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Abstract

The motivation of this research came about when a neural network direct adaptive control

schemes was applied to control the tip position of a flexible robotic arm. Satisfactory control

performance was not attainable due to the inherent non-minimum phase characteristics of the

flexible robotic ann tip. Most of the existing neural network control algorithms are based on the

direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a

neural self-tuning control (NSTC) algorithm is developed and applied to this problem and

showed promising results. Simulation results of the NSTC scheme and the conventional self-

tuning (STR) control scheme are used to examine performance factors such as control tracking

mean square error, estimation mean square error, transient response, and steady state response.

1. Introduction

Self-tuning adaptive control used for controlling unknown ARMA plants has traditionally

been based on the minimum variance control law and a recursive identification algorithm (Astrom

and Wittenmark, 1973; Clark and Gawthrop, 1979). Although the advancement in VLSI has

made it more possible to implement real-time recursive algorithms but it is still computationally

intensive and expensive due to the recursive nature of the algorithm. On the other hand, neural

networks VLSI has been made available commercially with extreme processing capability due to

its parallel architecture. With this in mind the possibility of formulating neural networks to

perform functions of conventional recursive algorithms becomes important. Hence, in this paper

we propose the neural self tuning control (NSTC) scheme where the implicit identification is

performed by a multilayer neural network (MNN-) and the control is based on the generalized

minimum variance (GMV) control law.

Neural networks have undoubtedly demonstrated its effectiveness in controlling nonlinear

systems with known/unknown dynamics and uncertainties (Narendra and Parthasrathy, 1990;

Levin and Narendra, 1993; Werbos et al. 1990; Hunt et al., 1992). In addition, neural network

adaptive control algorithms have also been developed for specific linear system model such as the

state space model (Ho et al., 91a) and the ARMA model (Ho et al., 1991b). It was shown in the

simulation results that neural network controllers produced comparable results to conventional

adaptive controllers. In this paper, we investigate the performance of the NSTC and compare it to

the conventional adaptive STR.



The flexible arm to be controlled is shown in Figure 1.1. There are two system outputs

that are of interest, one is the hub angle 0h(t) and the other is the tip angle 0t(0 of the arm. The

goal is to apply a neural network control scheme to control these outputs to track the command

signals. The neural controller will generate a control voltage signal u(t) that will feed the power

amplifier in which will force current through the motor and cause the arm position to react. The

dynamical transfer function of the hub angle is a linear minimum phase system in which will be

shown readily controllable by a neural network. In fact, the direct adaptive neural control scheme

in Figure 1.2. can be used to control the hub. This control scheme belongs to the type called

specialized learning control (Psaltis et al., 1988; Ho et al., 1991c). However, the tip of the arm,

being in a different location from the actuator point, therefore making the system to be of the type

non-collocated system. The effect of this dynamically is that there is a zero on the right half side of

the s-plane. In other words, the transfer function of the tip angle is of the type non-minimum

phase which presents itself to be very difficult to control when direct adaptive control

methodology is applied. This difficulty may be due to the controller trying to emulate the inverse

dynamics of the non-minimun plant and results in an unstable behavior. According to simulation

studies the specialized learning control algorithm diverges when applied to control the tip angle.

Most other neural control schemes are also based on the inverse dynamics including the indirect

learning method by (Psaltis et al., 1988), the feedback error learning by (Kawato et al., 1988), and

the methods presented by (Narendra and Parthasarathy, 1990).
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Figure 1.3 Indirect neural adaptive control scheme

In this report, we propose to use the neural self tuning control scheme which is based on an

indirect control method (Ho et al., 1991c) to control the tip angle. This scheme is shown in Figure

1.3 where the identification is performed by the MNN and the control is performed by the

generalized minimum variance (GMV) controller. The GMV control algorithm has a dynamic



weightingfunction Q(q-l) applied to the plant control signal u(k) inthe cost function to limit and

condition the control energy. Thus, upon selecting the proper weighting function the controller can

be input/output stable and effective in controlling the non-minimum phase plant. In section 2 the

neural self-tuning control (NSTC) which consists of the minimum variance control algorithm and

the neural identification is presented. Section 3 covers the basic dynamics of the flexible arm tip

position. Section 4 presents a comparative simulation study of the adaptive STR scheme and the

NSTC scheme. And section 5 gives the conclusion of the results found in this study and address

the advantages and disadvantages of the neural control scheme used for treating linear system.
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2. Stochastic neural self-tuning adaptive control (NSTC)

The NSTC consists of the minimum variance control law and the neural identification

algorithm. The model assumed for the plant is of ARMA input/output type having the form

B -1)

Y(k)= q'd_ u(k)+ C_ _(k)A(q") (2.1)

where u(k), y(k),_(k),and d are system input,output,uncertainty,and delay,respectively.A, B,

and C areunknown system dynamics definedas

A(q -I)= l + alq-I + a2q'2 + ...+ anaq-na (2.2)

B(q -1) = b0 + blq'l + b2q-2 + ...+ bnb q-rib (2.3)

C(q -I)= I + Clq-l + c2q-2 + ...+ Cncq-nC (2.4)

where q isthe shiftoperator. For the above unknown plant,in Figure 1.3,the objectiveisto

controlitsoutput to tracka command signaly*(k) based on the generalizedminimum variance

control index (Clark and Gawthrop, 1979)

J(k+d) = E {02(k+d) }

= E { [P(q- 1)y(k+d)+Q(q- 1)u(k)_R(q- 1)y*(k)]2 }

= E { [¢y(k+d)+Q(q- 1)u(k)-R(q- 1)y*(k)]2 } (2.5)



where E is the expectationoperator,_y(k+d) is the auxiliary output, and P,Q, and R are the

weighting dynamics which can be chosen depending on the required response characteristics.

2.1. Generalized minimum variance control

In this section, the generalized minimum variance self-tuning control algorithm for the

above problem statement is summarized (Clark and Gawthrop, 1979). To obtain the optimal

control u(k) which minimizes the performance index (2.5), the predictive auxiliary output _y(k+d)

in terms of the system dynamics must be determined. Consider the following identity

P(q'l)C(q'b F(q.1) +q-d_ (2.1.1)
A(qq) = A(q_l)

where the order of F(q "1) and G(q -1) are nf=d-1, ng--na-1, respectively. The output prediction can

be shown to have the form

A

Cy(k ) = (_y(k+d) + __y(k+d) (2.1.2)

where

A

Cy(k+d) = C(q-1)'l[G(q-l)y(k) + F(q-1)B(q-1)u0c)]

= C(q-1)- 1[G (q- l)y(k) + E(q- 1)u (k)] (2.1.3)

and

_y(k+d) = F(q-l)_(k+d) (2.1.4)

A

_by(k+d) and _y(k+d) are the deterministic and uncorrelated random components of _by(k+d).

Next, substituting (2.1.2) into (2.5), there results

J(k+d) = E{[$y(k+d)+Q(q'l)u(k)-R(q'l)y*(k)]2}+E[_y(k+d)]2} (2.1.5)

Since the second term in (2.1.5) is unpredictable random noise which is uncompensatable by the

control input u(k), and the first term is a linear function of u(k), J(k+d) can be minimized by

setting



[_y(k+d)+Q(q" 1)u(k)-R(q- 1)y*(k)] = 0 (2.1.6)

Solving for the generalized minimum variance (GMVC) control in (2.1.6) gives

R(q- 1)y*(k)-_y(k+d)

u(k) ffi Q(q- 1) (2.1.7)

using (2.1.3), (2.1.7) can also be written as

u (k) = C(q" 1)R(q- 1)y, (k)-G(q" 1)y(k)
E(q" 1)+C(q'l)Q(q-1) (2.1.8)

Remarks : Recall that E(q -1) is equal to F(q-1)B(q -1) where B(q -1) contains the zeros of the

plant. Notice that having the weighting function Q(q-1) additive to E(q -1) in (2.1.8) gives the

designer the ability to alter the poles of the controller. Thus with a non-minimum phase plant

B(q -1) shall have unstable roots and proper selection of Q(q-l) in (2.1.8) can assure the control

signal u(k) to be bounded.
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2.2. Neural system identification

In this section, a stochastic neural identification algorithm is developed for the self-

tuning control scheme in Figure 1.3. Recall the predicted auxiliary output in (2.1.3) which can

also be written as

_y(k+d) = C(q-1)- 1[G(q-1)y(k) + E(q-1)u(k)] + F(q-l)_(k+d)

= C(q-1)'l[G(q-1)yOc) + E(q-1)u(k)] + v(k) (2.2.1)

where the uncorrelated noise sequence F(q-1)_(k+d) is replaced by v(k). Also (2.2.1) can be

written as

nc
ng ne

_y(k+d) = _giY(k-i) + ff'eiu(k-i ) - _ci_y(k+d-i ) + v(k)
i=0 i=0 i=l

(2.2.2)

t_y0c+d) = ti/'(k)0(k)+ v(k) (2.2.3)



where

v'(k) = [y(k)...y(k-ng); u(k)...u(k-ne); _y(k+d- 1)..._y(k+d-nc)]

0'(k) = [go gl "'"gng; e0 el "'"ene; -Cl -c2 "'" -Cnc]

since the parameter vector 0 is unknown, the estimated form of _y(k+d) is given as

Sy(k+d)=

where

_(k) = [y(k)...y(k-ng); u(k)...u(k-ne); _y(k+d-1)..._(k+d-nc)]

A A A A A A A A A A

0'(k) = [go gl "'" gng; e0 el "'" ene;-Cl-c2 "'"-Cnc]

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)
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The unknown parameter vector in (2.2.8) (Figure 2.1), is taken from the output of the neural

network

_(k) = [ _}l(k) _}2(k) ... _j(k) ... _n3(k)]'

--- [Ol(k) O2(k) ... Oj(k) ... On3(k)]' (2.2.9)

Where n3 is the number of neurons at the output layer. Consider the system identification cost

function

1
V(k) = _ E {e'(k)A- l(k)e(k) }

1 E {[_y(k).$y(k)],A_ 1(k)[_y(k)_t_y(k)] } (2.2.10)

where A(k) is a symmetric positive definite weighting matrix, and V(k) is minimized by adjusting

the weights of the neural identifier.
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Figure 2.1. Neural network structure

In Figure 2.1, the weights connecting the second layer to the output layer, using the gradient

search (Rumelhart and McCleUand, 1987), can be updated as

(2.2.11)_j(k+1) = o)ij(k)• Ao)ij(k)

where
1

Ao)ij(k) = -ri_ {_ e'(k)A" 1 (k)e(k) }

= _rl0---_---{½[,y(k)-t_y(k)]'A-l(k)[,y(k)-_(k)]
acoij(k)

a0'(k) aSy'(k) A.l(k)[¢y(k)__y(k)]

with Tl being the search step size.

(2.2.12)

Consider the derivative of _(k) with respect to _(k) in (2.2.12)

(2.2.13)

In (2.2.13) we have assumed that 0(k) - 0(k-d), that is, 0 is slowly time varying with respect to

the delay time d. The other partial derivative in (2.2.12) can be determined as

a_'(k) a[ffNet i(k))]'
- Oi(k)ej (2.2.14)

acoij(k) aNetj(k)

where f(.) is the sigmoidal activation function, Oi(k) is the output of the second layer, and

Netj(k) - [netl net2 ... netj ... netn3]' (2.2.15)



with

n2

netj0c)-- _oij0c)Oi(k)
i=l

where n2 is the number of neurons of the second hidden layer as shown in Figure 2.1.

(2.2.14) is defined as

ej = [0...0 1 0...0]

Also ej in

(2.2.16)

with the j-th element in ej being i, and other elements are 0. Thus, substituting (2.2.14) back into

(2.2.12) gives

Acoij(k) = rlejSj(k)Oi(k) (2.2.17)

where

_[f(Neti(k))]' _ A- 1(k)[0y(k)-_y(k)] (2.2.18)
_j(k) = bNetj(k) O_(k)

Next, the weights connecting the first to the second layer, in Figure 2.1, can be updated by the

(2.2.19)

(2.2.20)

recursive equation

cod(k+l)=COn(k)+ACOri(k)

where

_TI- _ {le'(k)h-l(k)e(k)}
Acori(k)= OO)ri(k)

using the similar back propagation approach, (2.2.20) can be shown to result in the following form

Aa,'ri(k) = rl_i(k)Or(k) (2.2.21)

where Or is the output of the first layer and

bf[neti(k)]
8i(k)=[COil...coij...COin3] 3neti(k) _j(k) (2.2.22)

Lastly, the weights connecting the input to the fn'st layer, in Figure 2.1, can be updated by

the recursive equation

11



where

t_sr(k+l) = COsr(k) + Acosr(k)

aCosdk) 3 1
= -rl3cosr(k) {_ e'(k)A- 1(k)e(k) }

Again, using the back propagation approach, (2.2.24) can be determined as

A_sr(k) = Tl_r(k)Is(k)

where Is(k) is the input from the delay network and

Of(netr(k))O[f(Neti(k))]' 0Net.i(k)' 5j(k)_r(k) = [ah-1...oh-i...cXh-n2] 3netr(k) 3Neti(k) O[f(Neti(k))]'

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

with Neti(k) being defined similarly as Netj(k) in (2.2.14). By adjusting the weights toij(k),

COri(k), and tOsr(k) with the above algorithm, the unknown implicit plant's parameters can be

identified and obtained at the output of the neural identifier, as shown in Figure 2.1. Once the
A

estimate of 0 is available, ¢y(k+d) in (2.2.6) can be computed, and then the control signal can be

generated using (2.1.7) as

(2.2.27)u(k) R(q-1)y*(k)$Y(k+d)

- Q(q-1)
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3. Flexible arm tip position dynamics

This section describes the components and the control model of the flexible arm tip. A

detailed discussion of the dynamics of flexible arm tip and hub can be found in (Fraser and

Daniel, 1991). In order to control the flexible robotic arm shown in Figure 1.1, it is required that

the control action produced by the control program running on a processor board is converted to a

voltage by the D/A board and forms the input to the power amplifier of the motor. The output of

the power amplifier is a motor current directly proportional to the input voltage. The motor then

converts this current to a torque to drive the arm. The resulting motion of the arm is detected by

the various sensors and fed back to the controller.



Theadaptivecontrol algorithm design does not require the complete knowledge of the plant

dynamics. However, for the purpose of simulation study, the transfer function model of the plant

needs to be known. This model must incorporate not only the behavior of the flexible arm itself

but also the power amplifier, the motor and the output sensors. In a servo system, the power

amplifier and the sensors usually have a much higher bandwidth than that of the motor and load

therefore they can be approximated as a constant. The general transfer function of the flexible arm

tip is

Or(s) : KAK T fi (1-s2/(z_i)

u(s) (l+2 is/ i+s2/co ) (3.D

where the physical interpretation of the above equation is as follows:

First, poles and zeros of the system is depicted in Figure 3.1 below

s-plane
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Figure 3.1 Pole-zero diagram of flexible arm tip



The above diagram shows the three constituting dynamic components of the plant which are the

motor, the resonant modes of the flexible arm, and the arm non-minimum phase characteristics.

The dynamics of the servo motor system is represented by the term

K_Kt

(S+Co) s (3.2)

where K T is the motor torque constant, K A represents the power amplifier and sensor gain, and Co

represents the back emf and viscous damping effects know as the mechanical time constant. The

motor can be seen as a series of subcomponent connected in series as shown in Figure 3.2.

motor motor

velocity position

 s+co 
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Figure 3.2 Servo motor system components

Next, the the flexible arm attached to the motor shaft is describe by the term.

" (1.s2/ott2i)

rIi=l (1 +2_is/oi+s2/oi 2)
(3.3)

Here, the denominator of (3.3) represents the set of flexible resonant modes of the arm. Each

flexible mode is associated with the corresponding damping _i at a frequency oi. In theory, there

is an inf'mite number of flexible modes, but in practice only the sufficiently low frequency modes

will be noticeable by the control system. This is because a real system is always band-limited

therefore most of the modes are attenuated by the low-pass frequency behavior. Also, the

frequency range of operation can be limited to be below the major dominant resonant mode so that

oscillation will not be present in the system response. If higher frequency range of operation is

desired, the dominate resonant modes can be notch filtered out provided their damping _i's and

frequencies _'s are determinable.

Consider the physical properties of the flexible arm and the servo system given in Table

3.1. Based on these parameters the transfer function was derived and measured by experiment

(Fraser and Daniel, 1991). Both results agreed as shown in Table 3.2. The five resonant modes

occupy the frequency range from 86 rad/sec to 1445 rad/sec. The frequency response of this

system was simulated and is shown in Figure 3.2. The peaks represent the resonant energy at the

specific frequencies. Also notice that the energy of the modes lessens are the frequency increases.



Table 3.1.

Physical properties of

effective beam length (m)

beam thickness (ram)

beam width

arm and motor

0.386

0,956

mass/unit length of arm m (kg/m)

flexural rigidity' of beam(Nm^2)

hub moment of inertia (kg m^2)

radius of hub (m)

Tip mass for loaded arm (kg)

tip inertia for load arm (kg m^2)

continous torque at rated speed (Nm)

0.03

0.222

0.426

0.00009

0.034

0.065

0.000005

0.177

2.913
=ll

24

0.048

0.000041

3.6

0.16

pulse torque(Nm)

rated voltage (V)

torque constant (Nm/A)

total Inertia (kg m^2)

Ka*Kt

Co (rad/sec)



POLES (rad/sec) ZEROS (
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Mode _ _ F,KumL

1 86.1 86.9 48.4 47

2 297.6 285.3 -48.4 -47

3 603.2 601.9

4 1011.6 1065.0

5 1445.1 1658.8
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Figure 3.2 Frequency magnitude response of arm tip with five resonant modes



For easycontrollability it is desirable to filter out these resonance m_acles. Therefore, a notch filter

is designed to notch out the first resonance mode and a low pass filter is used to filter out the rest

of the resonance mode. Figure 3.3 shows a block diagram of the filtering process. The resulting

frequency ideal response is shown in Figure 3.4.

17
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Figure 3.4 Frequency response of the aggregate filtered open-loop

Since we are primarily interested in learning the controllability and behavior of the non-minimum

phase characteristics of the plant, we can simplify the ann tip transfer function to have the form



et(s) m KAKT(1-s2/O_ 2)

u(s) s(s+co) (3.4)

Lastly, the non-minimum characteristics of the arm tip is describe in (3.1) and (3.4) by the

numerator term.

(1-s2/tz 2)

This is due to the fact that the control system sensing and actuation do not take place at the same

location and therefore being a non-collocatted system. It should be mentioned that the non-

minimum phase characteristics is very difficult for the neural network to control (since most neural

network adaptive control schemes are based on the direct method).
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4. Empirical studies

In this section we examine some simulation results of the direct and indirect neural control

schemes for controlling the flexible arm hub and tip. We will show that the hub having a well

behaved linear transfer function produced very satisfactory controlled response. We also attempted

to use the direct adaptive control scheme to control the tip velocity and found unstable response

even after numerous controller parameter changes. Next, the NSTC scheme in section 2 was

applied to control the tip position and produced encouraging results. Lastly, the neural identifier in

the NSTC algorithm is compared with the recursive least square identifier and show faster

convergent rate.

4.1. Neural direct adaptive control of arm hub and tip

The neural direct adaptive control scheme was first introduced by (Psaltis et al., 1988) and

was later reformulated for nonlinear/linear state space system by (Ho et al., 1991c). We will apply

this scheme, shown in Figure 4.1. to control the hub velocity of the arm.

The dynamic transfer function of the hub is a linear minimum phase system. The numerical

transfer function found in (Fraser and Daniel, 1991) is

Oh(S_.___)= 10.2 (1_)32,7 z

U(s) (s+0.57)(s+2000) (4.1)
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 Oh(k)

Neural Network
Controller
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\
Figure 4.1. Neural direct control scheme of hub velocity

where the resonant modes are assumed to be fdtered out. In the simulation process, the model in

(4.1) was first discretized and then converted to state space form

x(k+l) = Ax(k) + Bu(k)

Oh(s)= Cx(k)

(4.2)

When using this scheme (Figure 4.1.) there is a priori information that is needed and that is the

_Oh(k)

jacobian of the plant 3u(k). This term was computed based on the discretized model and resulted

as

_Oh(k) = CB

Ou(k) (4.3)

Information on the neural network algorithm is refered to (Ho et al., 1991c).

Remarks: : The hub position was not suitable for this specialized learning control scheme because

the jacobian turns out to be near zero. Therefore the velocity is the selected controlled variable and

an additional outer control loop may be incorporated to achieve position control. This outer loop

will have a velocity profile generator which resembles to a proportional controller with saturation

(Franklin and Powell, 1981).

Simulation: A smoothed square wave command was presented to the control system, after 50

iterations (about .3 seconds, sampling period was 6 ms) the hub had tracked the command signal

as shown in Figure 4.2 where the solid line is the desired response and the dashed line is the actual

response.
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Figure 4.2. Hub velocity response: 0t(k) & 0t(k)

This trackability is reflected in the mean square tracking error shown in Figure 4.3. Notice that the

convergent time in control application is serveral orders of magnitude faster than other

applications. In this case it took only 50 iterations for the 2-layer neural network to be maturely

trained with initial random weights. This fast convergent time makes it very practical for real-time

control implementation.

0.2

..............L i.........!......................................
! ¢ r r i i ! |

0 50 100 150 200 250 300 350 400 450 500

Iterations

Figure 4.3. Control tracking MSE response

Next, the same scheme is applied to control the tip velocity. The numerical tip transfer function

(based on the flexible arm and motor properties in Tables 3.1 and 3.2) is given in (Fraser and

Daniel, 1991) as

Ot(s______)= 3.6 (1+---_.)48.4z

U(s) s(s+O.16) (4.4)

Here again, we are primarily interested in the non-minimum phase characteristics and therefore

assumed that the resonant modes are filtered out.
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After numerousattempts to vary the neural network parameters, an unstable closed-

loop response was prevalent as shown in Figures 4.4 and 4.5. This is due to the fact that the

neural network in Figure 4.1. trying to emulate the inverse dynamics of the plant (4.4.) and in

effect produced an unstable pole behavior. Note in Figure 4.4. that the command signal is small

compared to the plant diverging output response therefore it looks like a straight line.

200

0

-200
0 50 100 150 200 250 300 350

i ........ "1......... I....... _,_'1 ..... i''''l" ° I ..... I'T " "..*''_r _ _=_ ....... _r T .......... ! .........

400 450 500
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Figure 4.4. Unstable response of tip control: 0t*(k) and 0t(k)

3000
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Figure 4.5. Diverging tracking MSE of tip velocity

2

Neural Network; The N5.1o,1 neural network used in this scheme consists of one input layer, one

hidden layer, and one output layer with the number of neurons as 5, 10, and 1, respectively. Also

at the input of the neural was the desired response vector [y*(k) y*(k-I) y*(k-2) y*(k-3) y*(k-

4)] T. The parameters of the sigmoidal activation function at the output node was found to be most

influential on the tracking error convergent rate. Predominantly the slope of the activation function

was observed to be proportional to the convergent rate. Also the bipolar sigmoidal saturation

levels of the output neuron needed to be set equal to or greater than the maximum allowable plant

input. The tuning of the sigmoidal functions was done manually by trial and error, typically for

linear system like that of the hub, it takes very few tweaks (around 1 or 2) before the tracking

results was achieved. Auto-tuning of the sigmoidal function parameters can also be applied to

obtain statiscally better results (Yamada and Yabuta, 1992; Proano, 1989).
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4.2. Neural self-tuning adaptive control (NSTC) of tip position

In section 4.1. we showed by simulation that the direct neural adaptive control scheme was

unable to control the tip position (Figures 4.4 and 4.5). In fact, this was why the NSTC algorithm

was developed. Recall that this scheme has two distinct functions, identification and control,

which are done by the neural network and the (GMV) control, respectively. The NSTC scheme is

shown again in Figure 4.6.

u(k)
f

f

Tip of Flexible Robotic Arm

o

3-Layer Neural Network Identification

tip position

0t0¢) -- y(k)

A

0,(k) =

d Generalized Minimum Variance Controller -_¢

O_(k) = y*(k) desired output

Figure 4.6. NSTC scheme block diagram

In this section we perform the simulations of two schemes which are: The adaptive STR

using recursive least square identification, and the NSTC using the neural identification. This is so

that a comparative study can be done to assess the performance of the developed NSTC.
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i_llklJalJ.o_ The modelof thetip position is thediscretizedmodelof (4.4).
indexdefinedin section2

J(k+d)= E{_2(k+d)}

= E {[P(q- 1)y(k+d) +Q(q" 1)u(k)_R(q- 1)y, (k)]2 }

Recall the control

(4.5)

where the weighting functions were chosen as

p(q-1)=l; Q(q-1)=.l+.06q-1; R(q-1)=l (4.6)

lit

and the desired hub position 0t (k) was a step command. Beginning with Figure 4.7. showing the

desired step tip response, the controlled tip response based on the adaptive STR and the tip

response from the NSTC. Obviously both controllers manage to track the command signal.

However, the NSTC seems to have a slower settling time. Figure 4.8. shows the converging

tracking control index (2.1.5) where both schemes seem very comparable to each other. Figure

4.9. displays the comparable control energy produced by these controllers. Note that the transient

control energy was affected by two factors: one is the initial condition of the estimated parameter

vector 0o (which was set as 0o = [1 1 ... 1]' for both control schemes), the further 0o is away

from the optimum 0 in the parameter state space, the longer the convergence of the tracking

control index (2.1.5). The other factor is the selection of the input weighting function Q(q-1)

which has the effect of limiting the control energy with the tradeoff of slower tracking

convergence. Lastly, we compare the recursive least square identification with the neural network

identification. The two identifiers estimate the parameter vector 0 in (2.2.5) so that the predictive

output term t_y(k+d) in (2.2.2) can be computed. Figure 4.10. shows the estimation cost function

V(k) in (2.2.10) response of the RLS and the neural network. V(k) of the RLS has a slightly

faster convergence than the neural network but not by a significant degree. Again, this indicates

that the identification performance of the two algorithms are comparable to each other. For

completeness, the time response of the true output 0t(k) and the estimated output 0t(k) produced

by the neural network is shown in Figure 4.11.

3
Neural Network: The three layer neural network N2,5,15, P0 used in this scheme consists of one

input layer, two hidden layers, and one output layer with the number of neurons as 2, 5, 15, and

P0, respectively. P0 is the length of the vector defined in (2.2.8) which is (ng+l)+(ne+l)+nc, and

is 11 for the case of the arm tip plant. The input of the neural network was a selected as constant

vector Is = [1 1]' because it was desired that the output of the neural network to be correlated to the



its inpuL The parameters of the sigmoidal activation function at the output node was found to be

most influential on the tracking error convergent rate. Predominantly the slope of the activation

function was observed to be proportional to the estimation convergent rate V(k). Also the bipolar

sigmoidal saturation levels of the output neuron needed to be set equal to or greater than the

maximum component of the parameter vector O. The tuning of the sigmoidal functions was done

manually by trial and error. Autotuning of the sigmoidal function parameters can also be applied to

obtain statiscaUy better results (Yamada and Yabuta, 1992; Proano, 1989). However, the optimal

dimension of the neural network in terms of number of layers and nodes was not known and
3

therefore an initial pick of N2,5,15,PO was used throughout the simulation.
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Figure 4.7. Tip position response: 0t (k) & 0t(k) of the adaptive STR and the NSTC
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5. Conclusion

The neural self-tuning control (NSTC) algorithm was developed and applied to control the

tip of a flexible arm system. The dynamics of the flexible arm tip involves an unstable zero and

therefore making the system non-minimum phase, most of the existing neural adaptive control are

based on the inverse dynamics and therefore would not be able to control this type of plant. The

NSTC was based on an indirect conlxol method where the identification is performed by the neural

network and the control was based on the generalized minimum variance (GMV) control law. The

performance of the NSTC was investigated and was compared to the adaptive STR by means of

simulation.

in summary, the NSTC has a very comparable performance to the adaptive STR shown by

simulation results in section 4.2. Unlike other applications of neural networks where thousands of

iterations were required before the network can be maturely trained, in this application the neural

network identification had a convergent rate comparable to that of the RLS. Another advantage of

the NSTC is due to the availability of neural network VLSI and the massive parallel architecture of

the neural network there will be a computation advantage over conventional recursive algorithms.

This will enable real-time implementation with faster sampling rate for system with high

bandwidth. Also another advantage of the NSTC is that because the identification is done by the

neural network it inherits the decentralize property, meaning if there is a failure in a node or

connection the impact on the performance will be minimal. Whereas with the conventional digital

f'dter a failure in one of the coefficient will have a major impact on the output. With all the above

encouraging characteristics there is one disadvantage of using the neural network and that the the

lack of understanding how the dimension and activation characteristics of a network is related to its

accuracy and stability. Whereas these issues of the re.cursive algorithms have been addressed and

elaborately analysed (Kumar, 1990).
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6. Future research

The NSTC can be modified and extended to control systems that are not only non-

minimum phase but also nonlinear. This is so that the properties of neural networks can be fully

exploited. A system that have the above characteristics is a two degree of freedom robotic

manipulator with the second link being flexible. Most conventional adaptive control schemes rely

heavily on the inverse dynamics and therefore showed great limitations with this type of system

(Centinkunt and Yu, 1990).
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APPENDIX

Simulation Program

The simulation was perforemed using the software MATLAB. The program shown below is the

NSTC scheme.

cic
clear
%
%_ BEGINSIMULATION

N3=1500;
ndisp=30;
ALGsr = 1;
ALGri = 1;
ALGij = 1;
ID=I;

% NUMBER OF ITERATIONS

% 1_> Gradient 2==> Newton 3_--->MV
% 1_> Gradient 2--.=>Newton 3==>MV
% 1_> Gradient 2-_-> Newton 3==>MV

% 1_> RLS _> Netwal I.D. 0==>Determisfic

%
%
%_ IN1TIALITATION, _,
% PLEASE SELECT THE DIMENSION OF THE STATE VECTOR X0,
% INPUT VECTOR U0, OUTPUT VECTOR Y0, AND PARAMETER VECTOR
% P0 BY MODIFYING TIdEFOLLOWING STATEMENTS:
%
% P0=4;

PO0=I; PSIO=I;

%
%Plant [al a2 a3.._tna b0 bl b2...bnb];

% A = [.7.5 -.3]'; B=[I .2 -.1.3]';

% A = [.7.5]'; B=[1.2 -.1]';
% THETAp = [.7.5 1.2 -.1]'; %minimum phase 2nd order plant
% A= [.7.5-3]'; B = [1.2-.1 3]';
% THETAp = [.7.5 -.3 1.2 -.1.3]'; % minimum phase 3rd order
% THETAp = [.7.5 -.3 1.2 -.1 3]'; % non-minimum phase 3rd ; ld--4-10
% A=[.7.5 -.3]'; B=[I .2 -.1 3]';
% THETAp = [-2.58 2.18 -.5965 -429.7 884.8 -430.8]'; %missile nmp
% THETAp = [-3.987 5.96 -3.96.987 -6.94e-5 6.92e-5 6.9e-5 -6.88e-5]';
% Mxl
%THETAp ffi [-3.87 5.63 -3.64.882 -.0068.0066.0065 -.0063]'; %missile
%THETAp ffi[-2.979 2.96 -.979 -.0047.0094 -.0047]'; %Submarine
load plant
nun_numd'/dend(1);
dea=deacr/dead(l);
l_.num;
A--dea(2:_gth(dea));
% B=_umd A=dend(2,:)

THETAp = [A' BT;



na=length(A);nb=length(B)-l;d= 1;
nf=d-1;
ne=nf+nb;

ng=na-l;
nc=0; %This assumes the noise has no dynamics, i.e. C=I;
P0 = (ng+l)+(ne+ l)+nc; %Dimension of THETA
P0p=na+nb+l; %Dimension of plant's THETA
THETAEST= l*ones(l_),l );
%load thetaest
THETA0=THETAEST;

ycst=0; w=0;
P=P0_eye(P0,P0);
PSIp=PSI0*ones(P0p,l );
PSId = zeros(P0,1);

K= 1.5*ones(P0,1);
Yl=zcros(ng+l,l); Ul=zetos(ne+l,1);
Yc=zetos(ng+l,1); U_zexos(ne, 1);

Y lp=zeros(na, 1); Ulp=zeros(nb+ 1,1),
Ud=zeaos(d,l); Yd=zeros(d,1); % delayed values of u, y and w
Wd--zeros(d,l);
y=O; u=O; % output y(k), input u(k)
VARV = 0; % Output noise variance
MEANV---0;
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n0=2; nl = 5; n2=15; n3=P0;
NETr - zeros(nl,l);
NETi = zeros(n2,1);
NETj = zeros(n3,1);
Is = zexos(nO,1);
Or = zeros(nl,l);
Oi = zeros(n2,1);
Oj = zeros(n3,1);

ALPHAj = .03*ones(n3,1);,ALPHAi = .03*ones(n2,1);

ALPHAr = .03*ones(nI,I);

% Dimensions of Neural Network

Hj = 0*ones(n3,1);, Hi = 0*ones(n2,1);, Hr = 0*ones(nl,1);
Kj = 3*ones(n3,1);, Ki = 2*ones(n2,1);, Kr = 2*ones(hi,I);
Wsr = rand(nOoal);
Wri= rand(n1_2);
Wij = rand(n2,n3);

mu=.8;
lambda0=.99;
lambdak = .995;
LAMBDA = 1;

Pij = 10*ones(n2,n3);
Pri = 5*ones(hi,n2);
Psr = 5.3*ones(n0_l);
Rn = .001;
R_.9;
%
% _ END OF INITIALIZATION

rand('seed',10);

%
% ::::: BEGIN ITERATION :::::



. 32

for k= 1 :N3

% _ STOCHASTIC ARMA REPRESENTATION OF A LINEAR PLANT

%

% y(k)+aly(k- 1)+...+anay(k-na)=b0u(k-d)+b 1u(k- 1-d)+...+bnbu(k-nb-d)+v(k)
% y(k),=PS Ip'(k) *THETAp(k)+v(k)
% PSIp'=[-y(k- 1)...-y(k-na) u(k-d)...u(k-nb-d)]
% THETAp(k)'=[al a2...ana b0 bl b2...bnb]
% THETA'(k) = [gO gl ...gng cO cl...cnc]

% PSId'(k) = [y(k-d).. y(k-d-ng) u(k-d)..u(k-d-nc)]

% yest(k) = PSId(k)'*THETAEST

% Compu_g THETA

ifd==l

E=B;
C_--A; %g(i)=-a(i+l), i--0..ng G=q-I(1-A)

erd

THETA = [G'ET;

% PARAMETRIZATION FOR PSI(k).
%

%

%

% u=u(k-1) y=y(k-1)
for i=d-l:-hl Ud(i+l)=Ud(i);, end, Ud(1)=u; %[u(k-1)...u(k-d)]
for i=d-h-hl Yd(i+l)=Yd(i);, end, Yd(1)=y; %[y(k-1)...y(k-d)]
for i=d-h-hl Wd(i+l)=Wd(i);, end, Wd(1)fw; %[w(k-1)...w(k-d)]

%= PSIp(k) = [-y(k-l).. -y(k-na) u(k-d)..u(k-d-nb)l'
for i--_-1:-1:1 Ylp(i+l)ffiYlp(i);, end; Ylp(1)ffi-Yd(1);
for ifnb:-h I Ulp(i+l)ffiUlp(i);, end; Olp(1)fUd(d);

PSIp = ['Ylp' Ulpq';

%--PSld(k) = [y(k-d).. y(k-d-ng) u(k-d)..u(k-d-nc)]
for ifng:-hl Yl(i+l)ffiYl(i);, end; Yl(1)=Yd(d); %[y(k-d).. y(k-d-ng)]
for iffine:-hl Ul(i+l)=Ul(i), end; Ul(1)=Ud(d); %[u(k-d)..u(k-d-nc)]
PSId = [YI' ur]'; % PSI(k-d)

%

% --- GENERATING NOISE v(k) .....
randCnormar)
v=-sqn(VARV)*rand({,l )+MEANV;

%

% --- COMPUTING y(k) & w(k) ---
%

y=PSIp'*THETAp+v; %y(k)

tau=.5;
w=tau*w + (1-tau)*2; %*sign(sin(0.004*(k)));

wf(w/2)+l;
%

% --- END OF PLANT.

%command signal w(k)
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%

% ---- ADAPTIVE ESTIMATION ----
% _ THE STOCHASTIC LEAST SQUARES ALGORITHM (SLA)
%
%
%--- BEGIN ESTIMATION ....
% THETAEST = [gOgl ...gng e0el ...ene]'

yest=PSId'*THETAEST; % PREDICTED OUTPUT yest0c)
_y-yest; % PREDICTION ERROR e(k)

ifID==l
K=P*PSM*inv(I+(PSM'*P*PSId));
THETAEST=THETAEST+K* e;
P=(P-K*PSId'*P);

end
%----- .Nard identification

% OPTIMAL GAIN
% PARAMETER ESTIMATION

if_2
Is(1)=l;

Nelr = Wsa"*ls;
tempt = (ALPHAr/'2).*tNelr+Hr);
Or = Kr.*tanh(tempr);
Or(1)=l;

Neff= Wri'*Or,
tempi = (ALPHAi/2).*(Neti+Hi);
Oi = Ki.*tanh(tempi);
Oi(l)=l;

Netj = Wij'*Oi;
tempj = (ALPHAj/2).*(Netj+Hj);
Oj = Kj.*tanh(tempj);

THETAEST = Oj;
if k_ 1 save thetaest THETAEST, end
PSI=PSId;

tempi2= cosh(tempj).*cosh(tempj);
tempi2= cosh(tempi).*cosh(tempi);
tempt2 = cosh(tempr).*cosh(tempr);
Fdotj = (Kj.*ALPHAj/2)J(tempj2);
Fdoti = (Ki.*ALPHAi/2)J(tempi2);
Fdo_r = (Kr.*ALPHAr/2).](tempr2);

dj = Fdotj.*PSI;
PSIij= Oi*dj';
di = (Wij*dj).*Fdoti;
PSIri = Or*di';
Q = Fdoti .* 0Vij*(Fdotj.*PSI));
dr = Fdotr .* (Wri*Q);
PSIsr = Is*&';

if ALGij -_- 1 % Gradient
Lij = mu*PSIij/LAMBDA;

end



if ALGij_---2 % Newton
Sij = (PSIij.*PSIij.*Pij) + (lambdak*LAMBDA*ones(n2,n3));
kij ffi0'ij.*Psnj)./sij;
pij = (pij- (Lij.*Sij.*Lij))/lambdak,

end
ff ALGij _ 3 % Minimum Variance

Sij = (PSIij.*PSIij.*Pij) + Re*ones(n2,n3);
Lij = (Pij.*PSlij)./Sij;
Pij = Pij - (Lij.*PSIij.*Pij) + Rn*ones(n2,n3);

end

if ALGri _ 1 % Gradient
Lri = mu*PSIfi/LAMBDA;

end
if ALGri _--- 2 % Newton

Sri = (PSIri.*PSlri.*Pri) + (lamlxlak*LAMBDA*ones(nl,n2));
Lri = (lh'i.*PSIri)./Sd;
Pri = (Pri - CLxi.*Sd.*Lri))/lamlxlak;

end
if ALGri _ 3 % Minimum Variance

Sri = (PSIri.*PSIri.*Pri) + Re*ones(nl,n2);
l.,ri = (Pri.*PSIri)./Sri;
Pri ffiPri - 0.xi.*PSIri.*Pri) + Rn*ones(nl,n2);

end

if ALGsr _ 1 % Gradient
Lsr = mu*PSIsr/LAMBDA;

end
if ALGsr _---2 % Newton

Ssr = (PSIsr.*PSIsr.*Psr) + (lambdak*LAMBDA*ones(n0,nl));
Lsr = (Psr.*PSIsr)./Ssr;
Psr = (Psr - (Lsr.*Ssr.*Lsr))/lamlxlak;

end
if Al.X3sr _-- 3 % Minimum Vasrance

Ssr = (PSIsr.*PSlsr.*Psr) + Re*ones(n0,n 1);
Lsr = (Psr.*PSIsr)./Ssr;
Psr = Psr - (Lsr.*PSIsr.*Psr) + Rn*ones(n0,nl);

end

Wij = Wij + Lij*e;
'Nil ffiWri + Lri*e;
Wsr = Wsr + Lsr*e;

%LAMBDA = LAMBDA + (e*e'-LAMBDA)/k;
lambdak = lam&la0*lambdak+(1-1ambda0);
Re = Re + (e*e'-Re)/k;
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for i=n0:-1:2 Is(i)=Is(i-l);, end

end

%
% .... END OF ESTIMATION ---

%
% _ MINIMUM VARIANCE ADAPTIVE CONTROL



%
%
%
%----BEGIN ADAPTIVE CONTROL ....

for i=ng:- 1:i Yc(i+ 1)=Yc(i);, end; Yc(1)=y; %[y(k).. y0c-ng)]
for i=_-l:-l:l Uc(i+l)=Uc(i);, end; Uc(1)=u; %[u(k-1)..u(k-ne)]

ld= .1;
1d2= .06;
kt_e,
if_ THETAEST=THETA;, end %Q = ld + q-lid2
ifk<l THETA_THETA;, else THETAc=THETAEST;, end
Gest(l:ng+l,1) = THETAc(I:ng+I); %G
Eqest(l:ne+l,l) = THETAc(ng+2:ng+2+ne); %E
Eqest(1) = Eqest(1)+ld; % E+Q
Eqea(2) = Eqest(2)+km;
%Eq_3) = ,_(2)+kt3;
%u(k) = {w(k)-[g0y(k)+...+gncy(k-ng)] -[elu(k-1)+...+eneu(k-ne)]}/e0

SUM1 = Eqest(2:nc+l)'*Uc;
SUM2 = Gest'*Yc;
__)
%break
u=(w-SUM2-SUM1 )/Eqest( 1);
%u=_,

%u(k)

% --- END OF ADAFrlVE CONTROL ....
%

%
% --- SIMULATION ERRORS .......
% .... SAVE THETA(k) & THETAEST(k) ....

for j=I:P0
THETA I(kj)fTHETA(j);
THETA IEST(k j')--THETAEST(j);

end

% --- SAVE y(k) & yest(k) ---
Y(k,l)=y;
YEST(k,l)=ycst;

% ---- SAVE K(k) ---
for j=I:P0

Kl(kd_=K(j);
end

% ---SAVE U(k) ---
U(k)fu;
Wtk)=Wd(d);

%
%
% --- THE PARAMETER IDENTIFICATION MSE(k) ....

THETAER=THETA 1-THETA 1EST;

for j=I:P0
ff k_------l,TMSE(k,j)=THETAER(k,j)^2; else

TMSE(k,j)=TMSE(k- 1,j)+(THETAER(k j)^2-TMSE(k - 1,j))/k;
end

end



36

% --- THE OUTPUT PREDICTION MSE(k) ....

YER(k)=y-ycst;
ifk_-l, YMSE_)=YER(k)^2; else

YMSE(k)='_SE(k-I)+(Y_(k)^2-YMSE(k-I))/k;
end

% ....THE COST FUNCTION(k) J(k)---

YESc(k)fy-Wd(d);
if _ I,J(k)=YERc(k)A2;else

J(k)=J(k-1_c(k)^2-J(k-1))/k;
end

% _=_ D_Y MATRIX
% THIS M-FILE IS USED TO MONITOR SYSTEM PERFORMANCES DURING
% SIMULATION.
%
% ....TRANSFER DATA TO MATRIX DISMATI ....

DISMATI(I,I)=k;

DISMATI (I_)=TMSE(k,I);

DISMATI(I3)=TMSE(k_2);
DIS MAT1 (I,4)=TMSE(k,3);

% DISMAT I(13)=TMSE(k,4);

DISMAT I(I,6)=YMSE(k);

DISMATI(I,7)=U(k);
% --- TRANSFER DATA TO MATRIX DISMAT2 .....

DISMAT2(I,I)=k;

DISMAT20 2.)=J(k);
DISMAZ203)=Wd(d);
DISMAT2(I,4)=y;

DISMAT2(I,5)=ycst;
% --- DISPLAY DISMATI & DISMAT2 .....

ifrcm(k.nd_)--=0
home

dispC k TMSm TMSE2 TMSE3 TMSE4 YMSE
disp(DISMATI)
disp(' k J(k) w(k-d) y(k) yest')
@ISMAT2)
%[THm'A THm'AEST]

end

U(k)')

%
% _ END OFDISMAT

%keyboard
end % END OF FOR LOOP(k)

% ::::: END OF ITERATION :::::
%
% --- SYSTEMS GRAPHICS

SYGRAF
%

% _----'END OF SIMULATION


