.66216 2.66216 2.66621	
DETA/DX	2.6555 0.6555 0.65555 0.55759 0.558555 0.558555 0.558555 0.558555 0.5585555 0.5585555 0.558555 0.55855555555 0.5585555555555	
D EDGE VORTEX # DCT/DX DETA/DX	0.12255 0.26135 0.22261 0.52260 0.52625 0.52637 0.52651 1.256561 1.25656 1.25616 1.25616 1.25616 1.25618 1.256	
POT+LEAD DCP/DX [0.2729 0.5964 0.5964 0.5964 1.5334 2.6925 2.6195 3.1167 3.1167 3.1167 2.6545 2.6545 3.1167 2.6545 3.1167 2.6545 3.1167 2.6545 3.1167 3.1167 2.6545 3.1167 2.6545 3.1167 3.1167 2.6545 3.1167 3.	
DETA/DX	2.6555 0.65655 0.65655 0.65655 0.65659 0.65629 0.65539 0.6539 0.6539 0.75452 0.75452 0.75452 0.75452 0.75452 1.2908 1.2908 1.2908 1.250600 1.250600 1.250600 1.250600 1.250600000000000000000000000000000000000	
POTENTIAL DCT/DX	0.1225 0.1225 0.2515 0.5292 0.5292 0.5595 0.5595 0.5595 0.5595 1.00534 1.00534 1.00534 1.00534 1.00534 1.1005 0.9595 0.9757 0.6955 0.9757 0.6955 0.5522 0.5522 0.5522 0.5522	
# P DCP/DX	0.0270 0.5949 0.5949 1.2182 1.4395 1.4395 1.4395 1.4395 1.2554 1.6437 1.6437 1.6437 1.6437 1.6437 1.6437 1.7954 1.5554 1.7959 1.7959 0.6779 0.6779 0.6195 0.6195 0.6106 0.6779	
RADIAL Station	0.1000 0.3000 0.5000 0.5000 0.5000 0.5500 0.5500 0.5500 0.5500 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.9500 0.7000 0.75000 0.7500 0.7500 0.75000 0.75000 0.750000000000	

Figure 38: AEROEXEC output (vortex calculations: performance summary)

Ľ

I

....

- - -

.

....

.

=

đ TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA FRONT BLADE ANGLE = 40.07 DEG. - HEASURED - CP MATCH = 48.07 Rear blade angle = 40.54 deg. - Heasured - CP Match = 40.54 Front & Rear blades Assumed Identical AEROEXEC EXECCASE LSTDY: PERFORMANCE SUMMARY

J.

_____ == 2

ale à Rite

P

ł

. .

Figure 39: AEROEXEC output (Individual rotor performance summary)

; ŧ, b . . . -- -- --U -----. . Ľ, -----E E - -

Ξ.

۰.

...

SUBROUTINE: INTERS. CEOMETRY DATA Number of Radial Stations: 22 Integration Mesh Size Denominator:

10

00107	000 01	007.0.	+1,070	+1 607		176.27	• 2 . 925	+3,187	27 210	470.01	+5.396	10 077	C/0.41	+5,955		910.04				
DCPDZ	400 04		+0.588	+0.585	LOG OT		470.17	+1.133	11 217	17317.	+2.024	107 24		+2.209	100 0	CON.N-				
ZHC	-0.016		CCU.U-	-0.015	100 0+		000.01	+0.093	711 04		+0.138	40 166		+0.154	, en () en ()	061.07				
CHD/D	+0.175		T02.07	+0.201	190	91104	007.01	+0.152	C21 0+		+0.106	COU U+		+0.076	10 047	100.00				
R/RTIP	+0.300	40 E 00		+0.600	+0.700	40 800		+0.850	40,900		+0.950	+0.970		+0.990	41 000					
INDEX	5 +	46		9 +	0+	014		+12	+14		914	+18		02+	400	1				
		-	•••	-	_	-	• •	-	-	•	-	-	•••	-	-	•				
DCTDZ	+0.027	129 0+		119.14	+2.003	+2.634		+3.066	+3.279		102.61	+8.638	110 01	CCN . 64	+3.491					
DCPDZ	+0.044	+0.220		419.04	+0.692	+0.914		190.14	+1.180	11 276	907714	+3.199	011 21	100.01	+1.299					
ZHC	+0.002	-0.039		920.0-	+0.001	+0,044	000 01	10.050	+0.104	101 101	127.01	+0.142	40 350	067.01	+0.156				1 460	× • • • •
	0.175	0.190	FOC O	CU2.U	0.197	0.181	0110	noT.n	0.142	0.1.0		0.100	JAC C		0.071				PATTO.	
R/RTIP	0.100	0.400		ncc'n	0.650	0.750	A BOE	C70'A	0.875	0 0 0		0.960	0.90		0.995			ROTOR:	ADVANCE	
INDEX	-	м	u	ŋ I	~	6			13	4	1	17	-		21					

	1.460	0.265	6 USED 0	IO PER OU	TTATC 1 14 TVA
ROTOR: FWD	ADVANCE RATIO:	HACH NUMBER:	OF OUTPUT RADII:	AXIAL POINTS:	DANTIA
-	•		BER OF	BER OF	TNDEV

-

10 ALLOWED	RADIUS.	VX-BODY		0.000	0.000	000 0
6 USED OF	10 PER OUTPUT RADIUS.	AXIAL LOCATION		1 0.373	2 0.406	2 A 7 9
OUTPUT RADII:	AXIAL POINTS:	RADIUS A	0.200			
NUMBER OF	NUMBER OF	INDEX	г			

VX-2DARY -0.005

VX-POT.

0.028 0.028

210.0-	٠	3	٠	2		
T	۰.	3				
	•	ŝ				
-0.012	0.080	8		æ		
3	0.080	ŝ		7		
3	٠	8	0.495	9		
5	•	8		ŝ		
5	•	8		4		
-0.012	•	٩		ю		
۰.	0.080	8	0.357	8		
-0.012	0.080	8	•	ı		
					0.450	m
-0.010	٩,	٩.	•	10		
-0.010	٩,	٩.	•			
•	٩,	٩.		¢		
-0.010	٩.	٩	•	~		
5	٩,	٩,	•	9		
-0.010	0.050	0.000	0.469	Ś		
10.	٩,	٩,	•	4		
-0.010	٦,	٩,	•	м		
-0.010	۲	٩.		N		
10.	٦,	0.000	•	٦		
					0.350	73
-0.005	•		.6	10		
-0.005		•	÷	•		
•		•	۰	•		
•	٠	•	ŝ	2		
•	•	•	÷	ę		
-0.005	0.028	000'0	0.504	Ŋ		
•	•		٩.	4		
•	0.028	0.000	٩,	ю		

.....

...

Figure 40 : AEROEXEC output (steady interference velocity field calculation)

-0.010 -0.010

0.106

0.000

0.334

H N

0.550

4

1.

-0.012 -0.012 -0.012 -0.012 -0.012 -0.012

1

	0.000 0.106 -0.010 0.000 0.106 -0.010 0.000 0.106 -0.010 0.000 0.106 -0.010	0- 901.0 000.	0.000 0.110 -0.010 0.000 0.110 -0.010	0- 011.0 000.	0,000 0,110 -0,010 0,000 0,110 -0,010	.000 0.110 -0	0.000 0.110 -0.010 0.000 0.110 -0.010	0- 011.0 000.	1	.113	0-113 -0			0.113 -0	0.113 -0	0,113 -0.	0.113 -0.	0.000 0.113 -0.008	0.000 0.116 -0.006	.000 0.116 -0.	- 0.116 -	.000 0.116	0.000 0.116 -0.006 0.000 0.116 -0.006	.000 0.116 -	0.116 -	.000 0.116	0.000 0.116 -0.006	0	0.118 -0	000 0.118 -0	0.118 -			0.116	0.118	0.000 0.118 -0.005		:::::::::::::::::::::::::::::::::::::::		+2.573		186'Z+ 1/5'0+ 50	
--	--	---------------	--	---------------	--	---------------	--	---------------	---	------	----------	--	--	----------	----------	-----------	-----------	--------------------	--------------------	----------------	-----------	------------	--	--------------	---------	------------	--------------------	---	----------	--------------	---------	--	--	-------	-------	--------------------	--	---	--	--------	--	------------------	--

Ĩ

2

-

j

Figure 40 AEROEXEC output (steady interference velocity field calculation, continued)

				۶. ⁻			
-	+0.366 +0.366 +0.366 +0.366	878 878 878 878 878 878 878 878 878 878		+0.374 +0.374 +0.374 +0.374 +0.406 +0.406	905.0+ 905.0+ 905.0+	40,406 410,410 41,410 41,410 41,410 41,410 41,410 41,410 410,410 410,410 410,410	807.04 807.04 807.04 807.04 807.04 807.04 807.04 807.04 807.04 807.04 807.04 807.04 807.04 807.04
-	-0.101 -0.093 -0.086	-0.105 -0.094 -0.083 -0.074 -0.055	-0.049 -0.041 -0.034 -0.035 -0.013 -0.013 -0.013 -0.013 -0.013	+0,072 +0,044 +0,053 +0,053 +0,072 +0,072	+0.085 +0.098 +0.098 +0.104 +0.110 +0.116 +0.116	+0.126 +0.157 +0.162 +0.173 +0.177 +0.182 +0.187 +0.195	0.230 0.236 0.236 0.245 0.245 0.245 0.245 0.245 0.255
	+1.000 +1.000 +1.000 +1.000	1 . 000 1 . 000	1.000 1.1.000 1.1.000 1.1.000 1.1.000 1.1.000 1.1.000 1.1.000 1.1.000 1.1.000			1,000 1,	
	+3.594 +3.798 +4.002 +4.206	+2.492 +2.722 +2.722 +3.184 +3.415 +3.415	+3.076 +3.076 +4.107 +4.568 +2.560 +2.560 +3.299 +3.299 +3.299 +3.299	+4.037 +4.530 +4.530 +4.776 +4.776 +2.760 +3.020	+5.281 +3.541 +3.601 +4.062 +4.583 +4.583	+5.1103 +3.256 +3.529 +4.075 +4.075 +4.075 +4.821 +4.894 +5.713 +5.713	+4,123 +4,407 +4,676 +4,676 +5,261 +5,261 +5,829 +5,829 +5,398 +5,398 +6,683
-	+0.569 +0.602 +0.635 +0.668	+ 0,335 + 0,455 + 0,456 + 0,45	10,252,0+ 10,557 10,570 10,570 10,522	+0.529 +0.556 +0.598 +0.633 +0.334 +0.336	+0.403 +0.437 +0.471 +0.471 +0.539 +0.533 +0.573	+0,374 +0,458 +0,468 +0,468 +0,468 +0,468 +0,583 +0,552 +0,5562 +0,5562 +0,5562	436 456 465 490 490 490 490 490 590 490 592 490 652 490 652 490 652
. ~	07 08 10		8 2 2 3 3 5 1 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	22 32 32 32 32 32	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	09016554421 090165114	មុកក្រុងស្គេស្គ្ មុស្ភិងស្គេស្គ្រ 8 8 8 9
-	7 8 0 1 0	400500F	-ወቀፅ പഗክፋぷる -	7860 10	84697896 1		- C M J M J M J M J M J M J M J M J M J M
			+0.850	41,417		+Z,003	+2.634 +3.187
			+ 0 ,304	+0.479		I	+0.914 +1.133
• •	- 0,0275		-0.0367	- 0 , 0265		0,0012	0.0438 0.0925 0.0925
	0.1822		0.1951	0.2026		1791.0	0.1905
	0.350		0.450	0.550		0.650	0.850
., =	N		19	5		ил .	۲ °

-

U

U

Ū

IJ

120

. .

147

+0.376	+0.378	+0.378	+0.378	+0.378	+0.378	+0.378	+0.376	+0.378	+0.378		+0.511	+0.511	+0.511	+0.511	+0.511	+0,511	+0.511	+0.511	+0.511	+0.511
+0.291	+0.293	+0.295	+0.298	+0.300	+0.302	+0.304	+0.306	+0.308	+0.309		+0.551	+0.552	+0.553	+0.554	+0.555	+0.556	+0.557	+0,558	+0.559	+0.560
+1.000	000'l+	000'l+	+1.000	+1.000	000'I+	+1.000	+1.000	+1,000	+1.000		+1.000	+1.000	+1.000	+1.000	+1.000	+1.000	+1.000	+1.000	+1.000	+1.000
+5.726	+6.022	+6.318	+6.614	+6.911	+7.207	+7.503	+7.799	+8.095	+8.391		+9.610	+9.916	+10.226	+10.534	+10.842	+11.150	+11.458	+11.766	+12.075	+12.383
+0.5.0+	+0.530	+0.552	40.573	+0.595	+0.517	+0.638	+0.660	+0.681	+0.703		+0.586	+0.600	+0.615	+0.629	+0.643	+0.658	+0.672	+0.687	+0.701	+0.715
61	62	63	64	65	6 6	67	68	69	70		ŗ	72	73	74	75	76	77	78	79	80
								_	_						5	م	~		•	•
۲	N	ю	4	ŋ	-9	~	60	٩	ä		-		.,	•	-,	-	•••	~		٦
1	2	m	4	ŝ	9	~	*	6	10	+5.396	-	2	.,	•		-		-		1
4	2	ю	4	5	9	~	•0	6	10	+2.024 +5.396	-				_,	-		~		T
	~	N	2	5	-9	7	60	6	10	•								-		T
	~	n	4	.0	-9	2		6	10	+2.024		2								1
1	~	N	4	5	9	~		6	10	0.1378 +2.024		2								1

• ...

Figure 40 : AEROEXEC output (steady interference velocity field calculation, continued)

-

Į

-

Ţ

Ľ

ł

P 23 94 B Ş -

ъ. "...

TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA AEROEXEC EXECCASE 1,000E-02 PASS 1 OF 21; TOL:

4

UCAP FOR CR-2 INPUT -- R252INPT.DATA HX = 0.265, J = 1.46, TEMP = 56.2, P/FREF = .9627, UTIP = 636 FPS 6X5 CONFIGURATION, RUN 252.3 - 50/50 POWER SPLIT 444WA FIRST ATTENPT AT POWER MATCH #WWW FRONT BLADE ANGLE = 40.87 DEG. - MEASURED - CP MATCH = 40.54 FRONT & REAR BLADES ASSUMED IDENTICAL

٢,

	R.)											• .						
FORMARD ROTOR) 0 4	0.2570 (DIVIDED BY FRONT ROTOR DIAMETER.)	TOTAL			1.81	0.945	0.288	0.762	0.540Ë-02	-	AFT/FORWARD	10.1	1.00	1.01	1.00	0.968	1.01	0.963
RATIOS (REAR ROTOR DIVIDED BY FORMARD ROTOR) Diameter Ratio: 1.0000 Angular Velocity: 1.0054 Tip Speed: 1.0054		AFT	PERFORMANCE SUMMARY WITHOUT VORTEX LOADING.	1.45	0.877	0.468	0.140	0.776			AFT/TOTAL				0.500	0.492	0.501	164.0
RATIOS (REAR ROTOR Diameter Ratio: Angular Velocity: Tip Speed:	ROTOR-ROTOR SPACING:	FORWARD	E SUMMARY WITHOU	1.46	0.920	0.472	0.146	0.748			FORWARD/TOTAL				0.500	0.508	6449	0.509
		COEFFICIENT	PERFORMANCE	ADVANCE RATIO	POWER	THRUST	TORQUE	EFFICIENCY	ROLLING MOHENT		RATIO	TIP SPEED	DIAHETER	ANGULAR SPEED	AREA	POWER	TIRUST	TORQUE

counter-rotation performance summary)

Figure 41 : AEROEXEC output (PRTPRF:

•• ••

.

. ...

=

LOADING.	
VORTEX	
INCLUDING	
SUHHARY	
PERFORMANCE	

z

÷

ADVANCE RATIO Pouleb	1.46 1.61	1.45 1.46	6 5
TIIRUST	0.577	0.511	1.09
TORQUE	0.257	0.232	0.491
EFFICIENCY	0.522	0.510	0.516
ROLLING MOMENT			0.226E-01
RATIO	FORWARD/TOTAL	AFT/TOTAL	AFT/FORWARD
TIP SPEED			1.01
DIAMETER			1.00

	0 .500	0.478	0.472	0.477
	0.500	0.522	0.528	0.523
ANGULAR SPEED	AREA	POWER	THRUST	TORQUE
	ANGULAR SPEED	6.500	0.500 0.522	0.500 0.522 0.528

10.1 1.00 1.0 0.900

0.912

Figure 41 : AEROEXEC output (PRTPRF: counter-rotation performance summary, continued)

۰.

J

Ë.

ļ

Ĩ

na i Niciae

P

I

	-	• ·								
छ । स इन्द्र	-					-				
	5 4									
~										
			· •,							
Ù	ски ки ки ки ки ки ки к									
	хи хи хи хи хи хи хи хи хи хи хи хи хи х									
	NASA NASA NASA NASA 									
										IST)
Ų	1./15.92 UCAP жиминикииии жиминикиии									nra
- -	1/15 ******									rt (A
5	.ТЕ: жиних (жиних									utpr
	17:00:20 DATE: жимииниинии жиминиинии жимининини									ပ္ပို
	10017. 1011 1011 1011 1011 1011 1011 101								-	EXE
	ТІНЕ:] ; FPS							_	-	AEROEXEC output (ADJUST)
	Т <u>т</u> 14 минии 636 F1 .87 .54 .54			ЕК КОТОК 0.1922 0.2007 0.2098 0.2196	0.2540 0.2540 0.2677 0.2829	HER ROTOR 0.1559 0.1630 0.1705 0.1786	0.1968 0.2070 0.2183 0.2306 0.2306	THER ROTOR 0.1350 0.1542 0.1509 0.1550 0.1556	0.1/20 0.1922 0.1922 0.2027 0.2141 17HER RUTOR 0.1251 0.1251	۹
	АSE иккики ТР = 65 1 48.87 1 48.54 1 48.54					01HER 0.1 0.1		01HE 0.0 0.1 0.0 0.0 0.0		42
	КЕС ЕХЕССА Мата 19627, VII 5PLLT CP натсн = CP натсн = CP натсн =			53332	ត ហ ហ ហ ហ ហ ហ ត ហ ហ ហ ហ ហ ហ		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			Figure
	XEC MATA DATA CP M CP M CP M			774-0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		20-487 -0.00 -0.00 -0.00 -0.00	5600.0- 5600.0- 5600.0-	2D-ARY -0.0116 -0.0116 -0.0116 -0.0116 -0.0116	-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01	Ē
	АЕRОЕХЕС 1444444444 1111071.0414 111071.04144 111071.0414 111071.0414 111071.0414 111071.0414 1110710			¥.		T.		ж		
- ·	нинин - R252 - R252 - Р7 			POTENTIAL 0.0284 0.0284 0.0284 0.0284 0.0284	0.0284 0.0284 0.0284 0.0284 0.0284	0.0498 0.0498 0.0498 0.0498 0.0498	0,0498 0,0498 0,0498 0,0498 0,0498 0,0498 0,0498	POTENTIAL 0.0803 0.0803 0.0803 0.0803 0.0803 0.0803	0.0803 0.0803 0.0803 0.0803 0.0803 0.0803 0.1062 0.1062 0.1062	
	FORWARD ROTOR DATA жининининининини инриг 1.46, Tehp = 56.2 on, Run 252.3 - 50 empt at Pomer Hatc ele = 48.87 Deg ile = 48.57 Deg Ades Assumed Ident		_					-	_	
.* ≞ ma	ROTOR 1NP 252.3 252.3 252.3 87 DE 54 DE		11 G		000000 00000		595668 5956668			
Ê.	ИЛКD 46, Т 46, Т 7 ЛТ 7 ЛТ 80, 86, 855 855 855 855 855 855 855 855 855 85		HODES PANE L	THOMA			100000 1			
	FOR 1 - 1. 1 - 1. 1 - 1. 1 - 1. NGLE BLADE	UST	SPANWISE HODES: CHORDWISE PANELS : V-AXIAL 10 1.2620			1.2354		1.2406	1.2493	
Ş	SBR: ADJUST. FORWARD ROTOR DATA AEROEXEC EXECCASE TIME: 17:00:20 DATE: 1/15/92 UCAP MASA 4 ининининининининининининининининининин	SUBROUTINE ADJUST	SPAN CHOR			0		0	20	
	ADJ P FD 1 0.2 NT BL NT BL NT BL	OUTIN	NUMBER OF S NUMBER OF C Station 1 0.200			0.350		0.450	0,550	
	SBR: UCA: HX 6X5 FR01 FR01 FR01 FR01 FR01 FR01 FR01 FR01	suar	NUHB NUHB STA			2		m h	1 i 4	
			-					•	·	
4										

151

• . .

		æ v	45	2	0	0.1419	
		v	;		•	6478 4	
		^	20	2	5	704T.0	
		¢	36	0.1062	-0.0101	0.1549	
		•	2	10	0	0.1620	
		- 1	5		5.		
		0	20	P .	5	0.01.0	
		æ	62	2	ò	0.1775	
		10	40	20		0.1866	
1 027 0	1726						
-	2	3	3	BATENTYA	20-ADV	ATHED DATAB	
		5	2				
		-	41	۲.	5	berr n	
		~	42	7	0.00	0.1195	
		м	¥9	1	ó	0.1238	
		•				1261	
			;				
		ŝ	45	٦,	0.007	4261.0	
		.e	46		-0.0096	0.1376	
		•	47	5	0.009	0.1429	
				1005	000	0 1482	
		0 (; ;	•			
		•	44	7	600 O	/251.0	
		2	20		-0.0096	0.1594	
750 1.	2250						
	1474	3	5	DOTENTIAL	70-ADV	OTHER ROTOR	
			2		144-02		
		-	5			0.1064	
		2	52		:0	0.1092	
		H	Ĩ		9	0.1121	
		, .					
		æ	4 10		0.0	0511.0	
		ų	5		:	0.1180	
		1	77		0.0	0.1210	
		•					
		-	2				
		60	58	0.1130		0.1271	
		•	5		0	0,1301	
			5		6	0 1332	
	-	4	3	•			
.4. 020.0	0117	3			- 1	OTUGO BUTUD	
		E	2				
		м	61	0.1159	-0.0063	٩.	
		•	63	115	-0.0063	٩,	
			;;		2900 0-	. •	
		n	63	44TT-0	0000.0-	U.V700	
		¢	64	0.1159	-0.0063	7	
		M	65	.115	-0.0063	7	
		•	77	115	-0.0063	7	
		•			2300 0-		
		-	•	611.	CD00.0-	1	
		•0	69	115	-0.0063	7	
		•	69	0.1159	-0.0063	-	
		10	70	0.1159	-0.0063	7	
050	1966						
		I	Ĩ	POTENTIAL	2D-ARY	OTHER ROTOR	
			1		Î		
		• •	:				
		N	27	6/TT'D	3		
		м	73	0.1179	9		
		4	74	0.1179	8		
		•			2		
		n	0	A . TT . A		•	
		•	76	0.1179		٠	
		•	77	0.1179		•	
		•	7.8	0.1179			
		•			0.00	0.0666	
		•	C.	6/TT'A		٠	
		20	80	0.1179			
		i					

Figure 42 : AEROEXEC output (ADJUST, continued)

2

1

- II.

Ē

.

-																			
-																			
- 16 1. 19.																			
- ·																			
-																			
ж — Мария Пария																			
Ţ																			
												-							
5																			
e : guna Ter	-	S.L. ANGLE	e.ee 4.143	3.124	2.406	1.782	1.505	1.012	9.792	• • • • • •	0.405	0.391 0.300	0.208	8.169	0.127	0.087	0.050	.	020.0
		Ś			- 4				•		S.	e ¥		•		2	0	ň	•
		RADIU	1 0.100	07.0		6.0.6 9.60	7 0.65	54°0 0	10 0.00	12 0.82	15 0.07	14 0.90	16 0.95				20 0.99		22 1.00
		-					•		•			•••			-				_

• • •

.

÷ .

0.5009 0.4242 0.5513 2.3354

1.2420 1.2400 1.2476 1.2139

4.015 2.049 2.005 0.654

8.242 8.342 8.442 1.924

e.3145 e.4385 e.5631 e.8529

1497

MUMBER OF STREAM IMESI 1 0.295 0.371 2 0.371 0.497 3 0.497 0.629 4 0.623 1.009

- -

••••

-

ĒT

I ----,

•-

ς,

Figure 42 : AEROEXEC output (ADJUST, continued)

-

 \sim

~~,

.

.

153

....

.

AFT ROTOR DATA AEROEXEC EXECCASE TIME: 17:00:20 DATE: 1/15/92 UCAP --- MASA

NPUT -- R2521NPT.DATA = 56.2, p/PREF = .9627, VIIP = 636 FPS - 50/54 POWER SPLIT AT POWER MATCH HANNE INPUT .46, TEHP UCAP FOR CR-2 HX = 0.265, J = 1.46, 6X5 configuration, ru HMMM First Attempt A

MANAW FIRST ATTENET AT FOMER MATCH MANAW Front Blade Angle = 48.87 DGC - Heasured - CP Match = 48.87 Front Blade Angle = 48.54 DEG. - Heasured - CP Match = 48.54 Front & Rear Blades Assumed Identical SUBROUTINE ADJUST

OTHER ROTOR OTHER ROTOR OTHER ROTON OTHER ROTO 0.0724 -0.0341 -0.0274 8.0468 0.0527 .0336 . 0404 0129 0039 0119 0268 0.1411 -e.e784 111 0.1676 .1536 . 885(-0.0495 -0.0495 -0.0247 -0.0247 -0.0495 -0.0495 -0.0495 6009 0.00.0 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 POTENTIAL 2D-ARY 0.1394 -0.0247 0.1394 -0.0247 ē. ee POTENTIAL 20-ARY V - 4 - 0 0 POTENTIAL 0.1258 .1258 563 **6563** 0.0563 DTENT. 1.0986 0.0986 .1258 1256 .1258 0.1250 . 8563 .1258 .1250 . 0563 9868 . .1250 32 31 H £ £ 18 NUMBER OF SPANNISE MODES: (Humber of Chordwise Panels 10 Station V-Axial 1.8241 1.0071 1.0129 B766.8 0.550 0.350 **6**.458 0.200 STATION ۰ ۱۰ I 2

2

ŧ

Figure 42 : AEROEXEC output (ADJUST, continued)

continued)
(ADJUST,
C output
AEROEXEC output
42
-igure

		n	32	5	-0.0247	0.0981
		9	36	5	÷.	Ę
		~	37	7		-
		•	0 N N			
		, ol	1 07	0.1394	-0.0247	17
0.650	1.0314					
		I		5	- ARY	~ '
		-		Ę	Ta' o	1.
		N	42	Ξ.	10'D	י י
		ю	M 1	0.1337		0/91.0
		đ	4	2	10.0	1
		S	45	2	10 i 0	11
		•	46	-	10'D	ų,
		~	47		6.9	., r
		6	9 7	Ę	1 C	-
		6	49	2		-
		5	50	ET.	10.0	7
0.750	1.0375	:			20-10V	OTHER ROTOR
		Ξ.	2 i	PUTENTAL		0020
		-	5	0.1289		220
		N	25	0.1289		
		ю	23	0.1289		ŝ
		4	ŝ	0.1269		5
		Ľ٩	55	0.1289		5
		4	56	0.1289	°.	298
		~	57	0.1289	-0.0141	0.2516
		•	86	0.1289	2	229
		ð	59	0.1289	2	.257
		10	90	0.1289		.260
0.850	1.0424				1	
		I	£	POTENTIAL	-	ູ່
		H	61	-	0.1	Ņ
		N	62	7		Ņ, (
		ю	63	7		Ņ, C
		₹	64	7		ų e
		N	6.5	ب		v, r
		•	9 I 9	7.		ЭM
		~	67			j M
		•	99	7.7		3 M
		•	5 C		- 0.007	0.3095
i		0 T	2	1		:
056.0	C/90.T	I	Ĥ	POTENTIAL	2D-ARY	OTHER ROTOR
		-	12	.1169	2	0.5514
		2	72	0.1189	2	ŝ
		1 10	13	0.1189	÷	ŝ.
		4	74	0.1189	2	ŝ
		- Mi	75	0.1189	2	ŝ
		0	76	0.1189	•	0.5563
		~	11	0.1189	8.0	ņ.
		•	7.8	0.1189	0.0	Ω,
		æ	79	0.1109	ë. e	'n.
			90	0.1169	8	'n,

- - -

•

.

. ____

5

<u>.</u>

e.

																									0.3463										
																			-					0.000.0	0.000.0	0.000.0	0.000								
																								1.0049	1.0122	1.0250	1.0416								
																								4.015	2.849	2.005	0.654								
																								0.242	0.342	0.442	1.924	4ENT	AFT ROTOR	NEN	0.2450	0.3947	0.5381	0.6789	1.0839
ANGLE	0.000	4.163	3,124	704	2.086	 1./04	503	246	1.012	0.792	.687	.584	485	.391	300	.208	169	0.127	. 087	.050	034	020		0.3143	0.4383	0.5631	0.8329	YED AD HIGT	AFT 6	orp	0.2450	0.3708	0.4967	0.6225	1.0000
S.L. ANG		4.	м	•			-	1.	- -		•	•	•	•	0			•			•	.	LINES	0.371	0.497	0.623	1.000			NFU	0.2450	0.3499	0.4597	0.5717	0.9232
IUS	0.100	0 100	0.400			0.600	0.650	0.700	.750	0.800	825	850	.875	0.900	.925	.950	.960	.970	.980	.990	995	000	NUMBER OF STREAMLINES:	0.245	0.371	0.497	. 623	TUDINE ADDRESS ADDRESS	ILINES BEFUN	u 10	0.2450	0.3708	0.4967	0,6225	1.0000
RADIUS														14 0.		•	0	•	•	•	0		UMBER	-			4		TREAT	2	- 1	• •	1 M	4	- vn

•

Figure 42 : AEROEXEC output (ADJUST, continued)

5

1

156

•

جئ
-
-
. .
_
-
:: •
-
13
U
9
= 3
Đ
-
Ţ
-
آيية
ÿ
-
_
Ę.
۲

	INDUCTION CALCULATION POINTSREAR ROTOR ONTO FHD	FLD CALC. POINT	0.2000	0.3949	0.5254
	CALCULATION FOINT	STREAMTUBE NO.	•	1	~
SUBROUTINE: CPMAP.	INDUCTION	RADIUS	0.2000	0.3500	0.4500
SUBRO		z	-		1 113

ROTOR

.

÷

	4445.0	0.5254	0.6516	0.7773	0.8643	0.9995	1.1147		
	-1	2	1	ю	4	4	4		
	0.3500	n 4500	0.5500	0.6500	0.7500	0.8500	0.9500		
•	~			- 10		• •	. 10		

.....

.

۰.

•

J.

·~ ,

Figure 43: AEROEXEC output (CPN/AP, rear rotor onto front rotor)

--

:

-

.

ROTOR								
1.0000 41 ROTOR ONTO REAR	WAKE CALC. POINT 0.2000	0.3186	0.3922	0.4692	0.5487	0,6334	0.7202	0.8070
0: - F R O	STREAMTUBE NO.	. 4	2	м	ы	3	4	4
FINE: CPHAP. Wake Calcu	RADIUS	0.3500	0.4500	0.5500	0.6500	0.7500	0.8500	0.9500
SUBROUT	z.	- 2	10	4	ŝ	9	7	•

~

٠,

Figure 44: AEROEXEC output (CPMAP, front rotor onto rear rotor)

i india

Ì

l

											,			ſ.		-		-								<u></u>		
: ₩			E E E E E E E E																									
	4		E E K K K K K												··.													
	- NASA																											
	UCAP	x x x x x x																										
	1/15/92 UCAP		жакимынынынынынынынынынынынынынынынынынынын	SHIRL +0.6327	1212.04	+0.3555	+0.2668 +0.2344	+0.2075 +0.1851			SHIRL +0.7576	+0.6471 +0.5540	+0.4741	+0.3517	+0.3072	+0.2447	+0.2238			SWIRL +0.4347	+0.3385	+0.2009	+0.1520	+0.1156 +0.0838	+0.0614	+0.0474 +0.0474		
	17:J9:20 DATE:			AXIAL +1.5839							AXIAL +1.6088					5260.	.0766			AXIAL +1.3500								
e	17: J9:	2 X X X X X X X X X X	аничнични TNIS1 69 4773							ST 792							5E-01, +1	τe	62.1696	AKE							•	
	TIME		линжини 1м1	VISCOUS WAKE	127336	114891	111472	1.105447		: THIST 67.1792	VISCOUS WAKE 0.565164E-01	.540376	10-3936865.0	.481441 .46561 <u>9</u>	.45123)	1.435084 1.42601(.414873			VISCOUS	0.25796	0.24728	0.22929	0.22162	0.20832	0.202504	, ,	
	EXECCASE	ИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИН	(жикиминии 311/SIGHA2 .999148			55	Ģ		1	GHA1/SIGHA2 .963830			SE-01	LE-02 9E-01	10-3t	•••	N		516MA1/516MA2 0.937624	ISE		5E-01 6E-01	46-01	~ ~	~ 6		•	
 	NERDEXEC E	жнинининини Data .9627, VTIP Split CP Match = (CP Match = 1	ИИЛИНИИНИИНИИНИИНИИНИИНИИНИИНИИНИИНИИНИИ	CHORDWI 0.43021	0.2320	0.793344E	-0.32690	-0.10776		12 SIGH	CHORDWI	502.0	0.598	0.276	-0.807	-0.11074	-0.151			CHORDW]	0.714	0,108 -0.382	-0.779	-0.109	-0.154	-0.16741	-0.176	
	N ER.	НИНИНИИИИИИИИИИИИИИ R252INPT.DATA -2. P.PREF = .9627, 50/50 FONER SPLLT 50/50 FONER SPLLT - TCH ИНИИ - MEASURED - CP MATC - MEASURED - CP MATC - MEASURED - CP MATC	(иникинии) SIGHA2 1.089587	IS 0	32	9 K 6	123	243	i	SIGHA2 1,254313	NSH 194	718	557 472	487 152	109	951 138	902		SIGHA2 1.395600	HSV	173	768	435	535	232	510	016	
	I INTFR2	NAMANA R252IN 750 POH M NXKNN MEASURE HEASURE ICAL	кккичкики EAR RH. SIGHAl 1.008659	DOWNWASI	-0.464	-0.357793 -0.357793 -0.357793	100.309	-0.2765		SIGHA1 1.208944	DOWNHASH	-0.6647	-0.5654	-0.526	-0.4694	-0.448951 -0.433138	-0.420		SIGHA1	DOHNIN	-0.624	-0.572	165.0-	-0.470	-0.449	-0.421510	-0.414	
L		ИНИНИ INPUT IP = 56.2 52.3 - 50 52.3 - 50 52.3 - 50 7 DEG 4 DEG 4 DEG	INNNKNKNNNK OR ONTO REAR Steady tern. PHI s 66.7165 1.						TERH		() () 2	i nu	0 h				1	TER	~	-								
	PROGRAM	(инининининининининининининининининини UCAP FOR CR-2 INPÙT R252INPT HX = 0.265, J = 146, TEHP = 56.5 P/PREF = 6x5 CONFIDUATION, RUN 252.3 - 50/50 FOHER ##### FIRST ATTEHPT AT POWER MATCH ###### FRONT BLADE ANGLE = 48.67 DEG HEASURED - REAR BLADE ANGLE = 48.67 DEG HEASURED - REAR BLADE ANGLE = 48.67 DEG HEASURED - FRONT & REAR BLADES ASSUMED IDENTICAL	нимикимимикикини FRONT ROTOR ONTO REAR STEADY TERH. PIL S1 00 66.7165 1.0	MMU(STEADY) 4.68365	6.9145 8.8978	10.6347	14.553	16.146	ROTOR ONTO Steady 1	FIL 55.8089	WHU(STEADY)	12.967	14.9010 16.5417	17.932	19,946	20.657	21.609	ROTOR ONTO STEADY	PHI 49.8363	WHUCSTEADY	21,056	23,306	25.315	25.971	26.446	26.9098	26.931	
-	EFFICIENCY	INNANNAN Jaj,44 (TION, 1 (TTEMPT UNGLE = UNGLE = BLADES	RONT R	로 13		2 0			ž	2			14 14					FRONT R	00	£	21 22	53	24 25	56	27	8 7 8 7	30	
3	ER EFFI	(MMMMMMMMM FOR CR-2).265, J).265, J).265, J D.265, J BLADE AN BLADE AN BLADE AN	ИНИНИИНИИ (TOR: FR TON 0.2000		+0,406 +0,438	+0.471	+0.537	+0.635		rion 0.3500	XHBAR	+0.369	+0.402 +0 436	10.469	+0.503	+0.570	5 N		STATION 3 0.4500	KHBAR	+0.322 +0.357	+0.391	+0,426	+0.495	+0.529	+0.596	+0.633	
	PROPELLER	икииии UCAP HX = 0 6X5 CO 6X5 CO 8X8440 FRONT FRONT FRONT	жижимини WHU VECTOR: STATION 1 0.			4 4 5 5				STATION 2 0			+ + £ 0					WHU VEC	STA1 3							000		
																				I	,				I	-		

Ų

1

.

.

 WWUSTEADY DOWMANSII CHORPHSE VISC 20.4765 -0.502200 -0.641046 21.6051 -0.641046 -0.135426 21.4051 -0.641046 -0.135426 22.4745 -0.59347 -0.13546 22.4745 -0.59946 -0.199099 22.547 -0.59946 -0.199099 22.547 -0.59946 -0.199099 22.547 -0.59946 -0.199597 -0.10 22.547 -0.59946 -0.199597 -0.195597 22.547 -0.59946 -0.199597 -0.195597 22.547 -0.57284 -0.199597 -0.195597 -0.10 23.547 -0.57284 -0.195597 -0.10 23.547 -0.255466 -0.255591 -0.225679 -0.10 23.547 -0.256469 -0.255466 -0.255949 -0.10 23.547 -0.256466 -0.255494 -0.226679 -0.225677 23.9429 -0.256469 -0.256469 -0.225671 -0.259457 23.5471 -0.256466 -0.259465 -0.10 23.5471 -0.256466 -0.259465 -0.10 23.5471 -0.256466 -0.259465 -0.202365 23.5471 -0.256466 -0.256476 -0.252677 24.6615 -0.266469 -0.256469 -0.2256747 25.577 -0.256466 -0.259456 -0.293457 25.577 -0.256466 -0.259456 -0.293457 25.577 -0.256466 -0.275299 -0.202 25.577 -0.251454 -0.2197511 -0.2591254 25.577 -0.251454 -0.219751 25.577 -0.251454 -0.219751 25.577 -0.251454 -0.219754 25.577 -0.251454 -0.221772 25.449 -0.197455 25.444 -0.219751 27.249 -0.197455 27.449 -0.197455 27.449 -0.197455 27.449 -0.197455 27.449 -0.197455 27.444 -0.2512729 -0.219545 27.449 -0.197455 27.444 -0.197455 27.444 -0.219751 27.449 -0.197455 27.444 -0.2197515 27.449 -0.221475 27.444 -0.221475	HHU VECTOR: FROM Station 4 0.5500	STEADY TERH. PHI S 00 44.2483 1.	IGHA1 433139	SIGMA2 SIGMA1/SIGMA2 1.554253 D.922076	CHA2 THIST 57.1517						
31 21.0.015 0.01700 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000			DOMNIAS	NOR		AXIAL	SHIRL		•.		
33 22.7200 -0.411 36 22.4522 -0.411 36 23.1928 -0.359 36 23.1928 -0.359 36 23.1928 -0.359 36 23.1928 -0.359 36 23.1928 -0.359 40 22.6637 -0.359 40 22.6457 -0.359 41 39.5601 1.56967 41 19.939 -0.359 42 19.939 -0.256 43 19.9393 -0.256 44 19.9392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 45 19.0392 -0.256 56 17.2949 -0.256 57 <t< td=""><td></td><td></td><td>-0.502200</td><td>-0.674949E-01 -0 107607</td><td></td><td>+1,1545</td><td>+0.1070</td><td></td><td></td><td></td><td></td></t<>			-0.502200	-0.674949E-01 -0 107607		+1,1545	+0.1070				
34 22.7200 -0.411 35 23.1942 -0.372 36 23.1142 -0.372 37 23.1142 -0.372 37 23.1142 -0.372 38 23.1142 -0.372 401 R010 ReAN 15.631 10 25.641 1.5648 -0.372 41 19.633 -0.256 42 19.633 -0.26950 44 19.633 -0.256 45 19.633 -0.256 46 17.2960 -0.269 47 19.633 -0.269 47 19.633 -0.266 47 19.633 -0.266 47 19.633 -0.266 47 19.633 -0.266 47 19.633 -0.266 48 10.613 -0.266 49 16.648 -0.266 40 17.2960 -0.266 41 19.0392 -0.266 45 10.6313 -0.266 46 17.2960 -0.266 51 16.648 -0.266 53 10.1256 -0.266 54 10.2557 1.72040 <	5 16		-0.433219	-0.134326	601007.0	060T.1+	P20.01				
 25. 23. 1047 -0. 393 26. 23. 142 -0. 372 27. 23. 142 -0. 372 28. 23. 1142 -0. 372 29. 25. 663 -0. 369 70. 17. 256 71. 39. 5631 1. 56 9870 71. 39. 5631 1. 56 9870 74. 19. 9334 -0. 255 75. 19. 6339 -0. 255 75. 19. 6339 -0. 255 76. 19. 6313 -0. 265 76. 10. 6313 -0. 265 76. 10. 6313 -0. 265 76. 10. 6313 -0. 265 77419 -0. 117 77419 -0. 117 7414 -0. 117 7	ň		-0.411483	-0.155384	C.200352	+1.0465	-0.0073				
36 23:1896 -0.352 37 23:1925 -0.352 39 22:5437 -0.352 40 22:5437 -0.352 87 22:5437 -0.352 93 22:5437 -0.352 94 22:5437 -0.352 87 22:5437 -0.352 94 22:5437 -0.352 87 17:56081 1.569870 41 19:9334 -0.255 42 19:6333 -0.255 43 19:0333 -0.256 44 19:9334 -0.255 45 19:0333 -0.256 45 19:0333 -0.257 45 19:0392 -0.263 46 19:0392 -0.263 47 17:950 -0.276 48 17:2960 -0.263 49 16.6315 -0.263 40 17:2960 -0.263 40 17:2960 -0.265 51 17:2960 -0.266 51 15:0272 10:0107 51 15:0272 10:0107 52 11:7914 -0.1266 53 12:7419 -0.1177 54	ň		-0.393477	-0.172829	0.193387	7.450.1+	-0.0245				
 FIL 23.1928 -0.374 FIL 23.1928 -0.354 FIL 23.1928 -0.354 FIL 25.6637 -0.356 FIL 37.601 1.56957 FIL 37.601 1.56957 FIL 37.5601 1.56957 FIL 37.296 FIL 3615 -0.255 FIL 3615 -0.256 FIL 3616 -0.157 FIL 3616 -0.251 FIL 400 -0.251 FIL 400 -0.251 FIL 400 -0.251 FIL 456 -0.251 FIL 456 -0.251 FIL 456 -0.251 FIL 457 -0.251 FIL 457 -0.251 FIL 457 -0.251 FIL 456 FIL 456 FIL 456 FIL 456 FIL 456 FIL 456 FIL 457 FIL 456 FIL 456 FIL 457 FIL 456 FIL 456 FIL 456 FIL 456 FIL 456 FIL 457 FIL 456 FIL	M		-0.38237A	-0.184587	0 IR7090	41 01EX					
32. 5.1.172 -0572 39. 22. 1652 -0572 40 22. 5637 -0572 41 STEADY TERN SIGHAL 81. 56010 NTO REAR SIGHAL 81. 56011 15.60970 NU 41 19.9334 -0572 42 19.9334 -0572 43 19.9334 -0.255 44 19.9334 -0.256 45 19.6339 -0.263 46 19.6339 -0.263 47 10.3323 -0.263 46 19.6339 -0.263 47 10.3323 -0.263 48 17.2960 -0.263 49 16.6615 -0.263 49 16.6615 -0.263 51 17.2960 -0.263 54 17.2960 -0.265 55 10.6010 -0.261 55 10.1254 -0.117 55 10.1254 -0.177 55 10.2557 1.27419 55 10.2557 1.27419 55 10.2556 -0.2515 55 10.2556 -0.2515 56 10.2566 -0.2515 56	1 10		- TAAT		772101 V	111111111					
 23. 1142 - 0. 359 39 22. 8652 - 0. 369 40 22. 8657 - 0. 379 50 29. 5601 1. 569670 HU MHU (STEADY) DOMNH 41 19, 933 42 19, 6339 - 0. 256 44 19, 932 - 0. 256 45 19, 6339 - 0. 256 46 19, 6315 - 0. 256 47 19, 932 - 0. 256 48 19, 032 - 0. 256 49 16, 6315 - 0. 276 49 10, 6315 - 0. 276 49 10, 6315 - 0. 276 49 11, 7940 - 0. 276 49 11, 7940 - 0. 276 50 11, 7940 - 0. 276 51 14, 2691 - 0. 276 52 14, 2004 REAR 53 13, 5146 - 0. 117 54 11, 7914 - 0. 215 55 11, 7914 - 0. 215 56 10, 0004 REAR 57 10, 1254 - 0. 117 56 10, 0004 REAR 57 10, 1254 - 0. 117 56 11, 7914 - 0. 117 57 10, 1254 - 0. 117 58 9, 35935 - 0. 2514 54 11, 7914 - 0. 117 55 11, 7914 - 0. 2157 56 11, 7914 - 0. 117 57 10, 1254 - 0. 117 58 9, 35935 - 0. 2514 59 11, 7914 - 0. 117 51 14, 2691 - 0. 2157 52 12, 7419 - 0. 117 53 13, 5146 - 0. 117 54 12, 7419 - 0. 117 55 11, 7914 - 0. 117 56 11, 7914 - 0. 2157 57 10, 1254 - 0. 117 56 11, 2914 - 0. 2157 57 10, 1254 - 0. 2157 58 11, 27419 - 0. 117 50 11, 2124 - 0. 2157 51 12, 7419 - 0. 117 52 1434 1. 879557 54 11, 27949 - 0. 2157 55 11, 6296 - 0. 2157 56 11, 6296 - 0. 2157 57 10, 1254 - 0. 2157 58 10, 6012 - 0. 2157 59 10, 6017 - 0. 2157 50 11, 6296 - 0. 2157 51 14, 2744 1. 879557 51 14, 2744 1. 187957 54 11, 6296 - 0. 2016 54 10, 6019 - 0. 2157 55 11, 6294 - 0. 2016 56 21, 10, 2017 - 0. 2016 56 21, 10, 5649 - 0. 1201 56 310, 5649 - 0			0007/0'A-	0/00/1°0-	10070T.N	09nn'T+	-0.0465				
 22.4652 -0.352 72.4653 -0.372 8TEADY TERH. RHI STEADY TERH. RHI STEADY TERH. RHI STEADY DOWNO REAR 39.55641 1.569570 41 19.9333 -0.255 45 19.4208 -0.255 46 19.3313 -0.255 46 19.3313 -0.255 46 19.3313 -0.256 47 17.9382 -0.256 48 117.9382 -0.256 49 16.6315 -0.255 49 16.6315 -0.255 40 177.256 -0.275 41 19.0325 -0.256 40 177.256 -0.275 41 19.0310 -0.996 40 11.7946 -0.177 41 19.155 -0.255 44 19.155 -0.2515 46 11.7914 -0.12749 47 11.7949 -0.1275 48 11.7914 -0.1275 49 16.6315 -0.2515 40 11.7914 -0.1275 41 11.7949 -0.1275 44 11.7956 -0.2515 45 11.7914 -0.1275 46 0.12741 0.0000 47 11.7949 -0.1275 46 0.12741 0.0000 47 11.7949 -0.1275 46 0.1264 -0.2515 47 12.9400 -0.2515 48 11.7914 -0.2515 49 12.5514 1.079557 40 12.9613 1.079557 41 12.9006 -0.2513 41 12.9006 -0.2513 44 12.9006 -0.2513 45 11.6296 -0.2513 46 0.5649 -0.1217 47 9557 -0.1216 46 0.5649 -0.1217 47 9557 -0.1216 48 0.5649 -0.1217 	ñÌ		-0.569986	-0.195587	0.176127	•	-0.0495				
4.0 Z2.5437 -0372 FRONT READ TERM IS FEAD TERM ISTEAD TERM ISTEAD TERM ISTEAD TERM ISTEAD TO DOMINI VIU (STEAD TO DOMINI VIU (STEAD TO DOMINI VIU (STEAD TO DOMINI VI) SIGHAL 4.1 19.9334 -0372 4.2 19.9334 -0255 4.2 19.9334 -0255 4.2 19.9334 -0255 4.2 19.9334 -0255 4.2 19.9335 -0255 4.2 19.0392 -0255 4.3 19.0392 -0265 4.4 19.0392 -0265 4.5 19.0392 -0265 4.5 19.0392 -0265 4.5 19.6313 -0265 4.6 17.2960 -0265 4.6 17.2960 -0265 4.6 17.2960 -0265 4.6 17.2960 -0266 5.6 19.6315 -0266 5.7 1.7.2960 -0266 5.8 1.7.2960 -0266 5.8 1.7.2960 -0266 5.8 1.7.2960 -0266 5.8 1.7.2960 -0266 5.9 1.7.2940 -0117 5.8 1.7.719 -0117			-0.369981	-0.195592	0.171315	•	-0.0455				
FRONT RETOR ONTO REAR STEADY TERN. FILL FILL FILL FILL	ē	22.5437	-0.372284	-0.193362		+1.0153	-0,0384				
500 39.5681 1.56950 HU HMU(STEADY) DOHNH 41 19.9334 -0.256 42 19.9334 -0.256 43 19.0323 -0.256 44 19.0323 -0.256 45 19.0323 -0.256 45 19.0326 -0.256 45 19.0326 -0.256 46 10.3813 -0.256 47 17.2960 -0.273 48 17.2960 -0.273 49 16.6315 -0.273 40 17.2960 -0.273 41 STEADY FRMA 51 15.0272 -0.117 51 15.0272 -0.117 51 15.0272 -0.117 52 14.27419 -0.117 53 13.5146 -0.117 54 12.7419 -0.117 55 11.7914 -0.117 55 11.7914 -0.117 56 11.7914 -0.1274 57 10.1254 -0.261 56 11.7914 -0.1217 57 10.1254 -0.261 56 11.7914 -0.1261 57	FROM	ROTOR ONTO	EAR								
FIA JUNAL HU HPU (STEADY) DOWNA 41 19,9339 -0.255 42 19,6339 -0.255 43 19,6339 -0.255 44 19,0332 -0.255 45 19,6335 -0.255 46 19,0332 -0.255 47 17,9382 -0.256 49 16,515 -0.255 49 16,515 -0.256 49 16,515 -0.256 49 16,515 -0.266 49 16,515 -0.266 49 16,515 -0.266 49 16,688 -0.266 50 16,688 -0.266 51 16,688 -0.266 52 16,688 -0.266 51 17,7949 -0.1173 52 14,2691 -0.196 52 13,5146 -0.1173 52 13,5146 -0.1275 52 13,5146 -0.1275 53 13,5146 -0.1275 54 12,7419 -0.1275 55 11,7914 -0.1275 55 11,7914 -0.1275 56 10.6820											
HU HMU (STEADY) DOMMIN 42 19, 933 -0.255 43 19, 0333 -0.255 44 19, 0333 -0.255 45 19, 0333 -0.255 45 19, 0333 -0.255 45 19, 0333 -0.256 45 19, 0332 -0.256 46 19, 0332 -0.266 47 17, 2962 -0.279 49 17, 2962 -0.296 49 17, 2940 -0.296 40 17, 2940 -0.296 51 15, 0583 -0.296 51 15, 0522 -0.296 51 15, 0272 1, 720490 51 15, 0272 1, 720490 51 15, 0272 1, 720490 52 11, 7914 -0.197 52 11, 7914 -0.197 53 13, 5146 -0.197 54 12, 7419 -0.197 55 10, 10, 1254 -0.2531 56 10, 2024 -0.2531 57 10, 1254 -0.2531 56 11, 7914 -0.2531 57 10, 1254 -0.2531 58 10, 1254 <td< td=""><td>500</td><td>7HL 39.5681</td><td>569870</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	500	7HL 39.5681	569870								
HU HTU HTU (STEADY) DOWNIN 41 19,0339 -0.255 45 19,0339 -0.255 45 19,0339 -0.255 46 19,0339 -0.255 47 17,9382 -0.255 48 17,9382 -0.255 49 16,515 -0.255 49 16,515 -0.265 49 16,515 -0.265 49 16,515 -0.265 49 16,515 -0.265 49 16,515 -0.266 50 16,6686 -0.265 51 16,686 -0.266 51 11,7949 -0.157 52 14,2691 -0.196 51 15,6272 -0.197 52 14,2691 -0.197 52 13,5146 -0.1177 52 13,5146 -0.157 52 13,5146 -0.157 53 13,5146 -0.157 54 15,025 -0.157 55 11,7916 -0.157 56 10,0304 -0.261 57 10,0304 -0.261 56 10,0304 -0.251 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
41 19, 9334 -0.255 42 19, 6339 -0.255 45 10.5013 -0.255 45 10.5013 -0.265 46 10.5013 -0.265 47 17, 2960 -0.265 48 10.5013 -0.265 49 17, 2960 -0.265 49 17, 2960 -0.265 49 17, 2960 -0.205 49 17, 2960 -0.205 40 17, 2960 -0.205 40 17, 2960 -0.205 50 16, 6636 -0.206 51 16, 0680 -0.100 52 14, 2671 17, 20490 53 13, 5146 -0.1173 54 10, 1254 -0.1173 55 10, 1254 -0.1173 56 10, 2557 10, 2251 57 10, 1254 -0.1173 55 10, 255 -0.251 56 10, 255 -0.251 57 10, 1254 -0.251 56 11, 296 -0.251 60 6, 10004 -0.251 61 12, 206 -0.251 61 12, 206 -0.251				CHORDWISE	VISCOUS WAKE	AXIAL	SHIRL				
42 19, 6339 -0.256 45 19, 0322 -0.253 45 19, 0322 -0.263 46 10.3813 -0.263 47 17, 2968 -0.263 48 17, 2968 -0.263 49 17, 2968 -0.263 40 17, 2968 -0.263 47 17, 2968 -0.276 50 17, 2968 -0.270 51 16, 6315 -0.270 51 15 14 51 15, 2017 1, 20490 51 15, 2027 -0.2018 52 13, 5146 -0.117 53 13, 5146 -0.117 54 12, 7419 -0.117 55 11, 7914 -0.215 56 10, 6004 -0.251 57 10, 1254 -0.157 56 10, 6004 -0.251 56 11, 7914 -0.157 57 10, 1254 -0.251 56 10, 6004 -0.251 60 9, 35535 -0.251 60 9, 35535 -0.251 61 12, 7419 -0.151 62 10, 6004 -0.251			-0.255360	-0.237413	0.135008	+9.9591	-0.1705				
43 19, 4208 -0.255 44 19, 0332 -0.265 45 10, 5813 -0.265 49 17, 2960 -0.265 49 17, 2950 -0.265 49 17, 2950 -0.265 49 17, 2950 -0.265 49 17, 2950 -0.265 49 17, 2950 -0.265 50 16, 0688 -0.265 50 16, 0688 -0.266 51 14, 2691 1, 720490 52 14, 2691 1, 720490 53 13, 5146 -0.1173 54 12, 7419 -0.1373 55 11, 7914 -0.1373 54 12, 7419 -0.1373 55 11, 7914 -0.1373 55 11, 7914 -0.1373 56 10, 0810 -0.1373 57 10, 1254 -0.1373 58 11, 7914 -0.1273 59 12, 7419 -0.1373 51 13, 5146 -0.1373 52 11, 7914 -0.1373 53 13, 5146 -0.1373 54 12, 7419 -0.1373 55 10, 2557			-0.256166	-0.236751	0.130692	+0.9634	-0.1648				
44 19,0392 -0.253 45 10.5813 -0.263 47 17,9362 -0.263 49 16.6315 -0.285 50 16.6635 -0.296 50 16.6635 -0.296 50 16.6635 -0.296 50 16.6635 -0.296 50 16.6635 -0.296 51 15.5371 1.72940 52 13.5146 -0.117 52 13.5146 -0.117 53 13.5146 -0.117 54 12.7419 -0.117 55 11.7916 -0.117 56 12.7419 -0.117 57 10.1254 -0.117 55 11.7916 -0.117 56 10.6014 -0.217 57 10.1254 -0.117 58 10.5257 -0.215 59 10.1254 -0.127 51 53.55 -0.251 56 11.7916 -0.127 57 10.1254 -0.251 50 6.06820 -0.251 51 12.7419 -0.127 52 10.1254 -0.251 53 <t< td=""><td></td><td></td><td>-0.255531</td><td>-0.237272</td><td>0.1261.03</td><td>10,9655</td><td>-0.1616</td><td></td><td></td><td></td><td></td></t<>			-0.255531	-0.237272	0.1261.03	10,9655	-0.1616				
45 10.513 -0.253 45 17.29382 -0.263 49 17.2940 -0.293 50 17.2940 -0.293 610 55 -0.2949 FRONT 87EADY -0.294 FRONT 87EADY 17.29490 HU 87EADY 17.29490 HU 87EADY 17.29490 HU 87EADY 17.29490 PHI 17.714 -0.197 53 13.5146 -0.197 53 13.5146 -0.197 54 12.7419 -0.197 55 10.0810 -0.215 56 10.0810 -0.197 57 10.1254 -0.197 56 10.0810 -0.215 57 10.1254 -0.197 58 9.35935 -0.215 59 9.35935 -0.251 60 8.10004 -0.251 61 8.1004 -0.251 62 9.35935 -0.251 63 12.540 10.754 64 9.35935 -0.251 60 8.1004 -0.251 61 12.916 -0.251 62			-0.2595AX	-0 233962	0 1210ER	0220 04	1522				
46 10.5013 -0.265 47 17.9382 -0.265 48 17.7260 -0.205 50 16.6686 -0.205 50 16.6686 -0.205 50 16.6686 -0.205 80 16.6686 -0.205 51 16.6686 -0.206 51 17.7260 -0.206 52 11.720490 0.000 51 15.6271 1.720490 51 15.6272 -0.1173 52 11.7914 -0.1173 53 13.5146 -0.1173 54 13.5146 -0.1173 55 11.7914 -0.1375 55 11.7914 -0.1375 56 10.0810 -0.1375 57 10.1254 -0.1375 58 0.1264 -0.2640 60 8.10004 -0.251 61 12.9004 -0.251 61 12.9004 -0.251 61 12.9004 -0.251 61 12.9004 -0.251 62 0.56949 -0.251 63 10.5897 -0.251 64 0.56949 -0.127 65							C767.0-				
47 17.9362 -0.253 47 17.9363 -0.285 59 16.6636 -0.203 50 16.0666 -0.203 51 16.0666 -0.203 60 16.0666 -0.203 71 35.5371 1.720490 HU MMU(STEADY) DOWIM 52 14.2691 -0.117 52 13.5146 -0.1173 53 13.5146 -0.1173 54 12.7419 -0.1173 55 10.8010 -0.1173 54 12.7419 -0.1173 55 10.8010 -0.1793 56 10.8010 -0.2173 57 10.1254 -0.1773 57 10.1254 -0.1773 58 9.56325 -0.2157 59 8.66325 -0.2157 51 10.1254 -0.1273 51 12.7419 -0.1273 53 12.7419 -0.1273 54 10.1254 -0.2557 54 11.2364 -0.2614 56 11.2906 -0.2614 60 8.7504 -0.2614 61 12.7913 -0.2612 <tr< td=""><td></td><td></td><td>10/007.0-</td><td></td><td>T678TT"A</td><td>2196.04</td><td>-0.1452</td><td></td><td></td><td></td><td></td></tr<>			10/007.0-		T678TT"A	2196.04	-0.1452				
47 17.9382 -0.273 49 17.9382 -0.276 50 16.6315 -0.296 50 16.6315 -0.296 51 5.5371 1.720490 71 71.720490 -0.296 51 15.6272 1.720490 51 15.6272 -0.197 52 15.6272 -0.117 52 15.72419 -0.117 53 12.7914 -0.117 54 12.7914 -0.117 55 10.0810 -0.117 56 10.1254 -0.117 57 10.1254 -0.127 58 9.35935 -0.127 59 12.7914 -0.127 51 10.0810 -0.127 53 10.1254 -0.127 54 1.27914 -0.127 55 10.1254 -0.127 56 10.0810 0.127 57 10.1254 -0.251 60 32.1434 1.679557 61 12.9006 -0.251 62 12.6006 -0.251 64 9.65131 -0.127 65 9.05649 -0.127 65 <td></td> <td></td> <td>604997.n-</td> <td>-0.22826/</td> <td>0.114749</td> <td>+0.9569</td> <td>-0.1364</td> <td></td> <td></td> <td></td> <td></td>			604997.n-	-0.22826/	0.114749	+0.9569	-0.1364				
48 17.2960 -0.285 50 16.6315 -0.293 50 16.0688 -0.293 51 16.0688 -0.293 51 17.20490 -0.295 60 35.5371 1.720490 51 15.0272 -0.996 52 14.2691 -0.996 53 13.5146 -0.1173 54 12.7419 -0.1375 55 11.7914 -0.1375 54 12.7419 -0.1375 55 11.7914 -0.1375 56 12.7419 -0.1375 57 13.5135 -0.1375 58 12.7419 -0.1375 59 12.7419 -0.1375 50 12.7419 -0.1375 51 13.51946 -0.1375 52 12.7419 -0.1275 53 12.7419 -0.2316 54 12.7419 -0.2316 55 11.7714 -0.240 60 8.10004 -0.2517 61 12.9004 -0.240 61 12.9004 -0.2517 61 12.9004 -0.2513 62 11.6296 -0.2517			-0.273299	-0.222670	0.111586	+0.9978	-0.1243				
49 16.6515 -0.296 50 16.6515 -0.296 FRONT REAL STEADY TERN. FTANT STEADY TERN. FMIL STEADY TERN. FNIL STEADY TERN. FNUL STEADY TERN. FNUL STEADY TERN. FNUL STEADY 10.000000 51 15.5571 1.720490 52 13.5146 -0.117 53 13.5146 -0.117 54 12.7419 -0.117 55 11.7914 -0.157 56 10.0810 -0.157 57 10.1254 -0.2157 58 10.1254 -0.2157 59 8.60820 -0.2514 60 8.10004 FRANY 60 8.10004 FRANY 61 12.7434 1.879557 62 8.56421 1.8795657 63 10.5897 -0.2646 64 8.75049 -0.2612 65			-0.285291	-0.212014	0.108673	+1.0151	-0.1052				
50 16.0686 -0.300 FRONT RETNY STERNY TERN, FIL STERNY TERN, FUL STERNY TERN, 51 1.720490 51 1.720490 51 1.720490 51 1.720490 51 15.0272 52 14.2691 53 13.5146 54 12.7419 55 10.0010 55 10.1254 56 10.0010 57 10.1254 58 9.35935 59 6.0820 60 8.10004 61 32.143 7 10.1254 61 32.143 61 12.9006 61 12.9006 62 1.6599 63 10.5697 64 9.65131 65 9.05649 66 9.05649 66 9.05649 66 9.05649			-0.298102	-0.202285	0.105973	+1.0334	-0.0853				
FRONT ROTOR ONTO REAR STEADY TERH. STEADY TERH. STEADY FILI STEADY FILI STEADY STTT STEADY STEADY STEADY STEADY FRONT ROTOR ONTO REAR STEADY STEADY STEADY HU WHUISTEADY BL STA STA <t< td=""><td></td><td></td><td>-0.308666</td><td>-0.193603</td><td>0.103464</td><td>+1.0487</td><td>-0.0685</td><td></td><td></td><td></td><td></td></t<>			-0.308666	-0.193603	0.103464	+1.0487	-0.0685				
STEADY TERN. STEADY TERN. PHI SIGHAI SI SIGHAI SIGHAI SIGHAI SI	FROM	ROTOR ONTO	EAR								
PHI SIGHAL 500 35.5371 1.720490 51 15.0272 -0.916 52 14.2691 -0.916 53 13.5146 -0.117 54 12.7419 -0.115 55 11.7914 -0.1157 56 10.0815 -0.117 57 11.7914 -0.1177 56 10.0815 -0.1177 57 10.1254 -0.177 58 9.35935 -0.2561 59 8.10094 -0.2561 60 8.10094 -0.2561 60 8.10094 -0.2561 60 8.10064 -0.2561 60 8.10064 -0.2561 61 12.906 -0.261 62 12.506 -0.251 63 10.5897 -0.251 64 8.7509 -0.251 65 8.7509 -0.251 66 8.7509 -0.251 66		STEADY TE									
500 35.5371 1.720490 HU HMU(STEADY) DOWNM 51 15.0272 -0.0187 52 14.2691 -0.0117 53 13.5146 -0.1177 54 12.7419 -0.1177 55 10.0810 -0.177 56 10.0810 -0.177 56 10.1255 -0.177 57 10.1255 -0.127 58 9.35935 -0.127 59 8.60820 -0.127 59 8.10004 -0.231 60 8.10004 -0.231 61 32.1434 1.679557 HU HU(STEADY) DOMMU 61 12.9006 -0.2513 61 12.9006 -0.2513 62 11.6296 -0.2513 63 0.5597 -0.1216 64 9.65131 -0.1216 65 8.05949 -0.1216 65 8.05949 -0.1216 65 8.05949 -0.1216 65 8.05949 -0.1216		IHA		A2							
HU WYU(STEADY) DOWN 52 15.0272 -0.010 53 15.1546 -0.1177 54 12.7419 -0.1157 55 10.0810 -0.179 55 10.0810 -0.179 56 10.1254 -0.197 58 9.35935 -0.197 59 9.56820 -0.231 710 810004 -0.2310 61 12.9006 -0.2511 711 81GHA 72.1434 1.679557 61 12.9006 -0.2512 61 12.9006 -0.2512 62 11.6296 -0.2512 63 0.05697 -0.1216 64 9.65131 -0.1216 65 0.05649 -0.1216 65 0.05649 -0.1216 66 0.05649 -0.1216 66 0.05649 -0.1216 66 0.05649 -0.1216 65	200	35.5371		913	48.5225						
51 15.0272 -0.010 53 14.2691 -0.117 54 12.7614 -0.117 55 12.7614 -0.117 55 12.7614 -0.117 55 10.0810 -0.173 56 10.1264 -0.173 57 10.1264 -0.173 58 9.56925 -0.197 59 6.6820 -0.231 60 8.10004 -0.264 8.10004 ATC RH SIGHAL 8.10004 32.143 1.679557 HU WHUISTEADY) DOMNU 61 12.9006 -0.2547 62 11.6296 -0.2647 63 10.5897 -0.120 64 9.65131 -0.120 65 9.05649 -0.120 65 9.05649 -0.121 65 9.05649 -0.121 65 9.05649 -0.121 65 9.05649 -0.121 65 9.05649 -0.121 65 9.05649 -0.121 65 9.05649 -0.121 65 9.05649 -0.121 65 9.05649 -0.121 <td< td=""><td></td><td></td><td></td><td>CHORDWISE</td><td>VISCOUP WAKE</td><td>AXIAL</td><td>SHTRL</td><td></td><td></td><td></td><td></td></td<>				CHORDWISE	VISCOUP WAKE	AXIAL	SHTRL				
52 14, 2691 -0.996. 53 13.5146 -0.1135 54 10.0810 -0.135 55 10.0810 -0.135 56 10.1256 -0.137 57 10.1256 -0.137 58 9.53595 -0.137 59 10.1256 -0.137 57 10.1256 -0.137 58 9.53595 -0.231 60 8.10004 -0.251 60 8.10004 -0.2640 61 12.9006 -0.2640 61 12.9006 -0.261 61 12.9006 -0.261 61 12.9006 -0.261 61 12.9006 -0.261 61 12.9006 -0.261 61 12.9006 -0.261 61 12.9006 -0.261 62 11.6296 -0.261 64 9.65131 -0.121 65 9.05349 -0.121 66 0.05849 -0.121 66 0.05849 -0.121 66 0.05849 -0.121				'	0.940694E-D2	+0.8919	-0.2335				
53 13.5146 -0.117 54 12.7419 -0.135 55 10.0810 -0.135 56 10.0810 -0.157 58 9.35935 -0.197 59 9.35935 -0.197 59 9.35935 -0.2561 60 8.10064 -0.2561 60 8.10064 -0.2561 60 8.10064 -0.2561 60 8.10064 -0.2561 61 32.1434 1.879557 62 11.6296 -0.2612 63 10.5897 -0.2612 64 8.5513 -0.1204 65 9.5513 -0.1204 65 9.5513 -0.1212 66 8.75049 -0.1212 66 8.75049 -0.1212 66 8.75049 -0.1212 66 8.75049 -0.1212 66 8.75049 -0.1212			-0.996201E-		0 91247.55-02	4 D 01 X B	1110 -				
54 12.7419 -0.175 55 10.8810 -0.175 56 10.1254 -0.175 58 9.35935 -0.215 59 10.1254 -0.175 59 8.66620 -0.251 60 8.10004 -0.251 60 8.10004 -0.251 61 8.10004 -0.240 8.1000 0.0004 -0.240 8.1000 0.1000 -0.240 8.1000 0.1000 0.251 9.11.2596 -0.251 -0.251 61 12.9006 -0.251 62 11.6296 -0.251 65 9.65131 -0.120 65 9.65131 -0.120 65 9.65131 -0.121 66 0.0569 -0.121 65 9.65131 -0.121 66 0.0569 -0.121 66 0.0569 -0.121 67 0.0569 -0.121	ű		-0.117311		0.8865 45-02	+0 9357	-0 1888				
53 11.7914 -0.1575 56 10.0610 -0.177 56 10.1254 -0.177 58 9.5595 -0.177 59 6.6862 -0.173 60 6.10004 -0.231 60 6.10004 -0.231 60 6.10004 -0.244 75 9.68620 -0.244 700 8.10004 -0.244 711 711 713 711 713 1.879557 711 22.1434 1.879557 711 22.1434 1.879557 711 22.1434 1.879557 711 22.1434 1.879557 711 22.1434 1.879557 61 12.9066 -0.2512 62 11.6296 -0.2512 64 0.5697 -0.1216 65 0.56049 -0.1216 66 0.56049 -0.1216 66 0.56049 -0.1216 65 0.56049 -0.1216 66 0.56049 -0.1212	í										
 53 11.771 54 10.0810 57 10.1254 58 9.35935 59 0.6020 60 8.10004 6.00215 6.00215 6.0024 6.02511 6.1010 7.1434 1.87557 1.2304 1.2304	ה נ		TODECT.D-	CCTCC7.0-	0.052/50E-02		-0.1660				
 5. 10.6810 -0.17% 5. 10.1256 -0.197 5. 9.35935 -0.251 5. 9.35935 -0.251 5. 9.6820 -0.254/ 6. 0.246/ 6. 0.246/ 6. 12.906 6. 12.906 6. 12.906 6. 12.906 6. 12.906 6. 12.51 6. 12.51 6. 0.5649 -0.121 	1		9/8/51.0-		0.84/39E-02		-0.13/9				
57 10.1256 -0.177 58 9.35935 -0.2315 59 8.68820 -0.2315 60 8.10004 -0.2444 876407 8.1434 1.879557 HU WHU(STEADY) DOWNU 61 12.9006 -0.2512 61 12.9006 -0.2513 61 12.9006 -0.2513 61 12.9006 -0.2513 62 11.6296 -0.2513 63 10.5897 -0.1214 64 9.65131 -0.1214 65 0.75049 -0.1214 66 0.05849 -0.1214 65 0.05849 -0.1214			-0.1/9555	-0.2219/2	0.320318E-0		-0.1109				
58 9.35935 -0.215 59 8.6882 -0.231 60 8.1004 -0.241 60 8.1004 -0.241 60 8.1004 -0.241 61 2154 1.241 81 81 0.1004 81 81 0.104 81 81 1.414 81 81 1.414 81 81 1.434 81 11.2.906 -0.251 61 12.906 -0.251 62 10.5897 -0.1007 63 10.5897 -0.1206 64 9.65131 -0.1206 65 0.05849 -0.1212 66 0.05849 -0.121 66 0.05849 -0.121 66 0.05849 -0.121			-0.197155	-0.209325		+1.0341	-0.0886				
59 0.60020 -0.251 60 0.10004 -0.24/0 FRONT ROTOR ONTO REAR STEADY TEHN. STEADY TEHN. SIGHAL 00 32.1434 1.079557 HU WHUISTEADY) DOWNU 61 12.9006 -0.251 62 11.6296 -0.251 63 10.5697 -0.789 65 0.5594 -0.120 65 0.55949 -0.121 65 0.55949 -0.121 65 0.55949 -0.121 65 0.55949 -0.121 65 0.55949 -0.121 65 0.55949 -0.121 65 0.55949 -0.121			-0.215220	-0.196492		+1.0564	-0,0659				
60 6.10004 -0.244 FRONT ROTOR ONTO REAR STEADY TERM STEADY TERM FHI PHI STEADY PHI STEADY PHI STEADY BUL WHUSTEADY BU WHUSTEADY BU SZ.1434 J12.9006 -0.251 G1 12.9006 G3 10.5897 G4 9.65131 G5 0.75049 G5 0.75049 G6 0.05049 G6 0.05049 G6 0.05049 G6 0.05049			-0.231034	-0.105258	J. 766919E-02	+1.0759	-0.0461				
FRONT ROTOR ONTO REAR STEADY TEAH. PHI SICHAL SICHAL 32.1434 1.879557 HU WHU(STEADY) DOMNN 61 12.9006 -0.551 62 11.6296 -0.547 63 10.5897 -0.1200 64 9.65131 -0.1007 66 8.05849 -0.1377 66 8.05849 -0.1377			-0.24480	-0.175422	0.751298E-02		-0.0287				•••
FILADY TERN. STEADY TERN. FMI SICHAL SIGA 1.879557 HU WHU(STEADY) DOWNN 61 12.9006 -0.2511 62 11.6296 -0.2511 63 10.5897 -0.7890 64 9.65131 -0.1021 65 8.05849 -0.1212 66 8.05849 -0.1212 FIGURE 45 :		ROTOR ONTO	EAR								
FHI SIGHAL FHI SIGHAL HU WHU(STEADY) DOWNU 61 12.9006 -0.251 62 11.6296 -0.251 63 10.5897 -0.251 64 9.65131 -0.120 65 9.05849 -0.121 66 0.05849 -0.1377		STEADY	RH.								
Figure 45 - 1434 1.879557 HU WHU(STEADY) DOWNA 61 12.9066 - 0.2512 62 11.6296 - 0.2512 63 10.5897 - 0.789 64 9.65131 - 0.1224 65 9.05849 - 0.1377 Figure 45 :		PHT	TGHAT	•							
HU HHUISTEADY) DOWNN 61 12.9006 -0.2511 62 11.6296 -0.2577 63 10.5897 -0.7899 64 9.65131 -0.1001 65 8.75049 -0.1211 66 8.05849 -0.1377	9500	32.1434	e.	57							. i
Figure 45 :				33100000	ITTERNE ILLE		107110				
Figure 45 :		12 9006	-0.251277F-('	ALSUUUS TANE	401.4816	-N 2613 -n 2613				
63 10.5897 -0.7891 64 9.65131 -0.1201 65 8.75049 -0.1214 66 9.05849 -0.1377 66 9.05849 -0.1377 67 9.05849 -0.1377 66 9.05849 -0.1377			-0.54722AF-0		0 9606765-02	9910 0+	-1 2076				
64 9.65131 -0.1200 65 0.75049 -0.1210 66 0.05049 -0.1377 Figure 45 :	1 1		J-195USV2 V-		0 9404146-02		-0 1797				•
66 8.05849 -0.1377 66 8.05849 -0.1377 Figure 45 :			-0 100731		0 00127/C 00						
Figure 45 :					30-36/CT34.0		1+51·51				
Figure 45 :			(00737'n_	6 F M C 6 F 4 -	VA-UTHECAC'A	70710 I.	10CT.0-				
••	9 9	Ð	-0.15//22	216291.0-	0.886510E-02	+1.0149	-0.1122				
••											
		Figure	••	3OEXEC outpi	ut (steady W	'MU vec	or calculatic	n, continu	ed)		
		i						, and a second			
	#				_						

. .

160

۲ Ş - -

-0.0957	-0.0767	-0.0586	-0.0454					SHIRL	-0.1496	-0.1365	-0.1227	-0.1071	-0.0932	-0.0837	-0.0766	-0.0683	-0.0591	-0.0506
	+).0515	¢1.0703	+1.0038					AXIAL	+0.9629	+0.9772	+0.9922	+1.0092	+1.0244	+1.0346	+1.0424	+1.0514	+1.0615	+1.0707
0.8704946-02	20-3116668.0	0.84%694E-02	0.827179E-02				42.5927	VISCOUS WAKE	0.987998E-02	0.974601E-02	0.961734E-02	0.949361E-02	0.937453E-02	0.925901E-02	0.914919E-02	0.904243E-02	0.893932E-02	0.883964E-02
-0.173323	C66797.0-	-0.153092	-0.145949			2 SIGHAL/SIGHA2		CHORDHISE	-0.168252	-0.161305	-0.154017	-0.145803	-0.138406	-0.133444	-0.129699	-0.125320	-0.120442	-0.115966
-0.152106	CCODET . A.	8/10110-	-0.195908	AR	H.	SIGHAI SIGHA2	2.044179 2.205543	DOWNHASH	-0.573701E-01	-0.698231E-01	-0.828877E-01	-0.976118E-01	-0.110871	-0.119765	-0.126460	-0.134320	-0.143073	-0.151096
7.43804		10550.0	5.55129	ROTOR ONTO REAR	STEADY TERM	THE	6	WHU(STEADY)	7.76135	7.21802	6.64858	6.00784	5.43048	5.04148	4.74665	4.40312	4.02114	3.67044
67 67	3	5	20	FRONT			00	£	1	72	73	74	75	76	11	78	79	80
40.638 40.640		100.01	+0.703	VECTOR: FRONI		STATION	0056.0		+0.586	+0.600	+0,615	+0.629	+0.643	+0.658	+0.672	+0.687	+0.701	+0.715
10		* 0	0			5	-	HBAR	10	02	£0	90	05	90	07	80	60	10

τ.,

Figure 45 : AEROEXEC output (steady WMU vector calculation, continued)

l

I

UNSTEADY: FRONT ROTOR ON REAR ROTOR IARMONIC OF BLADE PASS FREQUENCY: 1 NUMBER OF BLADES: 6 HARMONIC OF SHAFT FREQUENCY: 6 9-ORDER: 12.0326305

WHU VECTOR:

HAKE

VISCOUS

0.013 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.010 0.010

-0.032) -0.025) -0.151) -0.156) -0.128) -0.090) -0.027) -0.006) 0.008) 0.016) 0.016) -0.015) -0.005) 0.005) 0.005) -0.002) -0.002) 0.018) 0.018) 0.039) 0.048) -0.207) -0.134) -0.069) -0.055) -0.381) -0.344) -0.281) CHORDWISE CHORDWISE CHORDWISE 0,170, 0.065, -0.002, -0.040, 0.034, 0.007, -0.004, -0.008, -0.009, -0.058, -0.027 -0.091, -0.122, 0.222, .008, .005, .003, .001, .001, .050. .039, .027, 0.076, -0.066, -0.015, .116, .093, **•** • • ę ę 0.006) 0.012) 0.019) 0.024) 0.024) 0.011) -0.001) -0.008) 0.021) 0.058) 0.104) 0.149) 0.149) 0.149) 0.149) 0.149) 0.146) 0.089) 0.089) 0.089) 0.0892) 0.754) 0.040) 0.103) 0.172) 0.237) 0.258) 0.229) 0.229) 0.229) 0.229) 0.229) 0.2723) DOHNWASH DOWNWASH HSAWNWOD -0.005, 0.006, 0.018, 0.029, 0.037, -0.100, -0.099, -0.011, -0.041, 0.008, 0.091, .530, -0.010. . 043, .035, 0.020, 0.020, 0.169, 0.358, 0.558, 0.737, 0.062, .0.061, 0.019, 344, 0.764, -0.933) -0.799) -0.873) -0.873) -1.153) -1.153) -1.153) -0.862) -0.862) -0.862) -0.652] 2.354, -14.238) 5.930, -10.399) 6.739, -5.688) 4.448, -1.864) -0.239, -0.826) -16.303) -24.457) -11.629) -23.534) .365) .666) .327) -7.026) -5.683) 333) 418) -9.844) -2.709, -16.1131 -3.9291 ., -16... +67.179 WHU +62.170 MHU +69.677 TWIST NHA THIST -0.269, -1.682, -3.425, 0.235, 3.638, 0.881, THIST .639, 1.064, .311, 0.496, 0.019, .063, -0.059, .927, -0.250, 1.996, .504, .977 -4.547 997 547 257 SIGHAL/SIGHA2 SIGHAL/SIGHA2 SIGHAL/SIGHA2 1066.0+ +0.9638 +0.9376 0.549 0.681 0.612 0.943 1.074 1.205 1.336 1.467 1.730 0.484 0.935 .160 1.273 1.585 1.498 0.447 1.047 0.562 0.677 0.792 1.365 0.597 0.710 822 0.906 .136 1.021 . 251 DPHI DPHI IHdQ . +1.0896 Xhbar +1.2543 XHBAR SIGHA2 **SIGHA2 SIGHA2** 0.471 0.504 0.537 0.373 0.406 0.438 0.569 0.602 0.635 0.668 +1.3956 0.335 0.369 0.402 0.469 0.570 0.604 0.637 .436 0.537 0.357 0.426 0.460 .495 STATION WAKE PNT PHI SIGHAI SIGH Complex Numbers Printed As (real, imaginary) 0.322 529 598 0.391 STATION WAKE PNT PHI SIGHAL SIGH. Complex Numbers Printed As (real, imaginary) XHBAR ED AS (REAL, IMAGINARY) +49.836 +1.3085 +1.39 +66.717 +1.0687 +55.809 +1.2089 202 ₹ 5 SIGHAL 10 00 00 ₹ 12 13 \$ 15 2 5 8 ₹ ដល់លំង សំងំង សំងំង សំងំ HBAR • 0 MBAR 2 MBAR ١n 9 h * * 0 STATION WAKE PNT PHI Complex Numbers Printed AS 3 0.450 0.392 +49.83 0.200 0.200 0.316 WHU VECTOR: HHU VECTOR: 0.350 ~

HAKE

VISCOUS

0.052

0.049 0.047 0.046 0.042 0.040 0.039 0.039

0.036 0.034

162

Figure 46 : AEROEXEC output (unsteady WMU vector calculation)

TNIST

SIGHA1/SIGHA2

SIGHA2

SIGHAL

PHI

STATION WAKE PNT

WHU VECTOR:

Į.

I

-8.865,

1.480

0.633

۲

.

0.181 0.163 0.163 0.154 0.154 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.127

WAKE

VISCOUS

..... 8 U

HAKE WAKE WAKE WAKE 0.158 0.144 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.094 0.087 0.080 0.104 0.098 0.091 0.086 0.086 0.076 0.076 0.068 0.065 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 VISCOUS VISCOUS VISCOUS VISCOUS -0.677) -0,931) -0.801) -0.627) -0.438) -0.438) -0.261) -0.111) 0.080 0.122) 0.136) -0.616) -0.507) -0.375) -0.375) -0.375) -0.375) -0.123) -0.123) -0.123) -0.029] 0.074) -0.400) -0.3507) -0.3517 -0.0565 0.1355 0.1355 0.1817 0.1817 0.2097 0.2097 0.2097 7, -0.911) **B**, -0.701) **5**, -0.408) **6**, -0.222) **1**, -0.126) **1**, 0.002) **1**, 0.002) **1**, 0.002) **1**, 0.176) **5**, 0.176) **5**, 0.176) (116.0-CHORDWISE 0.401, 0.141, 0.142, -0.1642, -0.234, -0.234, -0.234, -0.121, -0.069, CHORDWISE 0.309 - 0.021 - 0.305 - 0.364 - 0.364 - 0.364 - 0.364 - 0.364 - 0.156 - 0.156 CHORDWISE -0.464, -0.441, -0.381, CHORDWISE -0.495, . 307, . 225, . 145, . 075, -0.318, -0.168, .511, .495, .451, .389, .317, .241, -0.127 0.096] 0.105) 0.275) 0.341) 0.339) 0.339) 0.339) 0.339) 0.339) 0.339] 0.359] 0.359] 0.221] 0.221] -0.504] -1.131] 0.308) 0.362) 0.358) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.258) 0.358) 0.258] 0.258]\\0.258]\\0. 0.336) 0.336) 0.293) 0.293) 0.281) -0.267) -0.267) -0.569) -1.353) -1.699] 0.200] 0.116) 0.011 0.011) -0.143) -0.143) -0.496) -1.040) -1.169) -0.875 HSVMNMOD DOWNWASH DOWNWASH DOWNWASH -,135, -1106, -122, -12, 0.103, 0.243, 0.562, 0.562, 0.562, 0.562, 0.804, 0.622, 0.620, 0.020, -0.011 0.132 0.322 0.543 0.760 0.917 0.945 -0.101, 0.372, 0.401, 0.534, 0.581, 0.581, 0.566, 0.157, .486, .350, 5.510, -35.425) 13.690, -26.713; 19.340, -17.155) 19.091, -7 913 16.523, -5 214) 11.126, 5.117) 2.984, 6.732] -2.941, 3.968 -7.566, -12.977) 34.925, -0.677 20.430, 0.445) 20.496, 14.556) 12.065, 17.442 3.994, 17.165 -2.515, 13.733) -6.327, 0.550) -7.399, 2.945) 39.297, -29.592) 14.079) 21.543) 25.512) 25.918) 26.409) 26.409) 24.290) 21.661) 10.729) 15.729) 12.692) .099, -13.462] 35.930) 34.451) 32.203] 29.383) 29.383) 26.240 22.894) 19.445) 15.924) 12.309) 8.545) +57.152 HMU +48.523 HHU +52.547 NIN +45.289 TVIST 36.036 25.661 16.437 1.447 -7.851 THIST THIST 8.452, 1.854, -3.671, -8.234, 47.211, LTHU L THIST .11..11--11.980, -15.082, . 638, 796 -21.493, 16.520 -19.756, 5 -13 -17 SIGMAL/SIGMA2 SIGHA1/SIGHA2 SIGHAL/SIGHA2 SIGHA1/SIGHA2 +0.9098 DPNI •0.9221 +0.8980 DPHI +0.9027 0.610 0.723 0.953 0.959 1.063 1.176 1.289 1.289 1.516 0.496 0.642 0.746 0.955 0.955 1.059 1.163 1.267 1.267 1.580 1.580 DP111 0.059 0,949 1.040 1.220 1.220 1.220 1.400 1.400 1.500 1.116 1.187 1.259 1.259 1.559 1.473 1.473 1.473 1.473 1.473 1.473 1.473 1.473 1.473 1.473 1.670 IHIO +1.5543 XHBAR +1.7255 XHDAR 0.374 0.437 0.468 0.568 0.568 0.552 0.552 0.552 0.555 **SIGHA2** +1.9059 XHDAR 0.436 0.463 0.463 0.463 0.463 0.571 0.571 0.559 0.652 0.652 0.334 0.360 0.471 0.471 0.505 0.573 0.573 0.573 0.573 0.573 +2.0932 XHIDAR 0.509 0.552 0.552 0.553 0.653 0.638 SIGHA2 SIGHA2 **SIGNA2** COUIFLEX NUMBERS PRINTED AS (REAL, IMAGINARY) 4 0.550 0.477 +44.240 +1.4331 +1.55 HHU VECTOR: Station Make PNT PHI Sighal Sigha Complex Numbers Printed As (real, imaginary) (REAL, IMAGINARY) 17 +1.7205 +1.905 0.601 (REAL, IMAGIMARY) +39.568 +1.5699 +44.240 +1.4331 •1.8796 SIGHAI SIGHAI SIGNAL 5125223232855 MBAR 4 6 01 8 6 0 HBAR WHU VECTOR: STATION HAKE PNT PHI SI COMPLEX NUMBERS FRINTED AS (REAL, 6 0.750 0.651 +35.537 +1. ¢ 0 N 0 0 2 HDAR HBAR 800 2 +32.143 STATION MAKE FNT FUIL STATION MAKE FNT FUIL CONFLEX NUMBERS FRINTED AS 7 0,850 a.740 ATT 45 PII 0.562 STATION WAKE FNT HIU VECTOR: 0.650 WHU VECTOR: 1 ľ

: AEROEXEC output (unsteady WMU vector calculation, continued) Figure 46

	ISCOUS WAKE	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.000	0.008
	VIS		0.057]								
	CHORDHISE	- 0 . 444 ,	-0.403,	-0.356,	-0.305,	-0.252,	-0.200,	-0.152,	-0.106,	-0.064,	-0.027,
		-	-	~	-	-	-	-	-	-	-
	=		-0.169)								
	DOHNWAS	0.383,	0.304,	0.375,	6.353,	0.320,	0.273,	0.216,	0.147,	0.068,	-0.018,
		U	-	v	-	J	-	-	-	-	~
	m.	26.2971	23.610)	20.879]	16.111.01	15.366)	12.681)	10.022)	7.355)	4.698)	2.047,
	445.593 HHU	-10.220,	-12.594,	-14.594,	-16.202,	-17.440,	-18,453,	-19.242,	-19.781,	-20.057	-20.074,
	-	-	-	-	-	-	-	-	-	-	-
	+0.8944 DPHI	1.378	1.425	1.472	1.520	1.567	1.614	1.662	1.709	1.757	1.804
ENARY)	+ 2. 2855 XHDAR	0.506	0.600	0.615	0.629	0.643	0.658	0.672	0.687	0.701	0.715
IMAG	255 M	1	72	22	52	52	76	1	0	5	2
-	288 +2.0 HDAR		8	-		5		~			10
CONFLEX NUMBERS PRINTED	8 0.950 0.029 +29.										

.....

.

Figure 46 : AEROEXEC output (unsteady WMU vector calculation, continued)

I

.. .

1

.....

∯el-11+i

ji P

-

TINE: 17:00:20 DATE: 1/15/92 UCAP --- NASA 4 HOIZEDEC EDECCASE NOISE CALCULATION OUTPUT : NOZOUT

UCAP FOR CR-2 INPUT -- R252INFT.DATA VCAP FOR CR-2 INPUT -- R252INFT.DATA VCAP FOR CR-2 INPUT -- R252INFT.DATA VCAP FOR CR-2 INPUT -- R252INFT.DATA FROM 8 4.265, J = 1.46, TEMP = 54.2, P/PREF = .9427, VTIP = 434 FPS 425 CONFIGURATION, RUN 252.3 - 50/50 POMER SPLIT FROM 1 SLADE ANGLE = 46.37 DEG. - MEXSURED - CP MATCH = 48.87 FROM 1 SLADE ANGLE = 46.35 DEG. - MEXSURED - CP MATCH = 48.54 FROM 1 & REAR BLADES ASSUMED IDENTICAL

NOISE PROGRAM EXECUTION TIME

.

CPU TIME AT START = 726.941 SEC CPU TINE AT END = 733.668 SEC NET TIME 6.719 SEC

ANBIENT ATHOSPHERIC CONDITIONS TEMPERATURE 54.18 PRESSURE / SEA LEVEL = 6.9518 LOCAL SPEED OF SOUND = 1113.36 FEET PER SECOND

OBSERVER LOCATIONS

ì

-

DIRECTIVI	TY POINTS A	T ALTITUDE O	R SIDELINE I	DISTANCE,	6.120	FT.
DISTANCE FORM	ARD OF PLAN	E OF ROTATION 2.573	N (RETARDED) 0.4170	RE FRONT	-4.112	-8.773
DISTANCE FORM	ARD OF PLAN 2.409	E DF ROTATIO 0.8137	N (VISUAL) -1.299	RE FRONT RO	TOR -6.066	-11.61
RADIATION ANG 43.90	LE FROM FLI 52.80	GHT DIRECTIO	N - DEGREES 86.10	RE FRONT R	DTOR 123.9	145.1
VISUAL RADIAT 56.67	TON ANGLE - 66.91	DEGREES RE	FRONT ROTOR 101.2	117.4	134.7	152.2
FRONT ROTOR	ZINUTHAL OB	SERVER ANGLE	IS 90.0 D	EGREES		
					TIONS BY	8.2578 = FRONT RADIUS
REAR RUTOR PO	STITORS OLL		NI KOIVA OD			
NICTANCE FORM			N (RETARDED) RE REAR R	OTOR	
DISTANCE FORM	ARD OF PLAN	E OF ROTATIO 3.166	N (RETARDED 0.9590 N (VISUAL)) RE REAR R -0.9464 RE REAR ROT	OTOR -3.651 DR	-6.348
DISTANCE FORM 7.814 DISTANCE FORM 4.547 RADIATION AND	IARD OF PLAN 5.276 IARD OF PLAN 3.135	E OF ROTATIO 3.166 E OF ROTATIO 1.340	N (RETARDED 6.9598 N (VISUAL) -0.6826 N - DEGREES) RE REAR R -8.9464 RE REAR ROT -2.588 RE REAR RO 98.79	DTOR -3.651 OR -5.540 TDR 128.8	-8.349 -11.98
DISTANCE FORM 7.014 DISTANCE FORM 4.547 RADIATION AND 41.11 VISHAL BARTAT	IARD OF PLAN 5.276 IARD OF PLAN 3.135 BLE FROM FLI 49.23	E OF ROTATIO 3.166 E OF ROTATIO 1.340 GHT DIRECTIO 62.45	N (RETARDED 6.9590 N (VISUAL) -0.6826 N - DEGREES 81.09 REAR ROTOR) RE REAR R -0.9464 RE REAR ROT -2.580 RE REAR RO 98.79	DTOR -3.651 DR -5.540 TOR 120.8	-8.348 -11.08 143.7

Figure 47:NOIZEXEC output (observer position summary) -

÷

4 \$

2

:

FRONT ROTOR OPERATING CONDITIONS

3

0.2658 FLIGHT MACH NUMBER, 0.5702 TIP ROTATIONAL MACH NUMBER, 0.6288 TIP RELATIVE MACH NUMBER, 2.1516 MT / HX, 592.37 BPF, 2.0467 FOOT DIAMETER

REAR ROTOR OPERATING CONDITIONS

- - ---

. •

..

ت

8.2658 FLIGHT MACH NUNGER, 8.5733 TIP ROTATIONAL MACH NUNGER, 8.6316 TIP RELATIVE MACH NUMBER, 2.1633 HT / HX, 496.33 BPF, 2.8467 FOOT DIAMETER

.

1 222

Figure 48:NOIZEXEC output (front and rear rotor operating conditions)

NOIZENEC EXECCASE TIME: 17:00:20 DATE: 1/15/92 UCAP --- NASA 4 PRINT FRONT & REAR ROTOR HARMS : NOZOUZ

RESULTS AT OBSERVER POSITION	1:	VISUAL COORDINATES X POSITION ANGLE	RETARDED COORDINATES X POSITION ANGLE
FRONT ROTOR		4.82 56.69	6.36 43.90
REAR ROTOR		4.55 53.39	7.01 41.11

CALCULATED NOISE FOR HARMONICS IN THE RANGE OF 1 TIMES BLADE PASSING FREQUENCY

RADIATION M K			FRONT						AR ROTOR P IMAG	RMS PA
FREQ COUNTER COUNTER	DB -65.8	PHASE 8.8	P REAL 8.8888	. P IMAG 8.8808	RHS PA 4,8600	DB	PHASE	P REAL	P INAG	KAS FA
FRONT ROTOR			•	•						
STEADY NOISE 592.37 1	99.7	101.2	-9.3768	1.8963	1.9332	182.9	295.6	1.2827	-2.5050	2.7787
STEADY THICKNESS	92.2	162.5	-0.7775	0.2445	4.8150					
QUADRUPOLE	-200.0	4.5	0.0050	0.0055	8.8000					
RADIAL LOADING	-208.0	4.8	8.0800	8.0000	0.0000					
TOTAL NOISE	101.7	118.3	-1.1535	2.1488	2.4318					
** REAR ROTOR ** * Steady Noise *										
496.33 0 1	118.4	202.7	-15.3091	-6.4173	14.5997	84.3	332.2	\$.3647	-0.1919	4.4122
STEADY THICKNESS						85.8	323.5	0.3125	-0.2312	0.3887
QUADRUPOLE						-200.0		0.0000 0.0000	8.0000 8.0000	0.0000 8.0000
RADIAL LOADING						-200.0 92.0	4.8 328.0	1.6772	-0.4232	4.7986
TOTAL STEADY HOISE						74.4	320.4			•
400.27 -1 2						-134.0	54.6		0.0000	9.0000
400.27 -1 2 304.24 -2 3						-200.0	1.1	0.0000	0.0000	8.9850
CALCULATED NOISE FOR HARHON	ICS IN THE	RANGE O	F Z TIMES	BLADE PAS	SING FREQUEN	67				

__. -

FRONT ROTOR P REAL P IMAG 8.8888 8.8888 RADIATION Freq 1266.79 REAR ROTOR RHS PA COUNTER COUNTER PHASE 301.3 P REAL DB -76.3 P REAL RMS PA 8.8600 DB PHASE FRONT ROTOR
 STEADY NOISE
 1184.75
 STEADY THICKNESS
 GUADRUPOLE
 RADIAL LOADING
 TOTAL NOISE 8.0289 -8.8871 6.8808 6.8886 8.8218 -8.8059 8.8276 8.6000 8.8000 8.8000 8.8211 0.0295 0.0279 0.5000 0.0005 0.0005 63.4 62.9 -206.8 -296.8 63.6 348.5 104.8 8.0 8.0 44.0 -0.0815 0.0050 67.9 252.9 -6.8948 178.6 -549.2166 \$1.3227 554.7573 151.6 293.6 385.2954 -708.2676 763.9241 1 148.9 1088.70 1 ** REAR ROTOR ** * STEADY NOISE * STEADY THICKNESS QUADRUPOLE RADIAL LOADING TOTAL STEADY NOISE 47.1 60.9 -200.0 -200.0 62.2 8.8845 8.8149 8.8880 8.8885 8.8885 8.8193 8.8846 0.8221 8.8890 8.8880 8.8880 8.8880 99.7 137.7 8.8 8.8 131.5 -0.0103 -0.0163 0.0000 0.0000 -0.0171 992.66 243.6. 0.0000 0.0000 0.0000 -123.0 8.0084 8.0000 3 -1 -2 876.62 800.57 11 I

Figure 49:

المحارمة وتربية ابتكا فتعويها والارتبار المرريان

.

-

NOIZEXEC output (summary of noise results, by directivity)

• • • P

PRINT IGIAC HOLDE SUBSCIENT TO THE	NOTZEDEC EXECCASE		1/15/92 UCAP HASA 4
UCAP FOR CR-2 IMPUT R252INPT. KX = 8.265, J = 1.46, TEMP = 56.2, P/PREF KXS CONFIGURATION, RUN 252.3 - 50/50 POMER FIRST ATTEMPT AT POMER NATCH FRONT BLADE ANGLE = 40.87 DEG MEASURED - REAR BLADE ANGLE = 40.56 DEG MEASURED - PRONT & REAR BLADES ASSUMED IDENTICAL	DATA .9627, VTIP = 636 FPS SPLIT CP MATCH = 48.87 CP MATCH = 48.54	_	
	**********************	****************************	

.....

-

Ĩ

.....

RESULTS AT I	DASERVER POST	110M 1 1 A13	051110	4 ANGLE	X POSIT	ION ANGLE	
	TROUT	ROTOR :	4.82	56.49			
	REAR	ROTOR :	4.55	54.49 53.39	7.41	41.11	
		•					
CALCULATED	NOISE FOR HAR	HONICS IN THE	RANGE O	F 1 TIMES	BLADE PASS	ING FREQUENCY	٣
EADIATION	FREQUENCY	DB	PHASE				
688.42		-45.8	8.8	8.0000	4.9489	1.1000	
592.37		85.3 118.1	277.7	8.8492	-0.3642	1.3475	
696.33		118.1	205.1	-14.6318	-4.8484	14.1518	
496.33 499.29		-134.9	54.6	1.1111	1.1058	0.8898	
CALCULATED	HOISE FOR HAR	HONICS IN TH	E RANGE O	F 2 TIMES	BLADE FAS	SING FREQUENC	2
	FREQUENCY			P REAL			
RADIATION	FREQUENCY	DB -78.3				RMS PA 1.0000 4.0261 655.9812	
		62.3	301.3	8.8888		4 4741	
1184.75 1888.70 912.44 894.42		62.3 150.3 67.2 -123.8	30.0		- 4 8 8 8 4 4 8	ARE 0017	
1688.70		150.3	240.2	-4 4171	4 4143	A 875A	
992.66		47.2	131.3			1.0230	
896.42		-123.6	243.0				
	HOISE FOR HAR	MONICS IN TH	E RANGE			SING FREQUENC	7 Y
B10147104	ED FOURINEY	DB	PHASE	P REAL 4.1008	P THAG	RHS PA	
TATE 1	FREQUENCY	-149.2	243.9	4.1000	8.8984	8.8888	
1777.12		27 5	42.9	8.9988	1.4115	8.0005	
1///.12		155.3	314.4	844.7412		1144.5449	
1681.47 1585.43 1488.77		141 9	147.1	-747.1442	-884.5437 -26.1392 -8.8918	248.4789	
1585.45		11.1	111.3	0.1009	-4.0514	6.8814	
1466.77		-134.7	78.5	1.4105	8.8868	8.8880	
	1. Server Fried						
CALCULATED	HOISE FOR HA	MONICS IN TH	E RANGE	OF 4 TINES	BLADE PAS	SING FREQUEN	CY
RADIATION	FREQUENCY	DB	PHASE	P REAL	P IHAG		
2465.53		-125.2		0.0070	8.8889		
2369.47		1.3	45.2	4.3800			
2273.45		131.4	223.3	-55.8678	-51.8259	75.6194	
2177.40		141.4	102.4	-59.1917	228.9375	234.3747	
2081.36		136.7	30.5	- 117 - 7364	47.4187	134.7274	
1965.32		11.7		-0.0001	6.8401	4.0001	
1889.27		-152.6	278.6	9,0000	8.8869	4.0040	

REAR NOISE HARHONICS

Figure 50:NOIZEXEC output (summary of noise results at each frequency)

. .

RETARDED COORDINATES

```
PROGRAM QWMUGEN
```

REAL RWMU(20,20), IWMU(20,20)

INTEGER TYPE

С

С

С

С

С

С

С

С

.-

```
#(@) THIS WILL CALCULATE QWMU FOR LSTPARMS 351 TO 550
     TYPE IS 1 FOR SEARS LIFT RESPONSE FOR SINUSOIDAL GUST
     IT IS ASSUMED THE FOLLOWING INFORMATION ARE KNOWN:
             NUMBER OF CHORDWISE PANELS. LSTPARMS
     NCP
             NUMBER OF RADIAL STATIONS. LSTPARMS
     NSM
             CHORD/DIAMETER RATIO AT NSM STATIONS (BLADEGEO)
     BD
             LOCATION OF THE RADIAL STATIONS (LSTPARMS 101-110)
     ZAR
             ADVANCE RATIO
     J
     REAL J, BD(10), ZAR(10)
     WRITE(*,*)' ENTER ADVANCE RATIO'
     READ(*,*) J
     WRITE(*,*)' ENTER NUMBER OF CHORDWISE PANELS'
     READ(*,*) NCP
     WRITE(*,*)' ENTER NUMBER OF RADIAL STATIONS'
     READ(*,*) NSM
     WRITE(*,*)' ENTER ',NSM,' RADIAL STATIONS--ASCENDING ORDER'
     READ(*,*) (ZAR(I),I=1,NSM)
     WRITE(*,*)' ENTER ', NSM, ' VALUES OF CHORD/DIAMETER'
     READ(*,*) (BD(I), I=1, NSM)
     WRITE(*,*) ' ENTER Q'
     READ(*,*) Q
     WRITE(*,*)' ENTER GUST VELOCITY, DIVIDED BY ROTOR TIP SPEED'
     READ(*,*) WZERO
     DO N=1,NSM
        SIGMA=3.14159/J
        DO M=1,NCP
           XN=-0.5+(FLOAT(M)-0.5)/FLOAT(NCP)
           RWMU(M, N) = WZERO*COS(2.0*Q*BD(N) *XN/SIGMA)
           IWMU(M, N) = WZERO*SIN(2.0*Q*BD(N) *XN/SIGMA)
        ENDDO
     ENDDO
     WRITE(*,1010)351,((RWMU(M,N),IWMU(M,N),M=1,NCP),N=1,NSM)
1010 FORMAT(I3, (T5, 6(F9.4, 1X)))
    STOP
    END
```

<pre>C PURPOSE: BLOCK DATA FOR COMMON/CRPP01/ MODIFIED TO MAKE DEFAULT VALUE OF CRPTOL 0.01 BLOCK DATA CRPBLK CBLOCK DATA FOR CRPPARMS REAL AFTHRM, COUNT, CRPBUG, CRPTOL, FWDHRM, \$ RATIO, ROW, SPACE, SWITCH C COMMON/CRPP01/CRPBUG, SWITCH, SPACE, COUNT, \$ CRPTOL, FWDHRM, AFTHRM, ROW, \$ RATIO C COMMON/CRPP01/CRPBUG, SWITCH, SPACE, COUNT, \$ CRPTOL, FWDHRM, AFTHRM, ROW, \$ RATIO C CRPBUG: DEBUG SWITCH. 0: NO DEBUG PRINTOUT 1: ECHO INPUT C SWITCH: CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT) 1: COUNTER ROTATION C SPACE: DISTANCE BETWEEN BLADE PITCH CHANGE AXES, DIVIDED BY FRONT ROTOR DIAMETER. C RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER C COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. C CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 C ROW: ROW SELECTOR SWITCH; SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW</pre>	с с с	@(#) (90/08, 16:47:	
CELOCK DATA FOR CRPPAM CCOMMON ELOCK FOR CRPPARMS REAL AFTHRM, COUNT, CRPBUG, CRPTOL, FWDHRM, \$ RATIO, ROW, SPACE, SWITCH COMMON/CRPPO1/CRPBUG, SWITCH, SPACE, COUNT, \$ CRPTOL, FWDHRM, AFTHRM, ROW, \$ RATIO C CRPBUG: DEBUG SWITCH. 0: NO DEBUG PRINTOUT 1: ECHO INPUT SWITCH: CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT) 1: COUNTER ROTATION SPACE: DISTANCE BETWEEN BLADE PITCH CHANGE AXES, DIVIDED BY FRONT ROTOR DIAMETER. C RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER C COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. C CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 C ROW: ROW SELECTOR SWITCH; SET INTERNALLY ONLY! <1.5: FRONT ROTOR SWITCH; SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNING READ THE PRONT ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNINGENT THE REAR ROTOR. THE HARMONICS ARE HARMONICT TO USE FOR EXCITATION C FORCES ON AN AUTOMOBILE MOVING DOWN THE REAR ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR. THE HARMONICS ARE HARMONICT TO USE FOR EXCITATION C FORCES ON AN AUTOMOBILE MOVING DOWN THE REAR ROTOR OT HEF FORMARD ROTOR NOTE THAT THE REAR ROTOR OT HEF FORMARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT MOVERS. DATA AFTHRM/0.0/, COUNT/0.0/, SPACE/-1.0/, \$ SWITCH/0.0/	с с с	PURPOSE	: BLOCK DATA FOR COMMON/CRPP01/
CCOMMON BLOCK FOR CRPPARMS REAL APTHRM, COUNT, CRPBUC, CRPTOL, FWDHRM, S RATIO, ROW, SPACE, SWITCH COMMON/CRPPO1/CRPBUG, SWITCH, SPACE, COUNT, S CRPTOL, FWDHRM, APTHRM, ROW, C CRPBUG: DEBUG SWITCH. 0: NO DEBUG PRINTOUT 1: ECHO INPUT SWITCH: CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT) 1: COUNTER ROTATION SPACE: DISTANCE BETWEEN BLADE PITCH CHANGE AXES, DIVIDED BY FRONT ROTOR DIAMETER. RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER C COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. C CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 ROW: ROW SELECTOR SWITCH; SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FRAR ROTOR. NOTE THAT THE FORWARD ROTOR WAKE IS STEADY WHEN VIEWED FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE FRANK ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE FRANK ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY		BLOCK D	ATA CRPBLK
<pre>REAL AFTHRM, COUNT, CRPBUG, CRPTOL, FWDHRM, \$ RATIO, ROW, SPACE, SWITCH COMMON/CRPP01/CRPBUG, SWITCH, SPACE, COUNT, \$ CRPTOL, FWDHRM, AFTHRM, ROW, \$ RATIO CRPBUG: DEBUG SWITCH. 0: NO DEBUG PRINTOUT 1: ECHO INPUT SWITCH: CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT) 1: COUNTER ROTATION SPACE: DISTANCE BETWEEN BLADE PITCH CHANGE AXES, DIVIDED BY FRONT ROTOR DIAMETER. RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. CC RTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 ROW: ROW SELECTOR SWITCH: SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW CC FWDHRM: HIGHEST FORWARD FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING WOWN THE ROAD. AFTHRM: HIGHEST ROW POTENTIAL FIELD HARMONIC TO USE FOR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING WITH THE FRONT ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING WITH THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING WITH THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY</pre>	CBI	LOCK DATA	FOR CRPPRM
<pre>\$ RATIO, ROW, SPACE, SWITCH COMMON/CRPP01/CRPBUG, SWITCH, SPACE, COUNT, \$ CRPTOL, FWDHRM, AFTHRM, ROW, \$ RATIO CRPBUG: DEBUG SWITCH. 0: NO DEBUG PRINTOUT 1: ECHO INPUT SWITCH: CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT) 1: COUNTER ROTATION SPACE: DISTANCE BETWEEN BLADE PITCH CHANGE AXES, DIVIDED BY FRONT ROTOR DIAMETER. RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 CROW: ROW SELECTOR SWITCH; SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW CFWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION OF REAR ROW CANCE THE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR. THE HARMONICS ARE HARMONIC TO USE FOR EXCITATION OF REAR ROW CFWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION CFWDHRM: HIGHEST FORWARD ROW WAKE HARMONICS TO USE FOR EXCITATION CFWDERM: HIGHEST FORWARD ROW WAKE HARMONICS TO USE FOR EXCITATION CFWDERM: HIGHEST FORWARD ROW WAKE HARMONICS TO USE FOR EXCITATION CFWDERM: HIGHEST FORWARD ROW WAKE HARMONICS TO USE FOR EXCITATION CFWDERM: HIGHEST FORWARD ROW WAKE HARMONICS TO USE FOR EXCITATION CFWDERM: HIGHEST FORWARD ROW WAKE HARMONICS TO USE FOR EXCITATION CFWDERM: HIGHEST FORWARD ROW WAKE HARMONICS TO USE FOR CFWDIRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR NOT N THE SAME WAY EUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. DATA AFTHRM/0.0/, COUNT/0.0/, CRPEUG/1.0/, \$ SWITCH/0.0/</pre>	cc	OMMON BLOG	CK FOR CRPPARMS
COMMON/CRPP01/CRPBUG, SWITCH, SPACE, COUNT, S CRPTOL, FWDHRM, AFTHRM, ROW, S RATIO C CRPBUG: DEBUG SWITCH. 0: NO DEBUG PRINTOUT 1: ECHO INPUT SWITCH: CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT) 1: COUNTER ROTATION SPACE: DISTANCE BETWEEN BLADE PITCH CHANGE AXES, DIVIDED BY FRONT ROTOR DIAMETER. RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER C COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. C CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR. IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCITATION C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR. IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHENV IVEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHENV IVENED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. DATA AFTHRM/0.0/, COUNT/0.0/, CRPUG/1.0/, S SWITCH/0.0/	<u> </u>	\$ RA	TIO, ROW, SPACE, SWITCH
<pre>C CRPBUG: DEBUG SWITCH. 0: NO DEBUG PRINTOUT</pre>		COMMON/0 \$ \$	CRPP01/CRPBUG, SWITCH, SPACE, COUNT, CRPTOL, FWDHRM, AFTHRM, ROW, RATIO
<pre>SWITCH: CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT)</pre>	c c	CRPBUG:	DEBUG SWITCH. 0: NO DEBUG PRINTOUT 1: ECHO INPUT
<pre>SPACE: DISTANCE BETWEEN BLADE PITCH CHANGE AXES, DIVIDED BY FRONT ROTOR DIAMETER. RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0,</pre>	с с	SWITCH:	CRP/SRP SWITCH. 0: SINGLE ROTATION (DEFAULT) 1: COUNTER ROTATION
<pre>C RATIO: REAR DIAMETER DIVIDED BY FORWARD DIAMETER C COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. C CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 C ROW: ROW SELECTOR SWITCH: SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION OF REAR ROTOR. NOTE THAT THE FORWARD ROTOR WAKE IS STEADY WHEN VIEWED FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS A POINT MOVING WITH THE FRONT ROTOR. IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. C DATA AFTHRM/0.0/, COUNT/0.0/, CRPBUG/1.0/, \$ WITCH/0.0/ C </pre>	с с	SPACE:	
<pre>COUNT: MAXIMUM NUMBER OF FRONT/REAR ITERATIONS. DEFAULT IS 0, WHICH IS ONE TRIP THROUGH. CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 CROW: ROW SELECTOR SWITCH: SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW CROW: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION OF REAR ROTOR. NOTE THAT THE FORWARD ROTOR WAKE IS STEADY WHEN VIEWED FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. CAFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. DATA AFTHRM/0.0/, COUNT/0.0/, CRPBUG/1.0/, \$ CRPTOL/1.0E-2/, FWDHRM/0.0/, SPACE/-1.0/, \$ SWITCH/0.0/</pre>	С	RATIO:	REAR DIAMETER DIVIDED BY FORWARD DIAMETER
<pre>C CRPTOL: MINIMUM VALUE OF THE CONVERGENCE MONITOR REQUIRED TO START ANOTHER ITERATION. IF THIS IS <= 0, IT WILL BE SET TO 1.0E+4 C ROW: ROW SELECTOR SWITCH: SET INTERNALLY ONLY! <1.5: FRONT ROW >1.5: REAR ROW C >1.5: REAR ROW C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION OF REAR ROTOR. NOTE THAT THE FORWARD ROTOR WAKE IS STEADY WHEN VIEWED FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. DATA AFTHRM/0.0/, COUNT/0.0/, CRPBUG/1.0/, \$ SWITCH/0.0/ C</pre>	c c	COUNT:	
<pre>C ROW: ROW SELECTOR SWITCH: SET INTERNALLY ONLY! < <1.5: FRONT ROW >1.5: REAR ROW C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION OF REAR ROTOR. NOTE THAT THE FORWARD ROTOR WAKE IS STEADY WHEN VIEWED FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. DATA AFTHRM/0.0/, COUNT/0.0/, CRPBUG/1.0/, \$ CRPTOL/1.0E-2/, FWDHRM/0.0/, SPACE/-1.0/, \$ SWITCH/0.0/</pre>	с с с	CRPTOL:	START ANOTHER ITERATION. IF THIS IS ≤ 0 , IT WILL BE
<pre>C FWDHRM: HIGHEST FORWARD ROW WAKE HARMONIC TO USE FOR EXCITATION OF REAR ROTOR. NOTE THAT THE FORWARD ROTOR WAKE IS STEADY WHEN VIEWED FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING FORCES ON AN AUTOMOBILE MOVING DOWN THE ROAD. C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. C DATA AFTHRM/0.0/, COUNT/0.0/, CRPBUG/1.0/, \$ CRPTOL/1.0E-2/, FWDHRM/0.0/, SPACE/-1.0/, \$ SWITCH/0.0/</pre>	с с с	ROW:	<1.5: FRONT ROW
<pre>C AFTHRM: HIGHEST REAR ROW POTENTIAL FIELD HARMONIC TO USE FOR C EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR C ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT IS ALSO NOT HOMOGENOUS. C DATA AFTHRM/0.0/, COUNT/0.0/, CRPBUG/1.0/, \$ CRPTOL/1.0E-2/, FWDHRM/0.0/, SPACE/-1.0/, \$ SWITCH/0.0/ C</pre>	0000000	FWDHRM:	OF REAR ROTOR. NOTE THAT THE FORWARD ROTOR WAKE IS STEADY WHEN VIEWED FROM A POINT MOVING WITH THE FRONT ROTOR. THE HARMONICS ARE HARMONICS IN SPACE ONLY. THOSE HARMONICS > 0 WILL APPEAR UNSTEADY TO THE REAR ROTOR IN THE SAME WAY BUMPS ON A ROAD CAUSE TIME VARYING
DATA AFTHRM/0.0/, COUNT/0.0/, CRPBUG/1.0/, \$ CRPTOL/1.0E-2/, FWDHRM/0.0/, SPACE/-1.0/, \$ SWITCH/0.0/ C	0 0 0 0 0 0	AFTHRM:	EXCIT ATION OF THE FORWARD ROTOR. NOTE THAT THE REAR ROTOR POTENTIAL FIELD IS, LIKE THE WAKE, STEADY ONLY WHEN VIEWED FROM A POINT MOVING WITH THE REAR ROTOR. IT
	C	\$ CR	PTOL/1.0E-2/, FWDHRM/0.0/, SPACE/-1.0/,
Figure 52	с	END	

÷

Ī

1

.

Ī

Figure 52 Listing of CRPBLK with changed default valve for CRP tolerance CRPTOL

.

(THIS PAGE INTENTIONALLY BLANK)

5

: ____

i i

ټ

- 11 million

1

REPORT	DOCUMENTATION P	PAGE	Form Approved OMB No. 0704-0188
	of information is estimated to average 1 hour or , and completing and reviewing the collection o lions for reducing this burden, to Washington H 2202 4302, and to the Office of Management an		
AGENCY USE ONLY (Leave b		3. REPORT TYPE AND DA Final Contractor F	TES COVERED
TITLE AND SUBTITLE User's Manual for Unified Counter-R AUTHOR(S)	UCAP: Notation Aeroacoustics Prog		JNDING NUMBERS WU 535-03-10 C NAS3-24222 Task Order #10
E.M. Culver and	C.J. McColgan		
PERFORMING ORGANIZATION			RFORMING ORGANIZATION
Hamilton Standard Division United Technologies Corporation P.O. Box 1000			
Windsor Locks, C	Connecticut 06096	5) [10.5]	
	ics and Space Administration	Ā	GENCY REPORT NUMBER
SUPPLEMENTARY NOTES Project Manager, 2 Center (216) 433-2	Bruce J. Clark, Propulsion 3952	Systems Division, NASA	Lewis Research
. DISTRIBUTION / AVAILABILIT	Y STATEMENT	12b.	DISTRIBUTION CODE
Unclassified-Unlin Subject Category	nited		
ABSTRACT (Maximum 200 wo	rds)		
the counter-rotation purpose of this pro- the noise produced on linear potential induction, vortex acoustics and the the Aeroacoustics Ana (NASA CR-4329).	nanual for UCAP (Unified on derivative of the UAAP ogram is to predict steady a l by a counter-rotation Prop theory with corrections for lift on the blades, and rot heory for individual blade lysis for High Speed Turbo This user's manual also lling of counter-rotation.	• (Unified Aero-Acoustic and unsteady airloading of p-Fan. The aerodynamic or non-linearity associate tor-to-rotor interference. loading and wakes are d oprop Aerodynamics and	Program). The on the blades and method is based d with axial flux The theory for erived in <i>Unified</i> <i>Noise</i> , Volume 1
SUBJECT TERMS Prop-Fan, High Speed Turboprop, Aerodynamics, Noise, Counter-Rotation, Vortex Lift, Unsteady Lift, Wakes		15. NUMBER OF PAGES	
,	·		