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FORWARD

The Advanced Rotorcraft Transmission (ART) program was an Army funded program

to advance the state-of-the-art in helicopter transmissions. The program was

directed and managed by the Army Aviation Systems Command Propulsion Director-

ate and the NASA Mechanical Systems Technology Branch, both of the Lewis

Research Center in Cleveland, Ohio. The ART program consisted of four re-

search contracts. This report documents the Sikorsky contract. Technical

direction for all of the ART contractors was provided by Mr. R. Bill and the

technical project managers of the Sikorsky project were Mr. W. Hady (retired)

and Mr. T. Krantz, all of the NASA Lewis Research Center.

The Sikorsky technical effort, under contract NAS3-25423, was begun in July,

1988 and ended in April, 1992, and was managed by Mr J. Kish of Sikorsky

Aircraft. This report was written by Mr Kish with assistance from Mr. G.

Ambrose who prepared the test sections.

Appreciation is extended to all personnel who participated in the design,

manufacture and testing conducted during the ART program. Recognition is given

to Mr C. Isabelle who directed the design effort conducted by Messrs N.

Baldino, D. Donahue, H. Frint, B. Hansen, M. Hayduk, S. Joyce, C. Keller, M.

Mullen, D. Ray, and G. Webb. The testing of thin dense chrome Pyrowear 53 was

conducted by Mr. M. Lutian of the Sikorsky Structural Technologies Section.

Assistance in the composites design area was provided by Mr. D. Nguyen.

Manufacturing engineering support was provided by Messrs M. Francis, J.

Mucci, and K. Martell. The ART 1/2 size test components were fabricated at

Sikorsky in the Development Center under the direction of Mr L. Hoag, in the

Production Gear Shop under the direction of Mr. P. FitzGerald, and in the

Production Machine Center under the direction of Mr. J. Plunkett. Appreciation

is extended to Mr. G. Ambrose, A. Parker, and Mr. D. Ryan for the conduct of

the test program, to Mr. L. Zunsky of the Development Center, and to Mr. G.

Rollinson, A. Lohr, W. Davidson and R. Warner of the Sikorsky Instrumentation

Lab.

Several efforts under the ART contact were provided by sub-contractors.

Special thanks is extended to the McGill Manufacturing Co., Valparaiso,

Indiana for the design, development, and test of angular contact spherical

roller bearings with ceramic rollers. This effort was led by Mr D. Michaels,

with assistance from Mr. A. Aggarwal, and supervision by Mr. J. Porter of

McGill Manufacturing Co. Appreciation is also extended to Ohio State Univer-

sity and Prof. D. Houser for the conduct of transmission error dynamic analy-

sis.
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SUMMARY

The objectives of the Advanced Rotorcraft Transmission program were to develop

the technology necessary to advance the state-of-the-art in helicopter trans-

mission design and achieve a 25% reduction in weight, a I0 dB cabin noise

reduction, and a 5,000 hour mean time between removals (MTBR), representing

approximately a two to one improvement in reliability. Sikorsky chose as the

baseline to which all work would be compared, a three engine Army Cargo

Aircraft (ACA) of 85,000 pound gross weight. The ACA was designed to carry a

payload of 25,000 pounds on a 500 KM mission radius. The baseline transmission

configuration was the CH53E with a nose gearbox input, main bevel combining

gear, and two stage planetary but sized to the 115:1 overall reduction ratio

and 16030 HP input of the ACA.

Preliminary designs were conducted of split path and split torque transmis-

sions to evaluate the weight, reliability, and noise and compare the improve-

ments to the program goals. A split torque gearbox with a high reduction ratio

double helical output gear was determined to be 23% lighter, greater than i0

dB quieter, and almost four times more reliable than the baseline two stage

planetary design. The improvements were attributed to extensive use of compos-

ites, spring clutches located at the transmission input, advanced high hot

hardness gear steels, the split path configuration itself, high reduction

ratio, double helical gearing on the output stage, elastomeric load sharing

devices, and elimination of accessory drives.

Detail design studies were conducted of the chosen split path configuration

and drawings were produced of a 1/2 size gearbox consisting of a single engine

path of the second stage spur mesh, and output stage double helical gear mesh.

Fabrication and testing was then conducted on the 1/2 size gearbox. In a

parallel effort, McGill Bearing Co., Valparaiso, Indiana designed, fabricated,

and tested an angular contact spherical ro!ler bearing. Bearings with steel

rollers as well as ceramic rollers were fabricated and tested. The testing

showed that ceramic rollers performed better than steel rollers especially

under marginal lubrication regimes and outperformed the steel rollers under

lost oil survivability testing. In other parallel efforts, Ohio State Univer-

sity developed methodology to analyze the transmission error in a double

helical gear mesh and the Sikorsky materials department conducted fretting

tests of Pyrowear 53 high hot hardness gear steel with and without thin dense

chrome plating. No difference in allowable was found for 9310 with fretting,

Pyrowear 53 with fretting and Pyrowear 53 with thin dense chrome plate with

fretting.

The 1/2 size gearbox testing proved that the concept of the split path gearbox

with high reduction ratio double helical output gear was sound. Topological

tooth modifications permitted the high face width to diameter ratio double

helical pinions tO operate with good load distribution. Measured gearbox

operating temperatures and vibration levels were low throughout the testing.

Measured load sharing with the elastomeric load sharing device was excellent

but the material chosen was not able to withstand the internal gearbox operat-

ing environment and further development is required. Measured load sharing

without any load sharing device was acceptable so long as tolerances of the

bearing bore locations and index tooth timing were tightly controlled. Testing

also showed that the double helical gear is susceptible to surface deteriora-

tion effects from low EHD oil films inherent in the design.



INTRODUCTION

Traditional development of helicopter engines and transmissions have followed

divergent paths in terms of development test time. Engines have been tested

for thousands of hours prior to first flight whereas it is common for a

helicopter transmission to have only hundreds of hours of testing. This has

led to a reluctance on the part of transmission designers to advance the

state-of-the-art in favor of more established and proven approaches. The ART

program was designed to permit development of high risk items without involve-

ment in success oriented schedules and production commitments. It was a highly

coordinated effort by the government to structure a program incorporating key

material and component technologies for advanced rotorcraft transmissions. The

intent was to make a large improvement in the state-of-the-art by accumulation

of test time on components with high payback in the areas of reduced weight,

reduced noise, and increased reliability. The effort concentrated on high gain

and comparatively high risk items that were systematically evaluated to solve

problems prior to full scale development. Therefore many advanced and innova-

tive concepts were tested.

The major thrust of the ART contract was the development of a high reduction

ratio, torque splitting output stage. For minimum weight, the output stage of

the split path design has a high aspect ratio of face width to diameter. For

minimum noise, a double helical output stage was chosen. The double helical

stage also alleviates some of the problems of high face width to diameter

pinions since there are now two pinions which can be corrected for deflection

separately. Split path designs have been used in production helicopters in the

Soviet Union in their Mi-26 helicopter and in Great Britain at Westland in

their Lynx helicopter. These production split path designs use quill shafts in

the torque splitting branch to achieve load sharing. Westland has also accomp-

lished design work on their "Advanced Engineering Gearbox" showing the weight

advantages of split path designs with very high output stage reduction ratios.

In the ART split path design, load sharing was achieved with an elastomeric

load sharing device which achieved excellent load sharing but could not

withstand the helicopter gearbox environment, and by the use of no load

sharing device at all, relying instead on accurate bearing location and

indexing of gear teeth. The load sharing achieved without any device was

acceptable and can be likened to the load sharing between pinions of a planet-

ary gearset which rely on accuracy of manufacture. Elimination of the quill

shaft load sharing method, used in previous production helicopters, saves two

bearings per shaft (four per engine), and replaces three major components with

one-: ......

The present ART program was divided into nine tasks. Task 1 consisted of
selection of the ACA aircraft, the choice of three GE-38 engines as the

powerplant, definition of the CH-53E transmission as the baseline (uprated to
the reduction ratio and power requirements of the ACA), determination of the

baseline performance, and definition of the methods to be used to quantify the

baseline and advanced designs. Task 2 was the preliminary design phase of the

program. Split path and split torque main transmission designs were completed

through the layout stage. For each type of transmission two layouts were

i



completed, one having an output reduction ratio of approximately 8 to I and

one design having an output reduction ratio of approximately i0 to i. Advanced

technology was incorporated into these designs in as many areas as possible.

In task 3, the advanced designs were evaluated and compared to the baseline. A

split path design, with a reduction ratio of 9.77 to i was chosen based on 23%

reduced weight, 4 to i improvement in reliability and greater than I0 dB

reduction in cabin noise level. In the task 4 detail design phase, those

elements of the advanced split path design that would be tested were chosen

and detail designs conducted. Because of the cost impact of full sized ACA

components, a 1/2 scale test article consisting of the second and third stage

of a single engine path of the split path gearbox was selected for evaluation.

In addition, angular contact spherical roller bearings, double helical gear

transmission error, and fretting of Pyrowear 53 gear material was selected for

further assessment. Task 5 consisted of preparation of test plans while task 6

was fabrication of test facilities and test rigs, and task 7 was fabrication

of test components. Testing was carried out in task 8 in three areas. Fretting

tests were conducted on Pyrowear 53 steel with and without thin dense chrome

plating to determine allowables compared to baseline 9310 steel and to see if

thin dense chrome plating afforded any benefits. Testing was accomplished to

determine if a single angular contact spherical roller bearing could replace

the current state-of-the-art ball/roller combination in a high speed applica-

tion having radial and thrust loads. Finally, a 1/2 size gearbox was tested to

determine load sharing characteristics and operation of high face width to

diameter double helical gear set. The final task was reporting.

This report is written to document the work, describe the results, and present
conclusions reached.
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SELECTION OF EVALUATION PROCEDURES

Baseline Aircraft

The Army Cargo Aircraft (ACA) was chosen as the baseline aircraft for which

all studies were directed. At the time the baseline aircraft was chosen, the

projected ACA requirements were given in the U. S. Army draft Operational and

Organizational (O&O) Plan dated 18 March 1988. Requirements for the ACA
defined at that time resulted in a solution in excess of I00000 pounds gross

we ight.

Recognizing the ACA size and cost implications of the O&O plan requirements,

the Army awarded a contract to Sikorsky Aircraft in September of 1988 to study
the most cost effective size for the ACA consistent with the spectrum of

combat lift requirements. The resulting ACA requirements were found to be

less demanding than the O&O plan but still beyond what could be met by a

reasonable growth of the CH-47 or CH-53E

Figure I shows a plot of payload vs radius of action for various ambient

conditions and also shows how the gross weight of the ACA solution will vary

with payload and radius of action. The plots are made on the assumption of

1995 airframe technology, scaled engines of the MTDE technology, and a disc

loading of i0 pounds per square foot. A payload of 25,000 pounds at 500 km
mission radius was chosen as a reasonable compromise between the most demand-

ing requirements of the O&O plan and an affordable ACA solution. Gross weight

is between 80,000 and 85,000 pounds for this aircraft.
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Figure I. ACA Gross Weight, Payload, and Performance
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The selected ACAdesign criteria are summarizedas follows:

• Design Mission of 25,000 Ib/500 km Radius of Action

1995Airframe and Rotor Technologies Using Composites. Fly-by-
Wire, Bearingless Main Rotor, etc.

• Cabin With C-130/C-141 Cross Section

• Rotor Sized to Provide 200 fpm VROCat 95%IRP, 4K/95°F

Transmission Rated at Power Required for HOGEat 2K/70°F with
Full Fuel and 150%of Design Mission Payload

Three General Electric GE38 growth engines with a sea level standard day
intermediate rated power (IRP) of 6180 HP each were selected for the ACA
design. The selection process included a survey of potentially available
engines in the required power class and determination of the lightest weight,
most fuel efficient ACA solution consistent with engine availability in the
time frame of the advanced transmission technology.

Potential engines are listed in Table i along with their power ratings,
specific fuel consumption, and qualification status. Figure 2 compares the
nominal engine power requirements for two and three engine ACA solutions,
considering both the design takeoff condition and the one-engine inoperative
(OEI) hover in ground effect requirement. Clearly, a two engine solution is

unattractive, requiring about double the engine size of a_three engine solu-

tion. Three engines provide a good match between the takeoff and engine out
conditions.

Table i. Potential ACA Engines

SEA LEVEL STD 4000 FT 95°F ENGINE

IRP/SFC IRP/SFC STATUS

T64-GE-419 4560/.470

T55-L-714 4527/.502

YT406-AD-400 6150/.435

T406 PLUS 6150/.411

GE 38 6180/.367

XT701-AD-700 8079/.471
JTAGG-L

3492/ 485

3350/ 524

4940/ 431

4940/ 407

4549/ 379

6416/ 472
8000-i0000 SHP CLASS

1991 H-53E Prod

1989 Qualified

Prototype for MV-22

1992 Qualification

1995 Qualification

Inactive HLH Engine
Undefined

ACA solutions were sized using the Helicopter Design Model which calculates

helicopter design attributes, weights, and performance. Candidate engines

used for sizing were four T64-GE-419's, three T406 plus's, three GE38's, and

four GE38's. In all cases projected advanced transmission weight savings of

25% were assumed compared to the current CH53E transmission. The results are

summarized in Table 2. The three engine GE38 solution was selected based on

lightest weight and lowest fuel consumption.
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2 ENGINE DESIGN
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VROC at
95% 1RP

OEI
HIGE at
100% CRP

Power Required for Climb and OEI, 2 vs 3 Engines

Table 2. Aircraft and Engine Parameters for Various Engines

(4) (3) (3)
T64-GE-419 T406 PLUS GE-38

(4)
GE-38

Total 4K/95 IRP 13,968 14,820 13,647 18,196

SFC Lb/HP-Hr _ 0.485 0.407 0.379 0.379

Mission Fuel - Lb

Weight Empty - Lb

Gross Weight - Lb

21,400 17,500 15,650 18,100

44,400 41,400 39,900 41,900

91,800 84,900 81,500 86,000

Disc Loading - PSF

Rotor Diameter Ft

8.3 10.9 I0.0 16.0

122.5 102.6 104.9 85.6

Using three, GE38 engines in an ACA with a gross weight of approximately

85,000 pounds and a payload of approximately 25,000 pounds, a baseline air-

craft was designed. Performance at sea level at 59°F standard day and at

4,000 feet at 95°F are compared in Figures 3 and 4. A plot of payload vs

radius of action is shown in Figure 5. A three view drawing of the baseline

ACA is depicted in Figure 6 while Table 3 Shows aircraft design attributes,

Table 4 is a summary of weight, and Table 5 is a mission analysis summary.
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Table 3. Baseline Aircraft, Aircraft Design Attributes

General Main Rotor Tail Rotor

Des G.W. (Lb) 85772 Radius (Ft) 54.80 Radius (Ft) 12.01

Payload (Lb) 25000 Aero Chord (Ft) 3.200 Chord (Ft) 1.587

Wgt Empty (Lb) 44469 Geom Chord (Ft) 3.200

Fuel (Lb) 15324 No of Blades 6 No of Blades 5

Hover HP 12609 Rotor Solidity .ii13 Sdty/Act Fac .2104

Climb HP 12961 Tip Speed (FPS) 725.0 Tip Speed (FPS) 725.0

MR Design HP 10924 Aero Asp Ratio 17.123 Aspect Ratio 7.566

SLSS HP/Eng 9270 Geo Asp Ratio 17.123

Par Drag (Sq Ft) 94.0 CT/Sigma 0.0840 CT/Sigma 0.0800

Vertical Drag 0.07000

TR Cant (Deg) 20.00 MR Lift (Lb) 8334.5 TR Lift (Lb) 2437.5

MR Disc (PSF) 9.46 Figure of Merit 0.7571 Figure of Merit 0.6962

MGB Design HP 15651 BI Area (Sg Ft) 1052.3 B1 Area (Sq Ft) 95.3

Baseline Transmission

The baseline transmission system for the ACA aircraft is based on the technol-

ogy of the CH53E. The ACA transmission system has the same configuration as

the CH53E but has been resized to the requirements of power and speed of the

ACA. The gear and bearing sizing is based on the same level of reliability as

the CH53E and has similar stresses, deflections, and lives. The transmission

system consists of a number i and number 3 engine nose gearbox which connect

to the main gearbox thru input drive shafting. The number 2 engine drives

through a series of spur gears in the rear cover of the main gearbox to the

main bevel mesh which then combines power from all three engines. A shaft

transmits power from the combining output bevel gear shaft to the sun gear of

the first stage planetary. The first stage planetary carrier drives the

second stage planetary sun gear. Finally the second stage planetary carrier

drives the main rotor shaft. Both the first and second stage planetary ring

gears are fixed to the main transmission housing through a common shaft.

Drive shafting from the rear cover area of the main gearbox transmits torque

through a series of drive shafts to the intermediate gearbox, up the pylon

shaft, and to the tail gearbox whereupon the tail rotor is driven.

The installation of the baseline CH53E type transmission system in the ACA

aircraft is shown in Figure 7. A cross sectional layout of the ACA baseline

main gearbox having the configuration of the CH53E is depicted in Figure 8

which also shows the rpms, reduction ratio's, numbers of teeth, and pitch

diameters for the main meshes. This gearbox has been sized to the speed and

power requirements of the ACA.



Table 4. Baseline Aircraft, Summary Weight Statement

Group Weight (Lb) % GW

Main Rotor Group

Tail Group

Tail Rotor/Fan

Tail Surfaces

Body Group

Alighting Gear

Flight Controls

Engine Section

Propulsion Group

Engines

Air Induction

Exhaust System

Fuel System

Engine Controls

Starting System

Drive System

Auxiliary Power Unit

Instruments

Hydraulics

Electrical Group

Avionics

Armament Group

Furnishings

Air Conditioning and Anti-Ice

Auxiliary Gear

Contingency

Weight Empty
Fixed Useful Load

P_!ot
Co-Pilot

Fuel Trapped

Mission Equipment

Other Ful.

Payload

Useable Fuel

Gross Weight

Transmission Design Data

564

508

2790

174

91

1456

74

193

10797

233

233

80

200

233

8569

1072

9599

1966

1907

534

15575

288

140

230

750

963

145

610

380

850

889

44469

979

25000

15324

85772

9 99

1 25

0 66

0 59

II 19"

2 29

2 22

0 G2

18 16

3 25

0 20

0 Ii

1 70

0.09

0.23

12.59

0.34

0.16

0.27

0.87

1.12

0.17

0.71

0.44

0.99

1.04

51.85

1.14

29.15

17.87

The basic transmission design parameters for the baseline as well as for the

advanced split torque and split path transmissions are shown in Table 6.

Since one engine inoperative (OEI) power is felt all the way to the final

stage bull gear mesh in the split path type of arrangement, the gearbox is

essentially sized to OEI conditions. For the bull gear mesh, tail power and

losses are removed from the input power and the bull gear is designed to

somewhat lower requirements. The accessory units are assumed to be identical

to those used on the CH53E in terms of type, number, speed, and power and are

listed in Table 7.
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Table 5. Baseline Aircraft, Mission Analysis

Mode Gr Wgt Speed VStall Dist Time SHP

(Ib) (Kts) (Kts) (NM) (Min)

W-U/TO 85684 - -

Hover 85371 - -

Cruise 81712 152.4 179.8 270.1

Hover 78203 - -

Hover 52928 - -

Cruise 49909 143.2 234.3 270.1

Hover 47008 - -

Res Cr 46219 143.3 241.7 71.6

2 5

5 0

106 3

5 0

3 0

113 2

1 0

3O 0

11577

12550

8618

11066

6775

6266

5957

6164

Total Mission Fuel is 15324 Lbs

Total Mission Time is 236.1 Minutes

Notes •

Total Gross Weight - 85783 Lbs, Rotor Radius - 54.8 Ft,

Parasite Drag - 94.0 Sq Ft, Temperature - 95°F, Altitude - 4000 Ft.

Table 6. Summary of Transmission Design Parameters

Engine RPM

Main Rotor RPM

Overall MGB Reduction Ratio

MGB Input HP

MGB Input HP (Limit)

Engine HP (OEI)

Main Rotor HP

Main Rotor HP (Limit)

Tail Rotor RPM

Tail Rotor HP (Gears)

Tail Rotor HP (Limit)

15000

130

115.38

16030

32060

6209

14825

29650

580

2400

4328

Fuel

(Lb)

199

424

6765

385

165

5813

50

1523

SFC

389

383

418

394

458

464

477

466

Methodology

Baseline gearbox weight was determined using statistical weight equations that

utilize rudimentary weight parameters such as design torque and reduction

ratio. Layout weight calculations were conducted on the advanced split path

and split torque designs to obtain the individual component weights and to

enable identification of bulk items which the layout does not include such as

hardware, protective coatings, sealants, bosses on castings, lubrication

system components, oils, etc. Once identified, the bulk item weights are

estimated using values obtained from systems of similar design. These layout

calculations are compared to the analytical weight and differences resolved.
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Table 7.

Unit

Generator #i

Generator #2

Generator #3

Utility Pump

2nd Stage Servo Pump

Primary Servo

Tachometer, Main Rotor

Oil Cooler

MGB Lube Pump #i

MGB Lube Pump #2

Acc. Gearbox Lube Pump

Engine Tachometer (3)

Fuel Control Tach (3)

Hoist Pump

Engine Start Pump

Auxiliary Power Unit

Accessory Units Required for ART

HP RPM Location

107 6019

107 6022

107 5987

32 4047

54 4111

54 4419

I 4419

i00 6291

4 1983

2 2379

2 5180

I 4082

I 3794

lO0 5755

llO 4316

llO 8354

Accessory Gearbox

Accessory Gearbox

Main Gearbox

Accessory Gearbox

Accessory Gearbox

Main Gearbox

Main Gearbox

Main Gearbox

Main Gearbox

Main Gearbox

Accessory Gearbox

Nose(2), MGB (i)

Nose(2), MGB (I)

Accessory Gearbox

Accessory Gearbox

Accessory Gearbox

The ART noise evaluation methodology encompasses three major elements needed

to determine the effects of design tradeoffs on ART noise levels and in

cumulative noise reduction benefits achieved. These elements are largely

sequential and include; (I) the application of established gear noise charac-

teristics during the preliminary and detail design efforts to evaluate design

parameters. (2) the application of gear noise, finite element, and gear

design models to more accurately predict and Subsequently reduce ART source

noise levels, and (3) Component testing to refine and validate the analytical

estimates of ART noise levels. Rotorcraft interior noise levels are ulti-

mately determined by a combination of source, energy transmission path, and

receiver (aircraft interior) characteristics. The ART noise evaluation

methodology concentrates on acoustic evaluations of gearbox design configura-

tions and parameters. Since characterization of the vibration transmission

paths in the airframe and aircraft interior are beyond the scope of the ART

design effort, estimates of the total noise reduction requirement for ART was

achieved by estimates in reduction of source level noise. These reductions

were estimated by comparing similar_ designs of spur gears, high contact ratio

spur gears, helical gears, and herringbone gears with high helix angles.

MTBR was calculated by the hazard function analysis method which uses his-

torical helicopter transmission failure rate data that has'_been gathered from

examination of gearboxes at overhaul. Weibul and statistical analyses are

used to account for every different type of failure mode in each component of

the transmission. Reliability of gears and bearings , the major components

which have an effect on MTBR, are calculated from analYsis of gear stress and

bearing life. Other failure modes, such as free wheel unit wear, housing

cracks/fracture/corrosion, o-ring leakage, sheared bolts, plugged jets, loose

nuts, seal leakage, etc. are accounted for by using the historical data base.

Note that only failure modes which cause gearbox removals are counted against

removal rates. For example, seal leakage is not counted if the seal is field

replaceable.
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Baseline Weight, Noise, MTBR

The baseline transmission system weight derived from historical weight trend-
ing equations is shown in Table 8. Gearbox removal data for the CH53Emain
gearbox is shown in Table 9. An observed MTBRof 1400 hours is seen from the
data showing 85 removals in 119,000 flight hours. The theoretical calculated
MTBRfor the CH53Etransmission is 963 hours using the hazard function analy-
sis method which results in a correlation factor of 1.41 to be applied to the
calculations for the baseline ACA, and split path and split torque designs.
The calculated baseline ACAtransmission MTBRis 997 hours using the correla-
tion factor of 1.41 from the observed data. The baseline cabin and cockpit
noise estimates are shownin Table I0.

Table 8. Baseline Transmission System Component Weights

Item Weight (Lbs)

Main Gearbox

Main Rotor Shaft

Nose Gearboxes (2)

Accessory Gearbox
Intermediate Gearbox

Tail Gearbox

Tail and Pylon Shafts
Other Shafts

Rotor Brake

6882

1412

676

280

209

596

484

150

108

Total Weight 10797

Table 9. Baseline Transmission, CH53E MGB Removals

Itern Number of Removals

ist Stage Planetary Bearings

No 2 Free Wheel Unit Assembly

Retainer Clip

Laminated Shim Stock

2nd Stage Planetary Bearings

No 2 Gimbal Assembly

F.O.D.

Main Rotor Shaft Timken Bearing

Auxiliary Oil Pressure Loss

Number 2 Bevel Triplex Bearing

High Speed Roller Bearing

Main Bevel Case/Core Fracture

Oil Leakage

Bull Gear Rim Fracture

Sheared Accessory Take-Off Gear

Others

Totals

16

13

9

8

8

7

2

1

i

I

I

I

1

1

i

14

85

85 CH53E main gearbox removals in 119000 flight hours
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Table i0. Baseline Transmission, Cabin and Cockpit Noise Estimates

Cabin

OGE Hover 150 KIAS OGE Hover

Center Oc tare Oc tare Octave

Freq Level Level Level

(Uz) (dB) (dS) (dS)

Cockpit
150 KIAS

Octave

Level

(dS)

63 II0 112 105 i07

125 106 Ii0 I01 103

250 104 106 97 i00

500 106 108 97 I00

i000 II0 115 104 102

2000 ii0 112 102 I00

4000 104 105 94 92

8000 95 97 85 85

16000 88 89 81 84

dBA 114 118 108 105

SIL-4 108 ii0 99 99
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PRELIMINARY DESIGN

Four preliminary designs were completed in the preliminary design phase of the

program. Designs of split path and split torque gearboxes were completed for

a high output bull gear reduction ratio of 10.85:1 (141/13) and a lower ratio

of 8.15:1 (106/13) for a total of two ratios of split torque and two ratios of

split path designs. Later during the detail design phase of the program, the

maximum ratio was reduced to 9.77:1 (127/13) when detail analysis showed high

stresses in the bull pinion shaft. Weight, noise, and MTBR were then evalu-

ated for these four designs and compared.

Split Torque

The split torque gearbox is characterized by an input planetary system that

acts as a differential to assure lo@d sharing. Figure 9 is a schematic of the

arrangement. Power is input from each engine to the sun gear of the differen-

tial planetary. The ring gear is used as an output to a bevel pinion which

drives one torque splitting branch while the carrier drives a second bevel

pinion to the other torque splitting branch. The advantage of this arrange-

ment is that torque is inherently balanced since any tendency for maldistri-

bution of torque split will be balanced by a slight rotation of the carrier

relative to the ring gear to thus make up the difference. The disadvantage is

that the entire engine drive is lost if either branch is lost. Note that the

bevel pinions are arranged on opposite sides of the bevel gears to obtain the

correct direction of rotation since the ring gear and carrier of the planetary

rotate in different directions. Each output bevel gear drives one bull pinion

which then combines power onto the output bull gear.

9.21

FWD =

_BL 25 - ENGINE C.L.

BL 0 - ENGINE C.L.

BL 25 - ENGINE C.L.

130 RPM _'1199 RPM

tit !'| _1 l:l ,',_ 1518 RPM

• i I _--a_'_ 1926 RPM

-= 25
LEFT &
RIGHT

Figure 9. Schematic of Split Torque Main Transmission
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The #2 engine carrier drive shaft must pass across the bull gear on butt line
0 to connect the second bevel pinion of the #2 engine. The only place that
this is possible is under the bull gear since the main rotor shaft must
transmit torque upward to the rotor head on top of the bull gear. Placing the
carrier drive shaft under the bull gear proved to be a-large disadvantage for
the three engine split torque gearbox. For a two engine design, the require-
ment goes away since the carrier shafts can pass along side of the main rotor
shaft. The differential planetary itself can achieve a relatively high reduc-
tion ratio since there is no fixed member. The lowest weight, however, is
achieved by the largest reduction at the last stage. Therefore the high
reduction ratios possible with the torque splitting planetary is of little
advantage.

Figure I0 is a cross section of the split torque main gearbox designed to the
requirements of the ACA. The output bull gear has been set at 48 inches in
diameter to accommodatemanufacturing. Although gear grinding equipment
exists for this size, there is no quench press equipment for holding the bull
gear during the quenching cycle of carburization. It was felt that a quench
press for this size could be manufactured and the gear carburized. Other
processes were considered such as induction hardening but the weight increase
created by reduced allowables did not justify the change. The output bull
gears of both the split torque and split path designs are all made with 48
inch pitch diameters (approximately).

Engine power for the split torque gearbox is input directly to a spring
overrunning clutch located at the input. The spring clutch design is common
to all preliminary gearbox designs. For the #I and #3 engines, the output of
the spring clutch drives the sun gear of the differential planetary. For the
#2 engine, 2 stages of bevel gears are required so that the #2 engine can be
located at the correct waterline, and still have room for the tail-take-off to
be located under the #2 engine. The bull gear is designed as a herringbone or
double helical mesh with opposing hands of helix. This arrangement permits
the use of high helix angles for reduced noise and yet does not create bearing
problems since the thrust cancels. One basic problem with the split torque
design is that the herringbone pinions are on the sameshaft as the 2nd stage
bevel gears. The bevel gears require that the mounting be fixed so that the
bevel gear pitch apex point can be located at the intersection of the bevel
pinion and gear. On the other hand the designer would like the herringbone
pinions to float while the single bull gear remains fixed axially such that
the thrust loads would equilibrate. If the bull gear floats, each fixed bull
pinion would have to be shimmedso that all the intersections between left and
right hand helix memberslie in a plane. A literature search showed that no
designs of herringbone gears could be found that had fixed multiple pinions. A
solution would be to fix the second stage bevel gear and to permit the her-
ringbone pinions to float using an axially compliant coupling between the
members.

The tail-take-off (TTO) for the split torque gearbox also required an extra
spur gear mesh to get the TTObevel gear set away from the input bevel gear
set. The additional gearing required for the #2 engine input and TTO mesh
also reduced the reliability of the split torque design. Thus the advantage
of the inherent load sharing is offset by the disadvantages of extra gearing
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required for the #2 engine input. This showed up in the weight and MTBR

calculations that will be reviewed in subsequent sections of this report.

Split Path

The split path gearbox is characterized by a "closed loop" of gearing where an

integer number of teeth must be designed to fit in a circular arc path that is

common to the the bull gear and 2nd stage spur pinion and either the 2nd stage

bull gear or the bull pinion depending on the choice of teeth by the designer

(See "Load Sharing Devices" section of this chapter for an explanation of the

closed loop), If any member in the path is lost, the drive will still con-

tinue through the other path. Figure Ii is a schematic of the split path

gearbox,

,30

, 000,311,o "°°"#1 ENGINE . . R- MC.L.

\,,,

#2 iNGINE

C.L.

Figure II. Schematic of Split Path Main Transmission

In the split path design power is input to an overrunning spring clutch and

then directly into a bevel pinion, The output bevel gear centerline is paral-

lel to the maln rotor shaft centerline. The second stage of gearing is a

parallel axis gear set where the torque is split in two for each engine drive.

The output stage herringbone bull pinions are driven directly by the parallel

axis output gear. As in the split torque design, the output bull gear com-

bines power from each engine and transmits torque to the main rotor by means

of the output quill shaft,

Figure 12 is a cross section of the split path gearbox. Load sharing between

torque splitting assemblies must be controlled in the split path gearbox. A

new load sharing device is shown in Figure 12 located on the flange of the

spur gear and between the spur gear and herringbone pinion, The device shown

contains alternate layers of rubber and metal forming a torsionally soft but

radially and axially stiff member (See "Load Sharing Devices" section of this

report for further discussion). A plan view of the split path gearing ar-

rangement is shown in Figure 13. Since the bull pinions are equally spaced in

groups of three about the bull gear, the resultant bearing reaction is zero if
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Figure 12. Ii:i Split Path Cross Section
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all inputs have the same power. For this reason a design was developed for a

bull gear without any bearings that relies for support on the central rings

which are the same size as the pitch diameters of the gears. Under normal

conditions, the rings do not touch because of deflections of the rims. Under

OEI conditions, the bull gear will be forced to one side and the rings will

act as supports through the bull pinion shafts. (See "Bearingless Bull Gear

Design" section of this report for further discussion). If a spur gear is

used in the second stage, the shaft assembly consisting of the second stage

gear and bull pinion can be designed to float on roller bearings and the bull

gear can be fixed. This is the normal state-of-the-art method of load control

between halves of a herringbone gear set. When using this design however, the

bearingless bull gear can not be used since by definition the bull gear must

be free to float. In the final detail design as will be seen, the bearingless

bull gear design was not used so that the bull gear could be fixed and the

bull pinions floating. The output composite quill shaft is approximately 24

inches in diameter and transmits only torque to the main rotor. Main rotor

loads are reacted by the upper truss assembly (See "Composite Main Rotor

Shaft/Quill/Standpipe" section of this report).

Figure 13. Split Path Top View

Trade-Off Studies

Trade off studies were conducted on various details of both the split torque

and split path designs to determine the best approach to use. The following

sections of the report discuss the details of the more important trade off

studies.
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Load Sharing Devices

Split path designs must rely on load sharing methods for successful operation.

Prior to selection of a load sharing device for the ART gearbox, many devices

were examined. Figure 14 shows why load sharing devices are required. The arc

length abcde in Figure 14 times 2 (for the two halves) must be divisible by an

integer number of teeth or the gears will not assemble or operate properly.

The line cd in Figure 14 represents an angular relationship between teeth of

the spur gear and herringbone pinion. It can be seen that manufacturing

errors in the angular relationship between teeth can cause one half of the

mesh to be in contact while the other half is not depending on the stiffness

of the parts. For infinitely rigid parts, even small errors would cause all

the load to travel to one path of the split path design and no load to the

other path. To overcome this, transmission designers have placed torsionally

compliant members between the spur gear and output pinion.

+
X- TORQUE

SPLITTING

PINION

Y

SPLITTING

GEAR

p -

PINION

G -

GEAR

Figure 14. Tooth Geometry Relationships for Torque Splitting Drive

State-of-the-art split path designs used in England by Westland Helicopters

and in Russia on the MIL-26 helicopter have used a quill shaft to provide the

torsional compliance between members as shown in Figure 15. A helical spline

and shim arrangement provide accurate indexing to control the angular rela-

tionship between teeth. It is more important that each assembly have the same

relationship between teeth than is the actual magnitude of the angle. The

quill shaft twists under load to reduce the torsional stiffness and share load

in proportion to the spring rate, transmitted load, and error between two

assemblies.
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Figure 15. Quill Shaft Load Sharing Device

Another method is depicted in Figure ! 6 which depends on balance of thrust

loads between helical gear members having opposite hands of helix. This

method produces inherent load sharing because the helical pinions, connected

by a common shaft will shift axially until the thrust load, and hence torque,

is equal on each half. This method has been used previously in turboprop

gearboxes by Pratt and Whitney, Canada. Note the use of the axially compliant

coupling between the bevel gear and left and right hand helical pinions. This

coupling permits the helical pinions to move axially without disturbing the

±

•

[_, :
i ,

Figure 16. Helical Gear Load Sharing Scheme
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bevel gear location. Extra bearings, one extra pinion, and the extra coupling

are required for this design which decreases reliability and adds weight. The

largest drawback, however, is the fact that the herringbone pinions can not

float with this design and therefore load sharing between herringbone halves

is affected.

Another design of merit is depicted in Figure 17. This is a new configuration

that received consideration during the preliminary design phase. Individual

composite blocks are formed and placed between internal and external toothed

conical members. Under load, the composite blocks have a high deformation in

the tangential direction and relatively low in the other directions. The cone

permits preloading of the blocks to put the material in compression. Alter-

nate layers of rubber/metal or rubber/fiber can be used as can many other

types of resin/fiber materials. The design was eventually eliminated because

of the complicated machining required for the slots used to drive the blocks.

J
I

I_i
\  ,.o,v,o.ALCO"POS,TE

-%

DEFORMATION

TOIqQUi CAUSES BLOCKS

TO DEFOR i BY SHEAR

Figure 17. Composite Block Load Sharing Device
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The load sharing device that was eventually selected is shown in Figure 18. A

preliminary design is shown that has two bolt circles and an inwardly sloping

angle making the device also soft in a bending sense. The final design is

shown in Figure 19 with only one bolt circle and an outwardly sloping angle.

The initial design had the advantage of making each isolator half as a separ-

ate molded assembly with the rubber molded to the metal at all locations. In

the final design, the rubber is molded only to the inner side plate and torque

is carried by friction on the outer part between the gear rim and isolator.

Even for a small preload, a large pressure is formed between the gear rim and

outer layer of the isolator and torque is transmitted by friction coefficient

times the load produced by the pressure. A second feature of the selected

isolator is the redundant spline drive. In normal operation, a clearance

exists between teeth of the internal and external splines. At 140% torque,

the splines touch and any further application of torque is carried by the

spline teeth. The spline also acts as a limiting device to limit static

strain produced in the rubber. Shims are ground at assembly to produce the

proper preload and keep the rubber in compression at all times. Eighteen, 3/8

inch diameter bolts are used to overcome preload and provide high clamping

loads to reduce fretting at:_the boltholes.

I

CONE SHAPE

PUTS PRELOAD
ONram-hEn

AnEUOLTED

ALTERNATE LAYERS
RUBBER/ METAL

Figure 18.

E

Elastomeric Torsional Load Sharing Device
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Figure 19. Inverted Elastomeric Torsional Load Sharing Device

Other schemes were also examined such as hydraulic devices, belleville wash-

ers, etc. but are not worthy of description.

To examine the benefits of the elastomeric torsional isolator compared to the

conventional quill shaft used in other split path transmissions, the two

designs are shown side by side in Figure 20. In the conventional design, the

spur gear and the herringbone pinion are each mounted on their own bearings

independent of each other. The quill shaft is then placed between the two

shafts and tangential motion is achieved by the spring rate of the quill

shaft. In the ART design, tangential motion is achieved by rotation of the

spur gear about the pinion through the spring rate of the elastomeric isola-

tor. Note that compared to the ART design there are two additional bearings

per shaft times two shafts per engine times the number of engines. For the

ACA, this amounts to 12 extra bearings for the'conventional design. Since

bearings are a major driver of MTBR, The ART design has an advantage of higher

reliability. There may also be a noise benefit for the elastomeric design

since it acts to isolate the spur gear from its support.

Spring Clutch on Input

The spring clutch is a type of helicopter overrunning clutch that has been

tested at high speed. Although this type of clutch is affected by centrifugal

load, the degree is much less than the conventional sprag or ramp roller type

of overrunning clutch. A side by side comparison of the sprag, ramp roller,

and spring clutch would show that the weight would be about the same for each

design when the same torque is used. Since the spring clutch can operate at

higher speed, it can be designed for lower torque and hence be lighter.
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The principle of operation of the spring clutch is shown by the simplified
sketch as seen in Figure 21.

INPUT SHAFT

OUTPUT SHAFT

DIRECTION OF

ROTATION FOR
OVERRUNNING

CLUTCH SPRING

DIRECTION OF
ROTATION

FOR ENGAGEMENT

Figure 21. Principle of Spring Clutch Actuation

The input and output housings of the spring clutch are formed by concentric

cylinders. The end coils of the rectangular section spring are slightly

larger in diameter than the center coils such that the end coils are .inter-

ference fit with the housings while the central coils are clearance fit. When

torque is applied to the input shaft in a counterclockwise direction as shown,

and the output shaft is fixed, the spring tends to expand. As each coil

expands outward, the outside diameter of the spring coil grips the inside

diameter of the housing and torque is gradually transmitted across each coil

in an exponential manner. At the center of the spring, all the torque is

transferred across the center c0il across the gap from the input to the output

housing. Torque then dispenses on the output housing in an equal and opposite

manner to the input housing. When torque is reversed such that the input

shaft is fixed and the output shaft is rotated in the same direction as shown
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in Figure 21, the spring now has a tendency to contract. Eventually, the end
coil that is interference fit with the housing on the output side will slip
and overrunning will occur.

The actual spring has exponentially varying thickness coils for constant
stress and to make the spring smaller. The end coils also vary in thickness
as well as width. The last four coils on each end are the "teaser coils" that
are interference fit with the outer housings. Figure 22 is a sketch of a
helicopter spring for a spring clutch showing design features.

MATERIAL : 300M STEEL

(MODIFIED 4340)

HEAT TREAT : Rc 58
THRUHARDENED

MINtMIZEO GAP ON

CROSSOVER COIL (BALANCE)

ENERGIZING COILS L_

Figure 22. Spring Design Features

A layout of the spring clutch on the input section of the ART main gearbox is

shown in Figure 23. An arbor is used to support the spring-during overrun-

ning. The inside diameter of the spring is interference fit with the arbor

when there is no torque tending to unwind the spring. The arbor acts as a

guide to keep the coils straight in the overrunning mode. A squeeze film

damper is provided at the outside diameter of the duplex bearing set to reduce

the spring rate of the be@ring support an d t? provide damping for the first

rigid body mode that the spring/input shaft/and engine drive shaft system must

traverse on the way to operating speed. The spring arbor extends through the

input bevel pinion and has a support bearing at the end. This bearing Pro-

vides a large bearing spread and acts in conjunction with the duplex bearing

to support the engine drive shaft. The input bevel pinion shaft forms the

spring clutch output housing. A single angular contact spherical tapered

roller bearing carries combined thrust and radial load and replaces the
conventional state-of-the-art ball/roller combination used normally. The

spherical bearing is manufactured with an outer land guided cage and the inner

race is integral with the input pinion shaft.
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Figure 23. ART Input Bevel Pinion With Spring Clutch

The preliminary designs of the spring clutch assembly were weighed. Each input

spring clutch was found to be 38.45 pounds for a total of 115.35 pounds for

the 3 engine aircraft. For comparison purposes, a ramp roller clutch was

designed to operate on the input bevel gear. The input bevel gear rotates at

4,935 rpm vs 15,000 rpm for the pinion where the spring clutch operates. A

layout was made of the ramp roller clutch at the bevel gear and it was found

to weigh 161.59 pounds per engine for a total of 484.77 pounds for the air-

craft. Thus the spring clutch on the input bevel pinion is 369 pounds lighter

than a conventional ramp roller clutch on the output bevel gear. Considering

that the baseline main gearbox weighs 6882 pounds, the savings in weight for

the spring clutch alone amounts to 5.4% of the main gearbox weight and also

represents 3.4% of the entire transmission system weight.

High Contact Ratio/Buttress/Herringbone Gears

The output bull gear is a parallel axis gear set with the need for a large
reduction ratio and also the need for reduced transmission error to reduce

noise generated at the gear clash frequency. Types of gearing considered for

this mesh were conventional spur gear, high contact ratio spur gear, helical

gear, high contact ratio helical gear, double helical gear, high contact ratio

double helical gear, and conformal circular arc gear (Novikov). Spur gears,
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high contact ratio spur gears, and conformal gears were eliminated for noise
reasons as it was felt that the I0 dB noise reduction could not be met with
these types of gears. This is especially true when considering that trans-

missions with output bull bull gears ($76) tend to have the highest noise

generated internally at the output stage of gearing. Helical gears and high

contact ratio helical gears (transverse contact ratio greater than 2) were

eliminated because the thrust load produced at the large gear radius induced

high bending moments into the bull gear support structure and bearings. This

left as the design choice double helical gears which offer the benefit of

cancellation of thrust load and thus permit even higher helix angles to be

used. By making the transverse contact ratio greater than 2, even higher

Overall contact ratios could be achieved and in the final design, overall

contact ratios approaching 4 have been attained. A matrix of designs is

presented in Table ii. Each of the bull gear meshes listed in Table II were

run through a helical gear computer program to calculate bending stress,

contact stress, and scoring. Scoring was not a problem owing to the low

output speed of 130 rpm. A helical gea r with zero helix angle is of course a

spur gear. The upper four designs were for approximately an ii:I reduction

ratio while the lower four deigns were for 8:1 ratio. From the matrix of bull

gear designs run it was found that contact stress was the dominant design

condition and thus the lightest design resulted when the teeth could be made

a_ large as possible to reduce bending stress. Figure 24 illustrates this

point by plotting the ratio of factor of safety on bending to contact stress

vs number of teeth in the pinion. All data assumes a 48 inch pitch diameter

bull gear (Set by manufacturing considerations).

Table II. Matrix of Bull Gear Designs

No of Teeth

13/141

15/167

17/186

19/226

13/106

15/125

17/137

19/156

Figure 24.
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A typical result can be seen in Figure 25 which is a plot of stress divided by

the allowable stress (or factor of safety) vs helix angle. The plot is for

the 13/141 mesh. As helix angle increases, contact stress continues to

decrease whereas bending stress decreases slightly to about 20 ° , then in-

creases slightly to about 30 ° , and then increases sharply above 30 ° . This is

a typical plot for all designs. The maximum helix angle used was reduced as a

result of this phenomenon to approximately 30 °.
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Figure 25. Herringbone Gear Mesh Design Parameters

Preliminary layouts were prepared for 8:1 and Ii'i ratio bull gears. It was

found that last stage reduction ratio had a profound effect on weight. This

fact is illustrated in Figure 26. The reason for the weight savings can be

realized when considering for a moment what happens when the output bull gear

is left alone and the bull pinion pitch diameter is decreased: First of all,

the bull gear face width remains the same since the output torque, and hence

output tangential tooth load has not changed. Secondly, the weight of the

bull pinions themselves is reduced since the size of the pinion is smaller.

Lastly, the reduction ratio is increasing and hence the speed of the bull

pinions is increasing. This results in less torque on the bull pinions and in

fact, all stages prior to the bull gear can now have reduced ratios and

reduced weight because of the lower torque and lower reduction ratio require-

ments. Therefor, increasing the reduction ratio at the last stage has the

direct effect of reducing sizes of all gearing prior to the output bull gear.

It was also found that the reduction ratio of the output bull gear mesh is

limited by the basic diameter of the pinion when considering induced fatigue

bending in the pinion shaft. Bending of the pinion is influenced by geometry

and such basic considerations as to where to put the support bearings. Figure

27 illustrates what happens to the bending stresses in the shaft section
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between left and right hand helix memberswhen the bearing is located on the
outside of the spur gear or when the bearing is located between the spur gear
and herringbone pinion. The bull gear pitch diameter was fixed at 48 inches
for the calculations. The configuration with the bearing between gears
reduces the peak stress by approximately 30%and was selected for this reason.
Note that the critical stress occurs on different sides of the torque split-
ting pairs depending on configuration. In all cases the highest stress on the
selected configuration is lower than the lowest stress on the outboard bearing
configuration. This is a somewhatsurprising result since transmission de-
signers often select "straddle mounted" designs for improved rigidity.
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Figure 26. ART/ACAWeight Savings vs Reduction Ratio

The second stage gearing of the split path gearbox is also a parallel axis

mesh. A decision was made to make the second stage a spur gear set to allow

the assembly consisting of the herringbone pinions and parallel axis gear to

float axially. For reasons of noise reduction and weight savings, it was

decided to also make the mesh a high contact ratio spur. A high contact ratio

gear design was also used for the differential planetary of the split torque

design.
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Bearingless Bull Gear Design

A trade off study was conducted on the method of mounting of the herringbone

gear and herringbone pinion/spur gear assembly of the split path gearbox. A

herringbone gear set has the unique attribute of central alignment of one

member to the other since any maldistribution of tooth load tends to be self

correcting. Therefor if one member of the set is permitted to float axially

as for example on roller bearings, the loads between left and right hand helix
members will be identical. Another distinctive virtue of the ART herringbone

bull gear is that the bearing load is essentially zero most of the time. With

these peculiarities in mind, various design options for supporting structure

of the bull gear mesh were examined. Table 12 lists the configurations.

Table 12. Bull Gear Support Trade Off Study

Design

S.O.A.

2 Timken

i Roller

Rings

Bull

Gear

Fixity

_e

Fixed

Fixed

Floating

Floating

Bull Bearing Weight

Pinion Life @ OEI (Ibs)

Fixity (hrs)

Floating 28670 Baseline

Floating 28670 -131
Fixed 15220 -389

Fixed 3800 -458

Figures 28, 29, and 30 show the reactions of the bull gear for 3 engines

operative, one engine inoperative, and two engines inoperative respectively.

The reaction is zero when all three engines operate at the same power levels

because the spacing of pinions around the periphery of the gear is equal in

groups of three. When one or two engines are inoperative, a reaction load is

induced at the inoperative engines herringbone pinion pitch points. Figure 31

summarizes the magnitudes of reactions.

I. ALL H_s ARE EQUAL

W!

Wr

Figure 28. Bull Gear Reaction, All Engines Operative
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Figure 29. Bull Gear Reaction, One Engine Inoperative
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Figure 30. Bull Gear Reaction, Two Engines Inoperative
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Figure 31. Bull Gear Reactions as a Function of Tangential Tooth Load

The state-of-the-art design, "S.O.A.", of Table 12 consists of a conventional

centralized gear web on the bull gear which is then connected to a bull gear

shaft with bearings at each end. This is the heaviest solution of those

examined. In the "2 Timken" design, the 2 tapered roller bearings are placed

directly under the center of the bull gear and are relatively large in dia-

meter such that the conventional gear shaft is eliminate d . A fixed shaft then

transfers the bearing load to the supporting end plates. This design permits

floating pinions and saves some weight compared to the baseline but is still a

heavy solution. The "i roller design" is identical to the 2 Timken design

except that the back-to-back Timken bearings are replaced by a single roller

bearing. By the nature of the rollerbearing, the bull gear becomes a float-

ing member in this design and the pinions must be constrained axially. Since

there are six pinions, they would all have to be shimmed in a plane so that

the bull gear could follow the path thus formed_ Individual axiai adjustments

of the bull gear in this design will effect neighboring pinion load sharing.

A literature search showed that when herringbone gears are used with multiple

pinions, the pinion members are always the fi0ating part. The "ring" design

has a rolling element ring placed in the space between left and right hand

helix members of the pinion and gear. The diameter of the rings are equal to

the pitch diameter of the gears. Under normal operation the rings will not

make contact since small deflections that are present will tend to separate

the contacts slightly. Under conditions of differing power from each engine,

such as OEI operation, the bull gear will shift slightly towards the direction

of the resultant load until the rings of the gears on the inoperative engine

side will contact. The rings will then act as supports through the pinion

bearings and the mesh will continue to operate. When one examines the magni-

tude of the load as shown previously in Figure 31, it is seen that the maximum

ring load is approximately 1.42 times the tangential tooth load. This is a

38



substantial bearing load since the tangential tooth load is in the order of
63,000 pounds during OEI conditions. The contact stresses on the ring are
quite high for theses magnitudes of load even though the rings are very large
in diameter. A ring life of 3800 hours during OEI conditions represents
unlimited aircraft life since OEI occurs only for a small percent of the time.
Figure 32 depicts the bearingless bull gear design. To manufacture the pinion
central rings the design shownuses electronic beam (EB) welding. The gears
are finish ground prior to welding, and the ring welded and ground concentric
to the pinion. The ring used in the bull gear does not require welding
because the gears are manufactured separately and bolted together. The
central ring is bolted with the sameflange as the gears. An alternate design
is shown in Figure 33 which eliminates the welding of the pinion rings. Full
recess action pinions are used. The pinion has the entire working profile of
the tooth above the pitch diameter i.e., the dedendumis negative. On the
gear, the entire working profile is below the pitch diameter. Hence the
pinion ring can be made integral with the pinion and all teeth and the rings
ground without grinding wheel interference. On the gear, the ring is not
required to be integral. The technical risk of operation is considered very
high for any designs which use fixed pinions and floating bull gear and for
this reason, the final design chosen was the 2 Timken arrangement.

BULL PSNK)N
SUPPORT RING

Figure 32. Bearingless Bull Gear Design

39



OUILL SHAFT ----_

X

I'

BULL GEAR j
SUPPORT RING

I

I

i

\

,_pITROOT DIA

CH DIA

_/'/_- BULL PINION

SUPPORT RING

_'_ _'- NO WELDS REQ'D

Figure 33.
Bearingless Bull Gear With Full Recess Action Pinions

40



High Hot Hardness Gear Steels

During the preliminary design phase of the program, gear steels were reviewed

to determine if any of the high hot hardness gear steels would offer any

benefits. Gear steels under consideration were SAE 9310 (baseline), VASCO

X2M, Carpenter Pyrowear 53, and CBS 600. After examination of static proper-

ties, fatigue bending allowables, contact stress allowables, scoring resis-

tance, fracture toughness, heat treat requirements, and machinability, Carpen-

ter Pyrowear 53 was selected. All of the high hot hardness gear steels offer

improvements in surface related distress such as scoring resistance and

contact (Hertz) stress improvements. Pyrowear 53 was chosen based on its

excellent fracture toughness being even better than the baseline 9310.

Angular Contact Spherical Roller Bearings

A good deal of research has been directed at development of a single, high

speed bearing to take the place of the current state-of-the-art ball/roller

combination for reaction of combined thrust and radial loads. Figure 34

illustrates some configurations that have been investigated including the

cylindrical roller bearing with spherical thrust shoulder, and high speed

tapered roller bearings. In the ART program a single row angular contact

spherical roller bearing was investigated. Testing has shown that the major

difficulty in development of a single bearing designed to carry thrust and

radial load is in the heat generation after loss of oil and resultant bearing

survivability characteristics. Both the tapered roller bearing and the cylin-

drical roller bearing with thrust capability use a thrust shoulder to react

axial load. After loss of oil the heat buildup at the thrust shoulder is

generally very rapid and the bearing fails at that point. In the angular

contact spherical roller bearing, there is no thrust shoulder as axial loads

are transmitted as shear loads across the rollers. It is expected that the

survivability characteristics of this bearing after loss of oil will be

improved for this reason,

Another technology improvement used in the angular contact spherical roller

bearing is the use of ceramic rolling elements. For high speed bearings the
reduced roller mass of ceramic rollers results in increased life since the

reduction factor for centrifugal load is reduced. The density of the silicon

nitride ceramic used is .116 pounds per cubic inch vs .283 pounds per cubic
inch for steel.

The reduced density also educes another benefit in the form of reduced heat

generation again from the fact that the centrifugal roller load is reduced.

The latter benefit can help the lost oil survivability characteristics by

reducing temperature generation. The lower heat generation may be the most

important advantage of ceramic rollers. A plot of bearing life for various

contact angles for steel and ceramic rollers is shown in Figure 35. The

bearings on this graph are the roller bearing and the single row angular

contact spherical roller bearing located on the input bevel pinion. The speed

is 15,000 rpm corresponding to the speed of the GE-38 engine. For a smaller

helicopter than the ACA, the life improvements for ceramic rollers compared to

steel rollers would be more dramatic since rpm is generally in the range of

20,000 to 24,000 rpm and centrifugal effect will be more severe.
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BALL/ ROLLER BEARING COMBINATION

I

CYLINDRICAL ROLLER BEARING WITH THRUST CAPABILITY

i

1

TAPERED ROLLER BEARING

SINGLE ROW ANGULAR CONTACT SPHERICAL ROLLER BEARING

Z

Figure 34. Single Bearing Configurations _Pnich Replace Ball/Roller
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The mounting of the angular contact spherical roller bearing is shown in

Figure 36. The cross section shows how the bearings are arranged in a typical

input pinion configuration. The spherical bearing has its inner race integral

with the pinion shaft as does the roller bearing at the other end.

T
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o- E

m

- Outer Width

Figure 36. Mounting of Angular Contact Spherical Roller Bearing

43



Composite Main Rotor Shaft/Quill/Standpipe

The ART system is arranged with a truss memberto react rotor loads. The
truss is a composite structure with six legs attached to the airframe. A
sketch is shown in Figure 37. In the upper portion ofthe truss, a housing
contains the main rotor shaft and bearings. Head moment, torque, thrust, and
side load are reacted in the main rotor shaft as in a conventional design.
The main gearbox only carries torque to the main rotor shaft. There will of
course be some rotor load fed through the quil_shaf_to the main gearbox
since it is a redundant structure and this must be accounted for. The main
rotor shaft is titanium and oil is supplied from the main gearbox system
through tubing to the main rotor shaft bearings whereupon it then drains back
to the main gearbox. A schematic of the standpipe structure separate parts is
shown in Figure 38 showing how the individual componentsare fabricated. The
rough tube sizes are shownvarying from I0 x i0 inches at the upper end to 5 x
5 inches at the lower end. Manyof the parts are resin transfer molded (RTM).
The final assembly is bonded and co-cured.

.?

Figure 37.

Figure 38.
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A cross section showing the main rotor shaft, quill shaft, rotor head, and

upper truss section is shown in Figure 39. The layout shows that the quill

shaft attaches to the rotor head through a bolt flange. Thus torque does not

flow through the main rotor shaft in this design. Later, it was decided to

move the quill shaft bolt flange to the bottom of the main rotor shaft because

it was too difficult to fabricate the opposing composite flanges on the rotor

head connection. In the new design (See detail design chapter), torque is

transmitted through the main rotor shaft. Since the diameter is large, tor-

sional stress is low. The composite quill shaft from the main transmission

contains a composite coupling between the main gearbox and main rotor shaft.

This coupling is designed to remove any misalignment between the rotor and

transmission and must also be capable of transmitting torque.

TOTAL TORQUE

TOTAL BENDING

INTEGRAL HUB/ SHAFT

FILAMENT WOUND COMPOSITE

QUILL SHAFT
ATTACHMENT FLANGE

STEEL OR TITANIUM
MAIN ROTOR SHAFT

UPPER TIMKEN

BEARING

I
LOWER TIMKEN

: BEARING
t

COMPOSITE SHAFT

i 3/4 THICK (0,09,-45,÷45)

! 26 INCH O.D.
,, - 45 INCH FLANGE DIA

Figure 39. ART/ACAMain Rotor/Quill Shaft
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An alternate arrangement of main rotor shaft and quill shaft is shown in

Figure 40. Here the composite rotor head extends downward to form the main

rotor shaft. It was felt that the main rotor shaft bearings could not be

installed directly onto the composite material. Rotating bearing races have a

tendency to creep under load when the load is alternating on the raceway and

the ring materials are relatively thin as is the case for the main rotor shaft

bearings. The tendency to creep is overcome by very high press fit in air-

craft designs. Sikorsky has successfully used the "Keller" criteria developed

in-house and verified by years of Successful field operation. The ART bear-

ings are very large and thin and require a very high press fit to meet the

no-creep criteria. The stresses become too high in composites for the high

fits required. The design shown in Figure 40 overcomes this by using metal

liners between the composite shaft and bearings. A metal piece is also used

on the lower end of the main rotor shaft to hold the lower bearing and at the

same time the metal piece permits the use of a nut to clamp the lower bearing

and carry the weight of the helicopter. The metal piece is dowelled to the

composite shaft just above the lower bearing and to the metal liner used for

the upper bearing. The dowel is used in this location because the bending

stress is low here being zero at the center of the lower bearing. The parts

are also tapered for tighter fits during the curing process. This design was

eventually eliminated in favor of the metal main rotor shaft as shown in

Figure 39 for reasons of the high technical risk associated with fabrication.

BENDING
MOMENT

DIAGRAM

UPPER
BRG

/

J
U

I

COMPOSITE
TO METAL SPLICE

t _ _ INTEGRAL HUB/ SHAFT

FILAMENT WOUNO COMPOSITE

SHAFT
ATTACHMENT FLANGE

PPER TIMKEN
BEARING

TIMKEN
BEARING

COMPOSITE SHAFT
3/4 THICK (0,09,-45,÷45)

26 INCH O.0.
45 INCH FLANGE [HA

Figure 40. ART/ACAMain Rotor/Quill Shaft, Alternate Arrangement
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Composite Housings

Composite housings are used throughout all of the ART transmission system.

The material selected is graphite polybismalimide which is suitable for

operation in an oil environment at high temperatures. The method of manu-

facture is resin transfer molding (RTM) although areas next to bearings and

other machined surfaces are made by injection molding with chopped fibers and

thermoplastic resins such as PEEK. A cross section of the transmission

showing only the housings can be seen in Figure 41.

I

Figure 41. Schematic of ART/ACA Composite Housing Assembly

The split path gearbox readily lends itself to composite design since the

bearing locations for the last two stages of gearing essentially form two

planes. Thus flat plates can be designed in these planes to react the bearing

loads and carry them to the periphery of the housing where they then transfer

to the airframe mounting attachments.

The design of composite housings is an integrated part of the design process
and must be conducted concurrent with the design of gears and shafting.

Initial designs for ART were developed using finite element analysis with

quasi-isotropic material properties assuming layups such as +45 ° , -45 °, 0 °,

90 ° and designing as if the material were isotropic. Refinements were then

made in the analysis by inputting fiber oriented properties. Material was

added and fiber orientation varied to develop stiffness along load paths

reducing deflections. In the ART program, it was found that deflection and
not strain was the controlling design parameter. It is sometimes difficult to

stiffen composite housings since ribs can not be used with RTM because of cost

considerations.
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Graphite polybismalimide housing are used in the ARTprogram to save weight
and solve the corrosion issue prevalent with magnesiumhousings. The compo-
site material chosen is also good for higher operational temperature than
current state-of-the-art magnesium housings. Even considering advanced
magnesiumssuch as WE43, an alloy of ittrium and rare-earth which have im-
proved corrosion resistance and can operate at higher temperatures, composites
offer weight advantages.

Candidate Transmission Selection

After completion of the four preliminary designs of split torque and split
path gearboxes, the weight, noise, and MTBRwere analytically evaluated by the
methods previously outlined. The results are summarized in Table 13.

Table 13. Preliminary Design Weight, HTBR, and Noise

Configuration We ight Z HTBR Z Re lat ire

(Ibs) Wgt (hrs) HTBR Noise

Baseline I0,795 - 997 Baseline

II:I Split Path 8,287 -23% 3,890 +390% -lOdB+

8:1 Split Path 9,111 f16% 31.330 +334% _'lOdB+

ii:i Split Torque 8,751 -19% 2,950 +296% -10dB+

8:1 Split Torque 9,430 -13% 2,600 +2_1% _ -10dB+

Examination of the results shows that the II:I ratio split path design is a

clear choice over the others. It has the lowest weight and highest MTBR. In

terms of noise, all designs met the goal of i0 dB noise reduction because each

design utilized a herringbone output bull gear and high contact ratio spur

gear set. Hence noise drops out of the evaluation procedure. The split

torque designs are inferior for a three engine design such as used on the ACA.

Perhaps the gaps in weight and MTBR would shorten for a two engine arrangement

since the complications of the central engine TTO and drive shaft located

under the bull gear would be avoided. Based on selection of the split path

gearbox arrangement, all detail design studies were conducted on that design.

Revised Aircraft Power TrainArrangement

The split path transmission installation in the ACA is shown in Figure 42

while the split torque is shown in Figure 43.

The installation of the split torque design is complicated by the need to

raise the #2 engine. A higher engine location is required because the vert-

ical distance from the engine input to the TTO is greater in the split torque

design and the TTO location is fixed. Also the higher gearbox tends to block

the flow of air for the engine inlet.
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Figure 42. ACA Aircraft Installation of Split Path Gearbox
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Figure 43. ACA Aircraft Installation of Split Torque Gearbox
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Figure 44 is a typical engine installation used on the ART/ACA. The pivot
point of the gimbal mount is located at the station of the input drive shaft
coupling center. Thus any deflections of the airframe at the aft engine
support relative to the transmission support are removed at the coupling as a
misalignment angle. The angle is kept small Because the distance from the
gimbal to the aft engine support is large.
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SYSTEM PERFORMANCE EVALUATION

Approach and Methodology

The ART weight savings results in additional reductions when the ACA aircraft

is downsized for the same payload and performance. Weight savings from the

transmission alone is 2,508 pounds. If the aircraft size is not changed, the

payload will increase by the transmission weight savings. If the payload is

kept constant, the aircraft can be downsized. The results are shown in Table

14.

Table 14. Weight Savings by Downsizing Aircraft for Same Payload

Parameter Baseline Baseline Downsized

w/ART w/ART

Gross Weight 85,764 85,764 81,957

Payload 25,000 27,508 25,000

Mission Fuel 15,316 15,316 15,218

Weight Empty 45,448 42,940 41,739

Note that the weight empty is reduced by 2,508 pounds for the baseline w/ART

since this is the savings for the ART transmission system alone. There is

however an additional 1,201 pounds savings by downsizing the aircraft for the

same payload thus the ART has actually saved 3,709 pounds in the aircraft

When resizing the aircraft for the same payload certain aircraft design

parameters were kept constant. The engines, three GE-38's, were fixed for all

designs. The cabin size was fixed. The payload/range was kept at 25,000

pounds with a radius of action of 500 kilometers. The takeoff criterion of

200 feet per minute vertical rate of climb at 95% internal rated power, 4,000

feet, 95°F day was kept constant. With the disk loading maintained at approx-

imately I0 pounds per square foot, the main rotor diameter was sized to match

the power required with the power available at the takeoff condition.

All aircraft design analysis was accomplished with the helicopter design model

(HDM) as shown in Figure 45. The HDM is a computer program which uses basic

input data of mission requirements, design criteria, configuration, engine,

and technology. The program then calculates dimensions, weights, powers,

performance parameters, and costs. The HDM uses experience factors for calcul-

ation of many of the outputs. For example, weight trending equations are

provided for the main gearbox, main rotor shaft, main rotor blades, inter-

mediate gearbox, tail gearbox, and tail drive shafting. These equations use

parameters such as horsepower, rpm, and reduction ratio with coefficients

derived from previous designs to calculate weights. Figure 46 shows the

excellent correlation achieved not only with Sikorsky designs but for all

helicopter drive systems.
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Figure 45. Helicopter Design Model

Aircraft Size, Weight, and Performance

Using the HDM, the baseline ACA aircraft was downsized with the II:I split

path advanced transmission system. Since this resizing results in changes to

the design parameters for the transmission system such as reduced reduction

ratio, the transmission system itself is resized. This iteration is continued

until a final solution is reached. This results in a smaller, lighter air-

craft as shown in Table 15.
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Table 15. Downsized Aircraft and Transmission

Parameter

Gross Weight (ib)

Weight Empty (ib)

Main Rotor Dia (ft)

Blade Chord (ft)

Disk Loading (psf)

Main Gearbox Rating (HP)

Main Rotor rpm

MGB Reduction Ratio

Drive System Weight

Baseline Downsized

85,764 81,957

44,469 40,760

109.6 101.8

3.20 3.29

9.46 10.46

15,650 15,650

130 140

115 107

10,795 7,870

Note that the transmission is now 2,925 pounds lighter than the baseline vs

2,508 pounds lighter without designing to the reduced size aircraft. In

addition to the transmission savings, the weight reductions associated with

other components are listed in Table 16.

Table 16.

Item

Aircraft Weight Savings w/Downsized ART

Main Rotor

Tail Rotor

Tail Surfaces

Body

Landing Gear

Flight Controls

Engines

Engine Related Items

Fuel System

Drive System
Other*

Contingency

Baseline

8,569

564

510

9,599

1 966

1 907

2 790

1 066

1 456

i0 795

4 358

889

Downsized Saving

w/ART

8,321 248

555 9

512 (2)

9,286 313

1,896 70

1,844 63

2,790

1,066

1,447 9

7,870 2,925

4,358
815 74

Weight Empty 44,469 40,760 3,709

The objective of downsizing the aircraft was to achieve essentially the same

performance. As seen in Table 17, this goal has been achieved.

Table 17.

Item

Performance at 4,000 ft, 95°F Day

Baseline Downsized

w/ART

Gross Weight

VROC at 95% IRP (FPM)

Best Range Speed (kt)

Max Cruise Speed (kt)

Dash Speed (kt)

Cruise Fuel Consumption (Ib/hr)

Useful Load w/Cabin

Soundproofed to MIL-STD-1294

85,764 81,957

200 200

152 153

170 170

180 180

3,450 3,440

39,466 39,993(+527)
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Other benefits are derived from the ART weight savings. These are generally
small but are in the right direction. The aircraft will have reduced detect-
ability by virtue of increased atmospheric attenuation from higher main rotor
rpm. Higher main rotor rpm also reduces blade "flicker" which reduces visual
detection. The smaller sized aircraft will also have smaller static and
doppler radar returns. Several survivability benefits are also inherited by
virtue of increased ballistic survivability from the wider blade chord,
increased agility from lower inertia, and greater crashworthiness from the
standpipe configuration. Aircraft availability is improved since transmission
maintenance is decreased. Smaller, lighter componentsalso require less field
support and improve deployability.

Life Cycle Cost

Life cycle aircraft costs include development costs, production costs, operat-
ing costs, and support costs. Life cycle costs have been calculated for the
ACAwith the ART transmission' system. Several ass_ptions were required to
project forward in estimating the future cost of the ACA. Aii costs have been
normalized to 1990 year dollars. The development program is assumedto start
in 2010 and lasts five years. Three flying prototypes have been included in
the development phase as well as associated ground test articles. Engine
development costs have been assumedto be paid prior to this program.

Production runs from the year 2015 through 2026. A production run of 600
total aircraft with associated spares was anticipated, beginning at a rate of
15 aircraft per year and building up to a peak of 75 per year. Operating and
support costs have been determined Over a 35 year period. Representative
peace time attrition rates and a utilization rate of 240 flight hours per
aircraft per year were used in the analysis. The Time phased relationship of
development, acquisition, and operational costs are shownin Figure 47.

COST

TOTAL

/!
ACQUISITION// I

DEVELOPMENT /,__////_

CALENDAR TIME

Figure 47. Time Phased Elements of Life Cycle Cost
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Since the interest in the ART program is in the transmission area, the life
cycle cost of the transmission system was determined in more detail than the
other areas. Transmission parameters affecting life cycle cost are listed in
Table 18.

Table 18. Transmission Parameters Affecting Life Cycle Cost

Item Baseline Baseline Downsized

w/ART w/ART

Weight 9,077 6,276 6,322
Cost Per Pound $144 $157 $157

MTBR (FH) 997 3,890 3,890

MMH to Remove 14 i0 i0

MMH to Install 28 20 20

MMH to Repair at Depot 3,328 2,059 1,943

Material $ to Repair at Depot $310K $192K $181K

Initial Cost of GSE $410K $336K $317K

Replenishment Cost of GSE $571K $468K $441K

Cost of Shipping Container $34K $25K $24K

Cost to Prepare and Ship $1,678 $1,374 $1,296

MMH/FH at Depot 2.710 0.489 0.463

MMH/FH Other 0.301 0.281 0.281

Total MMH/FH 3.011 0.770 0.744

The largest difference seen is in the area of depot maintenance. This is

solely because the MTBR is so much higher with the advanced designs. High

MTBR was achieved in the advanced split path designs by elimination of parts

and by designing to increased life requirements. Whereas in the CH53E (base-

line) era, the bearing design criteria was to have all individual BI0 lives

above 1,000 hours, in the ART program 15,000 hours was used. Designing to

such a high life is a trade off with weight. The ART gearbox was able to

achieve both a weight decrease and an MTBR increase.

Typically, depot overhaul costs are more than 50% of a new gearbox production

cost. Since the ART main transmission is very expensive, the overhaul cost

will also be expensive. If the rate of depot maintenance for the split path

transmission is reduced to one fourth of the baseline value, it is easily seen

that tremendous cost reductions are achieved. Maintenance man hours per

flight hour at depot is also a direct measure of the MTBR increase. Table 19

shows the large differences in transmission operating cost per flight hour.

Table 19. Transmission Operating Cost Per Flight Hour

Item Baseline Baseline Downsized

w/ART w/ART

Depot Maintenance
Other Maintenance

Shipping

Replenishment Spares

Total Trans Operating Cost

Savings

$360 $65 $61

3 3 3

2 I 1

34 24 23

$399 $93 $88

- $306 $3n
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As seen from Table 19, the cost saving is in excess of $300 per flight hour
for the transmission alone. In the downsized aircraft, there are other
savings in addition to the transmission maintenance and spares savings. This
is shown in Table 20.

Table 20. Aircraft Operating Cost Per Flight Hour

Item Baseline Baseline Downsized

w/ART w/ART

Personnel $1239 $1239 $1239

Fuel, Oil, Lubricants 555 555 554

Maintenance 598 302 283

Replenishment Spares 374 364 341

Other 1046 1046 1046

Total A.C. Operating Cost $3812 $3506 $3463

Savings - $306 $349

The savings achieved in the transmission system translate into large aircraft

fleet life cycle cost savings of over one billion dollars as depicted in Table

21. The transmission weight savings and reliability increase have therefore

resulted in substantial life cycle cost savings.

Table 21. Aircraft Fleet Life Cycle Cost

Item Basel_ne Baseline Downs_zed

w/ART w/ART

Development $0.5B $0.5B $0.5B

Acquisition II.8B II.6B II.2B

Operation II.IB 10.2B 10.0B

Totals $23.4B $22.3B $21.7B

Savings $1.1B $1.7B

=

_2 _ Z 7 l
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DETAILDESIGN

Full Size Aircraft Gearbox

Detail design studies were conducted on the full size aircraft high reduction

ratio output herringbone gear, split path gearbox to define all components to

the point where detailed estimates could be made of Weight, noise, and MTBR.

Detail layouts were made of the main gearbox to sufficient detail level to

permit accurate weight assessment. Detailed structural analysis was performed

to assure that all components were structuraliy adequate. As will be dis-

cussed in subsequent paragraphs, detail drawings were made of all components

associated with the second stage high contact ratio spur gear mesh and the

output herringbone mesh to be used for a 1/2 size test. As will be shown,

stress and deflection are identical for the full size aircraft component and

for the 1/2 size test component when 1/8 power is used. Thus, structural

analysis for some components was conducted for the full sized hardware while

other analysis was performed for the 1/2 Sized test hardware.

The detail layout cross section is shown in Figure 48. The components are

very similar to those in the preliminary layout except for variations as a

result of section beef up or reduction based on the detailed structural

analysis. The top view is shown in Figure 49 depicting the mounting feet and

some of the main gearbox mounted accessories. Power is fed from each of three

GE-38 engines directly to the input side of a spring type overrunning clutch.

The output side of the clutch drives a spiral bevel pinion at 15,000 rpm. The

spiral bevel gear axis is parallel to the main rotor shaft axis. Torque

splitting takes place at the spur gear mesh pinion. The mesh is a high

contact ratio spur and there is one pinion and two gears per engine. Each

spur gear drives a herringbone pinion which in turn transfers and combines

power to the output bull gear. The bull gear is fixed axially and the her-

ringbone pinion assemblies are floating to assure load sharing between left

and right hand helix halves of the herringbone mesh. Load sharing between

pairs of spur gears on the same engine path is provided by a soft torsional

isolator. The isolator is shown mounted between the spur gear and herringbone

pinions and contains alternate layers of rubber and metal that are precompres-

sed between the steel outer and inner members by a controlled gap shim using

bolts for preloading. The torsional spring rate of the elastomeric device is

low relative to the axial and radial spring rate.

Trade off studies were conducted on various aspects of the main transmission

design to establish low weight/high reliability solutions. The tail-take-off

drive was examined with regard to minimum number of extra meshes. The design

chosen uses only one extra bevel gear mesh for the tail-take-off. Trade off

studies were also conducted on options for driving accessories. The split

path design is well suited for direct drive of accessories without the need

for a great deal of extra gearing. All gears use Pyrowear 53 material, a high

hot hardness carburizing gear steel which retains its hardness at higher

temperature than the baseline 9310 steel. The housings are fabricated by

resin transfer molding (RTM) of graphite fibers in a matrix with polybismali-

mide. These housing composite materials have been tested under a composite

housing development CR&D program and were chosen based on strength, resistance
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Figure 48. ART Main Gearbox Cross Section

58



Utility

#1

Figure 49. ART Main Gearbox Top View

to corrosion, temperature capability, hot oil resistance, and suitability for

RTM fabrication. Table 22 lists the advanced or new technology concepts used

for the ART transmission.

Table 22. ART Technology Advances

Advanced Technology Parameters Impacted

Split Power Gear Concept

Canted 3 Engine Arrangement

Herringbone Gear Mesh i0:I RR

Composite Housings

Composite MRS Truss

Composite MRS/Quill Shaft

Pyrowear 53 Gear Material

Topological Gear Grinding

Load Sharing Elastomeric Spring

Composite Tail Drive System

Comp. Int. Shaft/Coup. Eng. Shaft

Ceramic Rolling Element Brgs.

Squeeze Film Damper on Input

Spring Clutch on Input

Integral Race Roller Bearings

Spherical Tapered Roller Bearing

Flanged Outer Race Bearings

Increased Operating Temperature
3 Micron Oil Filtration

Weight, Noise, MTBR, Cost

Balanced Climb/OEl Requirements

Weight, Noise

Weight, MTBR, Depot Maint, Spares

Weight

Weight

Weight, MTBR, Lost Oil Surv.

Weight, Noise, MTBR

Weight, Noise

Compatibility w/Airframe

High Angle, Tamper Proof Balance

Weight, MTBR

MTBR

Weight, MTBR

Weight, MTBR

Weight, MTBR, Survivability

MTBR

Weight

MTBR
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Gearing

Basic gear data for the ART full sized aircraft transmission main gearbox is
shown in Table 23. Table 24 lists gear bending stress, contact stress, and
scoring temperature rise for the major meshes. Bending and contact stresses
are calculated by the American Gear Manufacturers Association (AGMA)method-
ology as shown in ANSI/AGMA2001-B88 for spur and helical gears and in ANSI/
AGMA2003-B86 for bevel gears. The scoring temperature rise for bevel gears
is calculated by the Gleason method whereas for spur gears, the method is
based on the work of Blok and Kelley as shown in ANSI/AGMA2001-B88, Appen-
dix A.

Tabie231 Full SizedART, Basic Gear Data

Gear Number Pitch rpm Pressure Spiral

of Dia Angle (Helix)

Teeth Angle

Input Bevel Pinion 25

Input Bevel Gear 76

2nd Stage Spur Pinion 26

2nd Stage Spur Gear i01

Herringbone Pinion 13

Herringbone Gear 127

TTO Bevel Pinion 37

TTO Bevel Gear 39

Hyd Pump Spur Gear 60

Hyd Pump Spur Pinion 20

Generator Spur Pinion II

Oil Cooler Spur Pinion 34

6 6667

20 2667

5 0268

19 5271

4 9134

48 0000

9 0024

9 4891

6 0000

2 0000

2 1267

6 5706

15,000 20 °

4,934 20 °

4,934 18 °

1,270 18 °

1,270 20"

130 20 °

4,934 20 °

4,681 20 °

1,270 22.5 °

3,810 22.5 °

11,663 22.5 °

3,773 22.5 °

25 °

25 °

31 °

31 °

30 °

30 °

Table 24 . Bending and Contact Stress,and Scoring Temperature Rise

Gear

Input Bevel Pinion

Input Bevel Gear

Input Spur Pinion

Input Spur Gear

Output Herringbone Pinion

Output Herringbone Gear

TTO Bevel Pinion

TTO Bevel Gear

Gear Bending Contact

Design Stress (Hertz)

HP (psi) (psi)

5 343

5 343

2 671

2 671

1 296

1 296

2 4O0

2 4OO

29 990

24 700

45 490

47 120

56 710

55 090

30 080

29.670

184 150

184 150

143 250

143 250

176 130

176 130

193 890

193 890

Scoring
Rise

('F)

234

234

137

137

139

139

73

73
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Bearings

Basic bearing life is calculated by the methods outlined by AFBMA. Standard
envelope dimensions were used for all bearings. Factors for material and EHD
lubrication were used to determine the B-10 bearing lives. The results for
the full sized aircraft main gearbox are shown in Table 25. The prorated

power was used to establish the bearing life calculated in Table 25. The

prorated power is defined as that power which if applied continuously, would

give the same life as a spectrum of power and percent time. An estimated

usage spectrum of power and percent time was used to calculate the prorated

power. For the ART, the prorated input power used was 64.26% of the maximum ,

and the prorated main rotor power was 61.30% of maximum. The tail drive

system prorate was 48.92% of the maximum tail rotor power.

Table 25. Full Sized ART, Basic Bearing Summary

Position rpm Load @ B-IO

Prorate Life

(ibs) (hrs)

Input Clutch Duplex (3)

Input Bey. Ang. Con. Sph. Roll (3)

Bevel Pinion Roller (3)

#I Bey Gear/Spur Pin Tapered Roll

#i Bev Gear/Spur Pin Roller

#2 Bey Gear/Spur Pin Tapered Roll

#2 Bey Gear/Spur Pin Roller

#3 Bey Gear/Spur Pin Tapered Roll

#3 Bey Gear/Spur Pin Roller

#i Herringbone Pinion Upper Roll (3)

#I Herringbone Pinion Lower Roll (3)

#2 Herringbone Pinion Upper Roll (3)

#2 Herringbone Pinion Lower Roll (3)

Herringbone Gear Tapered Roller (2)

TTO Pinion Tapered Roller

TTO Pinion Roller

TTO Gear Tapered Roller

TTO Gear Roller

15 000

15 000

15 000

4 934

4 934

4 934

4 934

4 934

4 934

1 270

1,270

1,270

1,270

130

4,934

4,934

4,681

4,681

20

5 960

2 900

3 400

2 120

3 930

7 640

4.290

5.960

12 500

19 700

25 200

16 900

4 420

4 780

3530

3280

1 360

very high

50,060

42,610

73,030

5,400 000

44 010

71 040

32 740

165 400

195 140

22 400

16 800

38 300

1,160 000

22 63O

122 120

81 650

3,290 000

The bearing lives of Table 25 can be summed using probability theory to find a

system B-10 life. For this calculation, there are three sets of input bevel

pinion bearings, and three sets of herringbone pinion bearings. The lives

listed are all different for the #I, #2, and #3 engine input to the bevel

gear/spur pinion shaft because of the angular orientation of the bevel gear

input (aligned with the engine) and the spur pinion (aligned with the bull

gear). Similarly the angular orientation is different for each branch for

each engine on the spur gear/herringbone pinion mesh. The B-IO system life is

calculated to be 1965 hours. This represents a mean bearing system life of

9825 hours.
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Lubrication

Lubrication system design begins with the calculation of the heat generated.

For the ART, the heat generated was calculated for the 100% input power design

condition with 16,030 HP input. Table 26 summarizes the heat generation

calculations.

The total heat generated of 18,360.1 BTU/min corresponds to a loss of 432.9

HP. For 16030 HP input, an efficiency of 97.3% is calculated which is repre-

sentative for a three stage helicopter gearbox.

The required flow is determined by using the assumption that all of the heat

generated will be transferred to the oil and assuming a temperature rise of

the oil. A typical helicopter gearbox oil was assumed at 210°F with a spec-

ific heat of 0.455 BTU/Ib°F and a density of 0.0331 pounds per cubic inch.

The required flow was then calculated as that flow which would produce a

temperature rise of 40°F in the oil. The actual flow may be more than the

required flow because of the limitation of using a minimum jet diameter of

0.032 inch. Given a pressure of 70 psig, a flow of 0.18 gallons per minute

(gpm) is calculated for a 0.032 inch jet. If the required flow is less than

0.18 gpm, extra oil is put into the system. For a large gearbox such as the

ACA, the theoretical and actual flow will not be too different because most

jets are required to be larger than 0.032 inch but as size decreases, more and

more minimum size jets will be used and the actual flow can reach more than 2

times the required flow. A summary of actual and theoretical flow is shown in

Table 27.

The oil cooler has been sized to reject 16,200 BTU/min on a sea level standard

day. This is based on past designs where some amount of heat will be rejected

through the gearbox housings by conduction and convection (radiation is

usually small). For the ART, 10% of the heat is assumed to be rejected

through the housings. By taking 90% of the heat generated at the 100% power

condition on a standard day, the cooler is sized to keep the sump temperature

at approximately 200°F for most of the time. At high power conditions on a

hot day, the oil will heat up slightly.

The lubrication pumps have been sized for 65 gpm each (2 pumps) at 70 psig.

From previous experience, the sump usually contains an amount of oil in

gallons equal to 0.4 times the flow in gallons per minute. Therefore the sump

for the ACA is estimated to contain 52 gallons of oil. This would normally be

adjusted during the n0- load lubrication survey which is generally the first
test to be run on a new transmission.
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Table 26.

Description

Full Sized ART, Heat Generation Summary

Input Bevel Duplex Ball Bearing

Input Bevel Ang. Cont. Sph. Roller

Input Bevel Roller Bearing

Spring Clutch Arbor Duplex Ball

Spiral Bevel Gear Mesh

#i Bey Gear/Spur Pin Sph Roller

#I Bey Gear/Spur Pin Roller

#2 Bey Gear/Spur Pin Sph Roller

#2 Bey Gear/Spur Pin Roller

#3 Bey Gear/Spur Pin Sph Roller

#3 Bey Gear/Spur Pin Roller

High Contact Ratio Spur Mesh

TTO Pinion Ang. Cont. Sph. Roller

TTO Pinion Roller Bearing

TTO Gear Ang. Cont. Sph. Roller

TTO Gear Roller Bearing

TTO Spiral Bevel Mesh

#I Upper Herringbone Pinion Roller

#I Lower Herringbone Pinion Roller

#2 Upper Herringbone Pinion Roller

#2 Lower Herringbone Pinion Roller

Herringbone Gear Mesh

Timken Bearings, Herringbone Gear

Generator

Hoist Pump

2nd Stage Servo

Primary Servo

Utility Pump

Individual

BTU/Min

215.3

425.5

150.0

19.6

1747.0

89.2

69.5

98.6

132 1

135 5

113 1

1595 8

159.3

59.7

176 1

32 7

422 6

60.0

80.6

112.0

71.0

524.9

21.6

66.3

20.8

11.2

11.2

6.6

Qty
per box

3

3

3

3

3

i

i

I

I

I

I

3

i

I

I

I

I

3

3

3

3

6

2

3

I

I

i

i

Grand Total

Total

BTU/Min

645 9

1276 5

450 0

58 8

5241 0

89 2

69 5

98 6

132.1

135.5

113.1

4787.4

-159.3

59.7

176.1

32.7

422.6

180.0

241.8

336.0

213 0

3149 4

43 2

198 9

20 8

II 2

ii 2

6.6

18,360.1
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Table 27.

Description

Full Slzed ART, Actual and Theoretical Flow

Input Bevel Duplex Ball Bearing

Input Bevel Ang. Cont. Sph. Roller

Input Bevel Roller Bearing

Spring Clutch Arbor Duplex Ball

Spiral Bevel Gear Mesh

#I Bev Gear/Spur Pin Sph Roller

#I Bey Gear/Spur Pin Roller

#2 Bey Gear/Spur Pin Sph Roller

#2 Bev Gear/Spur Pin Roller

#3 Bey Gear/Spur Pin Sph Roller

#3 Bey Gear/Spur Pin Roller

High Contact Ratio Spur Mesh

TTO Pinion Ang. Cont. Sph. Roller

TTO Pinion Roller Bearing

TTO Gear Ang. Cont. Sph. Roller

TTO Gear Roller Bearing

TTO Spiral Bevel Mesh

#I Upper Herringbone Pinion Roller

#I Lower Herringbone Pinion Roller

#2 Upper Herringbone Pinion Roller

#2 Lower Herringbone Pinion Roller

Herringbone Gear Mesh

Timken Bearings, Herringbone Gear

Generator

Hoist Pump

2nd Stage Servo

Primary Servo

Utility Pump

Req'd Jet Qty
Flow Dia Per

(gpm) (in) Box

1.54 .094 3

3.04 .136 3

1.07 .078 3

0.14 .032 3

3.12 .136 12

0.64 .062 1

0.50 .055 I

0.70 .064 1

0.94 .073 1

0.97 .078 1

0.81 .070 1

2.85 .128 12

1.14 .081 i

0.43 .052 I

1.26 .086 i

0.23 .040 i

1.51 .094 2

0.43 .052 3

0.58 .060 3

0.80 .070 3

0.51 .055 3

0.47 .052 48

0.15 .050 3

0.47 .052 3

0.15 .032 1

0.08 .032 1

0.08 .032 1

0.05 .032 1

Total

Actual

(gpm)

4.66

9.75

3.21

0.54

39.00

0.68

0.53

0.72

0.94

1.07

0.86

34.54

1.i5

0.48

1.30

0.28

3.10

1.43

1 9O

2 58

1 59

22 88

1 32

1.43

0.18

0.18

0.18

0.18

Grand Total Actual Flow

Grand Total Theoretical Flow

(Theoretical Flow = Sum of Req'd Flow x Qty)
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Composite Housings

The split path main gearbox design is ideally suited for the use of composite

housings. There are essentially two flat plates through the gearbox which

hold the majority of the bearings and carry the majority of the loads. Sizing

of thicknesses for the composite housing was accomplished by conducting a

finite element analysis of the complete housing assembly. The free body of

the housing has loads applied to it at each bearing location. Reactions are

through the mounting feet which are constrained to ground. The FEA model is

shown in Figure 50.

FWD

! AFT

Figure 50. Composite Housing Finite Element Model

The material used for the housings is graphite fibers in a matrix of polybis-

malimide. Approximately a 50% fiber volume can be achieved by resin transfer

molding (RTM) wherein dry fibers are placed inside a closed mold and the resin

is injected to extrude through the fibers and fill the mold. A temperature/

time cycle is applied after injection to solidify the material. The part is

removed from the mold and is subjected to a final temperature/time cycle for

final curing. The matrix material can achieve a tensile modulus of i0 million

for a quasi-isotopic layup of +45 ° , -45 °, 00, 90 ° . By altering the directions

of the layups, the properties can be tailored to achieve selective stiffness.

This was done to some extent in the ART housings. It was found that deflec-

tion was the governing design condition rather than strain. The highest

strain calculated was for the number I engine input housing. Its value was

.0019 versus an allowable strain of .004 inch per inch for the graphite

polybismalimide material used. The deflected housing shape is depicted in

Figure 51. As seen, the highest deflections occur on the upper cover in the

area of the input attachments. This is a difficult area to stiffen without

the use of ribs. Ribs are not practical with the RTM process because they

complicate the mold, complicate the layup of the graphite and add to the cost.

Upper cover deflections are shown in Figure 52 and input housing major princi-

pal strain is shown in Figure 53.
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Figure 51. Composite Housing Deformed Shape Plot

Figure 52. Upper Cover, Total Deflection

A=.0229

B=.0214

C=.019g

D=.0184

E=.016g

F=.0154

G=.0139

!:.0109

J:.0094

K=.007g

L=.0064

M= .0049

N=.0034

O=.0020
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A=.00183

B=.00170

C=.00156

D=.00143

E=.00130

F=.00116

G=.00103

H=.00089

1=.00076

J=.00063

K=.00049

L=.00036

M=.00023

N=.00009

O=-.00004

Figure 53. Input Housing, Major Principal Strain

Composite Main Rotor Shaft/Quill/Standpipe

Torque is transferred from the main gearbox to the main rotor by means of a

composite quill shaft on the ART/ACA. The quill shaft is 26 inches in dia-
meter and is 0.8 inch thick. It carries over 7 million inch pounds torque at

the 100% power condition transmitting 14825 HP. A titanium main rotor shaft

is located inside of a composite housing with six truss member legs which

attach to the airframe. A cross section of the truss, main rotor shaft, rotor

head, quill shaft and main transmission are illustrated in Figure 54. Rotor

loads are transmitted from the rotor head to the main rotor shaft, through the

main rotor shaft bearings into the truss structure. Since there is some

bending stiffness to the quill shaft assembly, some moment will be redundantly

transmitted to the quill shaft. The bolted connection with integral coupling

is intended to reduce the redundant load carried by the truss. A finite

element analysis of the structure was conducted. The model is exhibited in

Figure 55. The analysis showed that in forward flight at the limit rotor load
condition with limit head moment, limit thrust and limit side load applied,

the quill shaft reacts only 0.1% of the moment (3,450 inch pounds moment

compared to the head moment of 3,020,000 inch pounds). The finite element

analysis load conditions are listed in Table 28.
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Figuxe 54. Composite Quill, Main Rotor Shaft, Truss Cross Section

68



Table 28. Composite Quill, Main Rotor Shaft, Truss Load Conditions

Condition # Name

20g Forward Crash (174,900 ib @ rotor)

20g Down Crash (174,900 Ib @ rotor)

10g Side Crash (87,450 Ib @ rotor)

Limit Forward Flight

Limit Head Moment m 3,020,000 in-lb

Limit Side Load = 17,920 Ib

Limit Thrust = 154,000 ib

Limit Torque = 14,400,000 in-lb

Limit Servo Load = 80,000 Ib

Limit Rearward Flight

(Same magnitudes as #4 but acts to rear)

Limit Side Flight

(Same magnitudes as #4 but acts to side)

Figure 55. Composite Standpipe/Truss FEA Model

The composite truss is designed by strain rather than deflection. The deflec-

tion can be relatively high in the truss member since no gearing is involved.

Figure 56 shows deflection levels of .676 inch maximum. This deflection

occurs at the center of the forward servo mount and is caused by the limit

servo load of 80,000 pounds. This magnitude of deflection is in the direction

of the applied servo loads and merely causes an extra extension of the servo.
The deflection at the rotor head of .256 inch is low relative to other

Sikorsky helicopters considering the size of the structure.
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k = .676

B = .I;29

¢ , .S82 I

D : ..536 I

E = .489

F = .443

G :; .3S.6

H : .349 I

I =..103

J = .256

K : .210

L • .153

M : .11$

N =: .070

O * .023

Figure 56. Composite Standpipe/Truss Total Deflection

Figure 57 presents the strain values for the assembly. The maximum strain of

approximately 008 inch per inch is caused by the method o_ constraint used

and does not represent a true value. This conclusion is based on the extreme-

ly confined area of the high strain concentratedat the point where the multi-

point constraint equations are written. The real strain in the part is closer

to the values shown by "E", or 0.001 inch per Snch which is well within the

allowable of .004 inch per inch. l_ne material used is the same as for the

gearbox housings, graphite-polybismalimide.

A : *.0GS36

B : _.00530

C = *.00423

D : *.00211;

E : *.00010

F = -.00197

G = ..00404

Figure 57. Composite standpipe/Truss Strain in the Y Direction _ _
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Spring Clutch

The spring clutch was analyzed by convention methods as outlined in "Heli-

copter Freewheel Unit Design Guide", USAAMRDL-TR-77-18. The spring coils have

variable thickness for the first 9 coils on each end andhave variable width

for the central 7 coils. There are 33 coils all together. The central coil

widths vary exponentially to produce constant stress. The variable thickness

and variable width of coils greatly reduces the size of the spring required

but increases cost and manufacturing complexity. The overall dimensions of

the spring are 2.714 inches outside diameter x 1.729 inches inside diameter x

6.156 inches long. The coil width at crossover is 0.783 inch and the coil

thickness at crossover is 0.493 inch. The 100% design condition is taken to

be the one engine inoperative (OEI) case of 6209 HP at the input at 15,000

rpm. Testing of spring clutches has shown that the static torque capability

is greater than four times the design value. The spring is guided by an arbor

located on the inside diameter of the spring. The initial fit between the

spring and arbor is 0.015/0.0175 inch interference. The growth from centri-

fugal force is 0.0143 inch at 125% rpm so the the spring will remain on the

arbor until the rpm of the output tends to exceed the rpm of the input at

which time the clutch will engage and the coils will leave the arbor and

transfer to the outer housing.

The method of operation of the spring clutch and the weight advantages were

previously discussed in the preliminary design chapter of this report. The

weight savings of a spring clutch located on the transmission input at 15,000

rpm compared to a conventional ramp roller clutch located at the output bevel

gear at 4935 rpm is 123 pounds per engine. The total weight savings per

aircraft is 369 pounds and represents 3.4% of the weight of the entire trans-

mission system. This is a significant weight saving for a single component
such as the freewheel unit.

Engine Drive Shaft

The engine drive shaft uses an integral shaft and coupling concept. The

coupling and shaft are fabricated from composite material using the RTM

process. The inner mandrel of the integral shaft and coupling i s covered with

dry fabric using the braiding process. Braiding is selected because the weave

of material is much more tolerant to ballistic damage than other methods of

fabrication. Ballistic tolerance is a major concern with drive shafts because

they are traditionally the weak link in the drive system. High speed shafting

also suffers from degradation of balance characteristics when the shaft and

coupling are separate and are field removable. The integral shaft and coupl-

ing will retain its original balance throughout its lifetime since there are

no loose pieces that can cause parts to shift or parts which can be removed or

changed. An additional advantage is that the angular misalignment capability

and critical speed characteristics can be enhanced by selective use of stiff

materials such as 0 ° graphite in the shaft and compliant materials such as

high angle fiberglass in the coupling.
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The ART engine drive shaft has the integral shaft and coupling on the trans-

mission input side and a metal spline on the engine output side. The metal

male spline is bonded and riveted to the composite shaft on the engine end.

An elastomeric gimbal is located on the transmission input with the center of

rotation at the center of the integral coupling. The engine is supported at

the transmission through the gimbal and at the rear of the engine by struts.

Any motion induced during flight is transferred to the coupling as an angular

misalignment only, without any axial or side motions. Figure 58 displays some

of the basic dimensions of the final composite shaft and coupling design.

.180 =

46.0o0 fS

• 050

.68 R

9.350 R

.42 R

"I'YP 2 PL

- .(_

Figure 58. Composite Integral Shaft/Coupling Basic Dimensions

A finite element analysis was conducted of the integral shaft and coupling to

determine structural adequacy for transmitting torque and for angular mis-

alignment capability. Figure 59 shows the deflected position for enforced

angular misalignment.
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Figure 59. Composite Integral Shaft/Coupling Angular Misalignment

Spring rates of the assembly were calculated for use in conducting dynamic

analysis. In the side or lateral direction, the spring rate was calculated to

be 1985 pounds per inch. In the bending direction of angular misalignment, a

rate of 4715 inch pounds per radian was found. The torsional spring rate was

found to be 1,083,000 inch pounds per radian. The maximum shear strain was

calculated to be 0.0018 inch per inch in the tube part of the shaft which is

well within the allowable for the composite material.

A shaft dynamics analysis was conducted to determine mode shapes and frequen-

cies. The results are shown in Figure 60. There are two rigid body modes,

labeled "Ist mode" and "2nd mode" in Figure 60, which must be traversed during

run up from engine start at zero speed to ground idle at approximately 60%

speed. These modes occur at relatively low speed and therefore have low

energy. Moreover, the transmission input duplex bearings are mounted in a

squeeze film damper which will limit the amplitude of vibration (see discus-

sion of spring clutch). The third mode, also a rigid body mode, is well above

the operating speed range and is unaffected by shaft length. The 4th mode is

the "first bending" mode of the system since the drive shaft takes on the

characteristic bending shape. This mode is highly influenced by shaft length

and limits the length of shaft that can be used. Shaft diameter can be in-

creased to raise the shaft length but this increases the angular misalignment

spring rate and hence decreases angular misalignment capability. A compromise

of 48 inches shaft length was selected based on the needs of the engine for

air inlet purposes.

Accessories

Trade off studies were conducted to determine the best method for mounting of

accessory drives. The baseline CH53E transmission uses a separate accessory

gearbox with some main gearbox mounted accessories for redundancy. The ART

gearbox has convenient locations both on top of the box and underneath the box

to mount accessories directly with splines into available shafts. This method

eliminates accessory gearing completely and is a major advantage for the split

path gearbox. For the ACA, there are three positions available on the top of

the box and three positions available on the bottom of the box at 4934 rpm.

This is a suitable speed for oil pumps and hydraulic pumps but is too slow for

generators. There are also available six positions on top and six positions

73



300.

250.

200:

0")

150_

i
ioo_

0"

24

I II II

3O

J
r

c-
o
i,.._

z._

r,j

f

3rd -=-

Mode

2°, ___
Mode =

Mode

Illi] ]llll III I1' I'l III

36 42 48 54

Drive Shaft Length

Figure 60. ART Engine Input Dynamic Analysis
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on the bottom of the box rotating at 1270 rpm. This speed is generally too
slow for accessories. Schemeswere developed for increasing the speed of the
accessory whendriven from one of these locations.

A planetary system was examined since it offered a coaxial drive method with

the speed increasing ratio desired. Figure 61 is a cross section. The ring

gear of the planetary is 3.55 inches and is fixed by bolting to the housing in

the area of the bearing supports. The sizes of the gears in this planetary

are small and the parts are not critical because the stresses are low. The

planetary was eliminated from consideration however, because it contained too

many parts resulting in reduced reliability and although the parts are small,
there was also a cost consideration.

TO HYDRAULIC PUMP

@ 6016 rpm.

t

TO HERRINGBONE PINION

@1270 rpm

Figure 61. ART/ACA Planetary accessory Drive

Another accessory drive method added a small spur gear directly onto the end

of one of the vertical shafts. The accessory then has its own spur pinion to

mesh with the gear. The accessory is offset from the center of the gear by

the center distance of the small spur set. Figure 62 illustrates the design

concept. With a 3:1 to 4:1 ratio, the 1270 rpm herringbone pinion shafts

become suitable for pump drives. There are no extra bearings or shafts re-

quired since gear reactions are carried by the main bearings on the herring-

bone pinions and hy the bearings in the accessory.
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Figure 62. ART/ACA Accessory Drive Using Additional Gear

Another accessory drive method examined was to use an existing gear, such as

the high contact ratio spur gear as the driver and to attach a spur pinion

onto the accessory drive shaft. For the ART/ACA gearbox, this method proved

useful to obtain the high speed necessary to drive a generator. Figure 63

demonstrates the concept. For both the additional spur gear method examined

above in Figure 62 and the existing gear method shown in Figure 63, the

accessory must be designed to react the gear loads through its own bearings.

Also the pinion on the output shaft would be special such that the accessory

could only be used for the ART_ransmission. This is not a difficult disad-

vantage to overcome 5ecause the benefits of reduced weight outweigh the

disadvantage _of=_a " spEcial ou'tp'ut-shaf£. Also, miSaii_nment problems often

encountered with accessories using quill shafts, would be eliminated. This
benefit alone warrants_their use. _.......

Figure 63. ART/ACA Accessory Drive Using Existing Gear
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Rotor Brake

The ART rotor brake is mounted at the tail-take-off area with the rotor brake

disk being attached to the flange of the tail-take-off output bevel gear

shaft. A carbon disk is used for weight saving. The rotor brake worst case

design condition is an emergency stop from full rpm. The rotor kinetic energy

is 11,660,000 foot pounds for this condition. With a brake torque of 71,000

foot pounds, the rotor can be stopped in 30 seconds. During the stop, all of

the rotor kinetic energy is transferred to heat in the disc. The carbon brake

disc is sized at 28 inches in diameter and is I inch thick.

Tail-Take-Off

The tail-take-off (TTO) drive consists of a single spiral bevel gear mesh with

the pinion driven from the input bevel gear at 4934 rpm. Since this is almost

the desired speed of the tail drive shaft, the reduction ratio of 1.054 is

low, producing a tail drive shaft speed of 4681 rpm. The tail-take-off is

positioned so that the tail drive shaft passes under the #2 engine. The TTO

pinion is driven from a splined quill shaft attached to the 2nd stage spur

pinion. Both the pinion and gear use angular contact spherical roller bear-

ings so that the bevels can be accurately positioned by shimming in the axial

direction. The angular contact spherical roller bearings react both thrust

and radial loads.

Diagnostics

The ART main transmission diagnostic system must address mechanical elements

including gears, bearings, drive shafts, flanges, freewheel units, seals,

elastomeric springs, rotor brake, pumps, generators, oil cooler, oil filter,

and oil jets. In addition, the design makes use of many novel features to

meet the goals of reduced weight, improved reliability, and reduced noise.

All of these combine to pose a significant challenge to the transmission

diagnostic system. The ART diagnostic system makes use of present and new

diagnostic technology to meet the goal of a safe, reliable, and affordable

transmission.

There are several diagnostic strategies that are customarily used to detect

and to locate degradation mechanisms within a transmission system. These

include parametric exceedance (over torque, over temp, low oil pressure,

etc.), life assessment based on hours of use, and oil debris monitoring. In

addition, certain off line methods are in regular use including spectrographic

oil analysis programs (SOAP), and traditional inspection methods like visual,

magna-flux, zy-glow, and other dye penetrant methods. Since the focus of this

analysis is on the on-board, on-site monitoring of the ART transmission, no
detail reference to .these methods is made. Eventual deployment, however,

would rely on methods such as these in conjunction with the diagnostic system
resident on the aircraft.

Diagnostic technology has made advances in other areas as well. These have

been made possible by the common use of microprocessor based systems that

greatly increase the computational power of a human operator. Advances
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include multi-parameter exceedance (envelope exceedance), vibration analysis,
real or near real time prognosis, actual usage analysis for life assessment,
and new sensors for oil borne debris monitoring and analysis.

The design of the ART diagnostic system began with the breakdown of the
transmission system into its constituent componentsand the analysis of each
component for its failure modes. The failure modeswere then combined with
specific diagnostic strategie s and the results are shown in Table 29. Table
29 does not show all components in the _T transmission but rather deals with
generic parts i.e., a gear has the failure modes of spalling, pattern loss,
and fatigue. Under gear spalling, the diagnostics are listed under vibration,
life, prognostics, and debris monitoring, etc.

The ART diagnostic system includes all aspects of the diagnostic process
including sensors, signal conditioning, conversion, data, information pro-
cessing software and hardware, and information display. The data and informa-
tion processing software and hardware include both on-aircraft and off-air-
craft sub-systems. The diagnostic system is shownconceptually in Figure 64.

Transmission

Sensor Suite

1553B

Bus

Aircraft

Interface

Unit

Central

Processor

Cockpit

Display
Unit

Ground-

Based

Maint. Aid

Figure 64. Generalized Diagnostic System
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Generic Component

Bearing (Any Type)

Bearing Retainer

Elastomeric Device

Elastomer Side Plates

Elas Clamp Bolts

FWU Spring Clutch

Gear (Any Type)

Gear Flange

Gear Shaft

Housings (Composite)

Input Drive Shaft

Input Flange

Lube Filter

Lube Pump

Nuts

Oil Cooler Core

Oil Cooler Thermostat

Oil Cooler Shroud

Oil Cooler Fan

Oil Jet

O-Ring

Quill Shaft

Rotor Brake Actuators

Rotor Brake Calipers

Rotor Brake Disk

Rotor Brake Pucks

Rot Disk Attach Bolts

Seal

Spline

Tachometer

Table 29. Diagnostic Strategies

Mode Vi5 Exc

Spalling

Cage Failure

O/R Spinning

Torque Loss

Delamination

Fatigue

Fatigue

Torque Loss

Fatigue

Wear/Fretting

Spalling

Pattern Loss

Fatigue

Fatigue

Crack/Fracture

Ck/Fract/Delam

Torque Loss

Crack/Fracture

Unbalance

Overload

Crack/Fracture

Torque Loss

Bolt Loose/Cracked

Plugged

Pressure Loss

Torque Loss

Leakage

Clogged

Stuck

Cracked

Cracked

Plugged

Leakage

Crack/Fracture

Wear/Fretting

Leakage

Crack

Wear

Wear

Fire

Torque Loss

Leakage

Wear/Fretting

Signal Loss

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Life

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Prg

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Deb

x

x

x

x

x

x

x

x
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Processing is divided between three processors: the aircraft interface unit,

the central processor, and the ground-based processor or maintenance aid. The

workload for each of these processors is shown in Table 30.

Table 30. Diagnostic System Processor Workload

Unit Workload

Aircraft Interface Unit Signal Conditioning

Conversion

Vibration Analysis Preprocessing

Central Processor Exceedance Monitoring

Prognosis for Propagating Modes

Performance Assessment

Oil Debris Monitoring

Vibration Analysis

Life Usage

Maintenance Aid Analysis of Onboard Data

Elapsed Time Tracking

Long Term Prognosis

mxceedance

Remaining Life Computation

Maintenance Action Reporting

Expert System Fault Isolation

Weight, Noise, HTBR

The weight, noise, and MTBR of the detail design was reevaluated and compared

to the baseline and preliminary design values. Noise and MTBR did not change

for the split path design from the preliminary and detail designs since basics

such as gear teeth and bearing sizes did not change. There were substantial

changes in weight however as a result of detail analysis and design. In the

overall summary, the transmission system increased by 1%. The details are

shown in Table 31. It can be seen from the table that the input section

weight decreased as a result of detail analysis whereas the second stage spur

gear and third stage bull gear weight increased.

One reason for the weight increase in the bull gear mesh was the decision

early in the detail design to eliminate the bearingless bull gear concept and

to utilize a bearing support for the bull gear. The decision was based on an

industry survey of commercial and marine drives with double helical gearing

which showed that in all cases with multiple pinions driving a central gear,

the pinions are always designed as the floating member. The bearingless bull

gear design (see preliminary design section) requires that each individual

pinion be shimmed to a central plane that defines the path of the bull gear.

Any errors in shimming would cause load maldistribution. Also, any tendency

of the bull gear to deflect would be resisted by the fixed locations of the

bull pinions which would in turn induce unequal gear loading. Another area of

weight increase after detail design was in the composite truss and main rotor

shaft. This was caused by beef up of the structure as a result of detail

analysis.
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Table 31.

Main Gearbox

Input Section #i

Input Section #2

Input Section #3
Rotor Drive

Bull Gear Installation

Spur Gear/Bull Pinion
Gimbal Mount

Scissors/Standpipe

Housings and Rear Cover

Sumps/Pumps

Main Shaft Bearings

Planetary

Accessory Gearbox TO

Rear Cover Gearing/Etc

Plumbing Provisions

Main Rotor Shaft/Truss

Lube, MGB

Drive Shafts

Rotor Brake

Nose Gearbox

Accessory Gearbox
Intermediate Gearbox

Tail Gearbox

Weight Comparison

Growth Split Path Split Path
Baseline Prelim Des Detail Des

6183 4820 4804

220 320 220

532 320 220

208 320 220

853

799 1033

1412 1645

103

66

1451 1088 1061

125 125 83

292 255 224

- 2146

22 21

....150 150 88

15 I0 10

1412 1116 1513

698 690 716

634 594 584

108 I00 I00

676

280 243 -

208 191 191

596 533 533

TOTAL DRIVE SYSTEM 10795 8287 8441

% Savings Baseline 23% 22%

1/2 Size Test Gearbox

Test hardware consists of a portion of the aircraft gearbox and is designed to

be 1/2 the size of the aircraft components. One half size was chosen to save

the cost of fabrication of a 48 inch diameter bull gear. A 48 inch gear is

beyond the current manufacturing capabilities for a carburized and ground gear

and is limited by current quenching press sizes. The 1/2 size test gearbox

consists of one engine branch of the second stage spur pinion, splitting to

two second stage spur gear/herringbone pinions, and then combining onto the

output bull gear. The input bevel pinion is not included in the test hardware

and the test box has only a single branch of the torque splitting gearbox.

The main objectives of the test were to determine the load sharing between

torque splitting halves, test the large reduction ratio, topologically ground

herringbone gearset, and to test the durability of the elastomeric isolator.

Secondary test objectives were to test the split power gear concept, test of

Pyrowear 53 gear material scoring index at elevated temperature, and to

correlate finite element analysis stress distributions, tooth root stresses,
and transmission error.
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A cross section of the 1/2 size test gearbox is shown in Figure 65. The test
gearbox is highly instrumented. Each shaft has provisions for a slip ring
drive and alternatively, the angular measurement device used to measure
transmission error. The numbers of teeth, pressure angles, and helix angles
are identical to the full size aircraft hardware. Therelationships of the
teeth and the angles formed between gear centers are identical to the full
size components. The gear diametral pitches of the one half size components
are twice those of the aircraft gears resulting in one half of the pitch
diameters. Tooth proportions both in the radial and transverse directions are
similarly reduced to Onehalf.

Figure 65. Cross Section of 1/2 Size Test Gearbox
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A finite element analysis was conducted of the 1/2 size test gearbox mounted

in the test fixture used to hold the gearbox to the test stand. A view of the

finite element model element breakup is shown in Figure 66. The analysis was

used to determine stresses and deflections in the mounting frame as well as in

the test gearbox housings. Deflection and stress results Ere shown in Figures

67 through 70. As seen by the results, the highest deflection occurs at the

outer edge of the test fixture and is 0.017 inch. This deflection occurs in a

very localized area between mounting bolts. Internal to the gearbox, the

deflections are very low with a maximum reading of 0.0036 inch occurring on

the lower plate which is the highest loaded member. The stresses in the test

fixture and lower plate are very low for steel.

! t : :

* J , J i

i i !;

! ..! i i

i ii
I1

"II
I "

Figure 66. Finite Element Model of Test Gearbox in Fixture

TOTAL
DEFLEC_ON

.0170 A

.0143 B

.0117 C

.0091 D

.0065 E

.0039 F

.0013 G

Figure 67. Test Fixture Total Deflection
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MAX PRINCIPAL

STRESS

2970 A

2370 B

1770 C

1170 D

570 E

-40 F

-640 G

Figure 68. Test Fixture Maximum Principal Stress

TOTAL

DEFLECTION

.0036 A

.0030 B

.0025 C

.0019 D

.0014 E

.0008 F

.0003 G

Figure 69. Test Gearbox Lower Plate Total Deflection
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MAX PRINCIPAL
STRESS

2260 A

1180 B

1 00 C

-980 D

-2060 E

-3140 F

-4220 G

Figure 70. Test Gearbox Lower Plate Maximum Principal Stress

Scaling Attributes

A one half size model was selected to conduct ART testing. For the half size

tests to be representative of the full sized aircraft hardware care was taken

in selection of the load scaling factors. First, the physical geometry was

made exactly to 1/2 size. Secondly, all rotational speeds werekept the same.

With these two conditions of 1/2 size and the same speed, most of the import-

ant design parameters are the same in the 1/2 and full size components if

power is reduced to 1/8 in the 1/2 size model. Table 32 illustrates the

relationships.

When comparing the full sized hardware to the 1/2 size hardware operating at

1/8 power and the same rpm, gear tooth bending, Hertz stresses, and tooth

deflections are identical but scoring temperature rise is less in the 1/2 size

test components. Temperature rise in the mesh is lower as a result of lower

pitch line velocity in the 1/2 size gearbox. Shaft and housing stress and
deflection are identical in both cases. Bearing lives are slightly higher in

the 1/2 size box because bearing capacity does not decrease at the same rate

as the load decrease when going to 1/2 size. Therefore, most important para-

meters scale identically except for gear scoring which is about 1/2 of the

full size gearbox scoring and bearing life which is slightly higher in the 1/2

size gearbox.
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Table 32. Relationship of Design Parameters

Parameter Full Size Aircraft

Horsepower

Torque

Tangential Tooth Load

Tooth Fatigue Bending Stress

Tooth Compressive (Hertz) Stress
Gear Tooth Deflections

Pitch Line Velocity

Tooth Temperature Rise

Shaft Fatigue Bending Stress

Shaft Deflection

Housing Stress

Housing Deflection

Bearing Dynamic Capacity

Bearing Load

Bearing Life (Roller Bearing)

Bearing Life (Ball Bearing)

1/2 Size Test

HP HP/8

T T/8
wt wt/4
fb fb(Identical)

fc fc(Identical)

A(Identical)

PLV PLY/2

At At/2

fs fs(Identical)

As as(Identical)

fh fh(Identical)

Ah Ah(Identical)

C C/3.61

P P/4

Lroll 1.41Lroll

Lball 1.51 Lball

The other available choice for the 1/2 size test gearbox was to make all

components 1/2 size and to run at two times the speed of the full size gear-

box. The test would then be conducted at 1/4 horsepower. This amounts to the

same torque as the 1/2 size components tested at 1/8 power and the same speed.

For two times the speed, the pitch line velocity will be identical in both the

full size and 1/2 size boxes. Gear design Parameters of tooth bending, con-

tact, and temperature rise would now be identical at 1/4 horsepower. Also,

the shaft and housing deflections and stresses would be identical. When

looking at bearings however, the life is reduced to less than 10% of the life

of the full sized bearings. This was unacceptable and the compromise position

of approximately the same bearing life was accepted by testing at 1/8 power

and the same speed_ .

Gearing ,:

The gearing design data for the 1/2 size test gearbox is listed in Table 33

while stresses are tabulated in Table 34. The basic design data is identical

to that shown in Table 23 except for the pitch diameters which are 1/2 of

those for the full size aircraft. The gear stresses are similar to those

shown in Table 24. The input spur gear is slightly different because in the

aircraft gearbox the input spur is designed for 2671 HP whereas the equivalent

of the test gearbox is (648 x 8)/2 = 2592. This difference is the result of

losses being subtracted from the inputs on the aircraft gearbox and being

neglected in the 1/2 size gearbox. Note that the herringbone mesh stresses

are identical because the horsepowers,are !296 for the aircraft vs an equiva-

lent of (648 x 8)/4 - 1296 per herringbone mesh half. The scoring temperature

is based on a surface finish of i0 RMS.
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Table 33.

Gear

Teeth

2nd Stage Spur Pinion

2nd Stage Spur Gear

Herringbone Pinion

Herringbone Gear

One Half Sized ART, Basic Gear Data

Number Pitch rpm Pressure Spiral

of Dia Angle (Helix)

Angle

26 2.5134 4,934 18 °

i01 9.7636 1,270 18 °

13 2.4567 1,270 20 ° 31 °

127 24.0000 130 20 ° 31 °

Table 34. Bending and Contact Stress,and Scoring Index

Gear Gear Bending Contact Scoring

Design Stress (Hertz) Rise

HP (psi) (psi) ('F)

Input Spur Pinion

Input Spur Gear

Output Herringbone Pinion

Output Herringbone Gear

324 44,140 141,120 69

324 45,730 141,120 69

162 56,710 176,130 69

162 55,090 176,130 69

Bearings

The bearing lives for the 1/2 size test gearbox are listed in Table 35. The

lives shown are not prorated but are shown for 100% load. Since the total

test time is not expected to exceed 500 hours and the maximum test load is

120%, the chance of a bearing B-10 type spalling failure during the test is
low.

Table 35. One Half Sized ART, Basic Bearing Summary

Position rpm Load @ B-IO

Prorate Life

(ibs) (hrs)

Spur Pinion Roller Bearing

Spur Pinion Ball Bearing

#I Herringbone Pinion #312 Roller

#i Herringbone Pinion #313 Roller

#2 Herringbone Pinion #312 Roller

#2 Herringbone Pinion #313 Roller

Herringbone Gear Tapered Roller (2)

4 934

4 934

1 270

1 270

1 270

1 270

130

3,640

688 43

5,930 19

9,380 2

12,210 I

8,120 3

15,410 17

1 980

760

980

370

730

700

400
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Internal Shafting

The internal shafting for the ART transmission is designed for unlimited life

at the highest expected operating condition. The critical section is at the

center of the herringbone pinion between the left and right hand helical

pinion members. In fact, it is this section that essentially limits the

center distance and reduction ratio and sizes the split path gearbox output

stage. Stresses in the shaft of the 1/2 size pinion at 1/8 power and full

speed are identical to the full size hardware at full power and full speed.

The margin of safety from the combined conditions of helical pinion thrust,

shaft bending, and torsion is zero in this section. The outside of the shaft

has been shot peened for added margin of safety. All other sections of shaft-

ing in the ART transmission have positive margins of safety.

Elastomeric Isolator

The elastomeric isolator for the 1/2 size test gearbox has the same stress and

deflection as its full sized counterpart with The scaling factors established.

Analyses were conducted using closed form solutions as a first approximation

followed by finite element analysis. The analyses results are shown in Table

36.

Table 36. Spring Rate and Strain Summary for Elastomeric Isolator

Parameter Closed Form

Solution #I

Closed Form

Solution #2

Finite Element

Analysis

Ka axial #/in i, 490,000 I,000,000 -

Kr radial #/in 2,750,000 3,780,000 2,550,000

Kt torsion in #/rad 570,000 679,000 680,000

Max Princ Strain in/in .450+.ii0 .372+.058 .421+.026

Two closed form solutions are given. The results were calculated by two

different methods from two different references. The final proof of spring

rate is of course the test results. The finite element model was used to

check the stress and deflection in the isolator side plates as well as in the

rubber itself. Figure 71 shows the elements of the model used for the side

plates. It was found that the ribs were required because the deflection in

the rim created by the application of i0,000 pounds preload on the bolts was

too high. The addition of ribs greatly reduces the resulting deflection.

Figure 72 shows that the maximum deflection with the addition of ribs is .015

inch occurring at the point of gear load application. Away from the gear

load, the deflection drops to .0035 inch in the same location. Since the gear

load is stationary in space and th_ isolator is rotating, the resultant gear

load creates a vibratory strain in the rubber and isolator side plates. The

torsion is steady in theory but also produces a small vibratory because of

localized bending effects. Figure 73 shows the compressive nature of the

stress distribution in the isolator. This compressive stress is induced by

the i0,000 pound axial preload used. Figures 74 through 76 show the shearing

strains in the rubber in the three principal directions. The highest strain is

produced in the R-_ direction and is caused by the application of torque. The
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Figure 71. Finite Element Model of Elastomeric Isolator Side Plate

DEFLECTION

.0150 A

.0127 B

.0104 C

.0081 D

.0058 E

.0035 F

.0011 G

Figure 72. Elastomeric Isolator Side Plate Deflections

HOOP
STRESS

6000 A

-7000 B

-20000 C

-33000 D

-46000 E

-59000 F

-72000 G

Figure 73. Elastomeric Isolator Side Plate Hoop Stresses
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SHEARING
STRAIN (R-U)

.441 A

.431 B

.421 C

.411 D

.401 E

.391 F

.381 G

Figure 74. Elastomeric Isolator Rubber Shear Strain in R-_

SHEARING
STRAIN (_-_

.0463 A

.0314 B

.0186 C

.0017 D

-.0131 E

-.0279 F

-.0428 G

Figure 75. Elastomezic Isolator Rubber Shear Strain in _-Z

SHEARING
STRAIN (R-_

.0002 A

.0001 B

.0000 C

-.0001 D

-.0002 E

-.0003 F

-.0004 G

Figure 76. Elastomeric Isolator Rubber Shear S_ain in R-Z
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/

shearing strain in the _-Z direction is caused by the gear loads and in the

R-Z direction by the preload. The maximum principal shear strain is plotted

in Figure 77. Vibratory strain from the applied gear loads was a concern

during the design of the isolator. The finite element analysis shows that the

vibratory strain is low and shows how the rubber attempts _to "spread" the load

more so than metal parts would do.
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Figure 77. Maximum Principal Shear Strain vs Angular Position

Lubrication

For the ART 1/2 size gearbox lubrication system, the heat generated was

calculated for the 100% test power design condition of 648 HP input. Table 37

summarizes the heat generation calculations. The heat generation of 352.59

BTU per minute corresponds to 8.3 HP and makes the calculated efficiency equal

to 98.7%. Remember however, that this only represents two stages of the three

stage gearbox.

Table 37. One Half Sized ART, Heat Generation Su_lary

Description Individual Qty Total

BTU/Min per box BTU/Min

Input Spur Pinion Ball Bearing

Input Spur Pinion Roller Bearing

High Contact Ratio Spur Mesh

Herringbone Pinion Input Roller

Herringbone Pinion Output Roller

Herringbone Gear Mesh

Timken Bearings, Herringbone Gear

5.94 i 5.94

16.73 i 16.73

68.91 2 137.82

8.87 2 17.74

7.50 2 15.00

53.05 2 106.1

26.63 2 53.26

Grand Total 352.59
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It is assumed that all of the heat generated will be transferred to the oil.

MIL-L-23699 oil was used at 210°F with a specific heat of 0.455 BTU/Ib°F and a

density of 0.0331 pounds per cubic inch. The required flow was then calcul-

ated as that flow which would produce a temperature rise of 40°F in the oil.

The actual flow may be more than the required flow because of the limitation

of using a minimum jet diameter of 0.040 inch. Given a pressure of 60 psig, a

flow of 0.26 gallons per minute (gpm) is calculated for a 0.040 inch jet. If

the required flow is less than 0.26 gpm, extra oil is put into the system. A

summary of actual and theoretical flow is shown in Table 38. As seen, almost

all jets are oversized and are based on the minimum 0.040 inch diameter. The

location of the -i01 through -104 jets is shown in Figure 78.

-104

-103

-102 \

\
\
\

-101

Figure 78. 1/2 Size Gearbox, Location of Jets

92
i



Table 38. One Half Sized ART, Actual and Theoretical Flow

Description Req'd Jet Qty

Flow Dia Per

(gpm) (in) Box

-I01 Jet (4 Outlets)

Upper Herringbone Pin (After Mesh)

Upper H.B. Gear (After Mesh)

-102 Jet (8 Outlets)

Upper H.B. Pinion (Before Mesh)

Upper H.B. Gear (Before Mesh)

Upper Spur Gear (Before Mesh)

Spur Pin Brg (Output Side) MR211

Up Spur Gear Brg (Input Side) MR312

Up Spur Gear Brg (Out. Side) MR313

-103 Jet (7 Outlets)

Lower Spur Gear (Before Mesh)

Lower H.B. Gear (Before Mesh)

Lower H.B. Pinion (Before Mesh)

Spur Pin Brg (Output Side) MR211

Spur Pin (After Up & Before Low)

-I04 Jet (6 Outlets)

Lower H.B. Gear (After Mesh)

Lower H.B. Pinion (After Mesh)

Lower H.B. Pin Brg (In Side) MR312

Lower H.B. Pin Brg (Out Side) MR313

Timken Jet

Tapered Roller Bearing LL566800

Total

Actual

(gpm)

0.047 .040 2 0.520

0.047 .040 2 0.520

0.047 .040 2 0.520

0.047 .040 2 0.520

0.246 .055 I 0.492

0.120 .040 I 0.260

0.072 .040 I 0.260

0.054 .040 I 0.260

0.246 .055 I 0.492

0.047 .040 2 0.520

0.047 .040 2 0.520

0.042 .040 I 0.260

0.492 .078 I 0.990

0.047 .040 2 0.520

0.047 .040 2 0.520

0.063 .040 I 0.260

0.i00 .040 I 0.260

0.190 .040 i 0.260

Grand Total Actual Flow

Grand Total Theoretical Flow

(Theoretical Flow = Sum of Req'd Flow x Qty)

7.954

2.377

The test gearbox uses a dry sump lubrication scheme as shown in Figure 79. A

separate oil tank is used to hold the test gearbox oil rather than using the

gearbox sump itself. This was done so that the oil in the separate tank could

be heated for the high temperature testing without disturbing the test compon-

ents. The oil tank also contains an oil cooler for normal operation. A scav-

enge pump is sized to pump all the oil in the gearbox sump to the oil tank.

The dummy gearbox has its own independent oil system identical to the test

gearbox system except there is no heater in the dummy gearbox oil tank.
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Figure 79.
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Topological Gear Grinding

The gear teeth of the 1/2 size test gearbox have been topologically modified

with the objective of achieving a uniform load distribution at a selected

load. The 100% load condition of 648 horsepower input was selected as the

uniform load design point. A high percentage of test time was spent at the

100% load condition with some testing at higher and some at lower loads.

Normally, for the aircraft gears, a condition such as cruise would be selected

as the design point which generally runs about 85% load. It should be noted

that the uniform load condition will only exist at that particular value of

load which produces deflections of the same magnitude as the corrections. For

this reason, it is desirable to keep the deflection low so that load distribu-

tions at loads away from the design point will not be too severely maldistri-

buted. Ideally, it is desired to have zero deflection but of course this is

not possible. The light weight structure of the ART gearing design induces

greater deflections than would be the case in commercial gearing. Therefore

the topological tooth modifications become even more important in the ART

transmission.

With the advent of computer numerical control (CNC) gear grinding machines,

the gear designer has more latitude in making topological tooth modifications.

In the past, corrections were limited to profile modifications, crowning, and

lead modifications. A new dimension has been added with CNC form grinding

machines which can now also control the "in feed" of the wheel with respect to

the face width. This new correction has been termed "root line modification".

There are also single point grinding machines which can control the tooth

contour at will. These machines are generally too slow for production applic-

ations. One interesting aspect of CNC machining is the ability of the machin-

ist to easily make grinding corrections after the first piece is ground to

correct for manufacturing errors. Another relatively recent invention, the

coordinate measuring machine (CMM) has also made the use of the CNC gear

grinders feasible since there is now a method for inspection of the modified

profiles.
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Finite element analysis has provided a method for prediction of the deflec-

tions of the teeth to determine what modifications are required. The teeth of

the initial gears are topologically ground, corrected by test, reground, and

retested until the desired load distribution is achieved. The finite element

analysis, correlated by the test data permits the final corrections to be

arrived at in a scientific manner with less time required in trial testing.

In the past, it was not uncommon to make more than six grinding corrections

before the final tooth form is established. Each grinding correction requires

disassembly of the gears, regrinding, touch up of finishes, inspection,

reassembly and retest. By using initially corrected teeth and a correlated

FEA, it may be possible to achieve load sharing on the initial grind or with

only one grinding correction which saves manhours but more importantly saves

calendar schedule time.

There are several types of finite element analysis which can be conducted to

determine topological tooth corrections. The most direct form of analysis

consists of modeling a single gear and shaft, fixing the shaft to ground at

the bearings, and applying a uniform tooth load across the face. The topolog-

ical corrections are then made equal and opposite to the deflections at the

pitch line across the tooth face. The assumption is that when the tooth

corrections are of the proper magnitude and direction, the load will be

uniform hence the load is applied uniformly in the analysis. This method

neglects the influence of housing deflections which can be significant. To

determine the influence of housing deflections, the gear and shaft are placed

in a model of the housing. Moreover the loads from each shaft in the assembly

can have an influence on the deflection of every other shaft.

The FEA model for the ART 1/2 sized transmission contained the housing as well

as the input pinion, two assemblies consisting of the input gear and herring-

bone pinion, and the output bull gear. Loads were applied uniformly to each

tooth of each mesh in the gearbox all at once. The assumption is that when

the proper corrections are applied to the teeth, the load distribution will be

uniform therefore a uniform distribution can be applied in the beginning of

the analysis. Small changes in stiffness from the material removed for the

topological corrections are negiec£ed. The teeth were loaded using five

separate positions representing one diametral pitch of roll angle through the

mesh and five separate load cases were run. Since the teeth on each side of

the loaded teeth were also modeled, these represent the loaded teeth at

earlier or later times during the mesh cycle. The housings, shafting, gear

webs, and other areas not located in the immediate vicinity of the loaded gear

teeth are modeled with a coarse mesh and simple elements such as plates and

beams. The loaded gear teeth are modeled with a fine mesh using three dimen-

sional solid elements. Figures 80 through 83 depict the fine mesh areas of

the teeth on the spur pinion and gear and herringbone pinion and gear. Note

that in Figure 80 two groups of five teeth each are modeled. This represents

the spur pinion load splitting points. Similarly, the herringbone output gear

contains two segments of five teeth each with only one of the segments showing

in Figure 83. At the intersections of the coarse and fine models of the FEA

mesh, multi point constraint equations were written for each common connec-

tion. These constraints equate slopes and deflections at the interfaces. The

gear shafts were also constrained to the housings using multi point constraint

equations in addition to gap elements. Gap elements make the solution of the
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equations of equilibrium non linear. To model a bearing with gap elements,

only compressive loads are permitted to be transferred from the shaft, across

the bearing, and into the housing. This is how a bearing works since tensile

forces can not be transmitted across rolling elements.

Figure 80. FEA Model of Input Spur Pinion

Figure 81. FEAModel of Input Spur Gear
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Figure 82. FEA Model of Herringbone Pinion

Figure 83. FEA Model of Herringbone Gear
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The resulting model was divided into seven sub elements or "super elements" so

that each portion of the model could be run separately, if any geometric

changes were made, only the super element containing the changed geometry had

to be rerun. Even for the 1/2 size gearbox which contained only one engine

path and only the gears of the second and third stages, the resulting finite

element model was of gigantic proportions. The model contained 72,000 grid

points, 53,000 elements, and 432,000 degrees of freedom. It required approxi-

mately 3 gigabytes of memory and took approximately 5.5 hours of CPU time on

the very fast IBM 3090-600 to decompose the seven super elements. Each load

case could be run in approximately 30 minutes after decomposition. If a

complete aircraft gearbox is to be run, a new procedure must be developed

since the model will become too large for state-of-the-art computers. A

simple case which models each member of a mesh separately is recommended.

A step beyond what was analyzed for the ART transmission is to conduct a three

dimensional contact analysis to determine load distribution. In the three

dimensional contact analysis, no assumptions about load distribution are made.

Only the input torque is applied and the output is restrained. The teeth

themselves are permitted to slide across each other as would be the case for

real meshing gears and the load is permitted to seek its own equilibrium in

the deflected state. Topological corrections can then be applied to the model

and the mesh reanalyzed, etc. Large models might be handled by analyzing only

one mesh at a time and can still contain a model of the housing. To accom-

plish this, a coarse model without teeth can be used for meshes not being

analyzed. Loads can be applied to the rims of these coarse gear models. The

influence of the loads on housing deflections is then determined. The teeth

of the mesh being analyzed is broken down into a fine grid mesh. With this

type of a model, a large gearbox can be analyzed using three dimensional

contact analysis and accounting for all factors which influence load distribu-

tion such as shown in Table 39.

Table 39. Factors Affecting Cear Tooth Deflections

Tooth Deflections

Bending of the gear tooth

Deflection from Hertzian pressure

Shear deflection

Temperature differences throughout the tooth

Stiffness as the teeth roll through mesh

Manufacturing errors

Shaft and Gear Deflections

Bending of shafts
Torsion of shafts

Temperature differences throughout the shaft and web

Centrifugal deflection

Manufacturing errors

Position of Gear Axis in Casing

Deflection of bearings

Deflection of housings

Temperature differences throughout the housing

Differential thermal expansion of different materials

Assembly errors

Manufacturing errors
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FABRICATION

Angular Contact Spherical Roller Bearing

Manufacture of angular contact spherical roller bearings was performed by

McGill Manufacturing Company of Valparaiso, Indiana. Two different bearings

were fabricated for testing, being identical except for the rollers which were

steel for one bearing and silicon nitride ceramic for the other. Both inner

and outer races as well as the steel rollers were manufactured from Carpenter

Pyrowear 53 alloy steel. The races were computer numerical control (CNC)

turned, carburized, heat treated and fixture quenched with the appropriate

cyclic freeze and draws. The faces of the outer race were rough ground on a

rotary table grinding machine, and the O.D.'s and races rough ground on a

microcentric and CNC bore grinder to obtain the proper spherical profile.

After a stress relief operation, the faces, O.D. and races were finish ground.

The races were then polished to the required 4 RA finish and inspected. The

cross section of the bearing with key dimensions is shown in Figure 84.
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Figure 84. Angular Contact Spherical Roller Bearing
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Retainers for the spherical rollers were CNC turned from 8620 steel. The

roller pockets were broached, bore ground, checked for imbalance, inspected,

and silver plated.

The steel rollers were turned, carburized, and cyclic-heat treated prior to

being straight O.D. ground. Roller O.D.'s were straight ground so that they

could be held squarely when they are face ground in frames on the rotary

table. The O.D.'s were rough and finish ground on the microcentric grinder,

stress relieved, inspected, and microfinished to the 3 RA requirement.

The silicon nitride rollers were fabricated by GTE-Valenite. The hipped

silicon nitride rollers were ground by Erie Industries. To obtain the correct

radius of curvature, a special tool room setup with a diamond wheel was

employed. The cost for production manufacture of the ceramic rollers is

estimated at approximately $90.00 each for roller blanks with a machining cost

of $320.00 each making the estimated finished roller cost $410.00 each. Thus,

the advantages of ceramic rollers vs steel rollers must offset the additional

cost to be useful for production helicopter transmissions.

1/2 Size Test Gearbox

Fabrication of the 1/2 size test gearbox components began in May of 1989 with

the ordering of bearings, seals, forgings and other material and ended in

March, 1991 with the final grinding of the double helical pinions. The mater-

ial used for all gears in the 1/2 size gearbox was Pyrowear 53, a high hot

hardness carburizing gear steel. Gears were heat treated to Rockwell C 60-64

case hardness and Rockwell C 33-45 core hardness.

The easiest gear to manufacture was the input spur pinion shown partially

completed in Figure 85. The bearing journal for the roller bearing (nearest

to spur gear) was honed to produce a surface finish of 2 to 6 RMS. The

journal nearest to the spur gear teeth is the integral race for a roller

bearing. The journal was finished to runout, straightness, and roundness

requirements similar to a roller bearing raceway. The high contact ratio spur

pinion had tip relief but did not have any topological corrections since they

are all on the mating spur gears. The teeth of the spur pinion and bearing

journals are carburized to produce .020 to .035 inch depth of case in the

finished part.

The spur gears and double helical gears were ground on the Phauter Kapp

Grinder as shown in Figure 86. This machine is a form grinder and is designed

to use cubic boron nitride (CBN) cutting wheels as shown in Figure 87. CBN is

a form of "imitation diamond" and is the next hardest material next to a

natural diamond. On a relative hardness scale, it is much harder than silicon

nitride used in current state-of-the-art grinding wheels. The advantage of

CBN wheels is two fold: (I) The wheel is so hard that there is very little

wear. There is no wheel dressing but rather the wheel is sent back for

replating after a number of gears are ground which can reach to 50 or I00

gears or more, and (2) The majority of the heat generated in the grinding

process is transferred to the wheel rather than to the part being ground as in

conventional grinding because of the differences in specific heat of the

material hence there is little chance of grinding burns. Since there is less
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Figure 85. High Contact Ratio Spur Pinion

/

Figure 86. Phauter Kapp Grinding Machine

chance of grinding burn damage, deeper cuts can be taken. Profile modifica-
tions are manufactured into the wheel which is unique to the part being

manufactured and can not be used for any other part. The numerical control

permits off axis corrections such as lead modification and root line modifica-

tion which can of course vary across the face. Crowning, for example, is

obtained by "feeding in" at the ends of the teeth.
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Figure 87. Cubic Boron Nitride (CBN) Form GrindingWheel

The 1/2 size tapered roller bearing outer race/double helical gear assembly is

shown in Figure 88. The helical gears, having a pitch diameter of 24 inches,

were form ground using CBN wheels on the Phauter Kapp machine. The two halves

of the gear are bolted together thereby permitting individual gear grinding

and permitting a large grinding wheel diameter to be used.

Figure 88. Bearing Outer Race/Double Helical Gear Assembly
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Figure 89 is a photograph of the spur gear being hobbed prior to carburiza-

tion. The gear blank has been previously copper plated so that there will be

no carbon infusion on the top lands and end faces of the teeth during the

carburizing process. This is important for a high contact ratio gear since

the top land is small and "capping" or fracture of the tips of the teeth can

occur with too much carbon near the tips of the teeth.

One of the most time consuming parts to fabricate was the side plate of the

elastomeric load sharing device. The attachment of the flange to the tapered

outer section required ribbing to reduce deflection and stress from preloading

of the rubber. The ribs were "hogged out" using a ball end mill. A part is

shown in Figure 90 in the milling machine and in Figure 91 as a finished

piece. In production, this part could be made as an investment casting to

reduce manufacturing cost. The finished side plates were then placed in a
mold with three intermediate steel conical shims and an outer steel cone and

nitrile rubber injected to form the completed elastomeric load sharing device

assembly as shown in Figure 92 along with a semi-finished spur gear. The

manufacture of the shims and rubber molding was performed by Lord Corporation,

Erie, Pa.

%

Figure 89. Spur Gear Hobbing Prior to Carburization
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Figure 90. Elastomeric Load Sharing Device Side Plate Pocket Killing

Figure 91. Elastomeric Load Sharing Device Side Plate
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Figure 92. Spur Gear and Elastomeric Load Sharing Device

The double helical pinion at an intermediate point in manufacture is shown in

Figure 93. The finished part is shown in Figure 94. The pinion tooth twist

appears severe because there are only 13 teeth and the helix angle is 31 ° .

The teeth are modified on the profile, have crowning, helix modification and

root modification and the left and right helix angle pairs have different

modifications. Similarly, the upper and lower pinions for each engine have
different modifications.

Figure 93. Double Helical Pinion in Horizontal Boring Machine
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Figure 94. Completed Double Helical Pinion

Components making up the assembly of the spur gear and double helical pinion

are shown in Figure 95. The shims between the flange of the double helical

pinion and the elastomeric load sharing device side plates are ground tO

produce the desired clamp up in the axial direction. The most important

aspect of the assembly is that the angular relationship between the "x" tooth

(or index tooth) of the spur gear must be timed to the "x" tooth of the double

helical pinion. To assure load sharing for components in the same assembly,

the timing relationship must be the same between the two assemblies regardless

of absolute magnitude. The timing relationship was checked using the assembly

fixture as shown in Figure 96. Timing was set by setting the backlash between

the spline teeth o£ the in£ernal spline on the spur gear and the external

spline on the double _helical pinion flange. This spline has every other tooth

missing so that there is a wide range of adjustment possible. The backlash

gap was set to a value which represented t_e deflection of the elastomer at

140% torque at 200_F. During manufacture of the spur gears and double helical
pinions, tolerances were introduced into the _ timing relationships so that

"perfect" angles=between both Iparts are not ob£alne_d necessarily with the same

backlash between parts. Adjustments were made to account for these variables.

The adjustments were calculated based on detailed measurements taken of the

timing of the index teeth_and spline teeth of the spur gears and double

helical pinions using £he Zeiss coordinate measuring machine (CMM) shown in

Figure 97. As a final check, the timing of each assembly we§ checked in the

CMM. Although the Zeiss machine is a highly accurate device, the timing check

proved to be re, difficult to Perfo_andthe results were not reliable to

the desired accuracy of 0.0005 inch. A better method was developed which

consisted of lockingout the outpu6_Ui_ gear and applying a small torque (by

hand) on the input. By hand rotating each spur gear/double helical pinion

assembly, it can easily be determined as to which side is contacting and which

side is loose. By then applying torque until both sides are in firm contact,
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the angular error between the two parts can be calculated if the spring rate

is known. This is probably the method that is most amenable to production

unless a more reliable measurement technique can be developed.

Figure 95. Components of Double Helical Pinion/Spur Gear Assembly

Assembly Fixture, Double Helical Pinion/Spur Gear
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Figure 97. zeiss C_rd_ Measuring Nach_ne

Figure 98 depicts the _i/_ si_ _ox-l_6using asse_ly. The housing is

fabricated with two steel plates on the upper and lower halves connected by a

welded steel center housing. S£eel housings were use._dto reduce side effects

of the housing such as deflection, etc. since the objective of the test

program was- to--_iop -_the _nternal "-c-0mponents. In a separate program, a

composite housih_g was substituted for-t_he steel housing and tested. The

double helical bull gear assembled into the housing is shown in Figure 99.

All internal components of the test gearbox are shown disassembled in Figure

I00. - _ "
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Figure 98. 1/2 Size Gearbox Housing Assembly

Figure 99. 1/2 Output Double Helical Bull Gear in Housing
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Figure 100. Test Gearbox Components, 1/2 Size Test Gearbox

1/2 Size Gearbox Test Configuration

The test and dummy gearbox each conformed to the requirements of drawing

38072-35000 as shown previously in Figure 65. Throughout testing, minor

configuration changes were made. To track these changes, the configurations

were numbered according to the order in which they occurred. The basic test

configurations differed by the seria_l--number of some components which were

changed throughout testing, the backlash measured between the "backup spline"

teeth, and the preload used for clamp up of the elastomeric load sharing

devices. Table 40 lists the serial numbers of the internal gears and elast-

omers which made up the 38072-35005 double helical pinion/spur gear assembly.

Table 41 lists the spline backlash and preload on the 38072-35008-04_ elasto-

meric load sharing device or on the 38072-35008-042 steel device used to

replace the elastomer on the test gearbox of configuration #2 and on the test

and dummy gearboxes of configuration #5. Spline backlash was used as a

measure of index tooth timing between the double helical pinion and spur gear.

Preload was set by shimming to obtain the clamp up required to drive the spur

gear in friction.
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TaBle 40. I/2_Size Gearbox Configuration Serial Numbers

Config
Number

#I

#2

#3

#4 (4)

#5(4).

Location Spur Gear
38072-35007

Serial Number

D.H. Pinion

38072-35006

Serial Number

Elastomeric

38072-35008

Serial Number

041 Test 001 002 001/004

042 Test 010 008 002/003

041 Dummy 005 004 006/013

042 Dummy 011 010 009/010

041 Test 001 002 001/00211)
042 Test 010 008 003/004 i)

041 Dummy 005 004 006/013

042 Dummy 011 010 009/010

041 Test 001 002 001/004

042 Test 010 008 002/003

041 Dummy ,005 004 006/013

042 Dummy 011 010 009/010

041 Test 001 002 001/004

042 Test 010 _ 002/003
041 Dummy 005 001 006/013

042 Dummy 011 010 009/010

041 Test 001 005 (3) 001/002!¼!

042 Test 010 008 003/004_[_
041 Dummy 005 001 005/006"-"

042 Dummy 011 010 007/008 (1)

Notes:

I.

,

°

.

Solid steel load sharing members, 38072-35008-042 in lieu of elasto-

meric load sharing devices, 38072-35008-041.

Capped tooth on double helical pinion 38072-35006-041 S/N 004

replaced by S/N 001.

Spalled tooth on double helical pinion 38072-35006-041 S/N 002

replaced by S/N 005.

Composite gearbox installed on dummy side.
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Table 41. 1/2 Size Gearbox Configuration Backlash and Preload

Config. Location Desired Actual Preload

Number Spline Spline Elas/Steel

Backlash Backlash

#I 041 Test .0800 .0812 .010
042 Test .0804 .0819 .010

041 Dummy .0782 .0768 .010

042 Dummy .0823 .0832 .010

#2 041 Test! l) .0825 .0827 003
I)

042 Test [ .0820 .0819 .003

041 Dummy .0782 .0768 .010

042 Dummy .0823 .0832 .010

#3 041 Test .1305 .1349 .033
042 Test .1300 .1349 .033

041 Dummy .0782 .0768 .010

042 Dummy .0823 .0832 .010

#4 041 Test .1305 .1349 .033

042 Test .1300 .1349 .033

041 Dummy .1556 .1551 .033

042 Dummy .1345 .1345 .033

(i)
#5 041 Test .... 1490 .1490 .015

042 Test(_ ). 1377 .1378 .015
(I) "

041 uummy .1556 .1518 .015

042 Dummy (1) .1345 .1300 .015

Note:

I. Solid steel load sharing members, 38072-35008-042 in lieu of elasto-

meric load sharing devices, 38072-35008-041.

Table 41 lists desired backlash and actual backlash. In setting the backlash

on the double helical pinion/spur gear assembly, it was not possible to get

the exact desired value of backlash because changes in backlash occurred

during the process of torquing of bolts to obtain the preload. The difference

between the desired and actual backlash is the installed error in index

dimension.

For the elastomeric load sharing devices used, the spring rates of the select-

ed serial numbers were determined by bench tests and matched on assembly to

give total torsional spring rates between left and right members that were

within 5% of each other. Table 42 lists the spring rates of the individual

elastomers selected as well as the total spring rate of the two elastomers in

parallel (spring rates add in parallel).
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Location

Table 42. Elastomeric Load Sharing Device Spring Rates

Elastomer Individual Assembly

Serial Spring Rates Spring Rates

Numbers (in- ib/° ) (in- ib/° )

041 Test 001/004 9600/10900

042 Test 002/003 10600/9900

041 Dummy 006/013 10900/9400

042 Dummy 009/010 9900/10400

20500

20500

20300

20300
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TEST

Test Facilities/Instrumentation

Material Test Facility/Instrumentation

The material test facility was used to investigate fretting fatigue aspects of

gear steels and to determine if improvements could be found with surface

coating treatments. Various surface treatments were examined and the most

promising coating, thin dense chrome (TDC), was selected for testing. Thin

dense chrome plating was evaluated as a coating for Pyrowear 53 high hot

hardness gear steel. Two types of specimens were fabricated with the first

consisting of polished Pyrowear 53 alloy steel heat treated to core properties

(Rc 38). These specimens were not carburized but subjected to the carburizing

cycle heat treatment to simulate a non carburized area of a carburized part.

The TDC specimens were identical to the polished specimens but with the

addition of the thin dense chromeplating performed by Armoloy of Connecticut

to the general requirements of AMS 2438; chromium coating, thin, hard, dense

deposit. The configuration of the test specimen is shown in Figure I01. To

induce fretting in the specimens, Pyrowear 53 pins were fabricated as shown in

Figure 102.

I'----.240 .t,_DOt
2.000*-00,R_ / 2_c,=s

/ ir oo,,:,.480 ,.L .002 ,/ L,.,_.E,..J 2 PLACES

I 1.2:s.o.,...oo_ /
i 2,_,c,_s ,

I _ 4_ , oo,

4 .t. I D; 2.250 REI:

6.000 .:L .002 1.500 ,t.._,001

2 PLACES

.O60 R TYP.
4 PLACES

9.000 _-.004

SECTION A. A

Figure I01. Test Coupon Configuration
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Figure 102. Fretting Contact Pin Configuration

The fretting pins were made from the same material as the test coupons and

were subjected to the same heat treatment. The pins were not plated for the

TDC tests but polishing of the pin tips was performed.

Fretting fatigue testing was conducted on an MTS Series 810 servohydraulic

unit with 20,000 pound capacity as shown in Figure 103. The fatigue test

machine applied fatigue axial loads to the test coupon while a special fixture

was used to preload the fretting contact pins in a fixed position at the

center of the test coupon. The fretting pins were accurately located on each

side of the test coupons by means of the special fixture. The pins were

preloaded with belleville washers to maintain preload in the event there was

any fretting wear. Figure 104 shows the fixture with belleville washers

installed. The clamping bars that were used to preload the fretting pins are

in three point bending and were calibrated with strain gages on the side of

the bar to accurately ascertain the preload magnitude.
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Figure 103. Fatigue Test Machine

K-technique was deveioped for viewing the pin/coupon c0ntact interface for

in-situ measurement of fretting slip amplitude. The technique involves

attaching a strain gage to the coupon adjacent to the point of pin contact.

Micro Measurements Catalog Number EA-06-031EC-350 strain gages were employed.

These gages have an extremely fine, repeatable series of parallel lines within

the grid pattern which are used as miniature rulers to measure slip amplitudes

d_rectly. For each pin to be observed, one gage was carefully trimmed across

the grid lines and bonded to the test coupon adjacent to the anticipated

contact area. Grid line orientation was transverse to the coupon fatigue

loading direction. Using a standard stereo-microscope at 40x magnification

and strobe lighting set to correspond to the fatigue loading frequency (30 to

31 Hertz), the fretting slip, if any, was observed in slow motion allowing

direct measurement of the peak-to-peak amplitude. Resolution of this method

is within approximately 20 microns under ideal conditions. Figure 104 shows

the slip amplitude measurement apparatus.
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Figure 104. Slip Amplitude Measurement Apparatus

1/2 Size Gearbox Test Facility/Instrumentation

All testing for the 1/2 size gearbox was performed using the tail drive shaft

and coupling facility shown schematically in Figure 105. This facility is

configured as a regenerative loop powered by a 300 HP electric motor. Vari-

able speeds between 1500 8000 rpm were available. A maximum torque equival-

ent to 2000 HP was also available between a range of 4000 8000 rpm. Con-

trols were automated to include integral fault and test parameter monitoring.

The operators console is shown in Figure 106.

Figure 105.
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BLACK AND WHITE PH.OTOGRAP_

Shaft/Coupling Test Facility
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Figure 106. Operators Console

The 1/2 size ART test and dummy gearboxes were installed in the shaft and

coupling test facility in a back-to-back configuration, as shown in Figure 107

and in the photograph of Figure 108. The test gearbox input shaft rotated

clockwise, looking from the facility torquing gearbox toward the drive gear-

box. Maintaining this_perspective, _b0t-h--_dier shafts rotated counter-clock-

wise with the output shaft rotating clockwise. In this configuration, the

dummy gearbox components rotated backwards with the applied torque contacting

the opposite side of the teeth. The opposite rotation and opposite side of

the teeth contact put the loads on the dummy gearbox teeth back to the ident-

ical position of the test gearbox teeth. Thus all load magnitudes and direc-

tions Were iden_ic_i in the test and dummy gearboxes. To accommodate the test

stand, each gearbox was installed on its side. The installed orientation had

no effect on the development of the transmission components since the lube

system was not part of the technology demonstration.
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Figure 107. ART Test and Dummy Gearbox Installation

Figure 108.

BLACK AND WHITE F_HOTO_p_

ART Gearbox Installation
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Under full load conditions, the ART gearbox used only 32% of the torque the

stand was capable of providing. At this reduced power level with respect to

the stand capabilities, the gearbox could be run at 100% torque at speeds as

low as 500 rpm. The ability to operate the gearbox at these low speeds

allowed "quasi-static" data to be collected without resorting to static load

application devices. Sleeve bearings in the torquing gearbox prevented

further reductions in speed under full load conditions

The test and dummy gearboxes used independent lubrication systems. Each

system contained a reservoir, pump and motor, relief valve, 3 micron filter

with DP pressure indicator, water/oil heat exchanger, water regulating valve,

and a scavenge pump. The test gearbox lube system also provided a thermo-

statically controlled sump oil heater. The heater was used to raise the oil

inlet temperature for the test gearbox to simulate a helicopter gearbox

temperature environment/_ Without the oil heater, temperatures generally ran

below 130°F.

The 1/2 size ART gearbox had extensive instrumentation used for data acquisi-

tion during the test. Table 43 lists the instrumentation used.

The slip ring installation for the output double helical gear is shown in

Figure 109 whi_ie the slip ring installation for the input pinion and the upper

and lower spur gear/double helical pinion are shown in Figure II0. A view of

the instrumentation console for the facility is shown in Figure iii. A photo-

graph of the transmission error encoder installation is depicted in Figure

f

Figure 109. Slip Ring Installation, Double Helical Gear
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Measurement

Temperature

Pressure

Flow Rate

RPM

Torque

Vibration

Gear Strain

Housing Strain

Displacement

Chip Detection

Trans Error

Table 43. 1/2 Size Gearbox Instrumentation

Locations

All Bearings in Test & Dummy

0il In and Out, Test & Dummy

041 Double Helical Pinion Tooth Roots

042 Double Helical Pinion Tooth Roots

041 Fling off oil

Lube System Supply, Test &Dummy

Lube System Supply, Test & Dummy

Test Stand Input Shaft

Test Stand Input (Himmelstein)

Test D.H. Pinions (Strain Gage Bridge)

Housing, Test & Dummy

Input Spur Pinion Tooth Roots, Test

Spur Gear Roots, 041, 042, Test

D.H. Pinion Roots, 041, 042, Test

D.H. Gear Roots, 041, 042, Test

Upper Cover, Lower Cover, Side

Axial Motion of Spur Gear/D.H. Pinion

Test & Dummy Gearboxes
T.E. of Each Gear Mesh (4 meshes)

Qty

9

4

6

2

i

2

2

I

I

4

9

5

i0

20

i0

9

2

2

2

Figure ii0. Slip Ring Installation, ART Gearbox
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Figure iii. ART Instrumentation Console

Figure 112. Transmission Error Encoder Installation

=
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Bearing Test Facility/Instrumentation

A test machine was designed to conduct testing of the angular contact spheri-

cal roller bearing. All design and test work was accomplished at McGill

Manufacturing Company, Valparaiso, Indiana. The test machine has the capabil-

ity of applying simultaneous thrust and radial load at speeds to the full

operating speed of 14280 rpm. The test equipment consists of a high speed

induction motor capable of 40 HP at 15,000 rpm, a special spindle for holding

the test bearing, load application devices for the thrust and radial loads,

and instrumentation. A schematic of the facility is shown in Figure 113. A

cross section of the test spindle which holds the test bearing is shown in

Figure 114.

I
i

J

I

Figure 113. Schematic of Bearing Test Facility
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Figure 114. Bearing Test Facility Spindle

Automatic shutdown is provided for an overtorque or undertorque situation.

The spindle and motor oil lubrication are separate systems. The coupling that

joins the motor and spindle has internal shear pins to protect the spindle and

motor from overtorque damage.

Radial load is applied vertically to the test bearing by a load arm system.

The mechanical advantage of the radial arm is 3:1. Radial load is measured by

strain gages mounted on the load arm and applied by a compressed, calibrated

spring, which also serves to dampen any load fluctuations in the system. The

load is applied through a hardened cylindrical roller to the test bearing

housing which centers the load vertically, and provides an anti-friction

method allowing the housing to rotate freely for torque measurements.

Thrust load is applied axially to the test bearing through a load arm with a

5:1 mechanical advantage located at the face of the housing. Load is applied

through a thrust ball bearing to the housing, on the shaft and test bearing
centerline. This serves to center the thrust load and offers a means of free

rotation for torque measurements. Thrust is measured by strain gages on the

load arm and a calibrated spring that applies load to the system.
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Three load cells, positioned 120° apart, measure any moment loads from the
test bearing. Each load cell is attached to a micrometer head for precise
setting of a minimal preload. The three cells also stabilize the test bearing
housing from any gimbaling movements. The load cells in conjunction with the
load arm strain gages are designed to measure the decoupling forces during the
test program.

The test bearing housing is restricted from rotation by a torque arm attached
to the test housing. Calibrated strain gages attached to the torque arm and
the rod connected to the test bed measure torque, and provide a means for
determination of the coefficient of friction for this type of bearing.

Instrumentation for the facility and test bearing is listed in Table 44.

Table 44. Facility and Test Bearing Instrumentation

Measurement Locations Qty

Temperature

Pressure
Flow Rate
RPM
Torque
Axial Load
Radial Load
Vibration
Chip Detection

Test Bearing Outer Race
Spindle Bearings
Oil Inlet
Oil Outlet
Oil Sump
Ambient Air
Lube System Supply, Motor & Spindle
Lube System Supply, Motor & Spindle
Spindle
Spindle Test Bearing
Load Arm Strain Gages
Load Arm Strain Gages
Spindle Housing
Spindle Oil Drain

Test Procedure

Material Test Procedure

A total of 20 fatigue fretting tests were conducted in accordance with the

general procedures of ESM-K3-7016, Rev. I, "Sikorsky Engineering Standard

Method For Conducting Room Temperature Material Fatigue Tests on Sonntag

SF-I-U Fatigue Machines" and also ASTM E466-82, "Constant Amplitude Axial

Fatigue Tests of metallic Materials, Recommended Practice For". Prior to

application of coupon fatigue loads, fretting pins were clamped against the

coupon. Fretting pin contact stress was held constant at 15,000 psi for all

tests. Fatigue loads were applied axially and were fully reversed (maximum/

minimum stress ratio, R = -I). Loads of sinusoidal waveform and 30 Hz cycle

frequency were employed for all tests. Peak loads were controlled to within I

percent. Coupon fatigue loads and fretting pin loads were monitored at least

twice daily to verify accuracy. Tests were run until fretting fatigue failure

or I0 million cycle run out was achieved. Stroke limits were set to stop a
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test prior to complete separation of a cracked coupon, so that fretting pins
could be removed and minimize damageto the fretting scar. After pin removal,
cracked coupons were broken statically to facilitate analysis of the fracture
surfaces.

A total of five non-fretting fatigue tests, without fretting _ins, were also
conducted using the above procedures to develop additional fatigue baseline
data. _ _ _ _.... ::_ • _ _ :_ _ _

Conventional metallurgical examinations were conducted on selected specimens

to verify that the fatigue fracture was originated by the fretting. Fretting

crack morphology was documented using standard techniques as well as with the

scanning electron microscope_

1/2 Size Gearbox Test Procedure, No Load Lube

A no load lubrication survey was performed to evaluate lubrication character-

istics of the test and dummy gearboxes at the conditions identified in Table

45. The initial series of test conditions (1-4) were [performed with the test

gearbox oil supplied at ambient temperature. The second series of test condi-

tions (5-8) were performed with the test gearbox oil preheated to 185°F to

simulate conditions representative of a state-of-the-art gearbox operating at

rated power. No load lube surveys were conducted with the test and dummy

gearboxes assembled in accordance with configuration #i as shown previously in
Table 40.

7

Table 45. No Load Lube Test Conditions

Test Input Speed

Condition rpm %Nr

Oil Inlet Temperature

Test Gearbox Dummy Gear

i 1233 25% 70°F 70°F

2 2467 50% 70°F 70°F

3 3700 75% 70°F 70°F

4 4933 100% 70°F 70°F

5 1233 25% 185°F 70°F

6 2467 50% 185°F 70°F

7 3700 75% 185°F 70°F

8 4933 100% 185°F 70°F

The test stand was operated at each condition until gearbox bearing tempera-

tures stabilized within ±2=F without exceeding a maximum allowable of 250°F.

A Fluke data logger was used to monitor and record lubrication and bearing

temperatures. Test and dummy gearbox housing vibration was recorded on mag-

netic tapd. Tape speed was set at 30 in/sec providing a frequency response of
20 KHz.
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1/2 Size Gearbox Test Procedure, Gear Pattern Development

A pattern development survey was performed to evaluate gear tooth contact

patterns at each of the test conditions identified in Table 46. At the end of

each incremental power condition, contact patterns were visually inspected

through ports in the main housing and upper cover. In addition, gear strain

distributions, recorded for the spur pinion and output double helical gear,

were used to assist the evaluation of the observed patterns. The strain

distribution of the spur gears and double helical pinions which were not

strain gaged was assumed to be equal and opposite. All pattern surveys were

conducted with the test and dummy gearboxes assembled in accordance with

configuration #i as shown previously in Table 40.

Table 46. Gear Pattern Development Test Conditions

Test Input Torque Test Duration Input Speed

Condition in-lbs ZTorque Minutes rpm ZNr

I 0 0% N/A (I) 4933 100%

2 2070 25% I0 4933 100%

3 4140 50% I0 4933 100%

4 6210 75% i0 4933 100%

5 8280 100% i0 4933 100%

Notes:

(1) A visual inspection of the gear patterns was performed following

completion of all no load lubrication surveys, prior to application

of any load.

To aid visual evaluation, several types of plating (0.0002 inch thick) were

applied to consecutive teeth on the double helical pinions and spur gears of

the test and dummy gearboxes. Plating types included silver, gold, copper, as

well as black oxide coating. In addition, blueing was applied over several

teeth of each type of plating.

If required, topological corrections of tooth geometry were to be applied

upper/lower spur gear and the upper/lower double helical pinions. These gears

were chosen for correction since each meshes with only one other gear and can

therefore be modified without affecting the patterns generated at other mesh
locations.

Pattern development surveys were performed with the test gearbox oil preheated

to 185°F. Bearing temperatures were required to stay below a maximum allow-

able of 250°F. The Fluke data logger was used to monitor and record the

parameters previously listed. Dynamic data was recorded on magnetic tape

using two fourteen channel tape decks. Tape speed was set at 30 in/sec,

providing a frequency response of 20 KHz. Parameters recorded on tape in-
cluded:
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Torque
Idler Shaft Torque, Upper (38072-35005-041)
Idler Shaft Torque, Lower (38072-35005-042)

Strain
Spur Pinion, 5 gages
Double Helical Gear, i0 gages

Acceleration :i7__
Upper Plate, 3 locations, T_t G:earbox
Lower Plate, 3 locations, Test Gearbox
Upper Plate, 3 locations, DummyGearbox

1/2 Size Gearbox Test Procedure, Dynamic Surveys

Strain surveys were conducted at each of the conditions listed in Table 47 to

evaluate"

a. Dynamic effects on gear tooth strain

b. Stress distribution across each gear tooth

c. Load sharing characteristics
7_

The test and dummy gearboxes were assembled in accordance with configuration

#I as previously described in Table 40.

All dynamic surveys were performed with the test gearbox oil preheated to

185°F. Bearing temperatures were required to stay below a maximum of 250°F.

The Fluke data logger was used to monitor lube and bearing temperatures. Data

was recorded on magnetic tape using two, fourteen channel tape decks. Tape

speed was set at 30 in/sec providing a frequency response of 20 KHz.

Parameters recorded on tape included:

Torque

Idler Shaft Torque, Upper (38072-35005-041)

Idler Shaft Torque, Lower (38072-35005-042)

Strain

Spur Pinion, 5 gages

Spur Gear 041, 5 gages

Spur Gear 042, 5 gages

Double Helical Pinion 041, i0 gages

Double Helical Pinion 042, i0 gages

Double Helical Gear, i0 gages

Strain gage output was recorded using slip rings installed on each shaft,

however, the capacity of the slip rings was limited and not all gages were

recorded concurrently.
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Test

Condition

Table 47. Strain Survey Test Conditions

Input Speed Input Torque

% rpm -% in-lbs

I -10% 500 0% 0

2 -10% 500 25% 2070

3 -10% 500 50% 4140

4 -10% 500 75% 6210

5 -10% 500 100% 8280

6 25% 1233 0% 0

7 25% 1233 25% 2070

8 25% 1233 50% 4140

9 25% 1233 75% 6210

I0 25% 1233 100% 8280

Ii 50% 2467 0% 0

12 50% 2467 25% 2070

13 50% 2467 50% 4140

14 50% 2467 75% 6210

15 50% 2467 100% 8280

16 75% 3700 0% 0

17 75% 3700 25% 2070

18 75% 3700 50% 4140

19 75% 3700 75% 6210

20 75% 3700 100% 8280

21 100% 4933 0% 0

22 100% 4933 25% 2070

23 100% 4933 50% 4140

24 100% 4933 75% 6210

25 100% 4933 100% 8280

26 120% 5920 0% 0

27 120% 5920 25% 2070

28 120% 5920 50% 4140

29 120% 5920 75% 6210

30 120% 5920 100% 8280

Dynamic load sharing surveys were also conducted with the elastomeric load

sharing devices replaced with steel members. The gearboxes conformed to

configuration #2 as shown previously in Table 40. Load sharing was evaluated

by direct comparison of the torque bridge outputs for each of the conditions
outlined in Table 48.
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Table 48. Load Sharing Survey Test Conditions - Steel

Test Input Torque Test Duration

Condition in-lbs ZTorque Minutes

Input Speed

rpm %Nr

1 o o% N/A
2 2070 25% i0

3 4140 50% I0

4 6210 75% i0

5 8280 !00% I0

4933 100%

4933 i00% L

4933 100% [

4933 100%

4933 100%

Transmission error measurements were obtained under dynamic conditions for the

spur pinion and each mating gear (041 and 042) as well as for the double

helical gear and each of its mating pinions (041 and 042). Testing was initi-

ally performed with the steel load Sharing devices installed in the gearbox

(configuration #2) and then repeated with the elastomeric load sharing devices

installed (configuration #3). Each mesh survey included speed sweeps (rpm

order tracking) at a variety of steady torques as shown in Table 49.

Table 49. Transmission Error Survey Test Conditions

Sweep Range

100%=4933 rpm

Spur Mesh

a. Elastomeric 25 40% Nr

b. Steel 30 - 50% Nr

Torque
i00%=8280 in-lbs

25, 50, 75, & 100%

25, 50, 75, & 100%

Double Helical Mesh

a. Elastomeric 50 - 100% Nr 25, 50, 75, & 90%

b. Steel 50 - 100% Nr 25, 50, 75, & 90%
j ,

The_speed and torque ranges used were determined by the operating limitations

of the Ono Sokki equipment used and the location of resonant frequencies found

in the encoder installations of the ART gearbox. T.E. data was not acquired

at 0% torque for any mesh because the T.E. signals were unstable in the

unloaded condition.

In addition to the speed sweeps performed, a limited amount of steady state

data was also recorded at several locations and conditions including (a) the

lower spur gear mesh (spur pinion mating with the 042 spur gear) in the

eiastomeric Configuration at 1300 and 2000 rpm for 25, 50, 75, and 100%

torque, (b) the upper spur mesh (spur pinion mating with 041 spur gear) in the

steel configuration at 1300, 1500, and 2000 rpm for 25, 50, 75, and 100%

torque, and (c) both the upper and lower double helical mesh in the elasto-

meric configuration at 2400 and 4933 rpm for 25, 50, 75, 90, and 100% torque.

During speed sweeps, vibration data was simultaneously acquired with TE data

using the accelerometers mounted on the ART test box. The rotary encoders

were mounted on specially designed support fixtures as shown in the facilities

section of the report (See Figure 112). One encoder was mounted to the shaft

of the pinion and one to the shaft of the gear of the mesh which was being
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measured. The support fixtures facilitated alignment by providing vertical,

lateral, and angular adjustment at each position. Shafts were installed

between each encoder and the gearbox and connected at each end using a single

laminate of a Thomas coupling. The single laminate coupling provided low

bending stiffness but high torsional stiffness to reduce shaft bending and

runout at high speeds. This approach reduced the radial vibration and mis-

alignment loads transmitted to the encoders helping to ensure reliable TE

measurements. Precise shaft speed measurements were obtained by mounting a

photoelectric detector at the input shaft on the dummy gearbox.

The majority of the TE measurements were obtained using Ono Sokki Method A,

shown schematically in Figure 115. For Method A, the square wave encoder

output signals are input to the TE-70OD, digitally adjusted in the real time

by a ratio multiplier, and normalized by dividing each signal by the number of

teeth on the contrary gear (i.e., signal ZI is divided by the number of teeth

on gear 2 and visa versa). The normalized encoder signals are then input to

the transient torsional angle converter (PD-860) to determine the relative

phase difference between the two signals and thus obtain an analog output

signal proportional to the gear mesh transmission error. This analog output

signal can then be displayed and analyzed on the CF-880 8 channel tracking

Fast Fourier Transform (FFT) analyzer.

Figure 115. Transmission Error, Method A

The trade off between rpm range and resolution/sampling rate can pose a

problem for high speed gear meshes with large numbers of gear teeth such as

the input spur meshes on the ART gearbox where NI=26 and N2=I01. Hence,

although Method ATE measurements could be obtained up to a full rated speed

for the double helical gear meshing the ART test gearbox, TE measurements for

the spur meshes were limited to just over 50Z (2600 rpm) of full rated speed

and a sampling rate of only 4.5 samples per tooth mesh with a multiplier ratio

of 2. The ratio multiplier was limited to 2 for the spur gear mesh TE mea-

surements on the steel configuration because of the shaft vibration levels

encountered with the ART test box installation. However, a ratio multiplier

of 4 was achieved for the spur gear meshes in the elastomeric configuration.

131



The OnoSokki TE measurementssystem has two other measurementsystems design-
ed to address the limitations of Method A. Both of these methods improve
resolution and sampling rate but sacrifice rpm range and induce other prob-
lems. These methods were tried but proved unsuitable for the rpm order track-
ing data acquisition modeemployed for TE testing on the ARTgearbox.

A housing strain survey was conducted at each condition identified in Table 50
to determine the magnitude and direction of the principle strain. The loca-
tions were chosen based on the maximumstrain calculated in the finite element
modei_ng conducted during the de£aii design phase. _me Strain survey Was
performed with the test and dummygearboxes assembled in accordance with
configuration #4 previously described in Table 40, Strain data was recorded
on magnetic tape. Tape speed was set at 30 in/sec providing a frequency
response of 20 KHz.

Table 50. Housing Strain Survey Test Conditions

Test input Sped Input Torque

Condition % rpm % in-lbs

1 100% 4933 25% 2070

2 100% 4933 50% 4140

3 100% 4933 75% 6210

4 100% 4933 100% 8280
- = =

1/2 Size Gearbox Test Procedure, 200 Hour Endurance _

A 200 hour endurance test was performed to evaluate the long term performance

capability of the transmission. The endurance test included 40 cycles of the

5 hour spectrum presented in Table 51. The test and dummy gearboxes were as-

sembled in accordance with configuration #4 as described previously in Table
40.

Table 51. Endurance Test Spectrum

Test % Torque HP Time Input Speed

Cond Torque (ft-lb) (ref) (%) (min) (rpm)

I 55% 379 356 19% 57 4,933

2 75% 518 486 21% 63 4,933

3 100% 690 648 5% 15 4,933

4 65% 448 421 30% 90 4,933

5 95% 656 616 4% 12 4,933

6 75% 518 486 21% 63 4,933

Totals 100% 300 Minutes
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Endurance testing was performed with the lube oil preheated to maintain an oil
temperature of 185 ± 10°F on the test gearbox. Although the inlet oil on the
dummygearbox was not heated during this test, the reservoir temperature did
increase when the gearboxes were operated over a long durations. Typical
inlet temperatures of the dummygearbox remained between 105 and II5°F.

The Fluke data logger was used to monitor rpm, torque, oil temperature,in and
out, pressure, flow, and bearing race temperatures. Additional parameters
listed below were recorded on magnetic tape. Tape data consisted of one
minute records during conditions I, 3, and 6 of each cycle of the endurance
test. Monitored parameters included:

Torque
Spur Gear/D.H Pinion Shaft Torque (Upper, 041)
Spur Gear/D.H Pinion Shaft Torque (Lower, 042)

Vibration
Test Gearbox, Upper Plate, Vertical, Lateral, and Longitudinal
Test Gearbox, Lower Plate, Vertical, Lateral, and Longitudinal
DummyGearbox, Upper Plate, Vertical, Lateral, and Longitudinal

Strain
Spur Pinion, 5 gages
Spur Gear, 2 gages (041), 3 gages (042)
Double Helical Pinion, 2 gages (041), 2 gages (042)
Double Helical Gear, 2 gages

Strain gage outputs were recorded using slip rings installed on each shaft,
however, because of the limited capacity of the slip rings, not all strain
gages were recorded.

Gearbox inspections were performed after the first cycle (5 hours), lOth cycle
(50 hours), 20th cycle (I00 hours), and the 30th cycle (150 hours). These
inspections included the following:

(a) Removaland inspection of the chip detector

(b) Visual inspection of the condition of each gear

Following completion of the endurance test, each gearbox was disassembled to
allow inspection of all internal componentsfor signs of wear, damage, cracks,
etc. Bearing races and rolling elements were checked for evidence of "skid-
ding", spalling, overheating, etc. The observed condition of all major
componentswhich showedevidence of deterioration were documentedwith sket-
ches and/or photographs. Major componentswere subjected to a magnaflux crack
inspection.
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1/2 Size Gearbox Test Procedure, 200 Hour Overtorque

A 200 hour overtorque development test was performed to address the problems

experienced during the endurance test and to continue to evaluate the long

term performance capability of the transmission. The-development test con-

sisted of 40 cycles of the 5 hour spectrum presented in Table 52. The test

and dummy gearboxes were assembled in accordance with configuration #5 des-

cribed previously in Table 40.

=

Table 52. Overtorque Development Test Spectrum

Test % Torque HP Time Input Speed

Cond Torque (ft-lb) (ref) (%) (min) (rpm)

1 60% 4,970 389 20% 60 4,933

2 85% 7,040 551 40% 120 4,933

3 100% 8,280 648 10% 30 4,933

4 75% 6,210 486 20% 60 4,933

5 120% 9,940 778 10% 30 4,933

Totals i00% 300 Minutes

Development testing was performed with Mobil SHC-629 oil. This lubricant

provided increased viscosity over the DOD-L-85734 oil used during the endur-

ance testing. The oil was preheated to maintain an oil inlet temperature of

185 ± 10°F on the test gearbox. Although the inlet oil on the dummy gearbox

was not heated during this test, the reservoir temperature increased when the

gearboxes were operated over long durations. Typical oil inlet temperatures

of the dummy gearbox remained between 105 IIS°F.

The Fluke data logger was used to monitor rpm, torque, oil temperature in and

out, pressure, flow, bearing race temperatures, temperature across the face of

the double helical pinions_ and oil fling off temperature on the upper double

helical mesh. Additional parameters listed below were recorded on magnetic

tape. Tape data consisted of one minute records during conditions i, 3, and 5

of each cycle of the endurance test. Monitored parameters included"

Torque

Spur Gear/D.H Pinion Shaft Torque (Upper, 041)

Spur Gear/D.H Pinion Shaft Torque £Lower, 042)

Vibration

Test Gearbox, Upper Plate, Vertical, Lateral, and Longitudinal

Test Gearbox, Lower Plate, Vertical, Lateral, and Longitudinal

Dummy Gearbox, Upper Plate, Vertical, Lateral, and Longitudinal

Gearbox inspections were performed after the first cycle (5 hours), 10th cycle

(50 hours), 20th cycle (i00 hours), and the 30th cycle (150 hours). These

inspections included the following:

(a) Removal and inspection of the chip detector

(b) Visual inspection of the condition of each gear

E
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Following completion of the overtorque development test, each gearbox was
disassembled to allow inspection of all internal components for signs of wear,
damage, cracks, etc. Bearing races and rolling elements were checked for
evidence of "skidding", spalling, overheating, etc. The observed condition of
all major components which showed evidence of deterioration were documented
with sketches and/or photographs. Major components were subjected to a
magnaflux crack inspection.

Bearing Test Procedure

A series of preliminary tests were performed to obtain initial operating data
for the angular contact spherical roller bearing at varying loads and speeds.
The Bearing with steel rollers was assembled into the test stand in the
condition for set-up #i as specified in Table 53.

Table 53. Bearing Test Set-Up Conditions

Set-up # Set-up Condition Type of Load

i 5-10 Ib preload Radial & Thrust

2 .002/.004 in endplay Radial

3 .008/.010 in endplay Radial

4 .014/.016 in endplay Radial

5 5-I0 Ib preload Thrust

Tests were then conducted using the bearing with steel rollers for each set up

condition listed in Table 53 at each of the loads and speeds shown in Table

54. The entire survey test was then repeated using the angular contact spher-

ical roller bearing with ceramic rollers.

To set the oil flow conditions for the bearing, the flow was initially set at

0.5 gpm through the rotating shaft and at 0.125 gpm from each oil jet direct-

ing oil into the roller retainer area on both sides of the bearing. Oil

pressure at the manifold was 60 psi. At the 100% load and speed condition,

the flow rate was adjusted to achieve the lowest bearing operating tempera-

ture. The remainder of testing was then conducted at the established flow
rate.

For each condition, the following data was recorded:

Bearing temperature, 2 locations

Oil inlet temperature

Oil outlet temperature

Oil flow rate, 3 locations

Axial force on load arm

Radial force on load arm

Torque on load arm

rpm

135



Table 54. Test Survey Loads and Speeds

Sequence

Test Load Speed

% Radial Thrust Z rpm

0% 0 0 25Z 3,600

OZ 0 0 50% 7,200

0% 0 0 75% 10,800

0% 0 0 100Z 14,400

25% 1,150 725 25% 3,600

25Z 1,150 725 50% 7,200

25% 1,150 725 75% 10,800

25% 1,150 725 100% 14,400

50% 2,300 1,450 25% 3,600

50% 2,300 1,450 50% 7,200

50% 2,300 1,450 75% 10,800

50% 2,300 -1,450 100% 14,400

75% 3,450 2,175 25% 3,600

75% 3,450 2,175 50% 7,200

75% 3,450 2,175 75% 10,800

75% 3,450 2,175 100% 14,400

100% 4,600 2,900 25% 3,600

i00% 4,600 2,900 50% 7,200

100% 4,600 2,900 75% 10,800

100% 4,600 2,900 100% 14,400

A new bearing with steel rollers was mounted in the test spindle housing with

a 5-10 pound preload applied by the load cells. The oil sump was preheated to

150°F. The loads and speeds were gradually increased to the 100% condition at

14,400 rpm with 4,600 pound radial load and 2,900 pound thrust load. Testing

was then_66nducted for 250 hours at the 100% load and speed condition. The

same data was monitored throughout the 250 hour test as was monitored in the

survey testing shown above.

A new angular contact spherical roller bearing with ceramic rollers was then

assembled into the test stand and the 250 hour test as described above was

repeated for the ceramic bearing.

The angular contact spherical roller bearing with steel rollers from the

initial survey testing was then reinstalled in the test spindle housing for

purposes of conducting no oil survivability tests. The bearing was operated

at 100% load and speed as in the 250 hour proof test. After the bearing

temperature had stabilized, the oil was shut off to the test bearing at all

three oil inlet locations. Simultaneously, the valve was closed in the outlet

line from the test bearing to the scavenging pump and a drain was provided.

The loads were reduced to 2,415 pounds radial and 1,525 pounds axial (52.5%)

to represent the minimum power required to sustain level flight in a heli-

copter. Bearing temperature and torque were continuously monitored. The test
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was stopped when the drag torque increased to a level sufficient to stop the

motor. Other planned test stoppages that were not reached were 850°F bearing

temperature and 60 minutes of operation.

The angular contact spherical roller bearing with ceramic rollers used in the

preliminary survey tests was then mounted in the test spindle housing and the

no oil survivability test repeated.

Test Results

Material Test Results

A summary of fretting fatigue test results is presented in Table 55. Fretting

fatigue curves for polished and thin dense chrome (TDC) plated conditions are

shown in Figure 116.

Table 55. Fretting Fatigue Test Summary

Test Spec Specimen Vibratory Test Comments

No. S/N Condition Stress Cycles

(KSI) (Millions)

I I Polished 20

2 1 Polished 30

3 2 Polished 30

4 4 Polished 30

5 6 Polished 25

6 8 Polished 25

7 5 TDC Plated 40

8 21 TDC Plated 30

9 19 TDC Plated 25

i0 II TDC Plated 20

II* Ii TDC Plated 60

12 I0 Polished 60

13 3 TDC Plated 60

14 15 TDC Plated 30

15 7 TDC Plated 40

16 9 TDC Plated 25

17* 14 Polished 60

18" 14 Polished 90

19" 12 TDC Plated 70

20 13 TDC Plated 25

21 18 Polished 40

22 20 Polished 40

23 22 Polished 25

24 17 TDC Plated 30

25* 16 Polished 75

i0.000

0.854

0.594

1.182

0.890

8.740

0.282

1.010

3.834

I0.000

0.534

0.118

0.067

1.730

0.370

8.974

i0 000

0 214

3 176

9 467

0 401

0 294

8 428

0 611

0 490

Runout

Prior Test #i, See Note (I)

Runout

*Non fret. test (from #I0)

Obser. Slip 70-105 Microns

Obser. Slip 70-105 Microns

No Slip Observed

No Slip Observed

No Slip Observed

*Non Fret. Test, Runout

*Non Fret. Test, (From #17)

*Non Fret. Test, (Grip Fail.

No Slip Observed

No Slip Observed

No Slip Observed

No Slip Observed

No Slip Observed

*Non Fret. Test

Notes:

(1) Test #i and #2 combined to give an equivalent point of 21.574 KSI and

10.854 million cycles.
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All curves and curve shapes are derived using standard Sikorsky fatigue
methodology for steel with fretting. The fretting fatigue data points at the
60 KSI level were not included in the meancurve calculations since they were
below the 0.2 million minimumcycles recommendedfor application of standard
curve shapes. Polished Coupon#I test points were combined into an equivalent
fracture point at the total number of cycles by finding an equivalent vibra-
tory stress. The equivalent stress is calculated by finding the endurance
limit for each test point individually using the standard curve shape for
steel with fretting, finding the average, and then calculating the stress at
the total combined number of cycles for the average curve.
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No measurable slip was observed during fretting fatigue tests except at the 60

KSI stress level where approximately 70-105 microns peak-to-peak slip ampli-

tude was obse_ed for b6*th polished and TDC plated conditions. Also, rust

colored fretting debris was observed to be expelled from beneath the pin

during testing, particularly for the polished coupons.

Metallurgical examination of fractured specimens confirmed that fatigue

origins were at the fretting interface.

In Figure I16, one curve shape has been drawn through both sets of data. This

is because the curves for polished and TDC specimens are essentially on top of

each other. Thus no discernible difference was found between polished and TDC

plated conditions. Data scatter is equivalent for both curves. The overall

scatter (coefficient of variation) in the fatigue data indicates a reasonable

fit of the standard curve shape parameters for the polished and for the TDC

specimens.
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The fretting fatigue strength for Pyrowear 53 for both conditions is compar-
able to Sikorsky data for 150 KSI steel. The Pyrowear 53 data in fact falls
slightly above the 150 KSI data which is likely related to the slightly higher
tensile strength of the Pyrowear 53 coupons (approximately 175 KSI). Compari-
son with high cycle fatigue strength shows an approximate 74% reduction in
mean fatigue strength of polished Pyrowear 53 coupons due to fretting. This
is comparable to Sikorsky fretting results for carburized AISI 9310 steel.

1/2 Size Gearbox Test Results, No Load Lube

The no load lubrication survey was completed in accordance with the procedure

discussed above. Initial surveys, performed with the lube oil supply at

ambient temperature, were completed without difficulty. Bearing temperature

stabilized to within ±2°F at the completion of each test condition at temper-

atures well below the allowable maximum of 250°F. A summary of stabilized

lube oil and bearing temperatures is presented below in Table 56.

Table 56. No Load Lube Test Results, Ambient Temperature (°F)

Test Gearbox

Thermocouple Locations

Input Speed (%Nr)

25% 50% 75% 100%

Lube Oil Inlet 67.2

Lube Oil Outlet 87.2

Input Shaft, Upper Cover Roller Brg 87.9

Input Shaft, Lower Cover Ball Brg 86.2

041 Idler Shaft, Upr Cvr Roller Brg 86.0

041 Idler Shaft, Lwr Cvr Roller Brg 85.2

042 Idler Shaft, Upr Cvr Roller Brg 87.8

042 Idler Shaft, Lwr Cvr Roller Brg 87.7

Output Gear, Upper Timken Brg 86.9

Output Gear, Lower Timken Brg 85.9

Output Gear, Instr. Ball Brg 76.2

91 4

91 4

94 1

91 3

91 4

98 8

92 9

94 0

92.2

91.1

80.8

97.0 102.5

97.0 103.8

101.9 109.1

97.2 103.2

97.8 104.0

95.6 I01.0

99.5 105.9

100.5 107.9

99.4 106.5

98.1 105.5

85.9 89.8

Dummy Gearbox

Thermocouple Locations 25%

Lube Oil Inlet 79.9

Lube Oil Outlet 80.2

Input Shaft, Upper Cover Roller Brg 80.1

Input Shaft, Lower Cover Ball Brg 80.5

041 Idler Shaft, Upr Cvr Roller Brg 80.4

041 Idler Shaft, Lwr Cvr Roller Brg 79.9

042 Idler Shaft, Upr Cvr Roller Brg 80.7

042 Idler Shaft, Lwr Cvr Roller Brg 79.8

Output Gear, Upper Timken Brg 80.4

Output Gear, Lower Timken Brg 79.6

Input Speed (%Nr)
50% 75%

86 2 93 0

87 1 94 6

87 1 94 7

88 7 96 3

87 5 95 2

86 6 93 7

87 8 94 9

86 3 92 9

90.2 i00 2

89.2 98 7

100%

99.6

101.9

101.9

103.7

103.2

100.4

102.3

99.6

109.8

108.6
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Following the ambient temperature survey, an additional survey was performed

with the test gearbox oil supply preheated to 185°F. Bearing temperatures

were stabilized within +2°F at the completion of each ten minute test condi-

tion. All bearings stabilized well below the maximum allowable of 250°F.

Successful completion of this survey indicated that the gearbox would operate

satisfactorily at higher power conditions. A summary of the stabilized lube

oil and bearing temperatures observed is presented in Table 57.

Table 57. No Load Lube Test Results, Elevated Temperature (°F)

Test Gearbox

Thermocouple Locations

Input Speed (%Nr)

25% 50% 75% 100%

Lube Oil Inlet 169.0 170.4

Lube Oil Outlet 165.1 165.5

Input Shaft, Upper Cover Roller Brg 167.6 169.9

Input Shaft, Lower Cover Ball Brg 163.5 164.0

041 Idler Shaft, Upr Cvr Roller Brg 161.0 164.9

041 Idler Shaft, Lwr Cvr Roller Brg 159.6 158.9

042 Idler Shaft, Upr Cvr Roller Brg 167.6 169.5

042 Idler Shaft, Lwr Cvr Roller Brg 166.6 168.3

Output Gear, Upper Timken Brg 166.4 166.8

Output Gear, Lower Timken Brg 162.6 164.1

Output Gear, instr Ball Brg 113.0 113.5

171.2

166.3

172.0

162.7

167.9

158.5

171.0

169.0

168.3

166.6

114.1

172.3

167 8

174 4

162 0

169 8

159 3

172 9

170 4

169 8

167 6

115 4

Dummy Gearbox

Thermocouple Locations

Lube 0il Inlet

Lube Oil Outlet

Input Shaft, Upper Cover Roller Brg
Input Shaft, Lower Cover Ball Brg

041 Idler Shaft, Upr Cvr Roller Brg

041 Idler Shaft, Lwr Cvr Roller Brg

042 Idler Shaft, Upr Cvr Roller Brg

043 Idler Shaft, Lwr Cvr Roller Brg

Output Gear, Upper Timken Brg

Output Gear, Lower Timken Brg

25Z

84 1

85 0

84 1

83 8

84 6

83 7

85 2

83 4

87 6

85 2

Input Speed (%Nr)
50%

87.8

89.9

89.1

89.8

89.4

88.3

89.8

87.7

98.1

94. I

75%

90 9

93 9

92 9

95 5

93 4

92 1

93 0

91 4

103 7

99.8

100%

95.4

99.5

99.0

i01.8

I01.I

97.1

99.0

96.7

II0.8

107.3

Under no load-conditi0ns_ the amount of heat generated within the test gearbox

was extremely small. At elevated temperatures, the gearbox acted as a heat

sink, evidenced by the fact that the oil inlet temperature was higher than the

oil outlet temperature. The gearbox rejected more heat, radiated into the

test-cell, than the facility lube oil preheater was capable of generating. As

a result, the oil inlet temperature fell approximately 15°F below the desired

set point of 185°F at the completion of each survey.

Vibration levels increased slightly with increasing speed, however, all levels

were considered low during no load surveys. A typical power spectrum of the

vibration experienced on the upper cover of the test gearbox, in the vertical

and lateral direction, at 100% Nr is presented in Figure 117 as an example.
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i/2 Size Gearbox Test Results, Gear Pattern Development

Gear pattern development began after successful completion of the no-load lube

tests. Patterns were generated by operating the gearbox at increasing power

levels in accordance with the procedure outlined above. Pattern inspections

were conducted at the end of each incremental power condition but were diffi-

cult to perform even with the assistance of a boroscope. As a result, the

gearboxes, both test and dummy, were disassembled for detail pattern inspec-

tion prior to committing to the 100% power condition. Load sharing observed

during these initial tests was within 2% as documented in Figure 118. Vi-

bration levels increased slightly with increasing power, however, all levels

were considered low. A typical power spectrum of the vibration experienced on

the upper cover of the test gearbox in the vertical and lateral direction at

100% Nr, and 75% torque is presented in Figure 119 as an example.
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Disassembly revealed that contact patterns had spread across the full width of

the tooth on each gear at the 75% condition with no signs of surface distress.

Both the test and dummy gearbox gears were similar. In addition to the visual

inspections, strain data was also examined to assist in evaluating the contact

patterns observed. The silver and copper plating, added to aid the visual

examination were effective in helping to evaluate the contact patterns. The

silver and copper plate was more effective than gold plate or black oxide.

Blueing also worked well at low temperature, providing the best overall

indication, but washed away when the gearbox temperature was increased.

Based on visual examination and analysis of the strain data, the patterns were

judged to be acceptable to continue to the 100% condition. The gearboxes were

then reassembled and the 100% power condition was run. Load sharing during

the subsequent power sweep is presented in Figure 120. As seen, load sharing

was excellent at 100% torque but showed a slight difference at 25% torque.

The cause of this torque difference and why the reading changed from the start

of the pattern development test was not known at this time.

At the conclusion of the 100% pattern development test, the gearboxes were

disassembled and inspected. Based on the visual patterns seen and on the

examination of the strain survey data, the patterns were judged to be accepta-

ble and further topological corrections of tooth geometry were not required.

The testing showed that the topological corrections manufactured into the

initial test parts, and calculated by finite element analysis, worked well in

establishing uniform loading across the tooth at full load.
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1/2 Size Gearbox Test Results, Dynamic Surveys

Strain surveys were performed in accordance with the test procedure presented

previously. All strain data was converted to stress by using Hook's law:

stress = (strain) (modulus of elasticity). Examples of the time history of

strain (converted to stress) measured on each gear are presented in Figures

121 through 126. Vibratory Stress (peak-to-peak divided by 2) measured for

each strain gage location are presented in Figures 127 through 134 as a

function of load. These figures illustrate the effect of increased load on

the stress distribution across the face of each tooth. Surveys were also

taken at varying speeds with constant torque. These tests showed that the ART

gearbox dynamic load factor is approximately 1.00 since no changes of strain

with speed were noted.

All strain gages remained functional throughout testing with the exception of

HERGR39 which appears to have disbonded since it is functional but the output

is extremely low. Spur pinion slip ring data was noisy because of higher

operating speeds on the spur mesh and the data is of poor quality.
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In addition to the strain measurements, upper (041) and lower (042) idler
shaft torque was monitored and recorded during the dynamic surveys. At the
end of the gear pattern development, the torque split was within 2%. However,
as the dynamic surveys began, load sharing deteriorated. The torque split
during the first and second half of the dynamic surveysare shown in Figures
135 and 136. Data for each plot (or data set) was taken during one day of
operation, load sharing remained consistent during each day/data set but
changedwhen the test stand was shut downand allowed to cool. At the comple-
tion of the dynamic surveys, load sharing had deteriorated to a torque split
of approximately 7% at 100%load. Although torque splits of up to 20% are
considered acceptable, the cause of the deterioration was unknown at this
time.

Following the dynamic surveys with the elastomeric load sharing devices
installed, the test gearbox was disassembled so that the elastomeric load

sharing devices could be replaced with steel members. During this disassem-

bly, the following observations were made:

Spline backlash measurements taken before and after test showed that

rotational movement had occurred in each double helical pinion/spur

gear assembly. Total movement (closure) on the upper and lower

assemblies was 0.0482 inch and 0.0369 inch respectively. Initial

gaps were 0.0812 inch and 0.0819 inch for configuration #I.

Axial shimming measurements taken before and after test showed that

the elastomer had taken a "set" in the axial direction of 0.005 inch

and 0.003 inch on the upper and lower assemblies respectively.

There was no loss of preload on the bolts that clamp the elastomer

side plates to the web of the spur gear.

There was no wear or fretting on the bolted connection.
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There was no wear of fretting on the cone section of the spur gear

or the elastomeric load sharing device.

• The back up spline showed evidence of contact during operation.

The observations listed above indicate that a shift in the timing of the index

teeth of the double helical pinion and the Spur gear had taken place. Subse-

quent static testing using the fixture shown previously in Figure 96, showed

that slippage was taking place at the interface between the outer cone surface

of the elastomeric load sharing device and the inner cone surface of the spur

gear. This slippage occurred because the elastomer lost some of its preload

during operation, a condition which was further aggravated by the presence of

iubricating oii which-reduced the coefficient of friction on the mating

surfaces. The solution to this problem was determined to be an increase in

the applied preload during assembly. The initial preload value of O:_0!0 inch

pre side was insufficient and was increased to 0.033 inch per side to account

for these variables in subsequent assemblies. The 0.033 inch was chosen as

the maximum value for a zero margin of safety in yield of the elastomeric load

sharing device side plate at the highest-bperati=ng temperature.

Load sharing surveys were performed with the steel load sharing devices

installed in accordance with the procedure as previously outlined. The steel

load sharing devices had the same external dimensions as the elastomeric load

sharing devices but were manufactured of solid steel. Thus, installation of

the steel load sharing devices effectively negated the function of the elasto-

mer while retaining the same gear hardware. The measured torque per side is

shown in Figure 137.
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Note that when testing was initiated, load sharing at 10% torque was poor.

However, as the applied torque was increased toward 25%, a shift in the torque

split occurred, as shown in Figure 138. This shift improved the torque split

significantly and was confirmed by reducing the applied torque back to 10%

after the 100% torque condition. A comparison between the initial data at 10%

torque and the final data at 10% torque demonstrates the improvement observed.
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Based on the lessons learned during the disassembly and static testing of the

elastomeric load sharing devices, insufficient clamp up was also suspected to

be the root cause of the observed problems. If the clamp up is insufficient

to transmit the applied torque without slipping between the outer cone of the

load sharing device and the inner cone of the spur gear, then the shifts in

the torque split would be the logical result.

This hypotheses was confirmed during the disassembly of the gearbox following

completion of the surveys. Spline backlash measurements taken before and

after _tgst showed that rotational movement had occurred in each double helical

pinion/spur gear assembly. Total movement (closure) on the upper (041) and

lower (042) assemblies was measured to be 0.0815inch and 0.0806 inch respec-

tively and the internal backup splines were in direct contact. In addition,

there was evidence of circumferential movement on the mating surfaces of the

cone seat joint on the spur gear and load sharing device. There was minor

fretting of the spline teeth indicating that they had been in contact during

operation for some time. Although this movement is undesirable, observed

results confirmed that if the proper orientation of the index teeth on the

double helical pinion and spur gear can be maintained, the steel load sharing

devices will also provide satisfactory load sharing.

During the survey with steel load sharing devices, vibration levels were

observed to increase slightly with increasing power, however all levels were

consfdered low. A typical power spectrum of the vibration experienced on the

upper cover on the test gearbox in the vertical and lateral direction at 100%

Nr and 75% torque is presented in Figure 139 as an example.
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Figure 139. Typical Vibration Signatures, Steel Survey

Transmission error (TE) measurements were performed on each double helical and

spur gear mesh in the ART £es£ gearb0x for both the elastomeric and steel load

sharing devices. The primary method of data acquisition was simultaneous rpm

order tracking of both the TE and vibration data on an 8 channel FFT analyzer.

Use of rpm order tracking permitted the acquisition of data at a steady state

torque which could then be compared as a function of rpm to other torque

conditions or configurations. For each double helical gear mesh, the meshing

frequency corresponds to 3.3465 times, or 3.3465 orders of the input shaft
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frequency while the meshing frequency for each spur gear mesh is defined by 26

orders of the input shaft frequency.

Simultaneous order tracking of TE and vibration data on the 8 channel FFT

analyzer provided direct comparisons between TE and housing vibration levels.

Plots of measured TE levels in arc seconds (") versus vibration levels (g's)

measured with the upper cover lateral accelerometer are shown in Figures 140

through 143 for the upper and lower spur mesh and for the upper and lower

double helical mesh at 100% torque, with elastomeric load sharing devices

installed. Vibration tracking is shown for the steel load sharing device in

Figures 144 and 145 for the lower spur mesh and for the lower double helical

mesh. These figures illustrate how the transmission error plotted vs fre-

quency tracks the housing acceleration vs frequency and closely follows the

same relative magnitudes (same shape curves). This is strong proof of the

known fact that TE is the root cause of vibration and noise in transmission

systems.
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Comparisons of TE measurements were also made between the elastomeric and

steel load sharing device configurations. Figures 146 and 147 compare elasto-

mer and steel configuration TE for the upper and lower spur gear meshes at 50%

and 100% torque. Figures 148 and 149 compare TE for the upper and lower

double helical gear meshes for elastomeric and steel load sharing device

installations at 25% and 90% torque. The conclusions reached from examination

of these data are that there is no significant effect on TE between steel and

elastomer configurations for the double helical gear mesh whereas the opposite

is true for the spur gear mesh. Significant reductions were achieved in spur

gear mesh TE when the elastomer was installed. It i s noteworthy to also

mention that the reduction in TE is higher at iower torques and was easily

distinguishable by ear during the testing when it was noted that the steel

configuration appeared much noisier than the elastomeric configuration.
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Another interesting phenomenon was observed during the conduct of the ART 1/2

size gearbox testing and that can best be described as double helical gear

"growl" at no load. The ART back-to-back test stand was run at zero load for

periods of time during the initial testing. A non-constant growling noise was

heard from within the gearbox. This noise was later traced to axial motion of

each double helical pinion. The double helical pinion/spur gear shaft is free

to float axially on its roller bearings mounted at each end of the double

helical pinion. In its attempt to seek a position of balanced axial loading

when the tangential tooth load is zero (or very low) contacts on the face of

one side of the helical mesh can create an impact force which sends the shaft

axially to the other helical mesh causing impact on the opposite mesh. If the

rotation of the double helical pinion/spur gear shaft is not tracking exactly

with the tooth ratio, i.e., if the shaft lags slightly behind because there is

no load, impacts can also occur on the coast sides of the teeth. Displacement

probes were placed on the end of each double helical pinion/spur gear shaft to

measure the axial motion as a function of time. At no load, the result is

seen in Figure 150.

As seen in the figure, axial motion is quite high and there was also evidence

seen at disassembly that the double helical pinions had been in contact on the

drive and coast sides of the teeth. As soon as even the smallest torque was

applied (anything over 5%), the "growl" stopped, and the axial motion was

greatly reduced as shown in Figure 151. In a helicopter installation, the

transmission_cannever run without load since even in flat pitch, the rotor

drag torque is considerable. Thus the growling sensation is unique to the

test stand environment. The plot in Figure 151 is at 100% torque. At lower

values of torque the plot is essentially the same except at zero torque when

the plot of Figure 150 is obtained during the "growl". At no load, the growl

is intermittent occurring on the order of 10% of the time/
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During the 1/2 size gearbox survey tests, strain surveys were taken on the
test gearbox housings in accordance with the procedure previously outlined.
Strain was monitored using strain gage rosettes so that principal strain could
be determined. Each strain rosette was mountedat the maximumstrain position
as determined by finite element analysis. One rosette was mounted on the
upper cover, one on the lower cover, and one on the center housing. A summary
of the principal strain is presented in Table 58.

Location

Gage#i

Table 58. Steel Housing, Strain Survey Results

Test Principal
Condition Strain

Torque % _ Maximum
m in

Principal Principal

Strain Strain

Minimum Axis

m in
7

25% Ii.i -3.1 -40.9 °

50% .... 27.2 218 -40.3 °

75% 42.1 8.9 -42.4 °

100% 55.0 18.0 44.2 °

Gage #2 25% 4.2 -14.2 -24.7 °

50% 7.3 -32.3 -23.5 °

75% 12.6 -51.6 -26.3 °

100% 17.0 -73.0 -26.6 °

Gage #3 25% 41.5 -26.5 -24.3 °
50% 47.0 -38.0 -23.9 °

75% 55.6 -50.6 -23.3 °

100% 65.6 -64.6 -22.2 °

1/2 Size Gearbox Test Results, 200 Hour Endurance

A 200 hour endurance test was conducted in accordance with the procedure

presented previously. A summary of the cumulative time spent at each test

condition is presented in Table 59.

Table 59. Endurance Test, Cumulative Test Time

Z Torque Hours Z Time

55% 38 19%

65% 60 30%

75% 84 42%

95% 8 4%

100% i0 5%

Total 200 100%

Load sharing, determined by comparison of individual idler shaft torques, was

consistent and predictable during the initial part of the testing. However,

during start up of cycle #20, Condition #3, load sharing was inconsistent with

the largest torque split observed to be approximately ±10.3%. After load

cycle #20, load sharing remained inconsistent throughout the remainder of
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testing. Figure 152 presents the history of load sharing recorded at the 100%
torque condition. In general, changes in the torque split occurred during
start up or power changes. Once a particular condition was attained, the
torque split remained relatively constant. These characteristics were sympto-
matic of slippage at the cone seat at the interface between the elastomeric
load sharing aevice outer cone surface and the spur gear inner cone surface.

This problem was originally observed during dynamic surveys and the installed

preload at the elastomeric/spur gear joint had been increased prior to the

endurance test to address this problem. The increased preload was not suc-

cessful in preventing slippage at the interface. Spline backlash measure-

ments, taken during disassembly, confirmed that rotational movement had

occurred in each double helical pinion/spur gear assembly. Total movement in

the 041 and 042 assemblies was 0.1149 and 0.0799 inch respectively. Although

rotation had occurred, blueing applied to the spline teeth of the spur gear

and double helical pinion web prior to the start of test indicated that the

spline teeth on either the 041 or 042 assembly, had not come into contact

during this test.
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The underlying cause of the loss of preload was the inability of the elasto-

meric material to endure thermal cycling without experiencing a reduction in

the compressive forces created when the elastomer was put into preload com-

pression at assembly. The material takes a set resulting in loss of clamping.

It has also been observed that the "set" is not permanent but takes a matter

of days to return to the original position. The phenomenon of preload loss

with thermal cycling was verified by bench testing conducted at Lord Corp,

Erie, Pa., the supplier of the elastomeric material. The results of a thermal

cycling test conducted on the elastomeric material are presented in Figure

153. The test was conducted by subjecting one elastomeric load sharing device

(1/2 of the assembly) to a constant axial deflection of 0.033 inch. This

corresponded to the preload used during the endurance testing. The tempera-

ture was raised from room temperature to 250°F and held for a period of

approximately 16 hours, then allowed to cool for 8 hours. This cycle was

repeated three times while recording force and holding the 0.033 inch deflec-

tion. The results show that during constant temperature application, preload

force was reduced. This is an indication of gradual material yielding. After

cooling, the force generated by the initial preload was found to be below the

magnitude at the start of heating. The reduction continued to occur after

each cycle of heat/cool was applied and although the indication is that the

rate of loss of preload was slowing, it had reached a point where there was

insufficient preload to drive the torque in friction. Note that the initial

preload value of 30,000 pounds at room temperature was reduced to 8,000 pounds

after only one cycle. After the third cycle, the preload was reduced to 3,000

pounds at room temperature. When the elastomer was at elevated temperature,

preload was increased which explains why £he load sharing did not change once

the test had started and the temperature was stabilized.

Time (mlnmtol)

Figure 153. Thermal Cycling of Elastomeric Load Sharing Device
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In addition to the performance of the elastomeric load sharing devices, the

condition of the gear teeth was also an area of interest during the test. The

first 150 hours of testing were performed without encountering any difficul-

ties. However, during the 150 hour visual inspection, a spall was observed on

the left hand helix of the upper double helical pinion of the test gearbox.

The affected area was considered small and testing was continued. This points

out an advantage of the double helical design in that the high overall contact

ratio permits operation even with a spalled tooth since adjacent teeth will

carry the load with no visible chan_-in performance. At 183 hours, a chip

light was produced on the test gearbox. Inspection of the chip detector

showed that the chips were from the spalled area. Testing was continued to

the 200 hour mark.

Post test inspection revealed two relatively shallow spalled areas on the left

hand helix of the upper double helical pinion of the test gearbox (shown in

Figures 154 and 155). Pitch line micro-pitting was present on this gear and

was also evident to some degree on each double helical pinion. In addition,

there was high polishing in the contact area of each double helical pinion.

Although this was not considered a problem by itself, it was an indication of

surface wear. The polishing was more pronounced on the test gearbox than on

the dummy gearbox. The spur pinion and mating gears of both the test and

dummy boxes were in excellent condition. Visual inspections of the gears and

internal components for additional signs of wear, damage, or cracks did not

reveal any discrepancies. Components were magnafluxed to identify cracks.
None were found. No evidence of skidding, spalling, or overheating was

evident on either the bearing races or the rolling elements.

Figure 154. Test Gearbox, Initial Spalled Tooth, Double Helical Pinion
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Figure 155. Test Gearbox, Spalled Tooth, Double Helical Pinion

The inspection of the test and dummy gearbox double helical pinions after

testing showed that the test gearbox pinions had a higher degree of polish

than the dummy gearbox. Since all loading conditions are the same, the test

conditions were examined to _etermine the differences between the test and

dummy gearboxes. _Two factors are different in the test and dummy gearboxes.

First, the test gearbox acts as a conventional pinion in that it has recess

action whereas the dummy gearbox has approach action because it has reverse

rotation direction and reverse torque direction. This makes the magnitude and

direction of load identical in the test _and dummy boxes bUt makes the dummy

b0x pinions contact_n_tiaily on_t_-tip _ and Slide_towar_the TIF of the

teeth inducing approach action. This is known to be the worst case for

surface distress but is not quantified. Second, and most importantly, the

temperature of the dummy gearbox was lower than the test gearbox because the

dummy gearbox oil system did not have a heater as did the test gearbox oil.

The dummy gearbox operated at approximately 120°F vs 180°F for the test

gearbox. The temperature difference causes the oil viscosity to be lower in

the test gearbox than in the dummy gearbox. Viscosity is a major factor in

determination Of eiasto-hydrodynami_gr EHD film thickness. EHD lubrication

is a regime=which describes the generation of a load carrying film of oil

which separates _e surfaces of gears where high contact stresses are occur-

ring. An analysis was conducted to determine the theoretical film thickness

in the test and dummy gearboxes at the double helical mesh. A conventional

way to examine EHD _ilm thickness _S to compare the film thickness to the

surface roughness ratio, or I ratio. When A= i, the film thickness is equal

to the surface finish and the lubrication is said to be adequate. As the l

ratio drops, there are more "mountains" sticking out of the "valleys". Figure

156 is a plot of A as a function of temperature which reflects the effect that

viscosity has on EHD. The EHD thickness is calculated by the Dowson-Higginson

method which is the popular method of calculation. As a note of interest, the

investigation into the low EHD phenomenon pointed out the short comings in the

current statelof-£he-art methodoiogy. Most product_0n helicopters operate

successfully without spalling of the output reduction stages of the main

gearbox in the range of A - 0.4. The current methodology will predict a high

probability of distress with this ratio. The enigma lies in the fact that the
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allowables are based on data derived from through hardened gears and carburo
ized gears can operate at much lower film thickness successfully. This may
explain why helicopter gear designers usually do not use the _ ratio published
allowables.
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Figure 156. EHD Film/Surface Roughness vs Temperature

Note that the dummy gearbox A ratio is approximately twice that of the test

gearbox because of the temperature difference. The EHD film is greatly

influenced by the viscosity of the oil used, and is also influenced by the

pitch line velocity of the gears. Load has less of an effect on EHD thick-

ness. The 1/2 scale gearbox modeled bending stress, Hertz stress, and deflec-

tion accurately, however it did not duplicate pitch line velocity. The pitch

line velocity of the 1/2 size gearbox was exactly 1/2 of the full size gear-

box. Since pitch line velocity has a large influence on EHD film thickness,

with a higher velocity producing a higher film thickness, the EHD film of the

test box was not representative of a full size ACA aircraft and in fact was

about 1/2 of what it would be in a full size gearbox. Therefore the spalls

generated as a result of the low EHD film thickness in the 1/2 size test

gearbox are not representative of the full size ACA gearbox and resulted from

unrepresentatively low pitch line velocity.

To address this problem, Mobil SHC 629 lube oil was substituted for the

DOD-L-85374 lube oil prior to the start of the overtorque test. Mobil SHC 629

was chosen because it provides an increase in viscosityat the gearbox operat-

ing temperature. The increased viscosity provides the test gearbox with the

same EHD film thickness at 1/2 the pitch line velocity as the full size ACA

transmission.

During the 200 hour endurance test, bearing temperatures stabilized well below

the established maximum of 250°F at all endurance test conditions. Table 60

presents typical stabilized bearing and oil temperatures for both the test and

dummy gearbox operating at 100% torque.
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Table 60. Typical Stabilized Temperatures @ 100% Torque

Thermocouple Locations

Stabilized

Test Gearbox

Temperature °F

Dummy Gearbox

Lube Oil - Inlet

Lube Oil - Outlet

Input Shaft - Upper Cover Roller Brg

Input Shaft - Lower Cover Ball Brg

-041 Shaft Upper Cover Roller Brg

-041 Shaft Lower Cover Roller Brg

-042 Shaft Upper Cover Roller Brg

-042 Shaft Lower Cover Roller Brg

Output Gear - Upper Timken Brg .....

Output Gear - Lower Timken Brg

Output Gear - Instrumentation Ball Brg

184.7

192.4

204.4

179.8

197.0

177.3

199.8

188.1

1866.2
183.5

126.1

96.3

113 7

131 1

113 8

126 A

108 6

119 5

118 0

iii 2

109 7

N/A

Vibration levels were relatively low with no detectable increase observed over

the course of the endurance test. Typical frequency analysis of the vibration

experienced on the upper plate=of_the test gearbox, assembled with the steel

housing and eiastomeric load sharing devices are shown in Figure 157 while

Figure 158- shows the dummy gearbox, assembled wit_ c0mposite housing and

elastomeric load sharing devices. The locations of the accelerometers on the

test and dummy gearboxes was identical. Comparison of the vibration levels at

these locations indicates that for the same operating conditions, the vibra-

tion levels on the composite housing are four to five times higher than on the

steel housing.

L_

L

L

x
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1/2 Size Gearbox Test Results, 200 Hour Overtorque

Overtorque testing was conducted in accordance with the procedure presented

previously. The configuration of the test box was the steel housing, steel

isolators, and Mobil SHC 629 oil. The dummy gearbox had composite housings,

steel isolators, and DOD-L°85374 oil. The test gearbox oil was heated to

180°F inlet temperature while the dummy gearbox was permitted to stabilize

naturally without heating. Initial testing consisted of 5 hours of operation

at 60% torque and an oil outlet temperature of 135°F. This was followed by an

additional 5 hours of operation at 60% torque with an oil outlet temperature

of 185°F. These low power conditions were intended to break-in the new double

helical pinion installed as a replacement for the spalled pinion of the 200

hour endurance test. Once the break-in runs were complete, testing proceeded

to the original test spectrum. The overtorque test was suspended after a

total of 36.5 hours because of the poor load sharing experienced. During the

first hour of break-in running, the load sharing varied considerably. By the

end of the first hour of operation, the load sharing was stable at a fixed

split of ±22%. Applied loads were limited to 120% on the highest loaded

member and did not correspond to 120% total input because of the poor load

sharing seen. When the torque on the highest loaded member was 120%, the

input torque was at 100%. A summary of the cumulative time spent at each test

condition is presented in Table 61.

Table 61. Overtorque Test _I, Cumulative Test Time

% Input Oil Outlet Cumulative

Torque Temperature Test Time

60 135°F 5.0 Hours

60 185°F 8.5 Hours

75 185°F 6.0 Hours

85 185°F 14.0 Hours

I00 185°F 3.0 Hours

120 185°F 0.0 Hours

TOTALS 36.5 Hours

The observed characteristics were symptomatic of "slippage" at the cone seat

of the interface between the steel load sharing device and the spur gear.

Post test disassembly confirmed that the poor load sharing was caused by

slippage at the steel/spur gear interface. Spline backlash measurements

indicated that the internal back up splines were in direct contact on both the
-041 and -042 idler shaft assemblies. A similar situation was found on the

dummy gearbox. This problem was originally observed during dynamic surveys

conducted with the steel load sharing devices installed. The installed

preload at the joint was increased prior to the overtorque test to address

this issue but the increased preload was not successful in preventing slippage

at the interface. Since the spline teeth were not intended as the primary

drive mechanism, the angular orientation of the spline teeth with respect to

the index teeth was not closely controlled. When the spline teeth came into

contact from the slippage at the interface, the timing between the left and

right members was inadequate and resulted in the poor load sharing seen.
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To overcome this problem, the spline teeth of each double helical pinion were
ground to correct the angular orientations so that the test and dummyassem-
blies were matched sets. The double helical pinions, spur gears, and steel
load sharing devices were then reassembled with the splines in contact and
overtorque testing was restarted. This approach no longer depended on the
clamp-up at the cone seat to maintain the relative positions of the gear
teeth.

The modifications to the spline teeth improved the load sharing to about ±7%.
Although this was within acceptable limits, permitting operation at 120%input
torque, it was not as good as expected. Pre-test measurements indicated that
the load sharing would be nearly identical. These results indicate that
additional factors, such as shaft and/or gear tooth deflections, contribute to
the load sharing characteristics whenusing the solid steel isolators. It is
important to note that when the test gearbox was assembled with the elasto-
meric load sharing devices using the sameapproach, excellent load sharing was
observed prior to any slippage. This result indicates that the elastomeric
load sharing devices have an advantage in that they are tolerant of any
installation or assembly differences and/or combinations of shaft and tooth
deflections because of the lower torsional spring rate.

The second overtorque test was interrupted at 11.5 hours when a chip light was
produced on the dummygearbox_ Inspection revealed significant debris on the
chip detector. A visual inspection of the dummygearbox revealed scoring/
scuffing was present on the right hand helix of both the upper and lower
double helical pinions. The corresponding areas of the bull gear also showed
signs of distress but to a lesser degree. The condition is shown in Figures
159, 160, and 161. Based on the degree of surface distress observed, further
testing was suspended. A summaryof the cumulative time spent at each condi-
tion is shown in Table 62.

Table 62. Overtorque Test _2, Cumulative Test Time

% Input Oil Outlet Cumulative

Torque Temperature Test Time

60 185°F 3.0 Hours

75 185°F 2.0 Hours

85 185°F 4.5 Hours

I00 185°F 1.0 Hours

120 185°F 1.0 Hours

TOTALS 11.5 Hours
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Figure 159. Scuffing on -041 DH Pinion, Overtorque Test

Figure 160. Scuffing on -042 DH Pinion, Overtorque Test

ORIGINAL PAGE 173
BLACK AND WHITE PHOTOG'RAPN



=: =

±

Figure 161. Scuffing on Bull Gear, Overtorque Test

Prior to the scuffing in the dummy gearbox, visual observations made during

the scheduled 5 hour inspection found a high degree of polishing on the right

hand helix of the -I01 double helical pinion in the same area which eventually

showed the surface distress. This characteristic was not present on the -102

double helical pinion. Since there was no surface distress in the polished

area, testing continued. Post test inspect{0n 0f the tes_ gearbox showed no

signs of distress on any components. The new double helical pinions did not

show signs of p0ilshing indicating that the heavier Mobil SHC 629 oil used

kept the contacting surfaces apart. The spur pinion and mating gears of both

the test and dummy gearboxes were in excellent condi£ion. Magna_lux as well

as visual inspection of the gears and other major in£ernal components of the

test and dummy gearboxes for additional _si_s of wear, damage, or cracks did

not reveal any discrepancies. There was no evidence of skidding, spelling, or

overheating on either the bearing races or rolling elements.

Post test inspe_iqnand analysis centered around identifying...... the cause of the

scuffing experienced on the dummy gearbox. As part of this effort, the

composite housing was inspected on a coordinate measuring machine. Results

showed that the -041 idler shaft bearing bores were misaligned by 0.0064 inch

at the upper bearing and 0.0021 inch at the lower bearing resulting in a

cumulative error of 0.0085 inch. Since these bearings are located 8.58 inches

apart, the -041 idler shaft was operating with a misali_ent angle of approx-

imately 0.001 inch/inch. This misali___ent, - illustrated in Figure 162, tended

to shift the load toward the lower end of the righ_ hand-heii_ in the area

where the surface distress occurred. Based on the inspection results and the

visual p01ishing-of_the right hand hel{x of the dummy-gearbox _=-i01 double

helical pinion prior to the scuffing, it is deduced that the scuffing first

occurred on the -I01 double helical pinion because of the shift in load from

the misalignment combined with the 120% load condition. The scuffing then
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transferred to the double helical gear and then to the -102 double helical

pinion. The poor load distribution combined with the 120% load condition in

combination with the approach action experienced from reverse tooth engagement

of the dummy gearbox is suspected to have caused the surface distress seen.

Di_ion of _a_ion

-- Actual Center of Rotation

Desired Cen_er of Rotation

Figure 162.

END VIEW

Illustration of Shaft Misalignment

Throughout the overtorque test, bearing temperatures stabilized below the

established 250°F for all overtorque test conditions. Table 63 presents

typical stabilized bearing and oil temperatures for both the test and dummy

gearbox operating at 120% torque.

Table 63. Typical Stabilized Temperatures @ 120Z Torque

Thermocouple Locations

Stabilized

Test Gearbox

Temperature "F

Dummy Gearbox

Lube Oil - Inlet

Lube Oil - Outlet

Input Shaft - Upper Cover Roller Brg

Input Shaft Lower Cover Ball Brg

-041 Shaft - Upper Cover Roller Brg

-041 Shaft - Lower Cover Roller Brg

-042 Shaft - Upper Cover Roller Brg

-042 Shaft Lower Cover Roller Brg

Output Gear - Upper Timken Brg

Output Gear - Lower Timken Brg

Output Gear - Instrumentation Ball Brg

181.1 96.8

195.4 116.3

212.8 117.6

180.3 133.7

201.1 125.1

181.1 107.1

209.5 123.2

191.0 121.1

186.6 106.4

182.4 107.4

120.8 N/A
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In addition to bearing and lube oil temperatures, gear blank temperatures were

also measured using thermocouples installed in the tooth roots of the upper

and lower double helical pinions of the test gearbox. These measurements

showed that the bulk temperature of the gear blank, calculated as the average

of individual tooth root temperatures and corrected to-an oil inlet tempera-

ture of 185°F was dependent on shaft load as shown in Figure 163. Note also

that the bulk temperatures measured were significantly lower than the oil

inlet and outlet temperatures. Typical gear blank temperatures were approxi-

mately 40 to 50°F below the oil temperatures.
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Figure 163. Gear Blank Temperature vs Idler Shaft Load.

Table 64 represents a typical distribution of gear blank temperature measured

on the double helical pinion during the second overtorque test. Results have

been tabulated as a function of shaft torque and have been corrected to an oil

iniet -_mperature of-i85_F. _'The temperatures represented for each power

condition are the average of the cumulative data which was collected at that

power. Note that the temperatures across the teeth were not constant.. The

variations between the upper and lower idler shafts illustrate the effect of

shaft load on tooth root temperature since the lower shaft carried 14% more

load than the upper shaft from the ±7% torque split.
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Table 64. Tooth Root Temperature Distributions

Location Z Input Power

60% i00% 120X

Upper 1/4 Helix Gear End

Upper LH Helix

Upper LH Helix

Upper RH Helix

Upper RH Helix

Upper RH Helix

Lower LH Helix,

Lower RH Helix

145.3 148.9 151.8

Center 135.7 134.3 139.4

Input End 143.5 149.0 155.5

Gear End 143.5 146.5 152.4

Center 139.6 141.0 147.3

Input End no data no data no data

Center 149.5 153.7 155.6

Center 152.6 157.5 162.2

In addition to the tooth root temperature measurements, an additional thermo-

couple was installed directly in the path of the oil being ejected from the I/q

helix of the upper double helical pinion which measured the "fling-off" oil

temperature. The intent of this measurement was to quantify the film tempera-

ture of the lubricant in the area where the spalling had occurred during the

endurance test. Results indicated that this temperature was also dependent on

shaft load as shown in Figure 164. The results have been corrected to an oil

inlet temperature of 185°F. The fling-off temperature was generally found to

be from 1 to 5°F higher than the oil outlet temperature.
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Figure 164. Fling-off Oil Temperature vs Idler Shaft load
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Vibration levels experienced during the overtorque test were consistent with

levels experienced during previous testing. Direct comparison of the vibra-

tion levels experienced with each type of housing (composite and steel) and

each type of load sharing device (elastomeric and steel) are shown in Figure
165. Table 65 summarizes the vibration levels at the first and second har-

monic of the spur gear clash frequency. The conclusions drawn from this data

are as follows:

The elastomeric load sharing device reduced the energy transmitted

to the housings at the spur gear clash frequencies and the associa i
ted harmonics.

The composite housing experienced higher vibration levels than the

steel housing.

_e _vibration energy _associated with the Spur .......gear mesh was much

higher than the Vibration levels associated With the double helical

mesh.
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Table 65. Comparison of Typical Vibration Levels

Location Elastomeric Steel

Test Dummy Test Dummy

2138 Hz Gear Clash, Up Coy Vertical 0.4 2.4 0.7 3.8

2138 Hz Gear Clash, Up Coy Lateral 0.8 5.2 I.i I0.I

2138 Hz Gear Clash, Up Coy Longitudinal 0.2 0.6 0.2 0.8

4276 Hz 2nd Harmonic, Up Cov Vertical 2.9 2.8 6.2 1.5

4276 Hz 2nd Harmonic, Up Coy Lateral 3.5 18.2 5.4 33.8

4276 Hz 2nd Harmonic, Up Coy Longitudinal 1.0 13.4 1.7 25.3

Bearing Test Results

Bearing testing was conducted at McGill Manufacturing Co., Valparaiso,

Indiana. Two types of bearings were tested. Both bearings had identical

inner and outer races fabricated from Pyrowear 53 carburizing material. The

retainers were fabricated from SAE 8620 steel per AMS-6274 and were identical

in each bearing. The difference between the two bearings was in the roller

material which was Pyrowear 53 for the bearing termed "steel" and silicon

nitride for the bearing termed "ceramic".

Testing of the angular contact spherical roller bearings consisted of a

preliminary survey, a 250 hour proof test, and a lost lubricant survivability

test for both the steel and ceramic bearings. The object of the tests was to

show that the angular contact spherical roller bearing could replace the

combination of a cylindrical roller and split angular contact ball bearing in

a high speed application with improved reliability, service life, and surviva-

bility. The lost lubricant tests were conducted to demonstrate the improved

survivability and compare performance of the steel and ceramic rolling ele-
ments.

Preliminary survey tests were conducted on both the steel and ceramic bear-

ings. In these tests oil flow, end play from 0.002 to 0.016 inch, speed,

thrust load, and radial load were varied and operating temperatures measured.

The ceramic bearing had lower induced temperatures than the steel bearing for

most load cases and also ran with lower vibration magnitudes. As an example,

comparison of measured and calculated induced axial thrust for the steel

bearing is shown in Figure 166 and for the ceramic bearing in Figure 167.
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The predicted values are calculated by the computer program "SASHBEAN" which

was developed during the ART program by McGill for conducting analysis of

angular contact spherical roller bearings. The predicted thrust is based on

2400 pound radial load (50%).

After completion of the survey testing, the ceramic bearing was in excellent

condition but the steel bearing had signs of discoloring and staining from

oxidized oil and heat generated during the tests. A line of extremely small

pits or micro spalling had developed at the juncture of the outer raceway and

the retainer guiding land. Normally, the roller would not contact in this

area and a change in design parameters will remedy the problem in future

designs.

Proof tests of 250 hour duration were conducted on the steel bearing and

ceramic bearing at 100% load. The 100% load condition was 14,400 rpm, 4,600

pound radial load, and 3,100 pound axial load. Table 66 compares average

temperature readings taken on the steel and ceramic bearings during these

tests.

Table 66. Steel vs Ceramic Bearings, 250 Hour Proof Tests

Steel Ceramic

Average Load Zone Temp (°F) 277 274

Average Manifold Temp (°F) 157 158

Average Ambient Temp (°F) 95 97

After the 250 hour proof tests, the bearings were visually examined. The

steel bearing components showed that discoloration had developed on half of

the inner race path, with a heavy buildup of oxidized oil on the surface not

contacting the roller or the retainer bore. Oxidized oil buildup was also

found on retainer faces and roller ends. The juncture of the spherical race

and inner OD had developed a fine line of spalling from the rollers operating

over the edge similar to that found in preliminary testing but to a lesser
extent. The outer race and rollers also exhibited the discoloration in

corresponding areas to that of the inner race but to a lesser degree.

Microscopic examination of the race load zone surfaces of the steel bearing

revealed that minute metal particles were removed from the contact surfaces in

the form of microspalls, which is an indication of lubrication related dis-

tress.

Visually, the ceramic bearing was in good condition after the 250 hour proof

test. The inner and outer races were stained from the oxidized oil although

not to the extent found on the steel bearing races. Again, a heavy buildup of

oxidized oil was found on the roller ends, retainer faces, and the inner race

OD where no contact was made. Along the roller length, in the contact area,

the ceramic roller OD was lightly stained; however it could be easily removed.
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Lost lubrication testing was also accomplished on the steel and ceramic
bearings. The test was conducted by stabilizing bearing temperature at full
load, shutting off the oil supply, and reducing the radial and axial load to
53%of maximum. Load zone temperature was then monitored. The steel bearing
survived for I minute and 28 seconds while the ceramic bearing survived for 22
minutes. Figure 168 is a plot of load zone temperature vs time.
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Figure 168. No Oil Survivability Test Results

Post test examination of the ceramic bearing showed that the cage had frac-

tured on the outboard flange side, separating in one location. The rollers

had skewed excessively in the pockets as a result of crossbar wear at the

contact areas, causing the rollers to try to roll under the crossbar. This

resulted in a bulge developing circumferentially over three or four rollers,

which eventually failed in tension, rupturing the retainer end rail. The

outer race load zone contained micro pits in the contact area from minute

particles _of metal that were:pulied from the surface. AdjaCent to the contact

+ area, =+the oil t_a£q%ad_remained in the 5earing had oxidized, discoloring the

surface or leaving a hard residue. The inner race was also pitted, stained,

and oxidized similar to the outer. At no time did the bearing seize or lock

up during the test, as no smearing or skidding was observed. The ceramic

rollers were stained and oxidized, but did not show evidence of distress.

-=
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Examination of the steel bearing after the lost oil test showed that the cage

had not failed, although the crossbars were heavily worn from contact with the

rollers during the short test duration. The bore of the retainer was worn

nearly 0.006 inch on one side while the opposite side exhibited minor wear.
This could be attributed to the difference in area of contact between the two

sides with the larger area having the smaller wear. The inner raceway was

dented and pitted, with oxidized remnants of the lubricant present out of the

E
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contact area. The outer and inner races were damagedfrom metal and silver
debris from the retainer wear. The rollers exhibited the same condition as
the inner and outer races, with pitting, denting, and metal adherence to the
surfaces.

Both the steel and ceramic angular contact spherical roller bearings performed
well during the above tests. The ceramic bearing could run with end plays up
to 0.016 inch at full load while the steel could run at 0.008 inch. The
validity of the designs was demonstrated by the 250 hour proof tests even

• under marginal lubrication conditions. Lost lubrication testing was partially
successful and pointed out the problems with existing designs. Cagewear can
be reduced by designing for greater contact area. It is perceived that the
ceramic bearing can be made to last for one hour after loss of lubricant if
cage wear can be reduced.
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CONCLUSIONS

A split path gearbox with a high ratio double helical gear output stage

is 23% lighter, greater than I0 dB quieter, and nearly 4 times more

reliable than the current state-of-the-art transmission in an Army Cargo

Aircraft.

A split torque gearbox characterized by a torque splitting planetary and

a high reduction ratio double helical mesh on the output is lighter and

more reliable than a state-of-the-art gearbox with planetary output stage

but not as light or reliable as a split path gearbox.

An overrunning clutch located on the input of the transmission is signifi-

cantly lighter than an overrunning clutch located at some other point in
the transmission drive train because the torque is lower at the input. A

spring type overrunning clutch is proposed for reduced dynamic high speed

effects.

A derivative of weight with respect to output stage reduction ratio was

found to be 270 pounds for each additional integer of reduction ratio.

This equates to 3.3% weight for each additional integer of ratio or a 10%

weight reduction for an increase in reduction ratio of 3 to i at the

output stage.

Composites used in transmission systems in areas such as housings, main

rotor shafts, quill shafts, support structures, and drive shafts result

in significant weight savings.

Weight savings in the transmission system has an affect on other systems

if the aircraft is resized such that a 23% reduction in transmission

system weight saves 34% if all other aircraft weight savings are included

in transmission weight savings.

ACA Transmission operating cost is reduced by more than $300 per flight

hour from reduced depot maintenance associated with the MTBR improvement

from 997 hours to 3890 hours.

Aircraft fleet life cycle costs are reduced by $1.7 billion as a result

of the weight and reliability improvements.

As a result of the configuration of split path designs, accessories can

be driven directly by available gearing without the need for additional

drives.

Grinding of double helical gears with cubic boron nitride grinding wheels

permits small wheel diameters to be used without sacrifice in grinding

time compared to larger, conventional aluminum oxide wheels, and there-

fore results in designs with smaller shaft lengths between the left and

right hand double helical gears. This leads to direct weight savings.



Fatigue fretting tests were conducted with Pyrowear 53 specimens with and
without thin dense chrome plating. Based on the results obtained, the follow-
ing conclusions are drawn:

ii. There is no improvement or reduction in fretting fatigue allowables
between Pyrowear 53 and 9310 gear materials.

12. There is no improvement or reduction in fretting fatigue allowables
between bare Pyrowear 53 and thin dense chrome plated Pyrowear 53 gear
materials.

Angular contact spherical roller bearings were tested with steel and ceramic
rolling elements. Based on the results obtained, the following conclusions are
drawn:

13. A single angular contact spherical roller bearing can be designed to
carry combined radial and thrust loads and replace the current state-of-
the-art ball/roller bearing combination typically used on the spiral
bevel input section of helicopter gearboxes.

14. Ceramic rolling elements with steel races worked better than steel
rolling elements with steel races in terms of prevention of surface
distress in high speed applications.

15. No oil survivability testing showedthat ceramic rolling element bearings
generated less heat and survived longer than steel bearings (22 minutes
for ceramic vs. 1.5 minutes for steel). With development work on the
bearing cage for the ceramic configuration, survivability can be in-
creased.

The ART 1/2 size gearbox accumulated approximately 323 hours of operation
during the no-load lubrication, gear pattern development, dynamic surveys,
endurance, and overtorque testing. Based on operational experience gained from
these tests, the following conclusions are drawn:

16. Split path gearbox operating temperatures stabilized well within accept-
able limits during all testing. The oil temperature rise was small
throughout the gearbox indicating that churning and windage losses are
low and efficiency is high.

17. Gear teeth were topologically modified during the design phase using
finite element analysis. The initial grinding corrections incorporated
into the original gear manufacturing process produced acceptable gear
tooth patterns evaluated by visual inspection and by analysis of tooth
root strain gage readings. These results demonstrate that topological
tooth profiling, with grinding corrections developed during the design
stage, can lead to reduced development testing.
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18.

19.

20.

The addition of copper and silver plating on several gear teeth permitted
load patterns to be discerned more readily by visual examination during
pattern development.

The pressure produced at the interface between-the elastomeric load
sharing device and spur gear cone seat and between the steel load sharing
device and spur gear cone seat was insufficient to drive the gear in
friction because of a "creep" phenomenon that was produced. Future
designs must have a positive drive.

The elastomeric load sharing device will not meet operational require-
ments in its present form. Although the elastomeric load sharing devices
resulted in excellent load sharing after initial assembly, the properties
of the elastomeric material were affected by temperature cycling eventual-
ly resulting in loss of clamp up and slipping. Someform of temperature
compensation or more resistant material is required in future transmis-
sion applications to perform satisfactorily.

21. Gearbox operation using the steel load sharing devices demonstrated that
acceptable load sharing could also be achieved without any load sharing
device as long as_manufacturing and installati0n tolerances are adequate-
ly controlled.

22. Gear tooth surface degradation (spalling) observed at the end of the 200
hour endurance test was caused by an inadequate EHDoil film thickness.
The root cause of the poor film thickness was the reduced size of the
test gearbox (1/2 size) and was not representative of a full size gear-
box.

23.

24.

25.

Gear tooth surface degradation (scuffing/scoring) experienced during the
overtorque test was caused by a combination of unrepresentatively low EHD
oil film thickness, a misalignment of the pinion shaft bearing bores, and
the approach action associated with the dummygearbox as opposed to the
normal recess action.

A composite housing was installed on the dummygearbox throughout the
endurance and overtorque testing. The dummygearbox oil was not heated
during testing and temperatures stabilized at 120°F or less. The tempera-
ture rise in the dummygearbox with composite housing was approximately
the sameas in the steel housing. Although the low temperatures indicated
good thermal stability, the composite material was not subjected to
typical helicopter gearbox operating temperatures.

The double helical split path configuration was dynamically stable. The
vibration energy associated with the spur gear meshwas muchhigher than
the vibration levels associated with the double helical gear mesh. The

use of elastomeric components reduced the vibration transmitted to the

housings. Gearbox operation was quieter with the elastomers installed

that with the steel load sharing devices.
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26.

27.

28.

29.

The composite gearbox housings experienced higher vibration levels than
the steel gearbox housings.

Transmission error (TE) and housing vibration measurementsproduced good
correlation for the double helical and spur gear meshesas functions of
operating speed and torque. The results demonstrated that the elastomeric
load sharing devices decreased the TE levels measuredat the spur gear
mesh, but did not effect TE at the double helical gear mesh. Additional
analysis of the TE data are required to confirm that the measurement
system provided sufficient resolution and sampling rates to accurately
measure the ARTgearbox TE levels reported herein.

Tooth stresses calculated from strain data, showedvibratory amplitudes
to be within material allowables at 100% load. Changes in speed had
little effect on the gear tooth stresses produced indicating that the ART
gearbox has a dynamic factor of approximately i.

Housing strain levels were extremely low on both the steel and composite
housings and well below allowable limits for each of these materials.
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Appendix A, Results of Related IR&D Efforts

As separate programs, several IR&D efforts were undertaken that were related

to work conducted during the ART program but not specified in the ART program

statement of work. The components discussed below were developed under IR&D

funds and tested in conjunction with the ART 1/2 size gearbox test.

Composite Housing

A composite gearbox housing was designed and fabricated for testing as the

dummy gearbox of the 1/2 size gearbox test facility. The interface between the

internal gearing and bearings of the ART 1/2 size test gearbox, which was

fabricated from steel, was identical in the composite and steel gearbox

housings. During the design phase of the ART program, the 1/2 size gearbox

housing design was conducted as if were made of composite material, since the

full size gearbox was also composite, and then steel was substituted for the

test program. The majority of the tooth deflections in both the spur gear mesh

and the double helical gear mesh were induced by deflections of the shafts,

gear rims, and webs of the internal components rather than by the housing

deflections themselves. This was true for the composite as well as the steel

gearbox. _ ......

The composite housing was incorporated into the build-up of the dummy gearbox

prior to the start of the 200 hour endurance test. The composite housing

assembly consisted of tWO parts. The upper cover was essentially a I inch

thick flat plate. This plate was fabricated from prepreg material and cured in

an autoclave. The plate was then machined flat with the assembly holes com-

pleted and the bearing bores semi-finished. The lower housing was fabricated

as a resin transfer molded (RTM) part. The RTM dies were made by first fabri-

cating a wooden mock up of the housing. Fiberglass splashes were made of the

interior and exterior surfaces of the wooden mock up. The fiberglass splashes

were then used as molds for low melting point Kirksite alloys to make the RTM

dies. Drapeable graphite was then assembled in a quasi-isotropic lay-up at

orientations 0 °, 90 ° , and ±45 ° to achieve the required thickness. The resin,

which was an epoxy compounded with latex rubber, was then injected into the

mold at a controlled temperature and pressure. The latex rubber with epoxy was

used to improve the fracture toughness but results were not encouraging. The

housing was first partly cured in the mold, then removed and finish cured. The

test article was completed by the addition of steel liners. Finally, the upper

and lower housing were assembled and finish machined as a matched set. The

assembly of the 1/2 size gearbox with composite housing is shown in Figure 169

with a photograph of the unassembled housing matched set shown in Figure 170.

The 1/2 size composite housing was designed to withstand the loads by a single

engine input path of a full sized gearbox. It is important to note that an

actual ACA aircraft installation would not impose the unbalanced loads associ-

ated with a single engine input. Loads on the bull gear bearings from the

engines would be balanced for equal powers on each engine since the three

engine inputs are equally spaced in three groups of two pinions each about the

bull gear. In actual applications, some percent of rotor loads would also be

imposed redundantly on the housing with most of the loads being carried by the

truss arrangement. The 1/2 size gearbox represents the worst case in terms of

the resultant bull gear bearing load. and therefore housing strain, since it

has only one unbalanced input even though the rotor loads are absent. Analysis

has shown that less than 5% of rotor loads are reacted by the housing. In the

1/2 size gearbox, the resultant bearing load on the bull gear is in excess of

I0,000 pounds at 100% load.
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Figure 169. 1/2 Size Gearbox With Composite Housing
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Figure 170. UnassemSIed Composite Housing Matched Set
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The composite housing was instrumented to determine the magnitude and direc-

tion of the principle strain at key locations. Allowable housing strain was

4000 microinches per inch at the 100% power condition. A total of I0 strain

rosettes (rectangular type) were applied to the housing with three rosettes

located on the upper plate as shown in. Figure. 171 and seven rosettes located

on the lower housing as shown in Figure 172. Gage locations were selected

using a finite element analysis which predicted where peak strain points were

expected. Strain rosettes were of the following type"
-7

Make Micro-Measurements

Model CEA-03-250UR-350

Gr_d Length 0.250 inch

Range 0-2,000 m_croinch/inch

Accuracy ±5% Full Scale

�.If b.I/__J,_..... _,. -,

k
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flF. ! -.

G ":,,.. I

Figure 171. Composite Housing Strain Gage Locations, Upper Plate
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Figure 172. Composite Housing Strain Gage Locations, Lower Housing
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A strain survey was conducted at each condition identified in Table 67. Strain

data was recorded on magnetic tape using a fourteen channel SABRE 80 tape

deck. Tape speed was set at 30 inches per second to provide a frequency

response of 20 KHz.

Table 67. Housing Strain Survey Test Conditions

Test Input Speed Input Torque

Condition % rpm % in-lbs

I 100% 4933 25% 2070

2 100% 4933 50% 4140

3 100% 4933 75% 6210

4 100% 4933 100% 8280
7

Data reduction was performed using the equations for rectangular rosettes. The

rosette is Shown in Figure 173 for reference.

Axis of maximum

J principal stress

.
IE t

Figure 173. Rectangular Strain Gage Rosette

A summary of the principle strains for the composite housing is presented in

Table 68. Strain levels were low on the composite housing and were below the

allowable limit for this material.
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ROse tie //8

Rosette //9

ROsette #10

Table 68. C°mpos_te

Hous.tng Strain SUrVeyTest

Torqu e Results
Pr%LnelPle Strain

Micr°inch/i n Prine_[pleROsette {11 2: Max i_tzr_

25% M_n_mum Strain

507. 106.4 "Ax_s

75% 198,8 4.6

ROsette #2 100% 295.5 5.2 17.7 o
392.7 5.5 16.6o

25Z 25.3 16.2 °
50Z 95.2 15.0 o
75% 187.4 "30.2

100% 295.6 "71.4 7 6 °
ROsette /13 414.8 "I19.6 10.4=

25% -156.8 II.2 o
502: 224.5 13,0 o
751 252.5 "1.5

100% 368.2 -4.5 "12.4 °
ROsette //4 502.5 -19.2 2.5 o

25% "41.5 6.6 °
50% 14.7 7.2 °
75% 38.3 -3.7

100% 57.5 "18.3 -22.5 o
ROsette //5 81.0 -30.5 -16,0 o

252 "52.0 "20.2

50% 7.4 "21.6 °
75% 26.0 -13.4

ROsette //6 100% 47.8 "17.0 "36.7 °
71.8 "13.8 "27.2°

25% "23,8 "27.1°
507. 24.7 -26.3 °
75% 57.0 -5.7

ROsette //7 100% 92.0 "Ii. 0 -8.6 °
126.6 -15.0 "12.2o

25% "27.6 -18.7 =
50% 24.5 ,18.5 o
757' 36.8 -30.5

100% 56, I "55.8 -39, 8 °

71.6 -90.1 -39.7 °
25% -140.6 -36.7 °
507, 20.0 "37.5 °
75% 23.5 -51,0

100% 20.6 -92.5 "19.6 °

28.5 "149.6 "22.2 °

257' "210, 5 "24.6 °
50Z 47.2 "28.0 o
75% 62, 7 "56.2

I001 87.4 "109.7 "14.2°

119,5 "163.4 -7,2°
257' "225.5 -4.4 °
507' II.2 -2.2 °
757' 33.9 -72.2

I00% 53.6 "153.9 27.9 °

71,9 -201.6 32.4 °

"263.9 34,4o

36,2°



Inductive Debris Honitor (IDH)

The inductive debris monitor (IDM) is an improved chip detector. Current

magnetic chip detectors would benefit from improvement in capture efficiency,

metallic but non-magnetic particle sensing (i.e. brass _, aluminum, magnesium,

and stainless steel), particle size discrimination, and particle rate. The IDM

addresses all of these limitations.

The IDM probe consists of a hollow cylinder of conductive material through the

center of which passes all gearbox oil to the pump. In most cases, the IDM can

be used as a direct replacement for the existing magnetic chip detector probe.

Construction of the probe sensor is simple, in that the sensor is a conductive

tube. The ends of the tube are overlapped and separated by a material having a

high dielectric constant to form an elongated, single turn coil whose separ-

ated, but overlapping edges form a capacitor. Electric leads are attached to

either side of the capacitor in order to supply an alternating current to the

two planes of the capacitor. When an alternating current is passed through the

probe, it acts as a capacitor in a parallel tank circuit. The two major

advantages of this approach are that the resonator has a very high Q (quality)

factor implying that the effective electrical impedance of the resonator is

greatly affected by small perturbations in the characteristic properties of

the fluid flowing through the center of the probe. For a 0.75 inch diameter

probe, this high sensitivity provides reliable detection of metallic particles

with volumes equivalent to that of a 0.010 inch diameter sphere. Actual

particles may be rod or flake shaped. The behavior of the resonator, however,

is only slightly affected by changes in the dielectric constant such as would

be caused by bubbles or entrapped air. For a 0.?5 inch diameter probe, the

noise signal produced by completely filling and emptying the probe with

gearbox oil is approximately 1/9 that of a 0.010 inch diameter magnetic

sphere.

Since all magnetic particles are electrically conductive, they influence the

time varying electromagnetic field generated by the probe and thus the elec-

tric current flowing in the sensor tank circuit. Non-magnetic and magnetic

particles affect the electromagnetic field differently resulting in different

phase shifts in the electric current-in the tank circuit. By observing the

behavior of the sensor circuit, both the size and material characteristic may

be determined.

The sensor circuit output is monitored by a computerized data acquisition

system. Two sensor characteristics, referred to as "R" and "F" are monitored.

The "R" channel is used to detect the size of the particles and the "F"

channel is used to determine if the particle detected is magnetic or non-mag-

netic When the "R" channel exceeds a user set value (corresponding to

particle size), a one second data sample of both channels is saved by the data

acquisition system. The one second record starts before the threshold is

exceeded. Post processing software allows the user to interrogate the file and

determine the number of particles, size of the particles, and weather or not

each is magnetic.
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Figure 174. IDM Sensor Body

Figure 175. IDM Installed on Composite Housing
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During the ART testing, the IDM system was installed on either the test or

dummy gearboxes. These tests were used to adjust and improve the software. A

method of determining the probe characteristics was evaluated for proper

operation along with probe durability. The ART testing demonstrated that

operation of the IDM system was unaffected by entrained air. The lube system

could be independently operated with 9 gpm oil supplied and 25 gpm oil/air

scavenged, and air bubbles and "slugs" of oil were continuously generated

without having an effect on the IDM. The IDM sensor body is shown in Figure

174 while Figure 175 shows the IDM installed on the composite dummy gearbox.

Figure 176 shows the long term trend of the particles accumulated on the dummy

gearbox during the 200 hour endurance test. The dummy gearbox did not experi-

ence any problems during this test. As a comparison, Figure 177 is an example

of the particles accumulated during an engineering evaluation of an aircraft

transmission which was rejected for the presence of metallic particles on the

chip detector.

Acoustic Emission (AE) Accelerometers

Acoustic emission (AE) monitoring as a bearing diagnostic tool, has been

successfully demonstrated on a wide range of mechanical systems that have

included motors, compressors, helicopter drive shafts, and rocket engine

turbopumps. The sensitivity of AE monitoring to bearing health has been used

to provide an earlier warning of bearing degradation compared to traditional

vibration techniques. The objective of using AE monitoring techniques on the

ART program was to determine if AE could be equally successful in monitoring

gear degradation in the high noise environment of a transmission gearbox.

The technique for AE data acquisition, processing, and analysis, is built

around two pieces of hardware; (I) a patented acoustic emission point contact

transducer (PCT), and (2) a digital acoustic acoustic emission system (DAES).

The PCT is a broadband, conical element, piezoelectric transducer that has a

frequency response, flat to within 5 dB, from DC to approximately 1.5 MHz. The

sensors conical shape prevents build-up of standing waves in the tip which

broadens its bandwidth response in the higher frequency range. A dedicated

DAES system was used to record the AE signal during gearbox operations. The

DAES system analog filtered the AE sensor signal in the i00 KHz to I MHz band

range. This frequency range prevented the recording of a continuous record of

the AE signal by either digital or analog methods as is done with conventional

sensors used on gearboxes. The AE test data was, therefore, collected as a

series of snapshots or small time segments of the AE signal by high speed

analog-to-digital (A/D) digitizers. The AE digitizers sampled the analog

signal at 1.25 million times per second, for each of four channels, and placed

the readings in a memory buffer. The cycle was then automatically repeated to

take another snapshot of the signal. The time between snapshot collection of

the AE data depended on the operating state of the gearboxes and the test

program and ranged from a few seconds to 20 minutes.
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The analog speed signal, from an optical trigger, the RMSof the AE signal,
gearbox temperatures, and strain gage outputs were recorded on a second data
acquisition system to provide continuous monitoring and visual quick-look
capacity. The RMScapability of the DAESsystem integrated the high frequency
AE signal to provide a slower time varying measure of the signal energy In
this manner, a continuous record of the AE signal energy could be monitored
and recorded for the entire test run. The AE data acquired during these tests
was compared to traditional monitoring, such as outputs from thermocouples,
strain gages, and accelerometers that were also mounted on the gearboxes The
methodology is still in development
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