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PREFACE

The Workshop on Harmonic Oscillators was held at the College Park
Campus of the University of Maryland on March 25 - 28, 1992. This
Workshop was mostly supported by the Goddard Space Flight Center of
the National Aeronautics and Space Administration.

The harmonic oscillator formalism has been and still is playing an
important role in many branches of physics. This is the simplest
mathematical device which can connect the basic principle of physics
with what we observe in the real world. The oscillator formalism is,
therefore, a very useful language in establishing communications among

(1) The physicists interested in fundamental principles and those
interested in describing what we observe in laboratories.

(2) Researchers in different branches of physics, such as atomic,
nuclear and particle physics, quantum optics, statistical and
thermal physics, foundations of quantum mechanics and quantum
field theory, and group representations for possible future theories.

The Workshop brought together active researchers in harmonic
oscillators in many different fields, and provided the opportunity for them
to learn new ideas and techniques from their colleagues in the fields of
specialization different from their own.

The Second International Workshop on Harmonic Oscillators will be
held in Mexico in 1993. The Principal Organizer for this important
meeting will be Kurt Bernardo Wolf of the Universidad Nacional
Autonoma de Mexico.
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INTRODUCTION

The harmonic oscillator is the basic scientific fanguage for physics. It was Einstein
who predicted the existence of quantized energy levels using the harmonic oscillator
model for the specific head of solids. The role of harmonic oscillators in the
development of quantum mechanics and quantum field theory is well known. Indeed,
because of its mathematical simplicity, the harmonic oscillator model often precedes
new physical theories. It also acts as an approximation in many of the existing
theories.

Among the most respected physicists of our century, Paul A. M. Dirac and
Richard P. Feynman were quite fond of harmonic oscillators. It was Dirac who started
using harmonic oscillators for representing the Lorentz group. it was Feynman who
said that we should try an oscillator formalism, instead of Feynman diagrams, to
understand relativistic bound-state problems. Feynman's path integral formulation of
quantum mechanics is also based on harmonic oscillators. These two physicists have
left a profound influence on what we are doing now.

In spite of its past role, it is important to realize that we do not study harmonic
oscillators to learn the history of physics. Our major concern is the future of physics. Let
us look at one of the cases of what we are doing today. Since the development of
lasers in the late 1950's and early 1960's, the theory of coherent radiation has become
a major branch of modern physics. It is generally agreed that this new theory is more
or less the physics of harmonic oscillators or the study of the Lorentz group using
harmonic oscillators which Dirac pioneered (J. Math. Phys. Vol. 4, page 901, 1963).
Let us look at another example. The question of thermal excitations and the lack of
coherence is of current interest. Here also the basic theoretical tool is the harmonic
oscillator as Feynman noted in his book on statistical mechanics (Benjamin/Cummings,
1972).

In view of the past and present roles of harmonic oscillators in physics, it is fully
justified to develop new oscillator formalisms for possible new physical theories in the
future, even though their immediate physical applications are not clear. This typically
takes the form of constructing representations of groups using harmonic oscillators.
Developing a mathematical formalism before the birth of a new physical theory is the
most sacred role of mathematical physics. The theory of squeezed states of light is a
case in point. It was possible to construct this theory very quickly because all relevant
mathematical techniques were available when its physical idea was conceived. The
harmonic oscillator indeed occupies a very important place in mathematical physics.

The Workshop on Harmonic Oscillators was the first scientific meeting of its kind.
The Workshop was attended by many of the researchers in harmonic oscillators,
including those in atomic, nuclear, and particle physics, quantum optics, statistical
physics, as well as mathematical physics. It was also attended by many students who
are potential developers of new theories. Many interesting papers were presented.



There were many lively informal discussions. However, the Workshop was by no
means a perfect meeting. Many potential participants did not attend the Workshop
because the purpose of the meeting was not clear enough to them. Yet, those who
came to the Workshop have set the tone for future meetings in the same series. ltis the
participants, not the organizers, who decide the success or failure of any given
scientific meeting. Indeed, the participants of the Workshop on Harmonic Oscillators
did very well, and well enough to generate the second meeting in the same series.
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N93-278312
QUONS,

AN INTERPOLATION BETWEEN
BOSE AND FERMI OSCILLATORS

0.W. Greenberg
Center for Theoretical Physics
Department of Physics and Astronomy
University of Maryland
College Park, MD 207{2-4111

Abstract

After a brief mention of Bose and Fermi oscillators and of particles which obey other
types of statistics, including intermediate statistics, parastatistics, paronic statistics, anyon
statistics and infinite statistics, I discuss the statistics of “quons” (pronounced to rhyme
with muons), particles whose annihilation and creation operators obey the g-deformed com-
mutation relation (the quon algebra or g-mutator) which interpolates between fermions and
bosons. I emphasize that the operator for interaction with an external source must be an
effective Bose operator in all cases. To accomplish this for parabose, parafermi and quon
operators, I introduce parabose, parafermi and quon Grassmann numbers, respectively. 1
also discuss interactions of non-relativistic quons, quantization of quon fields with antiparti-
cles, calculation of vacuum matrix elements of relativistic quon fields, demonstration of the
TCP theorem, cluster decomposition, and Wick’s theorem for relativistic quon fields, and
the failure of local commutativity of observables for relativistic quon fields. I conclude with
the bound on the parameter q for electrons due to the Ramberg-Snow experiment.

1 Introduction

[ start by reviewing the (Bose) harmonic oscillator. I want to emphasize that the commutation
relation,

1r]v_ = a;a* ata,- = 6,'J', 7 (1)

[ai’aJ |

and the vacuum condition which characterizes the Fock representation
a;|0) =0 (2)

suffice to calculate all vacuum matrix elements of polynomials in the annihilation and creation
operators. The strategy is to move annihilation operators to the right, picking up terms with a
contraction of an annihilation and a creation operator. When the annihilation operator gets to
the vacuum on the right, it annihilates it. For example,

(Olai,ai, « - - aina}m ‘.- a}?a}1 |0} = &i,jm(0]ai,ai, - - - a,'n_la}m_l .- -a}QaL |0)
+(0]a;, ai, - - a,-"_la;ma,-"a}m_l e aLaL 0). (3)
5
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Contmumg thid 'reduc{on it 1s clear that this vacuum matrix element vanishes, unless the set

{41,42,-- -, 1.} is a permutation of the set {j1,72,*+,jnm} (this includes n = m). In particular, no
relation is needed between two a’s or between two a'’s. As we know, it turns out that
[ai, a5]- = 0 = [a},al]_, (4)

but these relations are redundant in the Fock representation. Also, only the totally symmetric
(one-dimensional) representations of the symmetric (i.e., permutation) group S, occur.
To construct observables in the free theory we can use the number operator, ny, or the transition

operator, ny,
— — .1 = ql 5
Ng = Mgk = QpQg, Ng = a,qy. ( )

The commutation relation,

[nklva:rn]— = 61ma1’ (6)
follows from Eq.(1). The number operator has integer eigenvalues,
ni(a)V[0) = N (a})V0). (7

Using n, and ny we can construct the Hamiltonian,

H= ZEknk, (8)
k

and other observables for the free theory. The Hamiltonian obeys
[H,al]- = ead]. (9)

Analogous formulas of higher degree in the a’s and a'’s give interaction terms.
I want to pay special attention to couplings to external sources in the quon theory; in prepa-
ration for that I write the external Hamiltonian in the Bose case,

Hez't = Z(]:ak + azjk)v (10)
k

where ji is a c-numbers; i.e.,

[jk,a;]_ = [jr,jf]- =0, etc. (11)
This satisfies the commutation relation
[He:ct’a”— =.7l"r (12)

Equations (9) and (12) state that H and H.,, are “effective Bose operators” in the context of a
free theory with an external source. In particular, Eq. (9) and (12) imply

[H, az,1 a,2 a," z € a,1 a,2 a,n (13)

and

t t t t
(Hezty a0y, -~ a) ] Zah“lzal,_ Jl.al.+1 IR (14)

i



so the energy is additive for a system of free particles. The general definition of an effective Bose
operator is that the Hamiltonian density commutes with the field when the points are separated
by a large spacelike distance,

[H(x), ¢(y)]- = 0,[x —y| — oo. (15)

This definition holds for all cases, including quons.

Everything I stated for the Bose harmonic oscillator can be repeated for the Fermi oscillator,
with obvious modifications. The commutation relation Eq. (1) is replaced by the anticommutation
relation;

[a,»,a]t]+ = gia! + dla; = §;; (16)
that, together with the vacuum condition which characterizes the Fock representation,
a;]0) = 0, (17)

again suffices to calculate all vacuum matrix elements of multinomials in the annihilation and
creation operators. For example,

(0'0,‘1(1{2 T a‘na}m ) ]2 ]1 IO) = 51n]m(0|(0'a‘.1 ai? e ain—l a}m-x ) 12 J; IO)
“(0'0:,’, ai? o ain—l a’jma'n a}m_l ’ ]2 Jl |0> (18)

Continuing this reduction, it is clear that this vacuum matrix element vanishes, unless the set
{é1,82,--+,in} is a permutation of the set {ji,72, - -,jm}. In particular, again no relation is
needed between two a’s or between two a'’s. As we know, it turns out that

[aiaaj]+ 0= [a'l’a]]+’ (19)

but these relations again are redundant in the Fock representation. Also, as we know, only the
totally antisymmetric (one-dimensional) representations of the symmetric group occur.

To construct observables in the free theory we again use the number operator, ng, or the
transition operator, ny,

N = Ngpe = a,ta,,, Ny = a,‘:al. (20)
The commutation relation
[, al,)- = imal (21)

follows from the commutation relation Eq.(16). The number operator again has integer eigenval-
ues; now, however, the number of particles in a single quantum state can only be zero or one,
since Eq.(19), which holds in the Fock representation, implies a!* = 0,

nx(a] YV |0) = 8N (aDV]0), NV = 0,1. (22)
Using nx and ny we again can construct the Hamiltonian, |

H=3 eny , (23)
k



and other observables for the free theory. The Hamiltonian obeys
[H,d]]- = e, (24)

Analogous formulas of higher degree in the a’s and a'’s give interaction terms.
[ again pay special attention to couplings to external sources; the external Hamiltonian in the

Fermi case is

Hepr = ;(f:ak +atfu), (25)
where f; is an anticommuting (Grassmann) number,

[fir e = Ufes £i)s = oo ails = [frsal]s = 0. (26)
The external Hamiltonian satisfies the commutation relation,

[Hextaal] = f. (27)

The commutation relations Eq.(24) and Eq.(27) state that H and H.;; are “effective Bose opera-
tors” in the context of a free theory with an external source. In particular, Eq.(24) and Eq.(27)

imply
[H, a,la,2 a, - = zs a,la,2 a," (28)

and

t ot t ot ot * 1 t
[Hezt, all alz e afn]' = Z all a12all—1fllali+l T a’n’ (29)
t

so that the energy is additive for a system of free particles.

Notice that Eq.(2,5,6,8,9,13) for the Bose case are identical to Eq.(17,20,21,23,24,28) for the
Fermi case. Eq.(7,10,12,14) for the Bose case are analogous to Eq.(22,25,27,29) for the Fermi
case. Finally, Eq.(1,3,4,11) for the Bose case and Eq.(16,18,19,26) for the Fermi case differ only

by minus signs.

2 Generalizations of Bose and Fermi Statistics

As far as I know, the first attempt to go beyond Bose and Fermi statistics was made by G. Gentile
[1]. He suggested “intermediate statistics,” in which up to n particles can occupy a given quantum
state. Clearly Fermi statistics is recovered for n = 1 and Bose statistics is recovered in the limit
n — oo. As formulated by Gentile, intermediate statistics is not a proper quantum statistics,
because the condition of having at most n particles in a quantum state is not invariant under
change of basis.

H.S. Green [2] invented a generalization which is invariant under change of basis. I later
dubbed his invention “parastatistics” [3]. Green noticed that the number operator and transition
operator, Eq.(5, 20), have the same form for both bosons and fermions, as do the commutation



relations between the transition operator and the creation and annihilation operators, Eq.(6, 21).
Green generalized the transition operator by writing

ng = (1/2)([a}, allz F pbir), (30)

where the upper signs are for the generalization of bosons (“parabosons”) and the lower signs are
for the generalization of fermions (“parafermions”). Since Eq.(30) is trilinear, two conditions the
states are necessary to fix the Focklike representation: the usual vacuum condition is

ax|0) = 0; (31)
the new condition
axa}|0) = p 6, p integer, (32)

contains the parameter p which is the order of the parastatistics. The Hamiltonian for free particles
obeying parastatistics has the same form, in terms of the number operators, as for Bose and Fermi

statistics,
H =Y exni, where, as usual [H,d]]- = ca). (33)
k
For interactions with an external source, we must introduce para-Grassmann numbers which make

the interaction Hamiltonian an effective Bose operator. This is in analogy with the cases of external
Bose and Fermi sources discussed above. We want

[Hezt,0f] = ¢ (34)
We accomplish this by choosing Hezt = Yok HEFt, with

Hemt = (1/2)([ch, ails + [af, cle), (35)
where the para-Grassmann numbers ¢ and cl obey

(¢, s Enl- = 0, [[cz,al]i,afn]_ = 261m €5, etc., (36)

and the upper (lower) sign is for parabose-Grassmann (parafermi-Grassmann) numbers. The
“etc.” in Eq.(36) means that when some of the ¢’s or c!’s is replaced by an a or an a!, the relation
retains its form, except when the a and a! can contract, in which case the contraction appears on
the right-hand-side.

It is worthwhile to make explicit the fact that in theories with parastatistics states belong to
many-dimensional representations of the symmetric group. This contrasts with the cases of Bose
and Fermi statistics in which only the one dimensional representations occur.

[ emphasize that parastatistics is a perfectly consistent local quantum field theory. The observ-
ables, such as the current, are local provided the proper symmetrization or antisymmetrization is
used; for example,

#(2) = (/25,7 $(2)]- | (37)

for the current of a spin-1/2 field. Further, all norms in a parastatistics theory are positive; there
are no negative probabilities. On the other hand, parastatistics of order p > 1 gives a gross



violation of statistics; for example, for a parafermi theory of order p > 1 each quantum state can
be occupied p times. A precise experiment is not needed to rule out such a gross violation.

Within the last three years two new approaches to particle statistics (in three or more space
dimensions) have been studied in order to provide theories in which the Pauli exclusion principle
(i.e., Fermi statistics) and/or Bose statistics can be violated by a small amount. One of these
approaches uses deformations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] of the trilinear commutation relations
of H.S. Green [2] and Volkov. [14]. (Deformations of algebras and groups, in particular, quantum
groups, are a subject of great interest and activity at present. The extensive literature on this
subject can be traced from [15].) The particles, called “parons,” which obey this type of statistics
have a quantum field theory which is local, but some states of such theories must have negative
squared norms (i.e., there are negative probabilities in the theory). The negative squared norms
first appear in many-particle states: in the model considered in [5] the first negative norm occurs
in the state with Young tableau (3,1). It does not seem that the negative norm states decouple
from those with positive squared norms (as, in contrast, the corresponding states do decouple in
manifestly covariant quantum electrodynamics). Thus theories with parons seem to have a fatal
flaw.

The other approach uses deformations of the bilinear Bose and Fermi commutation relations
(16, 17, 18, 19, 20, 21, 23]. The particles which obey this type of statistics, called "quons,” have
positive-definite squared norms for a range of the deformation parameter, but the observables
of such theories fail to have the desired locality properties. This failure raises questions about
the validity of relativistic quon theories, but, in contrast to the paron theories, does not cause a
problem with non-relativistic quon theories. (As I prove below, the TCP theorem and clustering
hold for free relativistic quon theories, so even relativistic quon theories may be interesting.)

Still other approaches to violations of statistics were given in [24, 25, 26]. An interpolation
between Bose and Fermi statistics using parastatistics of increasing order was studied in [27]; this
also does not give a small violation.

Yet another type of statistics, anyon statistics, has been extensively discussed recently, and
applied to the fractional Hall effect and to high-temperature superconductivity. For anyons, the
transposition of two particles can give any phase,

¥(1,2) = e®9(2,1). (38)

In the form usually considered, anyons only exist in two space dimensions, and are outside the
framework I am considering. I will not discuss them further here; rather I give two relevant

references [29, 30].

3 The Quon Algebra
3.1 The q=0 case

In their general classification of possible particle statistics, Doplicher, Haag and Roberts (31]
included bosons, fermions, parabosons, parafermions and one other case, infinite statistics. in
which all representations of the symmetric group could occur, but did not give an algebra which
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led to this last case. Roger Hegstrom, a chemist at Wake Forest University, suggested averaging
the Bose and Fermi commutation relations to get

aka}‘ = 51;[, akIO) =0. (39)

(Unknown to Hegstrom and me, this algebra had been considered earlier by Cuntz [28].) With
Hegstrom’s permission, I followed up his idea and showed that this algebra gives an example of
infinite statistics. Consider a general scalar product,

(af, ---a} 10),ab sy, -+ abore, 0)): (40)

This vanishes unless n = m and P is the identity, and then it equals one. From this it follows
that one can choose coefficients c(P) to project into states in each irreducible of S, and that the
norm will be positive,

IS e(Plabosy, - abori 102 > 0; (41)
P

thus every representation of S, occurs. Note that there is no relation between two a’s or two a'’s;
as before, the Fock vacuum condition makes such relations unnecessary.
To construct observables, we want a number operator and a transition operator which obey

[nk,alf]_ = 5;‘1(1;, [’I’),M,at ]_ = 5¢ma£. (42)

m

Once Eq.(42) holds, the Hamiltonian and other observables can be constructed in the usual way;
for example,

H= Zeknk, etc. (43)
k
The obvious thing is to try
ne = alak. (44)
Then
[nk,al]- = alara] — afala;. (45)

The first term in Eq.(45) is 5k1a}: as desired; however the second term is extra and must be canceled.
This can be done by adding the term }_, aIaLakat to the term in Eq.(44). This cancels the extra
term, but adds a new extra term, which must be canceled by another term. This procedure yields
an infinite series for the number operator and for the transition operator,

Ny = a{a, + Z azala,at + Z aLag1 ala,atlat2 +... (46)
t t1,t2
As in the Bose case, this infinite series for the transition or number operator defines an unbounded
operator whose domain includes states made by polynomials in the creation operators acting on
the vacuum. (As far as I know, this is the first case in which the number operator, Hamiltonian,
etc. for a free field are of infinite degree.)

11



For nonrelativistic theories, the z-space form of the transition operator is
p(xy) = WUy + [ Evl @) (x)u(y)e()
+ [ @ard (@) (29! (0w )EE)(z) + - (47)
which obeys the nonrelativistic locality requirement

[p1(x;y), ¥t (w)l- = 8(y — w)¥'(x), and p(x;y)[0) = 0. (48)

The apparent nonlocality of this formula associated with the space integrals has no physical
significance. To support this last statement, consider

[qu('r)v ij(y)]— =0, z~y, (49)

where Q = [d°zj°(z). Equation (49) seems to have nonlocality because of the space integral in
the @ factors; however, if

Uu(),0.(¥)]l- =0, z~y, (50)

then Eq.(49) holds, despite the apparent nonlocality. What is relevant is the commutation rela-
tion, not the representation in terms of a space integral. (The apparent nonlocality of quantum
electrodynamics in the Coulomb gauge is another such example.)

In a similar way,

[o2(%,¥; ¥, X'),91(2)]- = 8(x' — 2)v! (x)p1(y,¥') + (¥ — 2)9!(y)pr(x,X). (51)

Then the Hamiltonian of a nonrelativistic theory with two-body interactions has the form

, 1
H=(m)™ [ @29, Vop(x,X)hax + 5 [ EdyV(ix = yDpalx,: bfy, ) (52)

[H @) 8 (@)l = —m) ™V + V(= 2 () - 1 (20)

i<y

+3 [ @V (x -zl (am) ¥ )n (0 x). (53)

Since the second term on the right-hand-side of Eq.(53) vanishes when the equation is applied
to the vacuum, this equation shows that the usual Schrodinger equation holds for the n-particle
system. Thus the usual quantum mechanics is valid, with the sole exception that any permutation
symmetry is allowed for the many-particle system. This construction justifies calculating the
energy levels of (anomalous) atoms with electrons in states which violate the exclusion principle
using the normal Hamiltonian, but allowing anomalous permutation symmetry for the electrons
(32].

In general, an arbitrary many-particle state is in a mixture of inequivalent irreducible repre-
sentations of S,. If O is any observable and ¥ is any state, the cross terms between irreducibles
in the matrix element (¥|O|¥) automatically vanish, since observables keep states inside their
irreducible representation of S,,.

12



3.2 The general quon algebra for —1 < g < 1.
The quon algebra,
axa) — gaax = by, (54)

which is a deformation of the Bose and Fermi algebras and interpolates between these algebras
as ¢ goes from 1 to —1 on the real axis, shares many qualitative features with the special case of
q = 0 just discussed. In particular, the quon algebra also allows all representations of S,. This
algebra, supplemented by the vacuum condition

ax|0) =0, (55)

determines a (Fock-like) representation in a linear vector space. For —1 < ¢ < 1, the squared
norms of all vectors made by limits of polynomials of the creation operators, a;fc, are strictly
positive[19, 20, 21]. Among other things, this means that there are n! linearly independent states
of n particles with distinct quantum numbers, and all representations of the symmetric group
occur. Also, as in the case of ¢ = 0, Eqs.(54,55) allow the calculation of the vacuum to vacuum
matrix element of any polynomial in the a’s and a'’s. As before, no commutation relation between
two a’s or between two a'’s is needed. Further, in this case, no such rule can be imposed on aa or
atal. The relation,

apa; — qaag = 0, (56)

between two a’s which one might guess in analogy with the Bose and Fermi commutation rules
holds only when ¢? = 1; and requires that ¢ = +1 in Eq.(54); i.e., Eq.(56) can hold only in the
Bose and Fermi cases. To see this, interchange & and ! in Eq.(56) and put the result back in the
initial relation. (Commutation relations between two a’s or between two al’s are also not needed
for normal ordering, i.e., to expand a product of a’s and a'’s as a sum of terms in which creation
operators always stand to the left of annihilation operators. Wick’s theorem for quon operators
is similar to the usual Wick’s theorem; the only difference is that the terms acquire powers of g.
I gave the precise algorithm in [33].) As q approaches —1 from above, the more antisymmetric
representations become more heavily weighted and at —1 only the antisymmetric representation
survives. As ¢ approaches 1 from below, the more symmetric representations become more heavily
weighted and at 1 only the symmetric representation survives. Outside the interval [—1, 1], the
squares of some norms become negative.

Now I discuss the construction of observables both without and with an external source.
Without an external source, one again needs a set of number operators n; such that

[nk,aﬂ— = Sia]. (57)

Like the ¢ = 0 case, the expression for nj or ny is an infinite series in creation and annihilation
operators; unlike the ¢ = 0 case, the coefficients are complicated. The first two terms are

—_
it
9 9]

P

nw = ala + (1 —¢%)"! E(GIGZ — gafal)(@a, — qacar) + -+ .
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Here I gave the transition number operator ny for & — [ since this takes no extra effort. The
general formula for the number operator is given in [22] following a conjecture of Zagier [19]. As
before, the Hamiltonian is

H =Y eny, with [H, a]]- = «a]. (59)
k

For an external source, it is crucial to insure that H., is an effective Bose operator. In order to
do this, one must choose the external source to be a quon analog of a Grassmann number, i.e., to

obey

cct — gcick = 0; cral — qafer = 0; apel — gcfay = 0. (60)
Then H.,, must be chosen to cbey
[Heztsa]- = ¢f (61)
For example, for ¢ = 0, the first two terms are
H... = ;(c;ak +alce) + Zk: > al(char + afck)ac + - - (62)
t

For the general case, I give the first two terms of H(f*, subject to

[HiF' al)- = éimet (63)
and hermiticity, (H,:ft)'r = HF,
HE = cla) + ale +(1-¢%) ‘Z atck — gctal)(aia, — qa.a))
t

+ Z (a az - qakat)(qa, — qa.qy) + - (64)

If, instead, we incorrectly choose H..; = ¥ (75ar + a,tjk), where 7 1s a c-number, then the energy
of widely separated states is not additive,

Hezal,al, - al [0) = [ al, - -al, +qal sl ol + - ¢" el al, - jF ]I0) (65)
Although this point is transparent for the case of fermions where powers of negative one replace
powers of ¢ in Eq.(65), it seems to be less clear in the quon case. Because this point was not
recognized, the bound on validity of Bose statistics for photons given in [34] is incorrect.

Again one- and two-body observables can be constructed from p;(x,x) and p2(x1,X2;y2,¥1)-
The formula for n can be translated into a formula for p,, and at least the first non-trivial term
is known for p,. With these, a valid nonrelativistic theory of identical particles with (small)
violations of Fermi of Bose statistics can be formulated [35].

The condition that observables must be effective Bose operators leads to conservation of statis-
tics which states that all interactions must involve an even number of fermions or para-fermions
and an even number of para particles (except for cases in which p para fields can occur when the
order of the parastatistics is p)[36]. I expect that conservation of statistics must also hold for
quons and, in particular, that a single quon cannot couple to normal fields [37]. I plan to discuss
the conservation of statistics for quons in detail elsewhere. I have discussed the simple case of a
single oscillator elsewhere[33], so I will not repeat this discussion here.

To summarize, all irreducible representations of S, have positive (norm)? in this interval.
As ¢ — %1 the more symmetric (antisymmetric) irreducibles occur with higher weight. At the
endpoints, ¢ = %1, only the symmetric (antisymmetric) representation survives.
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4 The quon algebra in the presence of antiparticles

The pattern is established by discussing the spin-zero case. Since

1 d*k

8(2) = gy | e+ ) (66)
43k . <
@) = g | ™ H U, (7

. = k° = Vk? 4+ m?, to preserve charge conjugation symmetry one should supplement the
commutation relation for the b’s and b'’s by

did] — qdldy = 6y, (68)
dib} — gbfdy = 0, (69)

With this choice, the positivity of the norms is preserved in the presence of antiparticles. If,
instead, one chooses the z-space relation,

#(z)8'(y) — ¢8'(y)¢(z) = Flz — y) = vev(lhs) (70)
then one finds the usual quon commutation relation for the 's, but
did! — q7'd]di = bu (71)

for the d’s. Since Eq.(71) gives positive norms only outside |q| < 1, this choice is inconsistent. In
[39, 40] this last choice has been argued to imply breaking of charge conjugation invariance.

It is amusing to note that the TCP theorem and clustering hold, at least for free quon fields,
despite the failure of locality [33].

5 Experiments

In a conference devoted to issues related to harmonic oscillators, it is worthwhile to make some
comments about the experimental relevance of the quon oscillator. The quon oscillator provides
a parametrization of possible small departures from Fermi or Bose statistics. The simplest way
to detect small violations of statistics is to find a state which either Fermi or Bose statistics
would not allow. For Fermi (Bose) statistics, this would be a state in which identical particles are
not totally antisymmetric (symmetric). The path-breaking high-precision experiment of Ramberg
and Snow[41] searches for transitions to a state in which the electrons of the copper atom are
not totally antisymmetric. The failure to detect such transitions (above background) leads to the
following upper bound on violation of the exclusion principle,

1 1 1 -
p2 = 5(1 - B)pa + §ﬂ2ﬂs, §ﬂ2 < 1.7 x 107%, (72)
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p2 is the two-electron density matrix, p,(,) is the antisymmetric (symmetric) two-electron density
matrix. For two electrons in different states p, can be expressed in terms of ¢ of the q-mutator as

1 1
pz=5(1 = q)pa + 5(1 +9)ps, (73)
so the Ramberg Snow bound is
0<(1+4¢)/2<1.Tx107%, (74)

A high-precision experiment to detect or bound violations of the exclusion principle for electrons
in helium is being conducted by D. Kelleher, et al.[42]

I conclude this brief discussion of experimental bounds on small violations of statistics by
remarking that there are three types of such experiments: (1) to detect an accumulation of
particles in anomalous states, (2) to detect transitions to anomalous states and (3) to detect
deviations from the usual statistical properties of many-particle systems. Here and in [8] type
(2) experiments are discussed, because they allow detection of single transitions to anomalous
states. Type (1) experiments require detection of a small concentration of anomalous states in a
macroscopic system; for that reason they are generally less sensitive than type (2) experiments.
I have not analyzed type (3) experiments; however it seems likely that they will fail to provide
high-precision tests for the same reason that type (1) experiments fail: it will be difficult to detect
the modification of the statistical properties of a macroscopic sample due to a small concentration
of anomalous states.

6 Summary

The quon oscillator serves as an interpolation between Fermi and Bose statistics. This interpo-
lation preserves positivity of norms and the non-relativistic form of locality, but fails to allow
local observables in a relativistic theory. Nonetheless, the TCP theorem and clustering hold in
relativistic quon theories. Terms in the Hamiltonian for both self-interacting systems and systems
interacting with an external source must be effective Bose operators in order for the additivity of
the energy for widely separated subsystems to hold. The quon theory provides a parametrization
of possible deviations from Bose or Fermi statistics.
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Abstract

For a general Hamiltonian appropriate to a single canonical degree of freedom, we char-
acterize and define a universal propagator with the property that it correctly evolves the
coherent-state Hilbert space representatives for an arbitrary fiducial vector. The universal
propagator is explicitly constructed for the harmonic oscillator, with a result that differs
from the conventional propagators for this system.

1 Introduction

Canonical coherent states, and the coherent state propagator they engender, have been around
for over three decades.!~3 In essence, their construction is simplicity itself. Let P and @ denote
an irreducible pair of self-adjoint Heisenberg operators satisfying [@, P] = i(h = 1), and let

b, g; 1) = €T e?n)

denote a family of normalized states defined for a fixed fiducial vector |n), (7|n) = 1, and for all
(p,q) € R®. These states are the canonical coherent states and they admit a resolution of unity
in the form

/hv,q;77)(1),q;77|dpal<1/27r =1,

for any |n), when integrated over all phase space.? These states lead to a representation of Hilbert
space H by bounded, continuous functions,

(P, q) = (p, 1 019),

defined for all |¢) € H, that evidently depend on the choice of |}, although that dependence is
often left implicit. An inner product in this representation is afforded by

(Bly) = /di,(p, q)¥n(p, q)dpdg/2r ,

an integral which removes all trace of the fiducial vector [7).
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1.1  Propagators”
The abstract Schrodinger equation 5
1) = Hl),

involving the self-adjoint Hamiltonian X, is formally solved with the aid of the evolution operator
U(t) = exp(—itH), namely o
Id)(tll)) - e—i(t -t )Hl'l,[)(t’)) )

In a coherent-state representation the evolution is effected by an integral kernel
Ky (p", 4", t" 0, g, t) = (0", ¢"smle =My s m)
in the form
’(/Jn (pll’ qll, tl’) _ /IX’W(p", q”’ t”; pl, ql, t’)l/)n(p’, ql’ t')dp’dq’/zﬂ' .

Clearly, K, depends strongly on the fiducial vector as does y,.
Our goal in this paper is to formulate a universal propagator K(p",q",t";p',¢’,t'), a single
function independent of any particular fiducial vector, which, nevertheless, has the property that

1/)’7(1)”’ q”, t”) = /K(p/l, qll, t”; pl, ql’ t’)‘(b,,(p’, ql’ t’)dp’dq’/?ﬂ' (1)

holds just as before for any choice of fiducial vector.
The functions K, and K are qualitatively different as is clear from their behavior as ¢ — ¢’
In particular
]im Kr;(p", qll, t”; pi’ ql, tl) — <pll’ qll; T]!pl, ql’ n) , (2)

t—at!

which clearly retains a strong dependence on the fiducial vector. On the other hand, if (1) is to
hold for any 7, we must require that

lim K(p", qII, t"; pl, ql’ tl) — 27r6(pll _ pl)é‘(ql' _ ql) . (3)

t—t!

Next let us turn our attention to a suitable differential equation satisfied by K, and K. It is
straightforward to see that

.0
(—za—q) (p, ;YY) = (p,g;n|PlY),

(q + ia%) (i) = (p,g;nQY)

hold quite independently of |5). Thus if H = H(P, Q) denotes the Hamiltonian it follows that
Schrodinger’s equation takes the form

2a(pat) = (p.GnH(P.Q()

.0 .0
— H(—Za—q,q + za_p)wﬂ(p!qs t)
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valid for any |7).2 The propagators are also solutions of Schrodinger’s equation so it follows that
. 6 7 A . a , 8 / 7 4!
" ) t = Y —)K ) ,ta yq,t), 4
i (0P, ¢, 1) = H(-ig 1tig) #(pa. 0,4, t) (4)

where K4 denotes either K, or K. What distinguishes which function is under consideration is
the initial condition (at t = t') of the solution, namely, either (2) or (3).

When K, is under consideration, the operators —ié% and ¢ + ig; refer to a single degree of
freedom made irreducible by confining attention to the subspace of L*(R?, dpdq/2r) spanned by
¥n(p, q) for a fixed |n) and for all [¢) € H. This restriction is implicit in K, because as t” — '
the resultant integral kernel (p”,¢";n|p’,¢';n) is a projection operator onto the subspace of an
irreducible representation.

1.2 The Universal Propagator

In contrast to the former case, when the universal propagator K is under consideration the resul-
tant Schrédinger equation (4) is interpreted as one appropriate to two degrees of freedom. In this
view y; = g and y; = p denote two “coordinates”, and one is looking at the irreducible Schrodinger
representation of a special class of two-variable Hamiltonians, ones where the classical Hamiltonian
is restricted to have the form H.(pi,y1 — p2), rather than the most general form H.(p1, p2, 41, Ya2).

In the case of K, and based on the interpretation described above, a standard phase-space path
integral solution may be given for the universal propagator. In particular, and for a sufficiently
wide class of Hamiltonians, it follows that

I((p", gt pl,ql,tl) =M /eif[x;':+kq'—H(k.q—z)]dtDquszDx ]
Note that “z” and “k” are “momenta” conjugate to the “coordinates” “p” and “¢”, and also that
the special form of the Hamiltonian has been used. In the standard phase-space path integral there
is always one more (k, z) pair of integrals compared to the (p, ¢) family, and the (k, z) integrals are
unrestricted. This situation is made explicit in the regularized prescription for the path integral
given, in standard notation, by

I((pll, qII’ t"; pl’ ql’ tl)

Y ‘Ef:o Ty, 4 (Pes1=pO)+k,, 1 (@er1-90)—€eH(k,, 1 (aer1+ae)/2-7,, 1)
13312,,/.../6 e 3 3 }

Leoo

L L
X Hdpgdqgndk,+%dx,+% / (27)?,

=1 {=0

where pr41,q941 = P, 4", Pos g0 = P, ¢’y and where (L + 1)e = (t” —t') is held fixed. Let us first
change the variables z,,1 — 7,1 + (ge+1 + g¢)/2, followed by a second change z,,1 — —Z¢y 4.
The resultant regularized2 path integral reads

K", ¢ t";p', ¢, 1)
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- T i r ol (aes1+ae)(Pes1—pe)th,, 1 (aes1=00)—2,, 1 (Pear—pe)—eH(k,, 1.7, 1))
= l(]_r.1;127r/--'/e 0 +3 +% +3 ek
L—oo
L L
X H dpedqe H dk,+%dx,+% / (2m)?,
=1 =0

or the formal path integral is given by
I((p", qn, t”; pl, qr’ tl) = M / e f{qﬁ-l-kq'—:ﬁ-H(k,z)]dtDquDka : (5)

which is our final expression for the universal propagator in the present case. From this formula

it is clear that the dependence on p” and p’ is always of the form p” — p’, and the dependence on

¢" and ¢’ is always of the form ¢” — ¢’ save for the universal phase factor (¢" + ¢')(p" — p'). In

other words,
I((p”, q//’ t”; pl, ql’ tl) — F(p" _ pl, qn _ q/, ¢ tl)ei%(qll+ql)(pn_pr)

for some function F. Of course, if H depends explicitly on time then F is not simply a function
of the time difference ¢ — t'.

2 Examples of the Universal Propagator

2.1 Vanishing Hamiltonian

Let us evaluate the universal propagator in three soluble examples. The simplest case is that of a
vanishing Hamiltonian which leads to

K(p', "¢, d,t) = M [eflorsi=slitppepip,
= N [ vs(4}6(5) DpDg
— 27r6(p”_pl)6(qll_ql)’

where the normalization follows from the initial condition. Evidently this is the correct result.

2.2 Free Particle
The next case is the free particle where H(k,z) = k?/2m. In this event
K@ ¢" ;0\ ¢,t) = M / ¢ [ ap+ki=zp=k [2m)dt DD DE Dy
= N/eif(qi+mq'2/2)df5{z',}'pp'pq

2 : " ! ” r
= 22" — p)eimla a2t

it —t)
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2.3 Harmonic Oscillator

The last case we consider is the harmonic oscillator where H(k, z) = (k* + w?z?)/2. Now
K(p”, q"’ t’l; p’, q” tl)
= M/e-’f[qzi+ké—rxi—(k’+w’z’)/Zldt'DquDk'Dx

N / e [913+(q'2+152/w2)/2]dtDp,Dq

= (20) 'csc(wT/2) exp (i {%(q" +¢)p" - p)+ icot(wT/iZ) [%(P" -p) +w(¢"~ ‘1’)2] })

(6)

where T' = t" — t'. Observe that this result is rather different from conventional propagators for
harmonic oscillator Hamiltonians. Indeed, (6) is more like the propagator for a two-dimensional
free particle in a uniform magnetic field.* This result also applies even when w — iw, or with a
suitable limit, even when w — 0 leading to the free particle solution.

3 Propagation with the Universal Propagator

In order to check our results for the universal propagator let us put them to the test. For ease of
computation we choose as the initial state for our propagation the coherent-state overlap function

(r'sdsnlp, ¢ m),

and additionally we choose the fiducial vector |n) to be the ground state of an oscillator with
frequency 2 for which (7|Q|n) = 0 = (n|P|n). In that case the initial state reads

(P ¢t) = (P, smlp.gim)
= e (i{50 + P — ) - 1070 — 2P + 20 - 91}

3.1 Free Particle

For the free particle case we need to compute (T = t" <~ ¢)

\/% Jexw {GmT7a = 0 + 56"+ Dl = 0) = 107G — 9 + 0~ 011} e

which is readily found to be [p = (p” + p)/2,7=(¢"+ ¢)/2,p* =p" — p,¢" = ¢" — ¢
zl)r](p”, ql” t”)

L VA @ T TR s omeg) gt O(mg TR |
T Jmriorz T\2 (mii T 07 A+ TR
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This result agrees with one obtained elsewhere® thereby establishing its validity.
In addition, as 2 — oo or § — 0, Eq. (7), apart from a suitable scale factor, yields the result
in the sharp q or sharp p representation, respectively.®® In particular, consider

¢(q’l’ t”) — (]I]—’rg 2 [1/)', /” I/, "
— [T iB(e"-q)?
27rzT ’

which is the appropriate Schrodinger representation solution for the free particle. Likewise, con-
sider

S0 =
= ‘5_2 wmp'i-ip'g

= lim
ﬂ—002\/7(
2
= §(p" —pletm,

which is the proper answer in momentum space for the free particle.

3.2 Harmonic Oscillator
Finally, let us consider the time evolution for the harmonic oscillator as given by
o\ - . 1 13 ' 14 U 1 1 4 / " 7
(ri)lesc(wT/2) [ exp (i {5(a"+ )0 = p) + 3 eotwT/2) [0 - #) +le” - 47]})
1, 1. ._ / ry 1
x  exp{iz(0 + )¢ — ) - {107 — p)? + Q¢ - 0)7]} dilde',
which is evaluated as [s = sin(wT/2), ¢ = cos(wT/2)].
"oy -1 - w?s? = w?c?
Pa(p",q",t") = C(T) 2exp (NIP i r i TP m)
wN¥sc (47 ~2,2
4(%c? + w?s?) )

 oxp | — Qep* + 2wsg)? Quw?(eq* — 2w 1sp)?
P 4(0%c% 4+ w2s?) 4(w?c? + N%s2) ’

twsc

-2
X exp [—4(w2c2 T 4P

_ QZq-‘Z) -

(8)

where

dr7w 2N .
C(T)—cosz+25(6+;)smwT.

As in the free particle case, we can obtain the sharp ¢ propagator by the same kind of limit,

namely
nogn — ” II
v(g"t") = &L’%Lz\/ LN

"2 "
B V?ﬂ'zsmwT p{QsmwT [cosz(q +4%) -2 q]} )
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which, of course, is the standard result. Likewise, the sharp p propagator is given by
IE( i t”) = hm l_l__d) (P” qll tu)e_,'(p"qn_pq)
P ) \/7_rﬁ \P»q >

1 { i "2 2 "
———exp{ ——— |coswT + —-2p'p
V2riwsinwT P 2wsinwT [ (p P’) ] ’
which, again, is the standard result.
We may also observe that the harmonic oscillator evolution simplifies considerably when = w.

In that case!
"oy 'l_ "_n 1 " 17 _ 1 4 2 Yoo 2
bo(p"q",t") = exp | =(¢"P" — qp) + 5(a"Pr — P"97) —(p" —pr)’ — —(¢" — 1)’}
2 2 4w 4
where

gr = gqcos(wT)+w ' psin(wT),
pr = pcos(wT)— wgsin(wT),

evolution equations that are seen to follow the classical solution.

3.3 Generalization

Although we have only shown that a limited set of fiducial vectors are correctly propagated by the
universal propagator, it should be fairly clear that the stated properties of the universal propagator
hold true. Indeed, the general case may be discussed by considering as initial condition

(B, @ nle "9 PIp,gin) = e (P + 5,4 +&nlp,gin)
= =MD (g gnlp—F,q — Gim)

for just a single |n), say a Gaussian with @ = 1. Then a suitable superposition over p,§ leads
to any fiducial vector of interest, while a second and independent suitable superposition over p, q
leads to any initial state [¢) of interest.

4 Classical Limit

Although the universal propagator has been derived by identifying the relevant Schrodinger equa-
tion as one for two degrees of freedom, it should nevertheless be true that the classical limit refers
to a single degree of freedom. This is possible, in the present case, because of the limited form of
the quantum or classical Hamiltonian. ~ _ _

Recall, under standard assumptions, that the classical action for a conventional coherent state
path integral reads, in the limit & — 0, as

1= [Ipd - Hp @)t
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Extremal variation of this expression holding the end points fixed leads to the usual Hamiltonian
equations of motion,

g = O0H(p,q)/0p,
p = —0H(p,q)/0q,

appropriate to a single degree of freedom. Let us denote a generic solution of these equations by

q.(t) and p.(t).
Before proceeding it is important to reexamine the “standard assumptions” that lead to this
result. For finite & the expression that represents the classical Hamiltonian in a coherent state

path integral is traditionally given by

H(p,q) = (p,¢;nH(P,Q)lp,q;7n)
= (0[H(P+p,Q +q)n).

Normally, one restricts |7) so that (n|@Q|n) = 0 = (n|P|p), and (nl@*n) — 0 and (n|P?n) — 0 as
k — 0. In this case
lim H(p,q) = H(p,q).

However, in the present paper we want to deal with more general fiducial vectors |n) such that
ml@ln) = g,
(lPln) = p,

are arbitrary real variables. We still insist on vanishing dispersion as ki — 0, namely, that

(@ —,)*ln) — 0,
(l(P = py)*In) — 0,

as i — 0. This more general situation leads to the result
lim H(p, q) = H(p + ps, ¢ + gn)

as the representative of the classical Hamiltonian.
In this more general case the classical action appropriate to the ccherent state path integral
becomes
I= /[(p+pn)d — P — H(p+ pn, g+ g9)]dt.

In this expression p = p(t) and ¢ = ¢(t), while p, and ¢, are time-independent constants. The term
J(Pnd — q,p)dt = py(q” — ¢') — qu(p” — ) is a pure surface term and will not affect the equations
of motion; it could be eliminated simply by a phase change of the coherent states. Extremal
variation leads to the equations of motion

g = OH(p+p,q9+4q,)/0p
p = —0M(p+pnq+4,)/9q,
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which have as their solutions

‘I(t) = (Ic(t)—qrn
p(t) = pe(t)—pn,

where ¢.(t) and p.(t) denote a generic solution of Hamilton’s equations when ¢, = p, = 0, as
discussed above.

Finally, we note that although the dispersion of |7) vanishes as & — 0, the generally nonva-
nishing values of ¢, and p, are vestiges of the coherent-state representation induced by |n) that
remain even after h — 0.

4.1 Classical Limit of the Universal Propagator

In the case of the universal propagator the expression that serves as the classical action is identified
as [cf. (5)]
1= [lab+ki—op - H(k, D)t 9

Extremal variation of this expression holding the end points fixed leads to the set of equations

¢ = %,

p = k,

g = OH(k,z)/0k,
p = —0H(k,z)/0z.

Consequently
i = OH(k,z)/0k,
E = —0H(k,z)/0z,

which show that (k,z) satisfy exactly the same equations of motion as do (pe, qc) in the usual
classical theory. Thus we may identify the solution k(t),z(t) with p.(t),qc(t). In addition, we
have

g(t) = g(t) —cq,
p(t) = p(t)—cp,

where ¢, and ¢, denote two arbitrary integration constants. Among all possible values of ¢, and
¢, are those that coincide with ¢, and p, for a general [n).

Thus we find that the set of solutions of the universal classical equations of motion appropriate
to the universal propagator includes every possible solution of the classical equations of motion
appropriate to the most general coherent-state propagator (with |n) having vanishing dispersion
as b — 0). Not only does the quantum dynamics (universal propagator) correctly evolve the state
vectors in a canonical coherent-state representation for a general |7), but the classical dynamics
(universal classical equations of motion) correctly evolves the classical phase space points accord-
ing to the coherent-state induced classical equations imprinted with arbitrary values of the only
remnant of the fiducial vector after & — 0, namely its average coordinate and momentum values.
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5 Extension to Other Coherent States

We observe that the procedure to introduce a Schrédinger equation and a path integral solution
for the universal propagator applies for other sets of coherent states, such as the spin coherent
states, the affine [or SU(1,1)] coherent states, etc.® In each of these cases it becomes possible to
introduce an appropriate universal propagator just by following the procedure we have given for
the canonical coherent state case.
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Abstract

We use this simple example to show how the formalism of Moyal works when it is applied
to systems of identical particles. The symmetric and antisymmetric Moyal propagators are
evaluated for this case; from them, the correct energy levels of energy are obtained, as well
as the Wigner functions for the symmetric and antisymmetric states of the two identical
particle system. Finally, the solution of the Bloch equation is straightforwardly obtained
from the expressions of the Moyal propagators.

1 Phase-space Q M formalism

The original ideas of this approach to Q M are due to Weyl [1], Wigner [2] and Moyal [3]. States
and observables are no longer operators on a Hilbert space but functions on an adequate phase
space. The Weyl mapping relates both formalisms: given a function f defined over the phase
space R®", the corresponding operator Fis given by

F = Wr(f) = (27('1h)n R2n

f(u)M(u)du;  u=(q,p). (1)

Reciprocally, given an operator A the associated function in the phase space is
fi(u) = tr {All(u)} = W™ (4). (2)

As we can see, a central role is played by the “Grossman-Royer” operators [4, 5]:

[[I(q,p)¥](n) = 2" exp [?f;— p(n — q)] ¥(2q — n). (3)

10n leave of absence, Departamento de Fisica Tedrica, Universidad de Valladolid, Spain.
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The twisted product of two functions is defined as the non-commutative operation that corre-
sponds to the product of operators:

(f xg)(u) = W (W(f)W(g))

- (7-(-}’:)2n Rmf(")g(w)exp[%(UJV+VJW+WJU) dv dw, (4)

0 I
J:(—IO)’ )

being I the n-dimensional identity matrix.

In the Schrodinger representation of quantum mechanics, the information about dynamics
is contained in the evolution operator U/(¢). Its counterpart in this formalism is the “Moyal
propagator”, defined as

i

- -~ z
= visa L

where the matrix J is simply

Z(u,t) = W (U(1)). (6)
It verifies Schrédinger equation: o=
Zhﬁ =H x=. (7)

The Fourier transform of this function with respect to ¢ gives the spectral projections parametrized
by E:
1 .
D(u, B) = o [ Z(u,t) e . 8
(wE) = s [ S(u1)e (8)
If the Hamiltonian is time independent, the support on E of T’ coincides with the spectrum of

H [6]. If E, belongs to the discrete spectrum of H, I'(u, Ey) is, but for a constant factor, the
Wigner function of the orthogonal projector into the proper subspace E, [6]:

Welap) = oW (1600]) = o [ ™Mot (at y/200(a—-y/2) dy. (9)

1 1
(27h)" (2zh)n

2 Phase-space Q M formalism for identical particles

In the standard formalism of quantum mechanics, to deal with a system of N identical particles,
we introduce a superselection rule: the space of physical states i1s a closed subspace of the initial
Hilbert space. The Hilbert space is splitted [7]

H=H+®H_@Hwa (10)

where H, is the Hilbert space of the wave functions symmetric under the exchange of any two
particles and H_ the Hilbert space of the antisymmetric functions. The functions in H,, have no
symmetry of this kind. The orthogonal projectors are given by

1

P+:]_VT

1 E : r{o
P0'7 P—: N' (_1)()P07 (11)
o€Py *7 " o€PyN
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where

(Po) (1, .o T0) = Y(To(r)s- -+ Ta(N))- (12)

for any o in the group Py of permutations of V elements; x(c) is the parity of o.
If B is either an observable or an state in H, the corresponding operators for a system of N

fermions or bosons are:

P_.BP. and P,BP,. (13)
If B is invariant under the exchange of particles, we have
P;BPy = BP, = P, B. (14)

We use the Weyl transformation to translate these ideas into the language of phase space.
Therefore, the function for an state or observable when we consider N bosons or fermions is

WY (PyBPy) = W (Py) x WI(B) x W™(Py). (15)

Due to the fact that the Weyl map is linear, all we need is the function for any permutation
o. As o can be written as the product of cyclic permutations with no common elements (8], it
is enough to compute the function corresponding to such a cycle. If we consider a general cycle
o=1(1,2,3,..., M) we get:

p
G o= aM Mexp ! -2 S (1) udwp, M odd; (16)
hk:l;l)k
~ M-1 n 2i il k+1 -
g = (2 7h)"6(u; —up + ... —upy)expd —= > (=) uwJup, M even. (17)
k=1;i>k

As an example, for a two cycle that exchanges the particles 7 and j we have:
Gi;(ur,...,uy) = &ij(ui,u;) = (2rh)" 8(u; — u;), (18)
and it can be checked that
(Gi; x pxd5) (. . ougy ) = p(cug, a0y, (19)

The functions corresponding to the orthogonal projectors for a system of two onedimensional
particles are

p+(ug,up) = %(1 + 27k 6(u, — uy)), (20)

p-(uy,uz) = %(1 — 2rh é(u; — uy)). (21)
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3 Two onedimensional identical particles under an ex-
ternal oscillatory potential

Along the present section, we intend to presenting an example of particular interest in order to
illustrate the preceeding discussion. We shall study the behavior of a two onedimensional particle
system subjected to oscillatory forces of the same frequency. If we do not take into account the
identity of the particles, the Hamiltonian will be simply:

2

H(ur,02) = H(w) + H(w) = 55+ 23) + To (g} + ). (22)

2

The corresponding Moyal propagator has been already evaluated [6], and is:

—_ - — 1 2t wt
=(u1,03) = Z(w)Z(w) = —orexp {—E(H(ul) + H(u)) tan 7} . (23)

2

Let us now introduce the statistics. As H(u;,u;) is invariant under permutations of the two
particles, the Hamiltonian for our system of two identical particles is:

é{u; — uy) n mw? §(u; — U'_)))}.
2m(q — q2)? 2 (p—p2)?))
(24)

We see that, after symmetrization or antisymmetrization, the Hamiltonian on phase space of
our system is not longer (22) but (24). Equation (24) includes (22) plus an extra term. From this
term results an extra potential, due to the introduction of the statistics, which has a quite different
action depending whether the particles are fermions or bosons. In the first case, this potential is
preceeded by a plus sign and, therefore, it is equivalent to a delta barrier preventing that ¢, = ¢,
and p; = p;. This already suggests that both particles cannot remain in the same state and,
hence, that they fulfill the Pauli principle. This idea will be confirmed by our calculations for the
lowest energy levels. On the contrary, if the particles are bosons the extra term has a minus sign
and, consequently, it represents the apparition of a delta well. This delta well would rather favor
the presence of particles in the same quantum state. In a clear opposition to the case of fermions,
no exclusion principle can exist here.

The symmetrized Moyal propagator is obtained in a similar way:

Hyi(uy,u;) = (H x pi)(up,up) = ;{ () + H(ug) ¥ 27rh3(

— 1 1 —2i(H{(u;) + H(u wt
Ze(up,u) = 5{(:052% ex ( L ;i) (uz)) tan —2->
' exp{h;H (u; + u;) tan %i} exp{ﬁH(ul - uy) t“"}
:t(—l) ot ot . 25)
cos % sin %

Comparing with (23) we see that there is also an extra term due to the statistics.
The spectral projections are obtained from (8) and (25); in this case we obtain

Fi(uy,ug, E) = 2e ~2(H(w)+H(uz)) /e Z *6(E - hw(k + 1))
k=0

u u;) 4 H (uy) en - (2H(u;+uy) 2H (u; —uy)
Rl e (1 ) B L
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From here, the well know energy levels are obtained for the fermionic and bosonic cases. Let us
notice the coefficient of §( E — Aw), that vanishes for fermions but not for bosons.

We can evaluate the Wigner functions corresponding to states of two particles, in states ¢ and
j. Let us write those functions as W}, the corresponding to the antisymmetric state, and W}, the
associated to the symmetric state. We then have:

Dy(un,us B) = (27h)2 Wigla, p) 8 (E — hw) + Wii(q,p) 6 (E — 2he)
+ (Wi (a,p) + Wen(a,p) 6(E = 3hw) +--],  (27)
I_(uuz, B) = (27h)2 Wi(q,p)§ (E — 2hw) + Wiy(q,p) 6 (E — 3hw) +--].  (28)

The coefficients of the § are the Wigner functions of the orthogonal projector on the corresponding
eigenspaces.

To finish, let us solve the Bloch equation, that is, let us find the Wigner function corresponding
to the density matrix of the canonical ensemble for the system we are considering. Bloch equation
reads simply:

%=-—HXQ=—QXH, B =1/kT, (29)
that is, it is Schrodinger’s equation with the change t — —:h 3.
But, as we already know the form of the Moyal propagator, we can write inmediately the

solution for Q(uy,u;, 3) by making the change ¢ — —iAf in Z4(uy, uy, t). We get:

1 1 —2(H(u;) + H(u hw
Q4 (uy,uy 8) E{m exp( (H( lh)w (u2)) tanh 25) (30)
2
N exp {;TI,H(m + uz) tanh h—“z’é} exp {;—:H(ul — u;) coth %’ﬁ} 31)
cosh h—‘;,’ﬁ sinh h_a;é :

After integration of Q(u,,uz, 3) over the phase space, we get

exp(+hwp/2)

8 cosh(hwp3/2) sinh?(hwf3/2) (32)

Z:(B) =

From this partition function, we can obtain the thermodynamical quantities, for example the
internal energy, the free energy and the entropy

Es(8) = h;" {tanh h“z’ﬂ + 2coth #} ¥ -é—, (33)
Fi(p) = —ﬁ—{log [cosh hTﬂ} + 2log [smh %} +lo gS} h;), (34)

S:(B) =k {hwﬂ [tanh h;ﬂ + 2 coth #] —1In {cosh %] —2In [sinh w] —In 8} . (35)

4

Notice that the entropy is the same in both cases (bosonic and fermionic).
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Abstract

Wave packet motions of a single electron in harmonic potentials or a magnetic field
are obtained analytically. The phase of the wave function which depends on both time
and space is also presented explicitly. The probability density of the electron changes
its width and central position periodically. These results are visualized using computer
animation techniques.

1 Introduction

We investigate a time evolution of the electron wave packet through analytical methods. The
time evolutions of restricted initial wave packets were obtained [1}-[3]. Here, we consider a
general initial wave packet and obtain a classical harmonic oscillation of the center of mass of
the probability density and an oscillation of its variance. We have also obtained the analytic
form of the phase of the wave packet.

2 One-dimensional harmonic potential

We consider the Schrédinger equation for the one-dimensional harmonic potential

., 0 h 8° k ,
Y= Tamas Y2 W
The stationary solution is
. 1
(pn(‘% t) = un(z) exp(——zw(n + E)t)) (2)
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o=

where w = \/g and u,,(:z:) is expressed using the Hermite polynominal H,(z)
un(z) = N, H,(az) exp(-—%agzz) (3)

with o = Y/ 'r’:" and the normalization factor N,(z) = J Zo
Next, we shall expand an initial wave function by these functions and trace its time evolution.
Hereafter, the unit length o = 1 is used. Without loss of generality, we choose the initial wave

packet as
1 _ )2 2
¥(z,0) =/ — exp(—($4a;) )eXp(-Z‘fal—z-), (4)

where z is a complex number 2 = z; + iz;. We shall expand this wave packet in terms of the
stationary solutions

= iC’nun(x). (5)

We calculate a expansion coefficient C,, with the help of the generating function of the Hermite
polynominal and obtain the following expression.

a -
\’ 4on! 22 [2] ié::) (]+201 )n m

(6)

e+ 209 P 1 20%) e ngo mi(n — 2m)!

Thus we obtain the time evolution of the wave packet by the following infinite series

40 z? z3 z? iwt
Vet = J Va2 PRz T en ey =)
00 exp(—iw [:] i 50’2 m 1+22z . n—2m
% ngo Hn(fl‘)( p(2 t) )n mzz:o ( +n¢:'()n E‘ 27;)? (7)

When o2 equa]s 2, this summation is evaluated easily.

22 22 2 iwt z? , ,
Y(z,t) = \ﬁexp(——- —5 T )exp(——T) exp(——4— exp(—2iwt) + zz exp(—iwt)).  (8)
The center of mass of the probability density of the wave packet oscillates sinusoidally. On the
other hand, the variance of the probability density is constant during the motion.

When the variance o2 is not 1, we shall eliminate the time dependent phase factor in eq.(7)
by the following transformatlons

= exp(—2iwt) = ——, (9)

A — (10)
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From eqs.(9) and (10) we obtain

40% + i(1 — 40 sin(2wt))

§=108p+16 = 2((1 + 40%) + (1 — 40%) cos(2wt))’

2(zo cos(wt) + 22y0% sin(wt)) + 2i(z; cos(wt) — 2200° sin(wt))
(14 40*) + (1 — 40*) cos(2uwt) '

Inserting these values into the expression (7), we have

w = wp + twy =

40 22 22 z? iwt
= | ——oomo-o-""— - _Z =
1 B

n e 3

* L (@) 2 T ) (13)

Comparing this and the expression (7) at ¢ = 0, we see that this is also the expansion formula
of a Gaussian wave packet. After a straight forward but lengthy calculation we obtain

_ : ' v (z — w)? w}
P(z,t) = exp(iy) mexp(———%—)exp(—gg)a (14)

where exp(#y) is a phase factor which depends only on time

tan(wt)
202

_ —(22 — 2)sin(2uwt) + 4z0210%(cos(2wt) = 1) 1 arctan(
2(cos(2wt)(1 — 40*) + 1+ 40*)

)- (15)

N tzdat+e? v 2ot 423
The center of mass of the wave packet oscillates sinusoidally between — 70 % and ¥ — iy

202
The variance of the probability density changes periodically in the range between ;1,7 and o2
( 0® > 1) or between ¢® and 37 ( 0% < 3). The period of its change is half of that of the

oscillatory motion of the center of mass[5]. The motion of the probability density function is
presented in FIG. 1.

08¢
0.6
z
H %
2041 z
z |
8o =
0
X—AXIS
{a) (b}
FIG. 1. The motion of the probability density function. Here, we choose the
variance of the probability density of the initial wave packet as i-. (a) bird’s-eye

view. (b) contour line.
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3 Two-dimensional Harmonic Potential
Next, we consider the two dimensional Schrédinger equation for an isotropic harmonic potential

h2V2 kZ 2 2
o+ (=* +y°)
2m 2

.0
it = - v. (16)

We choose the initial wave packet as
P(z,y,0) = N exp(—€(z —20)* +ikao(z — To) —1(y—y0)” +ikyo(y—yo) + Az —Z0)(y —0)), (17)
where £, 1 and A are complex constants,
E=&+1i&, n=mtim, A=lotiky, (18)
which satisfy the following inequalities
£>0, m>0, 46— A5 >0, (19)

and N is a normalization constant
\/ 4&on0 — )\8
N=y\N"—7TT"" (20)

Using the same techniques and procedure in the one-dimensional case, we obtain the time
evolution of the wave packet in terms of an infinite series.

$z1200) = linls) 3 Conon(e) expl—im + 1)), (2)

The expansion coefficients C,, , are also calculated explicitly.
For an uncorrelated initial condition

4&0m0

Y(z,y,0) = exp(—£(z — 20)? + thso(z — 7o) — (¥ — ¥0)® + tkyo(y — %)),  (22)

we can evaluate the infinite series

b 1 (:r - ~"’t)2 (y - yt)2 . .
(=9, ) V 2MO Tyt exp( 402, 403, ) ex] (Zk“x zky,y)

(1= 40)sin(2ut + 27, )(z —7)* | (1-— 405) sin(2wt + 2, )(y — yt)z)

x exp(t

1

160202, 160305,
ks ks 1 t t )
X exp(—z ;xt -1 (;2:0 - 25 a[Ctan(in_(L:_)) + 191’)
k k t t
x exp(—i y;y' _ ,'_é'g_y". - 25 arctan( a;c(:;j )) + i6,), (23)

y
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where

a (1- 48 + D)o 24
TT(—16(68 + €9 + 4(& — €1)) cos? () + (1 - 4(&8 — &) sin® (%)
0? = (1 — 4(n5 + 7))o (25)
Y (=16(nd + 1) + 4(nd — m3)) cos*(v,) + (1 = 4(ng — 7)) sin*(,)
46 1 4m
- = —arctan(———=——-) , <, = —arctan , 26
== (1—4(§3+§§)) Y2 (1—4(n§+n?)) (26)
s sl ) b aotos(wit0,) 5 sint(ut + %) + 4o} cos’(wt + %)
Ozt = y Oy = ) (27)
402 y 402
Here 8, and 6, are time independent phase factors
(1 — 40})sin(2y;) , 1 tan(y;)
8, = —(~—— z = arctan( 22y 28
(4(511,[2(7:) + 40: COS2('YI)) + El)zo + 2 arc an( 203 ) ( )
(1 —40))sin(2+,) 1 tan(vy,)
8, = — ! S+ - —f, 29
y (4(sin2('yy) + 403 COS2(’Yy)) + 771)1/0 + 2 arCtan( 203 ) ( )
We obtain the explicit time dependence of the following parameters
z¢ = zo cos(wt) + kyosin(wt) , y¢ = yo cos(wt) + kyo sin(wt), (30)
kst = kyocos(wt) — zosin(wt) , ky = kyo cos(wt) — yo sin(wt) . (31)

The trajectory of the center of mass of the probability density function is an elliptic motion
around the origin with an angular frequency w.
4 Uniform magnetic field

The Schrédinger equation for a single electron in a uniform magnetic field perpendicular to the
two dimensional flat plane is

0 1 eAd
h—t) = —(—1 )2 32
ihop = =—(=ihV + Z2)y, (32)
where the vector potential A in Landau gauge is
A = (-By,0) (33)
We separate a special solution of the wave equation as

¥(z,y,t) = exp(ikz)f(k,y,t) (34)

The wave equation for f(k,y,t) becomes

ih3ef (k) = 3=(= 505 + 0y = DB o, 1) (35)
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where

a = —C_f:l- ' (36)

This is the one dimensional Schrédinger equation for the harmonic potential centered at y =
k/a. Thus above techniques and procedures can be applied in order to obtain the time evolution
of the wave packet [6]. We choose the initial wave packet eq.(17). The comlete descriptions
are presented in the literatutre [6]. The major difference between two dimensional isotropic
harmonic potential and magnetic field is the period of the change of the variance. The former
is the half of the latter. This fact is also interpreted by the pass integration technique [6], [8].
For the following initial condition
E=n, A=s. (37)

the shape of the contour lines of the probability density function remains circular during the

motion.
For the following initial condition
1 i
E =n= Z y A= 5)
the shape of the probability density remains unchanged.

(38)

5 Conclusion

Using a frame buffer NVS2000 and video recorder BVW-75, we have made CG animations
which can give us an intuitive understanding of the wave packet motions.

The potentials are simple but due to the quantum mecanical property the analytic form of
the wave packet motions are very complicated.
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Abstract

Operator angle-action variables are studied in the frame of the SU(2) algebra, and their
eigenstates and coherent states are discussed. The quantum mechanical addition of action-
angle variables is shown to lead to a novel non commutative Hopf algebra. The group
contraction is used to make the connection with the harmonic oscillator.

1 Introduction

Action-angle variables in quantum mechanics one known to lack, in the operator level, some of
properties of their classical analogues [1,2]. Especially the exponential phase operators for the
harmonic oscillator, occuring in the polar decomposition of the bosonic creation and annihilation
operators (an operator analogon of the polar decomposition of a complex number), lack the unitary
and satify the weaker condition of one side-unitary or isometry operator. Based on the mathemat-
ical fact that, unlike in finite dimensional Hilbert spaces as the Fock space of harmonic oscillator,
in finite spaces an isometry is equivalent to a unitary operator, we have in recent works, suggested
a group theoretical construction of a unitary phase operator by introducing action-angle variables
for the SU(2) algebra and going over to their oscillator counterparts via the Inoni-Wigner method
of group contraction [3-6]. In this report we will briefly review and then expand this work with
respect to two aspects: first, a set of coherent states will be introduced along the lines of the
displacement operator creating the usual coherent states from the vacuum state and second, we
will show that addition of spins in terms of their action-angles (polar) operators, unlike the usual
addition in terms of the step (cartesian) operators, involves a genuine no commutative, no co-
commutative Hopf algebra structure and relates interestingly the phase operators subject to the
subject of quantum groups.

2 Action-angle Variables and States

Let us start with the SU(2) action-angle operators

Jo= e\ Ul = I e (1)

Jiy = e-i@\/j_J+ = \[]+J.C‘w (2)

41



where
2;
Jr=3 m@i—m+D)Jim+1>< J;m]| : Jo=J} (3)
m=0
23
Js = Z(m—j)]J;m>< J;m]| (4)
m=0
and
. 2j
et =" |Jt>< 041, (5)
=0

mod(2; + 1), and hh* = h*h = 1 with h = €'®, h* = e~*® the unitary angle operator. Then
from the fact that h, generates the cyclic group Z2j41 acting as a cyclic permutation in the weight
space of the algebra we can construct phase states

25
|®; k >= F|J;k >= Y W n > (6)
m=0

1
V2 +1
through the finite Fourier transform FF* = F*+F = 1, which maps action eigenstates to angle
eigenstates and conjugates the respective variables, where w = expi(2r/2; + 1). Indeed, if g :=
w’*1 then FgF* = h, FhF* = g~' and g(h) acts as step operator in the angle (action) state
basis, i.e,

hlJin>=|Jin+1> , Al®;m>=uw™|®;m > (7)
while
g ®n>=|®n+1> , glJim>=uw™|Iim> (8)

mod(2j + 1) and A%+ = g%+ = 1 (notice that the state |J;n > and |®;m > where denoted as
In > and |om > respectively, in Refs. 3-6). The noncommutativity between the action and the
angle variables is best expressed by the formula

wgh = hg (9)

which resembles the exponential form of the Heisenberg canonical commutation relations (CR) as
were originally written by Weyl with the association that here the action operator J; is a finite
version of the position operator and the angle operator stands for the momentum operator. By
virtue of this analogy we may interpret egs. (7-8) as the translations along the two different
directions of the phase space of our problem, which due to the module condition is a lattice
torus, parametrized by the discrete action and angle values. Also eq. (9), exhibits the unusual
noncommutative character of two succesive translations along different directions. Moreover, the
effect of group contraction which is discussed below, is to increase the density of the lattice points
until the continous limit j — oo. Furthermore this association to position and momentum suggests
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that we should look for the "number states” |N;m >, m = 0,1,...,2J in our finite system. Indeed
by diagonalizing the finite Fourier transform F|N;m >= i™|N;m >, we find the number states
|N;m >, related e.g. with the orthonormal action states as:

25
|N;k>=Z|J;m><J;m|N;k>, (10)

m=0

with expansion coefficients given in terms of the Hermite polynomial, H, with discrete argument,

<Jim|N;k>= Y e'wi—l"’"""”*""’ﬂk(\/2].—2_’;—1@(21‘+1)+m)) (11)

p=—0c0

This situation is akin to that of the harmonic oscillator number States which are similarly eigen-
states of the usual Fourier transform operator which conjugates position a.xad momentum operators,
a fact that stems from the property of the oscillator eigenstates exp(—%x YH(z), to be their own

Fourier transforms. Especially the vacum or lowest number state is,

2;
IN;0>= Y wi™f5(imli(2j + 1))|J;m > (12)

m=0

where 63 is the theta-Jacobi function [7]:

oo
03(2'7’) = Z ezi2m+-ri1ru2 (13)
3=—0C

Having the action |J;m >, the angle |®;n > and the number states [N;k > as were given
above, we can further built, as have been outlined in Ref. 4, the quantum theory of action-
angle variables by introducing the corresponding coherent states acting on the vacum |N;0 >,
with a displacement operator. Such an operator is furnished by the unitary traceless elements
Jmymg 1= w™Mm™/2gmpm where JE = Jomyomi = J2j41omy 2i41-mas with (m,,m;) pairs
belonging to the square index-lattice 0 < m;,m; < 2j with boundary conditions and the (0,0)

pair excluded.
The following interesting properties of these operators suggest them as the Glauber displace-
ment operator of our case; first they constitute an orthonormal set of (2j+1)? —1 elements obeying

the relation

< Ja,Ja>=Tr JaJa= (27 + 1)b5,a5 » (14)
where e.g. Jz = Jm,m,, and further,
Jadz = w A s 2 (15)
and
Jada = W™ JaJa (16)
and finally
Uy Ja] = =2 sin[zj:_ 17 X ﬁ] Tas (17)
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mod(2; + 1), while m X i = mynz — myn;. With the aid of these operators we now introduce
coherent states |¢ >, for the action-angle system by acting on the vacum:

25 :
1€ >:= JAN; 0 >= w3 wbm im0, (imli(25 + 1))|J;m + £, > (18)
m=0

These are now coherent states defined on the lattice phase space which is the appropriate phase
space of the quantum action-angle variables. They involve the Jacobi theta functions which are
also appearing in the case of the ordinary coherent states when, looking for a complete subset out
of the over complete set of coherent states we lattice the phase space. Elsewhere, the normalization
and minimum uncertainty properties of the states will be studied in detail.

3 Quantum Angles Addition

Let us now turn to the case where there are several action-angle degrees of freedom and search
for the way we combine them quantum mechanically. The similar problem for the "cartesian™
generators J;, with [J;, J;] = 2i¢;jxJi is the fundamental theme of addition of spins and customanily
is solved by tensoring the generators,

AJi=Ji®1+1@J; (19)

which again satisfy the commutation relations, [AJ;, AJ;] = 2i¢;;:AJk. In our case, for the "polar”
generators g = w(5+/1) and h = WFUs+iVF* with wgh = hg we must find an appropriate tensoring
(coproduct in the jargon of Hopf algebras), which provides such Ag and Ak that wAg = Ah. Two
such coproducts we have found,

Ag=9g®g , Ah=h@1+gQ®h (20)
and
Ag=g®g , Ah=h®g+g'Qh (21)

which both have the remarkable property of not been the same under permutation of their com-
ponents involved in the tensor products. This is distingly different to the usual addition of spins,
where there is no sence of order in the tensoring the spins. Technically speaking we have here
a natural case of no co-commutativity unlike in eq. (19), where the product is co-commutative
[8-11]. We end here this discussion, as we intent to expand it elsewhere, by saying that it is also
possible to show the Hopf and quasi triangular Hopf algebra structure of the above tensoring and
then to find the R-matrix and to verify the Yang-Baxter equation.

4 Contraction to the Oscillator

Before we came to conclusions let us mention that as was shown in Ref. 3 via the group contraction
that the SU(2) action-angle variables can be contructed to those of the oscillator and the dynamical
aspects of this procces could be exemplified by studing the Jaynes-Cummings model. We illustrate
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now this idea be contracting the SU(2) generators to the oscillator generators in the Bargmann
analytic realization. In the space of analytic polynomials of degree 2 the SU(2) algebra is realized
as,

d d d

[ el . - — —_— — 1

Jy=-z e + 22; J- - Js el (22)

where z is the complex label of the spin coherent states, and geometrically stands for the projective

coordinate of the coset sphere SU(2)/U(1) ~ S'. Transforming now the generators like Jx —

J+/+/27 and J3 — J3+ j1 we find in the large j limit, the oscillator generators in their Bargmann
form as follows:

J+ — _(\/QT;‘Z)2 d o= ¢ -;7
J- d d
VBT aE e (24
and
. = d d

where 1/27z & « is the complex variable of the Glauber coherent states which is now becoming
the coordinate of the tangent phase plane of the harmonic oscillator. One can further show that
the overlap, the completeness relation and all other notions of the spin coherent states can be
contracted to their respective oscillator counterparts. Moreover in Ref. 5 has been shown how a
q-deformed oscillator with ¢ deformation parameter to be root of unity can be employed to define
action-angles variables in a finite Fock Hilbert space and a number of their properties have been
worked out. In such an approach we have shown [5], that the contraction method is substituted
by the limit procedure of undeforming the g-oscillator to the usual ocillators.

5 Conclusion

In conclusion, we have shown that the quantization of action-angle classical variables can be
developed in the framework of the SU(2) algebra in a manner which allows for the classical
properties of these variables to find well defined operator analogues. Interesting relations to
the quantumn groups and Hopf algebras are naturally emerge from the present method of angle
quantization which will be pursued further, together with the introduction of the Wigner function
for the action-angles variables and the star and Moyal product defined between functions of the
phase space of our problem.
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Abstract

The dynamical properties of the wave and particle aspects of the harmonic oscillator can
be studied with the help of the time-dependent Schrédinger equation (SE). Especially the
time-dependence of maximum and width of Gaussian wave packet solutions allow to show
the evolution and connections of those two complementary aspects. The investigation of the
relations between the equations describing wave and particle aspects leads to an alternative
description of the considered systems. This can be achieved by means of a Newtonian equa-
tion for a complex variable in connection with a conservation law for a nonclassical angular
momentum-type quantity. With the help of this complex variable it is also possible to develop
a Hamiltonian formalism for the wave aspect contained in the SE, which allows to de: ribe
the dynamics of the position and momentum uncertainties. In this case the Hamiltonian
function is equivalent to the difference between the mean value of the Hamiltonian operator
and the classical Hamiltonian function. 7

1 Introduction ~

In wave mechanics a complex equation, the Schrodinger equation (SE), is used to describe the
dynamics and energetics of the particle and wave aspects of a material system under the influence
of conservative forces, e.g., the harmonic force of an undamped oscillator. In classical mechanics
Newton’s equation of motion is a real equation which is only capable of describing the particle
aspect. It will be shown that it is possible to also take into account the wave aspect by changing
to a complez Newtonian equation. However, real and imaginary parts of the new complex variable
are not independent of each other, but are coupled by a well-defined relation which is connected
with a conservation law for a nonclassical angular momentum-type quantity. With the help of

this new complex variable it is also possible to express the groundstate energy E in a way that it
can serve as a Hamiltonian function for the position and momentum uncertainties.

2 Dynamics of Particle and Wave Aspects

The wave mechanical equation (SE) for the harmonic oscillator (HO)

R m

. _6_ —_ r2.2 1
1h at \IJ(:C’t)—{ 2m332+2 wz}\p(I,t), ()
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possesses exact analytic solutions of the form of Gaussian wave packets (WP). The dynamics of
the particle aspect i1s reflected by the fact that the maximum of the WP follows the classical
trajectory of the corresponding particle. The wave aspect is expressed by the finite width of the
WP. This width can also be time-dependent. This time-dependence is closely connected with a
contribution to the convective current density in the continuity equation for the (real) density
function corresponding to the (complex) WP.

Inserting the Gaussian WP given in the form

Wula) = Nut)eap {i[u(0) + 1112 + k()] } @)

(where £ = z — (z) = z — n(t) and (p) = mZ(z) denotes the mean value of momentum p, the

explicit form of N(t) and K(t) is not relevant for the following discussion), into the SE(1) shows
that the maximum at position (z) = n(t) fulfills the classical Newtonian equation of motion

P+win=0. (3)

The WP width, 1/(Z?) (where (3?) = (z?) — (z)?), is connected with the imaginary part of the
complex coefficient of z? in the exponent, y(t), via

wu= = . (4)

To determine the time-dependence of the WP width, the complex (quadratically) nonlinear equa-
tion of Ricatti-type

0% . 2k
;y+(;y)’+w’=0 ()

has to be solved.
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With the aid of the variable a(t) as defined in Eq. (4) (which is apart from a constant factor
identical with the WP width), the corresponding real part turns into

2k a
—VR=~ (6)

and Eq. (5) yields the (real) nonlinear Newtonian equation

d+wla= cxi:’- . (7)
The only difference between this equation, determining the dynamics of the WP width, and
Eq. (3) for the dynamics of the WP maximum is the inverse cubic term on the rhs of Eq. 7).
In order to elucidate the meaning of this additional term, the Ricatti Eq. (5) has to be reconsidered.
Using the substitution

% _
my_

(8)

5| e

with the new complex variable A = 4 +i2, Eq. (5) can be linearized to yield the complez linear
Newtonian equation

A+w?r=0. (9)

This equation is formally indentical with the Newtonian Eq. (3) for the WP maximum. It can
be shown (e.g. by expressing the WP(2) in terms of A or with the help of a Green-function, see
[1-3]) that the imaginary part of A is directly proportional to the classical trajectory, i.e.

2B _ (2 = n(t), (10)

(where ag and po are the initial values of a(t) and (p)(t), respectively). Furthermore, in the same
vs}'lay 1tl can be shown (see e.g. {1-3]) that real and imaginary parts of A are uniquely connected via
the relation

o~ 43 =1. (11)

Equation (8) for the time evolution of A was obtained from the Ricatti Equation (5), which
describes the evolution of the WP width, as shown in Eq. (7) for a(t). In order to show how the
wave aspect is contained in ), it shall be written in polar coordinates,

A=a e = acosp +i asing. (12)
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Inserting this form into Eq. (8), comparison with the definitions given in Egs. (4) and (6) shows
that the quantity a in Eq. é12 denoting the absolute value of X 1s identical with the quantity a
denoting the WP width in Eq. (7), if the relation

) 1
=2 (13)
is fulfilled. However, the validity of Eq. (13) can easily be proven by inserting (12) into Eq. (11).

The physical meaning of Eq. (1%1 becomes more transparent, when the motion of A(t) in
the complez plane is compared with the motion of a two-dimensional harmonic oscillator in the
real physical space, written in polar coordinates (see e.g. [1-3]). This comparison shows that
relation (13) (and thus the equivalent relation (11) in cartesian coordinates) corresponds to the
conservation of angular momentum in real space.

Furthermore, it shows that the inverse cubic term on the rhs of Eq. (7) corresponds to a centrifugal
force in real space.

So, it can be stated that the complex quantity A(t) fulfilling the Newtonian Eq. (9) contains
the information about the dynamics of both particle and wave aspects of the system. Written
in cartesian coordinates, the imaginary part of A directly provides the information about the
dynamics of the particle aspect, the WP maximum, written in polar coordinates, the absolute
value of ) directly provides the information about the dynamics of the wave aspect, the WP
width.

3 Energetics of Particle and Wave Aspects

It shall be mentioned only briefly here (for further details see e.g. [2,3]) that this new complex
variable A can also provide new information contained in the groundstate energy of the harmonic
oscillator, usually only given in the form E = }kw. The notation E is used to already indicate

that this energy contribution is just the difference between the mean value of the Hamiltonian
operator (calculated with the WP-solution (2)) and the classical energy E.i,,,, respectively

(B) = (H)=5= (") +3 w'(a)
= (o (B + T @) + (5 (7) + 5 () (14)
= Eclau + E~' .

In classical mechanics the energy E.,, of the HO is identical with the classical Hamiltonian
function, H./.,,, which also provides the equations of motion for the particle aspect.

Writing the difference of kinetic and potential energy uncertainties in terms of the polar coor-
dinates of A, i.e.

- k
‘C(aa‘lo’ a, "P) = Z(a2 + 02¢2 - w2a2) ' (15)

this quantity can be used as Lagrangian function for the position and momentum uncertainties.

From £ the canonically conjugate momenta to the coordinates a and ¢ can be obtained in the
usual way and the groundstate energy can be written in the form of a Hamiltonian function that
provides the equations of motion for the position and momentum uncertainties.
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In this context it is interesting that the canonical angular momentum p,, obtained from the
Lagrangian (15), is not only constant, as already mentioned in connection with Eqs. (11) and
(13), but has the value

e

(16)

Thus, the complex variable A(t), obeying the simple Newtonian Eq. (9), follows a path in the
complez plane similar to the path of a particle in a two-dimensional HO-field. However, the
quantity corresponding to the conserved classical angular momentum in real space is the quantity
P, = h/2 in complez space. This is rather surprising, because even in wave mechanics orbital
angular momenta are integer multiples of A. Half-integer multiples of A are usually connected
with the purely quantum mechanical property spin. Whether there are any relations between p,
and spin shall not be further discussed in this work.

Pp =

4 Conclusions

The information on the dynamics of the considered system contained in the time-dependent SE can
also be obtained from a corresponding Newtonian equation for this system, if a complex variable
is used, where the imaginary part of this variable is proportional to the classical trajectory and
the real part is uniquely connected with the imaginary part. The connecting relation expresses a
kind of conservation of angular momentum for the two-dimensional motion 1n the complez plane.
In addition, the value of this conserved nonclassical angular momentum property is h/2, usually
only known from the quantum mechanical property spin.

With the help of this complex quantity A = & + iz = a exp(ig), it is possible to obtain
equations of motion for the particle aspect, (z) = 7 = (agpo/m)2, as well as for the wave aspect,
(z?) = k/2m)a’.

Furthermore, it is possible to express the difference between the mean value of the Hamiltonian
operator and the classical energy E.,,, in terms of the coordinat&g a and ¢ and the corresponding

canonically conjugate momenta. Thus, it is possible to write £ in the form of a Hamiltonian
function, wherefrom the correct equations of motion for the “wave properties” (uncertainties) can
be obtained in exactly the same way as the equations of motion for the particle properties can be
obtained from the classical energy, respectively Hamiltonian function.
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Abstract

It is shown that the system of two coupled harmonic oscillators possesses many interesting
symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter
group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups,
with six parameters. The coupling can be achieved through a rotation in the two-dimensional
space of two oscillator coordinates. The closure of the commutation relations for the gen-
erators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter
group O(3,2).

1 Introduction

Since the classical mechanics of two coupled harmonic oscillators is known to every physicist, there
is a tendency to believe that this oscillator problem is completely understood and that nothing
new can be learned from it. We are writing this note because there are so many new lessons
to learn from the system of coupled oscillators. The system shares symmetries with a number
of physical models of current interest, such as the Lee model in quantum field theory [1], the
Bogoliubov transformation in superconductivity [2, 3], two-mode squeezed states of light [4, 5, 6],
the covariant harmonic oscillator model for the parton picture [7], and models in molecular physics
[8]. There are also models of current interest in which one of the variables is not observed, including
thermo-field dynamics [9], two-mode squeezed states {10, 11], the hadronic temperature [12].

From the mathematical point of view, the standard approach is to construct a suitable repre-
sentation of the symmetry group after writing down its generators. The symmetry group in the
present case is Sp(4) with ten generators [4, 6]. However, it is extremely difficult to study physics
in terms of ten parameters. We should somehow start with a smaller number of parameters.

For example, let us consider the three-dimensional rotation group with three generators. We
need only two generators to describe rotations [13]. The third generator is produced during
the process of constructing a closed set of commutation relations. For the coupled oscillators, a
reasonable approach is to start with simpler groups describing two uncoupled oscillators. We can
then introduce an additional generator to couple the two oscillators. The number of generators
of the resulting group may be larger than the sum of those for the two starting groups plus the
additional generator to couple them.
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The process of constructing a larger group from two smaller groups is quite common 1n physics.
We are quite familiar with the "direct product” and "semi-direct product,” where the number of
generators is the sum of those for the two smaller groups. We shall use the word “construction
of the group by soldering two subgroups,” when the resulting group has more generators than all
those for the starting groups and the additional generator(s) to couple them. We need this new
word "soldering” in order to reduce the number of input parameters in physics.

The soldering process takes different forms. We can construct the three dimensional rotation
group by soldering the one-parameter rotation group around the x axis and another rotation group
around the y axis. The resulting group has three generators. As we shall see in this paper, we
can construct the O(3,2) deSitter group by soldering two O(3, 1) Lorentz groups. In this case, we
solder them by observing that the two O(3,1) groups share the same rotation group. We start
with nine generators, but the resulting O(3,2) deSitter group has ten generators.

Since the symmetry group of each uncoupled oscillator is the three-parameter Sp(2) group, and
since it is likely that one more group operation is needed to couple the system, we start here with
seven generators. We shall see in this paper that the resulting group is Sp(4) with ten generators.
It is easier to study physics with seven generators than with ten.

It is also shown in this paper that the Sp(4) symmetry does not exhaust all possible symmetries
of the coupled oscillator system. It is noted that the group Sp(4) is a subgroup of a lager group
SL(4,r). Possible physical implications of this larger symmetry group are discussed.

In Sec. 2, we shall study linear canonical transformations in the four—-dimensional phase space
consisting of two pairs of canonical variables. It is noted that the symmetry group is Sp(4) which
is locally isomorphic to the O(3,2) deSitter group. In Sec. 3, we shall see how the O(3,2) group
can be constructed from two (3 + 1)-dimensional Lorentz groups. In Sec. 3, we shall construct
the symmetry group of two coupled oscillators from the symmetry group of each oscillator.

Section 5 contains a new parametrization of the coupled oscillator system which is consistent
with that of the symmetry group. In Sec. 6, we discuss the quantum mechanics of the oscillator
system and the unitary transformations which correspond to canonical transformations in classical
mechanics. In Sec. 7, we discuss physical applications of the formalism developed in this note.
Finally, in Sec. 8, we discuss scale transformations in phase space and their implications in
measurement theory.

2 Linear Canonical Transformations in Classical Mechan-
ics

For a dynamical system consisting of two pairs of canonical variables z;,p, and z,,p,;, we can
introduce the four-dimensional coordinate system:

(771,7)2,7]3,774) = (T1,22,;1,P2) - (1)
Then the transformation of the variables from 7; to ¢; is canonical if
MJIM = J, (2)
where 5
M;; = —¢&,
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and

0 0 1 0
0 0 0 1
=121 0 0 o0
0 -1 0 0

For linear canonical transformations, we can work with the group of four-by-four real matrices
satisfying the condition of Eq.(2). This group is called the four-dimensional symplectic group
or Sp(4). While there are many physical applications of this group, we are interested here in
constructing the representations relevant to the study of two coupled harmonic oscillators.

It is more convenient to discuss this group in terms of its generators GG, defined as

M = exp (—iaG), (3)

where G represents a set of purely imaginary four-by-four matrices. The symplectic condition of
Eq.(2) dictates that G be symmetric and anticommute with J or be antisymmetric and commute
with J.

In terms of the Pauli spin matrices and the two-by-two identity matrix, we can construct the
following four antisymmetric matrices which commute with J of Eq.(2).

_i 0 Ul) ___1_(0'2 0)
Jl_Q(—al o) 27300 o)’

(0 o _if0 I
J3_2('—03 0)’ J°‘2(—I o)' (4)

The following six symmetric generators anticommute with J.
- 1 O (24 - 1 I 0 _ i 0 0'1)
[‘1—2(0'3 0)’ 1‘2_2(0 —I)’ Ka = 2(01 0/’

a-i(T 0 @i D). e-i(3 2) w

These generators satisfy the commutation relations:

and

[Jis J] = t€ijpdi, (i, K| = i€ K, (K, K;] = [Q:, Q5] = —i€ij i,
[Ji, Jo] = 0, (K, Q5] = 155,
(i, Q5] = t€ijxQx, (K, Jo] = Qs (@i, J.] = —iK;. (6)
The group of homogeneous linear transformations with this closed set of generators is called the
symplectic group Sp(4). The J matrices are known to generate rotations while K and Q matrices
generate squeezes [6]

It is often more convenient to study the physics of four-dimensional phase space using the
coordinate system

(é1,62,83,¢84) = (z1,p1,22,p2) - (7)
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The transformation from (71, 72,73, 74) 18

& 1 0 0 0 m
&1 _10 0 1 0f_|mn
e | =101 0 0| ] (8)
éa 0 0 0 1 N4
and the J matrix becomes
0 1 0 O
-1 0 0 O
T=10.0 0 1 )
0 0 -1 0
In this new coordinate system, the rotation generators take the form
Jl_?(az 0)’ =311 0)’
_ -1 02 0 _ -1 (2] 0
n=3 (T %) =5 (5 a) (10)

The squeeze generators become

_i(al 0) (03 0) K__i(O o,

- 2 0 —0 ’ 0 a3 ’ 3= 2 o1 0
__2_ —03 0) _1(01 0) _1(0 0’3)

Ql—2( 0 g3 ’ Q2—2 0 o ’ Q3_2 o3 0 ’ (11)

When we deal with canonical transformations of functions of the coordinate variables, we have
to use the differential operators. The rotation generators are [6]

K,

J — +.Z_ _8_ — _6_ +1{z _?_ —_ i
= 2 7 6p2 P B.’L‘l 26}71 P1 622 !
_ (a0 0 (mo_, 2
ho= 2{(’”‘6 . 26x1)+(3p2 P 5p1)}’
b Lilfe0 8N (Lo o
3 = 2 18p1 P 9z, 201)2 P2 9z, )
7 0 a 0
= 1= g - e — 9
JO +2{($18 . plaxl> + (x26p2 P2ax2)}a (1")
and the six squeeze generators are
]( = _i _a_. + _a_ —\lz ..a_ + _?_
1 = 5 I 0171 Y4 9z, 23p2 D2 9z, '
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K i 0 a + (2 J 0

= —_— T1— — —_— —_ = _ y
2 2 9z, h om 29z, " 0p,
K — +i I, — + i + |z i + __6_

3 = 3 1 2 1’26551 2 o 4 5z s

Q = -

{2z -72m) )
(a7 + (o 732
o = i (o) - (o2
(e +2am) + (o + 7))

i 9 0 0 s,
Qs = —‘2'{<$2a—xl+x1£) - (m%;-i_pl@_pg)}' (13)

It was noted that there are two convenient coordinate systems in phase space, namely those of
Eq.(1) and Eq.(7). The above differential forms are applicable to both coordinate systems. They
of course satisfy the commutation relations given in Eq.(6).

It is remarkable that these operators are also applicable to the Wigner phase-space distribution
function which is constructed from the Schrodinger wave function [6]. It is also remarkable that
there are unitary transformations on the wave function which lead to canonical transformations
of the Wigner function in phase space [6].

3 Construction of the O(3,2) deSitter Group by Solder-
ing Two Lorentz Groups

In Sec. 2, we constructed the ten generators of canonical transformations acting on two pairs of
canonical variables. The mathematics is straight-forward, but it is not too comfortable to study
physics with ten independent parameters. We can have a better physical picture if we can study
the problem in terms of concrete physical examples with smaller symmetries.

The deSitter group O(3,2) is known to be locally isomorphic to the group Sp(4). Indeed, as we
shall see in this section, the notations for the generators of Sp(4) given in Sec. 2 are the natural
notations for the deSitter group. Thus, one way to study Sp(4) is to study O(3,2). In this section,
we shall study O(3,2) by constructing it by soldering two O(3,1) Lorentz groups.

In the space-time of (z,y,z,t,s), where z,y, z are three space-like variables and ¢ and s are
two time-like variables, we can consider two O(3,1)-like Lorentz groups in the spaces of (z,y, =, ¢)
and (z,y, 2, s) respectively. The generators of rotations applicable to the three-dimensional space
of z,y and z are

00 0 0O 0 0 : 0 O 0 — 0 0 O

0 0 — 0 O 0 0 0 0O t 0 0 0 O
J=102:¢: 0 0 O0), J=]|-t 0000}, J3=]0 0 00 0 (1)

00 0 OO 0 00 0O 0 0 0 0 O

00 0 0O 0 0 0 0O 0 0 00O
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The Lorentz boosts in the subspace of (z,y, z,t) are generated by

000 i 0 00000 0000 O
00000 000 i 0 0000 O
Ki=]0 000 0|, K,=|00000|, K=[000 i 0 (15)
i 00 0 0 0 i 0 0 0 00 i 00
0000 0 0000 0 0000 0

These three boost generators, together with the rotation generators of Eq.(14), form a closed
Lie algebra for the Lorentz group applicable to the four-dimensional Minkowski space of (z,y, 2, t).
The same is true for the space of (x, y, z, s) with the boost generators:

0 000 : 000 00O 0 00 0O
0 0 00O 0 0 0 0 - 00000
Q1={0 0 0 0 0, @=|0000O0|, Q=]020 10 0 2 (16)
00 00O 0 00 0O 0 00 0O
: 0 0 0 0 0 «: 0 0 O 0 0 : 0 O

The above two Lorentz groups have nine generators. If we attempt to form a closed set of
commutation relations, we end up with an additional generator

0000 0
0000 0

b=]0000 0], (17)
0000 —i
000 i O

which will generate rotations in the two-dimensional space of s and ¢. These ten generators form
a closed set of commutations relations.

We started with two O(3, 1) Lorentz groups. Each Lorentz group has its own rotation subgroup.
In the present case, both Lorentz groups share the same rotation subgroup. This is how these two
groups are soldered.

It is remarkable that this set of commutation relations is identical to that of Eq.(6). The
group O(3,2) is locally isomorphic to Sp(4). The group O(3,2) occupies a very important place
in relativity and elementary particle physics simply because it contains two Lorentz groups as
its subgroups. The local isomorphism between O(3,2) and Sp(4) enables us to study this group
in terms of linear canonical transformations in classical mechanics or in the Wigner phase-space
picture of quantum mechanics.

4 Construction of the Sp(4) Symmetry Group for Cou-
pled Oscillators by Soldering two Sp(2) Groups

For two uncoupled oscillators, we can start with the coordinate system:

(£1a£2a€3v£4) = (xl)p11$2’p2)' (18)
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Since the two oscillators are independent, it is possible to perform linear canonical transforraations
on each coordinate separately. The canonical transformation in the first coordinate system is

generated by
_1(0; 0 i (o 0) ___i_(al 0)
t=3(% ) B=5(% o) G=3(% o) (19)
These generators satisfy the well-known commutation relations:
[Al, Bl] = iCl, [B],C]] = —iAl, [Cl, Al] = ZBl (20)

It is also well known that this set of commutation relations is identical to that for the (2 +
1)-dimensional Lorentz group. Linear canonical transformations on the second coordinate are

generated by
1L/0 0 1 (0 0 1 (0 0 :
A2_§<0 0'2)’ Bz_:?-(o 03)’ CQ_-Q-(O Ul>' (21)

These generators also satisfy the commutation relations of Eq.(20). We are interested here in con-
structing the symmetry group for the coupled oscillators by soldering two Sp(2) groups generated
by Ay, B;,C, and A,, B,, C, respectively.

It will be more convenient to use the linear combinations:
Ay = A+ Ay, By = B, + By, Ci =C1 4 Cy

A_ = Al - Az, B_ = B] - BQ, C_ = Cl - Cg, (22)

These matrices take the form

1oy 0) _'i(O'g 0) _i<01 0)
A*“z(o o) Pr=3l0 o) Cr=300 o)

_ 1 (o2} 0 _ 1 T3 0 _ ? (23] 0 5
A-_2(0 —02>’ B——2<0 —03)’ C——§(0 —0'1). (23)
The sets (A4, By, Cy) and (A4, B-,C_) satisfy the commutation relations of Eq.(20). The same

is true for (A_,B,,C_) and (A_,B_,C}).
Next, let us couple the oscillators through a rotation generated by

i3

Then, A¢ commutes with A,, By, C4, and the following commutation relations generate new
operators Az, Bz and Cj:

[Ag, A_] = iAs, [Ao,B_.] = iB3, [A(), C_] = iBg, (l-))
where 1 /0 ”r o
= - 72 —= i O3 — i 251 i)
As 2(0'2 0)’ Bs 2(0'3 0)’ Cs 2(01 0)' (26)
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There are now ten generators. They form the closed set of commutation relations of Eq.(6), if we
identify these matrices as

Ay =—Jo, A_=—Js, As=—Ji,  Ao=Jy,
B+ = Kg, B_ = '—Ql, BS = Q37
C+ = Qz, C. = 1(1, C3 = —I\’3, (27)

where the J, K and @ matrices are given in Eq.(10) and Eq.(11).

In this section, we started with the generators of the symmetry groups for two independent
oscillators. They are A,, By,C; and A, By, C;. We then introduced another generator Ag to solder
them up. This processes produced three additional generators A;, B;, C3 which are —J;, Q3,and —
K respectively. It is remarkable that K3, Qs and Jy form the set of generators for another Sp(2)
group. They satisfy the commutation relations

(@3, K3] = —iJo, (K3, Jo] = —1Qs, (@3, Jo] = i K3 (28)

This symmetry group will play the major role in decoupling the coupled oscillator problem.

5 Reparametrization of Coupled Oscillators

Let us consider a system of two coupled harmonic oscillators. The Hamiltonian for this system is

H= l{i 2yl p%-{-A'zf-&-B'z%-’;—C’Ilzg}. (29)
2 lma ma
where
A >0, B’ >0, 4A'B'-C* > 0. (30)

By making scale changes of z; and x; to (m;/m3)/4z, and (my/m,; )4z, respectively, it is possible
to make a canonical transformation of the above Hamiltonian to the form [14, 15]

H= 5—%{1}34—193}+%{Axf+Bm§+CII$2}, (31)

with m = (m;m;)"/2. This transformation is generated We can decouple this Hamiltonian by
making the coordinate transformation:

(yl) _ (cos(a/?) —sin(a/Z)) (:1:1) (32)
Y2 sin(a/2)  cos(a/2) z3/°
Under this rotation, the kinetic energy portion of the Hamiltonian in Eq.(31) remains invariant.

Thus we can achieve the decoupling by diagonalizing the potential energy. Indeed, the system
becomes diagonal if the angle o becomes

C _
tana = m (33)

This diagonalization procedure is well known.
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We now introduce the new parameters K and 7 defined as

. A+B+/(A—-B)?+(C?
K =\/AB - C?*/4, exp(—2p) = \/4\//4B——C_2 ; (34)

in addition to the rotation angle o. In terms of this new set of variables, A, B and C take the
form

(0%
A - I{( 2n 22 -2n . 2_>’
e cos 5 + e sin 2

- . & - «a
B = K <e2” sin® 3 + e cos? —) ,

2
A = K (e‘z” - 62”) sin a. (35)
the Hamiltonian can be written as ’
1 K _
il {d+}+ 0 {7y} +e7™3}, (36)

where y; and y; are defined in Eq.(32), and
()= (el o) () g

This form will be our starting point. The above rotation together with that of Eq.(32) is generated
by Jo.

If we measure the coordinate variable in units of (mK)'/4, and use (m & )~"/* for the momentum
variables, the Hamiltonian takes the form

H=2Ze (7 + ') + 3¢ (g + e7'0). (38)
where w = {/K/m. If n = 0, the system becomes decoupled, and the Hamiltonian becomes

H=§(pf+xf)+u§)

In Sec. 8, we will be dealing with the problem of what happens when no observations are made
on the second coordinate. If the system is decoupled, as the above Hamiltonian indicates, the
physics in the first coordinate is solely dictated by the Hamiltonian

Hy== (pl +31). (40)

It is important to note that the Hamiltonian of Eq.(39) cannot be obtained from Eq.(38) by
canonical transformation. For this reason, the Hamiltonian of the form

(g3 + &) (1)

(p3 +23). (39)

w
2

may play a useful role in our discussion. This Hamiltonian can be transformed into the decoupled
form of Eq.(39) through a canonical transformation.

H =2 (g} + e"y?) +
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6 Quantum Mechanics of Coupled Oscillators

It is remarkable that both the Hamiltonian H of Eq.(38) and H’ of Eq.(41) lead to the same
Schrédinger wave function. If y; and y, are measured in units of (mK)Y4 the ground-state wave
function for this oscillator system is

ol aa) = —zexp { =5} + e o). (42)

The wave function is separable in the y; and y, variables. However, for the variables r; and z,,
the story is quite different. If we write this wave function in terms of z, and z,, then

Qg

1 1 a .
Y(z1,22) = TTFexp {—--2— [e"(xl cos 5 — &2sin 5)

+e~ 7z sin g— + z, cos %)2]} . (43)
If n = 0, this wave function becomes
1 1 2
o) = —= e { =g + ) (44

For other values of 5, the wave function of Eq.(43) can be obtained from the above expression by
a unitary transformation.

Z Am1m2(a’n)wmx(Il)wmz(I2)’ (45)

mima
where t,,(z) is the m'? excited state wave function. The coefficients A, m,(n7) satisfy the unitarity
condition

Z IA"HTM(Q’W)IZ =1 (46)
mymz
It is possible to carry out a similar expansion in the case of excited states [16].

As for unitary transformations applicable to wave functions, let us go back the generators of
canonical transformations in classical mechanics in Eq.(12) and Eq.(13). As was stated before, they
are also applicable to the Wigner phase-space distribution function. The canonical transformation
of the Wigner function is translated into a unitary transformation of the Schrédinger wave function.
There are therefore ten generators of unitary transformations applicable to Schrodinger wave
functions [6, 4]. They are

S
I

1 5 1

Jy = 3 (01‘12 + a;al) ; Jy = 5 (a:[ag - a;ral) ,
5 1

(ajal - (11(12) N JO = 5 (GIGI + a;a;) s

. 1
K, = ~1 (aIaI +aya; — a;ra;[ - a2a2> ’
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—-aya; + alal — a2a2) ,

—-

[(3 =

- 1
[{2 = Z(a
(a aT+aa>
192 122 |,

Ql = —% (G}Laj — a1y — aia; + ‘12‘12> ;
Q2 = —i( Iaf-kalal—i-a;[al +a2a2),
Q3 = % (aIaI — a1a2> . (47)

where af and a are the step-up and step-down operators applicable to harmonic oscillator wave
functions. The above operators also satisfy the commutation relations given in Eq.(6).

7 Wigner Functions and Uncertainty Relations

The Wigner phase-space picture of quantum mechanics is often more convenient for studying the
uncertainty relations. Unitary transformations in the Schrédinger picture can be achieved through
canonical transformations in phase space. It has been known that canonical transformations are
uncertainty-preserving transformations. They are also entropy-preserving transformations [17].
Are there then non-canonical transformations in quantum mechanics?

In his book on statistical mechanics [18], Feynman raises the issue of the rest of the universe
in connection with the density matrix. Feynman divides the universe into two parts. We make
measurements in the first part, but are not able to measure anything in the second part. The
second part is Feynman’s rest of the universe. Indeed, the density matrix plays the essential role
when we are not able to measure all the variables in quantum mechanics 19, 20].

In the present case of coupled harmonic oscillators, we assume that we are not able to measure
the z, coordinate. It is often more convenient to use the Wigner phase-space distribution function
to study the density matrix, especially when we want to study the uncertainty products in detail
(15, 18].

For two coordinate variables, the Wigner function is defined as [15]

1\2 .
W(z1,z2;p1,p2) = (;) /eXP{_Ql(Plyl + pay2)}

X ¢“($1 + ¥y, T2 + y2)?/)(331 —Wn,T2 — yz)dyld?h- (48)

The Wigner function corresponding to the oscillator wave function of Eq.(43) is

1\? o L«
W($1,$2;P1,P2) = (;) exp{—e"(xl cos§ — I, 51N 5)2
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—e”"(z, sin % + z, coS %)2 — e "(p, cos % — pysin g)z

—€"(p sin % + p cos %)2} : (49)

If we do not make observations in the z;p; coordinates, the Wigner function becomes

W(rlapl) = /W(Ihx?;plsp?)dx?dp?‘ (50)

The evaluation of the integral leads to

W(zy,z2; p1,P2) ={ : 1 )}1/2

72(1 + sinh? psin’

X ex i + a (51)
P coshn —sinpcosa  coshp+sinpcosa/ )

This Wigner function gives an elliptic distribution in the phase space of z; and p;. This distribution
gives the uncertainty product of

(Az)*(Ap)® = ‘11—(1 + sinh? sin? ). (52)

This expression becomes 1/4 if the oscillator system becomes uncoupled with a = 0. Because 7,
is coupled with z,, our ignorance about the z; coordinate, which in this case acts as Feynman’s
rest of the universe, increases the uncertainty in the z; world which, in Feynman’s words, is the
system in which we are interested.

In the Wigner phase-space picture, the uncertainty is measured in terms of the area in phase
space where the Wigner function is sufficiently different from zero. According to the Wigner
function for a thermally excited oscillator state, the temperature and entropy are also determined
by the degree of the spread of the Wigner function phase space.

8 Scale Transformations in Phase Space

In addition to the ten generators given in Eq.(10) and also in Eq.(11), we can consider the scale
transformation in which both the position and momentum of the first coordinate are expanded
and those of the second coordinate contracted. The Hamiltonian given in Eq.(38) suggests such a
transformation, and the transformation can be generated by

weis %)

This matrix generates scale transformations in phase space. The transformation leads to a radial
expansion of the phase space of the first coordinate [21] and -contracts the phase space of the
second coordinate. What is the physical significance of this operation? As we discussed in Sec.
7, the expansion of phase space leads to an increase in uncertainty and entropy. Mathematically
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speaking, the contraction of the second coordinate should cause a decrease in uncertainty and
entropy. Can this happen? The answer is clearly No, because it will violate the uncertainty
principle. This question will be addressed in future publications.

In the meantime, let us study what happens when the matrix S; is introduced into the set of
matrices given in Eq.(10) and Eq.(11). It commutes with Jo, J3, K1, K>, @:, and Q. However, its
commutators with the rest of the matrices produce four more generators:

/0 - 170 [
[SO,JI]=§< (;72)3 [SO’J2]=§(I 0),

2
[50,1{3]%(_‘; ™), [SO,Q;,,]:%(U‘)a 7). (54)

If we take into account the above five generators in addition to the sixteen generators of Sp(4),
there are fifteen generators. They form the closed set of commutation relations for the the group
SL(4,r). This SL(4,7) symmetry of the coupled oscillator system may have interesting physical
implications.
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Abstract

The recently introduced notion of a quantum group is discussed conceptually and
then related to deformed harmonic oscillators (“g-harmonic oscillators”). Two devel-
opments in applying ¢-harmonic oscillators are reviewed: g¢-coherent states and the
g-symplecton.

1 Introduction

It is not unfamiliar in physics that a new theory appears in the form of a ‘deformation’
of a previous ‘classical’ theory; thus, for example, quantum mechanics can be considered to be
a deformation of classical mechanics (which is recovered in the limit that the ‘deformation pa-
rameter’ i — 0), and Einsteinian relativity to be a deformation of Newtonian relativity (which
is recovered when the ‘deformation parameter’ ¢ — 00). Recently this notion of deformation
has been applied [1,2] to symmetry itself, leading to the concept of a ‘quantum group’ as a
deformation of a classical (Lie) group with a deformation parameter denoted by g. This new
development has had numerous important applications in both physics and mathematics [3,4].
Since harmonic oscillators have played a fundamental—and pervasive!—rdle in the applications
of symmetry in quantum physics, it is not surprising that the concepts of quantum groups, and

t Supported in part by the National Science Foundation, grant No. PHY-9008007.

! Invited paper presented at the Harmonic Oscillator Conference, University of Maryland
(College Park), 25-28 March 1992.
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deformations, are important here also, and hence relevant to the present conference. Accord-
ingly, it is our purpose to discuss here deformed harmonic oscillators (“g-harmonic oscillators”),
deformed coherent states (“g-coherent states”) and the deformed algebraic structure (based on
harmonic oscillators) called the “g-symplecton”.

We will begin by discussing, in conceptual and motivational terms, the simplest of quan-
tum groups—SU,(2), the g-deformed quantal rotation group—to set the stage for introducing
deformed harmonic oscillators, and then the remaining topics mentioned above.

2 The Quantum Group SU/(2)

The commutation relations for the three generators {Ji,J?,J?} defining the quantum
group SU,(2) are given by:

8, 78] = 74, (21)
gt — g

[J§, /8] = * 34— 9€R". (22)
q% —q 7

These defining relations for SU,(2) differ from those of ordinary angular momentum (SU(2)) in
two ways:

(a) the commutator in (2.2) is not 2J, as usual, but an infinite series (for generic ¢) involving
all odd powers: (J3)!,(J?)3,.... Each such power is a linearly independent operator in the
enveloping algebra; accordingly, the Lie algebra of SU,(2) is not of finite dimension.

(b) For ¢ — 1, the right hand side of (2.2) becomes 2J,. Thus we recover in the limit the
usual commutation relations for angular momentum.

The differences noted in (a) and (b) are expressed by saying that the quantum group SU,(2)
is a deformation of the enveloping algebra of SU(2).

The deformation parameter ¢ occurs in SU,(2) in a characteristic way, as g-integers denoted
by [n], such that:

_ q"!l' —q'?
toP q* —q"} ’
=qm;_u+qm;_az+mq_m;_u, neZ. (2.3)

These g-integers, [n]; obey the rule: [-n], = (-1)[n],, with [0]; = 0 and [1]; = 1. Note that
[n]q = [n]4-1, so that the defining relations (2.1) and (2.2) are invariant to ¢ & ¢™'.

The quantum group concept involves much more than just deforming the commutation
relations of the classical group generators. Actually an interesting new algebraic structure is
also imposed, that of a Hopf algebra [5]. Let us first define this new structure and then discuss
its meaning.

Consider an associative algebra A, with a unit element, 1, over a field say, . Then the
algebra involves the operations:

multiplication: m: AQ A — A, and, (24)
unit: 1:0 — A, (2.5)
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subject to the familiar axioms of associativity and the compatibility of addition and multiplica-
tion.

We can extend this algebra to become a Hopf algebra if we can “reverse the arrows” in
(2.4) and (2.5) above, that is, if we can define two new operations:

co-multiplication: A:A— A®A, and, (2.6)
co-unit: e: A—-C. (2.7)

Since for a quantum group the algebra A is a group algebra, it is reasonable to require that one
have a third new operation:

v: A— A, (2.8)

called “antipode”, (the analog to the inverse in the group).

These three new operations must satisfy the requirement that A and e are homomorphisms
of the algebra A and that 7 is an anti-homomorphism. In addition, the operations must satisfy
the compatibility axioms:

Associativity of co-multiplication: (id ® A)A(a) = (A®id)A(a), a€ A (2.9)
Antipode axiom: m(id ® v)A(a) = m(y @ id)A(a) = €(a)1, (2.10)
Co-unit axiom: (¢ ® id)A(a) = (id ® €)A(a) = a. (2.11)

o For a physicist, the introduction of such complicated and heavy algebraic machinery “out
of the blue” is very disconcerting. Certainly it requires motivation. The obvious question is:
“why a Hopf algebra”? Let us try to answer this.

Physicists are already very familiar with the algebraic approach to symmetry in quantum
mechanics; what is needed is a physical reason for “reversing the arrows”. What this really
means, in effect, is that all one needs is a simple motivating physical example.

Here is that example. Consider angular momentum: there is a natural, classical, concept
for adding angular momenta, which is taken over in quantum mechanics. Consider Jiota as
the total angular momentum operator which is to be the sum of two independent constituent
angular momenta J; and J;. Writing the total angular momentum operator Jiotal @S an action
on the two constituent state vectors we have:

Jiotal [¥)total = J1le)1 @ Lix)2 + Llph ©® J2|x)2, (2.12)

where we have been careful to use a precise notation for the tensor product ® of the two
independent systems.

Writing this same result in an abstract formal manner, we discover that what we have really
done by “adding angular momentum” is to define a co-multiplication:

AJ)=J®1+187J, (2.13)
where J denotes a generic angular momentum (defined as obeying the commutation relations).

In other words: The vector addition of angular momenta defines a commutative co-product
in ¢ Hopf algebra. One sees accordingly that a (commutative) Hopf algebra structure is not only
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very natural in quantum physics, but actually implicit, and in fact essential—unfamiliar only
because unrecognized. The remaining Hopf algebra axioms are required to make the structures
compatible and well-defined, and in a sense analogous to group concepts.

What we wish to emphasize is that the deformation of the algebraic structure in a quantum
group is only part of the basic concept—requiring the additional Hopf algebra structure, which
is natural to quantum mechanics, provides an important constraint on the freedom to deform
the commutation relations.

One can now understand intuitively from our example the fundamental significance of
quantum groups for physics: one now has the new possibility of defining a non-commutative
co-multiplication, as actually occurs for the quantum group SU,(2). This means that:

(i) the fundamental commutation relations are changed (“deformed”); that is, one has kine-
matic symmetry breaking. (Recall that Hamiltonian perturbation theory is dynamical and
leaves commutation relations (which are kinematical) snvariant);

(i1) the “addition of g-angular momentum” depends on the order of addition.

There is one other feature of the commutation relations for SU,(2) that deserves comment:
the relations (2.1) and (2.2) single out J{ and thus appear to break the rotational symmetry.
For generic values of ¢ this seeming result is incorrect: the degeneracy structure of ¢-group irreps
is in fact preserved, a consequence of the Rosso-Lusztig theorem. (We take this opportunity to
note that ref. [6] is misleading on this particular point.)

For completeness, since we have emphasized the importance of the complete Hopf algebra
structure, let us give explicitly the remaining Hopf algebra operations for the quantum group

SU,(2):

AU =TI@1+18JY, (2.14)
AU =Ji®@¢t +¢F 0L, (2.15)

l)=1, €Ji)=¢J])=0, (2.16)
Y(I§) = —¢¥3IL, (I =-JL (2.17)

3 q-Boson operators

In order to understand the meaning of the deformed commutation relations (2.1) and (2.2)
it is natural to look for representations of the operators Ji, J? as finite-dimensional matrices.
For the usual angular momentum group, there is a standard way to do this: one uses the Jordan-
Schwinger map (7], which maps the 2 x 2 matrices {J4, J;} of the fundamental irrep into boson
operatlors.

Let us recall how this works. One begins with a realization of the operators J, J; in terms
of a pair of commuting boson creation operators (a;,a;) and annihilation operators, (@;,az),
and defines the Jordan-Schwinger map:

J+ - alﬁg, J_— aﬁ,, J, - %(al'dl - 0262). (3.10, b,C)

This map preserves the angular momentum commutation relations (that is, the Jordan-Schwin-
ger map is a homomorphism) and from this map one can explicitly construct all unitary irreps
of SU(2).
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Is there a g-analog to the Jordan-Schwinger map? There is indeed! (Refs. [8,9,10]). The
basic idea is to consiruct q-analogs to the boson operators. To do so introduce the g-creation
operator a9, its Hermitian conjugate the g-destruction operator @?, and the g-boson vacuum ket

vector |0) defined by the equation
@’|0) = 0. (3.2)

Instead of the Heisenberg relation, [d@,a] = 1, let us postulate the algebraic relation:
@%af —gtata? = ¢~ F, (3.3)
where N7 is the Hermitian number operator satisfying
[N9,a%] =a?, ([N%a%=-a’ with N0)=0. (3.4a,b,¢)

This algebra is a deformation of the Heisenberg- Weyl algebra, which is recovered in the limit
g — 1. (Note that the g-number operator N7 is now no longer the operator a@ as in the
Heisenberg case.)

Orthonormal ket vectors corresponding to states of n g-quanta are given by:

In)q = ([nlg)~¥(a?)"|0), (3.5)
with:  Nfn), = n|n),. (3.6)

It is now easy to define a g-analog for the algebra of the generators of the quantum group
SU,(2). In the language of g-boson operators, one defines a pair of mutually commuting g-bosons
a! for i = 1,2. That is, for each, i, a! and @’ obey equations (3.3), (3.4) and, in addition, the
relations:

for i#j: [af,af) = (@30 =[af, 3] 0. (3.1)
The generators {JI,J,J?} of SU,(2) are then realized by

Ji = dlal, J! - aldd, JI-— LN -N]) (3.8a,b,¢)
+ 6,02 281, J; = U 2

The construction of all unitary irreps of the quantum group SU,(2)—for generic g—is now
straightforward [6] but will be omitted.

Remarks: (1) We have emphasized in Section 2 that the Hopf algebra structure—more
particularly co-multiplication—is an important constraint on possible deformations. Let us note
that the deformation of ¢g-bosons given by eq. (3.3) does allow a (non-commutative) co-product
to be defined. However, as shown by Prof. T. Palev (private communication), a complete Hopf
algebra structure is not possible.

(2) The deformation given in eq. (3.3) can be put into many differently appearing, but
equivalent, forms. For example, if we define A7 = a%qiM" and A’ = ¢iN'a?, then eq. (3.3)
becomes:

A4 = qa'4" 41, (3.9)

a form often found in the literature.
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4 The q-Harmonic Oscillator

We have motivated the introduction of ¢-deformed bosons as a way to implement the

concept of a quantum group.
Let us now examine the g-harmonic oscillator on its own merits. From the ¢g-boson operators

a, @ we can define g-momentum (P) and ¢-position (Q) operators in the same way as for boson

operators. That is, we define:
h
= \/m  (a? —aY), (4.1)

Q= (aq a’). (42)
The commutator [P, Q)] is then (using (3.3)):
i[P,Q] = hla%,a’] = K([N + 1]y — [N]y). (4.3)

The eigenvalues (N — n) of the right hand side are therefore

cosh( %(2n + 1)loggq)

cosh(§ logg) (44)

h([n +1]g —[nlg) = A

One sees that the Heisenberg uncertainty in the ¢-harmonic oscillator is minimal (and indepen-
dent of q) only in the limit ¢ — 1; the uncertainty increases with n for ¢ # 1.
The ¢-harmonic oscillator Hamiltonian is defined from P, Q according to

H= P_2 + zzw_ 0,
= %(E"a" + a%a?%). (4.5)
From (3.3) we find
hw
= 22N + 1], + V)y) (46)
showing that the eigenvalues of H are
h
E(n) = 5-([n + 1lq + [nly). (4.7)
The normalized eigenstates |n) are:
In) = ([n]")"¥(a?)"|0). (4.8)

The energy spectrum for the g-harmonic oscillator is uniformly spaced only for ¢ = 1,
the undeformed case. For gq large, one sees that the spectrum becomes exponential: E(n) ~

hwgt(1+ 0(%))
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5 Coherent States

It is natural to ask, once one has defined ¢-deformed bosons, whether or not coherent states
exist for this new harmonic oscillator structure. The answer is yes [11], as one might expect.
Let us review this structure briefly here.

There are two key characteristics of the (usual) coherent states, as identified by Klauder
and Skagerstam [12]:

(a) continuity of the coherent state |z) as a function of z.
and (b) the resolution of unity:

1= [120e] dua), (5.1)

where the integration takes place with respect to a positive measure du(z).

The best known examples of coherent states, which certainly satisfy these two charac-
teristics, are the canonical coherent states generated by the (usual) creation and annihilation
operators a and @. These canonical coherent states are defined by [8]

|2) = e'm:/ze”IO)

SR 7"_1? In), (5.2)

n=0

where |n) denotes the orthonormal vectors generated by the creation operator a.
We can immediately write down g-coherent states |z}, by replacing the boson operator of
(5.2) by its ¢g-boson analog, and replacing the exponential in (5.2) by the g-ezponential function

€Xpq:

l2)g = (exp,(12]?)) ~? exp,(2a9)[0),

= (exp, (j=2)) > ﬁ%m)q. (5.3)
J

n=0

These states satisfy:
Gyl2)g = 212)q, (5.4)

showing that the g-coherent state |z), is an eigenstate of the annihilation operator a? with
eigenvalue z and, since z = (z|a?|z), (assuming the states |z), are normalized), the label z is
the mean of @? in the state |z),. The definition (5.3) is not a unique g-extension of (5.2), for we
could have chosen any one of the family 62 of exponential functions in [13]; this would introduce
explicit g-factors in equations such as (5.4). We outline below how the particular ¢-harmonic
oscillator model of Section 4 (above) leads naturally to these g-coherent states. (The states (5.3)
were first considered in Ref. [8] and subsequently also in Refs. [14-17]. In fact, as with many
g-analogs of classical and quantum concepts, some g¢-generalizations were obtained before the
appearance of quantum groups [18]).

Let us now consider the two characteristic properties of coherent states, continuity and
completeness. (a) The continuity properties of |z),, as a function of 2, follow immediately from
the continuity of the deformed exponential function, exp, in (5.3).

75



(b) The resolution of unity within the Hilbert space, in terms of the states |z),, has been
considered by Gray and Nelson [15] and also Bracken et al [17]. The g-analog of Euler’s formula
for T(z) is required, and is expressed in terms of the ¢-integration defined in [13]:

¢
/0 exp,(—1)z"dyz = [n],! (5.5)

where ( is the largest zero of exp,(z) (note that, unlike e®, exp (z) alternates in sign as z —
—0o0). A natural restriction is |z|* < ¢ and then, with the help of (3.5), the resolution of unity

can be derived [17],
1= [ 1) ofel du2) (5)

where the measure du(z) is given by
du(z) = 2 exp,(121?) expy(—lz[*)dy 2[7d8, (5.7

where 8 = arg(z). It follows from (5.6) that an arbitrary state can be expanded in terms of
the states |z)4. (In fact, g-coherent states are overcomplete, for an arbitrary g-coherent state is
non-orthogonal to |z),, for any 2.)

Coherent states arise naturally within the framework of the harmonic oscillator of Section 4,
by defining boson operators from position and momentum operators, Q, P, putting dimensional
factors to unity:

a?= 3(Q-iP), @ =1(Q+iP) (5.8)

Conversely, we can use these formulas to define momentum and position operators and so, given
¢-boson operators, these formulas also provide convenient g-analog definitions of ¢g-momentum
and position operators [8].

Alternatively, one can define a g-harmonic oscillator by starting with Schrodinger’s equation
and replacing the derivative by a finite difference operator which provides an alternative form
for the deformation. We use the following g-derivative,

V,f(e) = FE0F2), (5.9)

and the g-harmonic oscillator states are now determined by the equation
1=V + g?)b(z) = B(a). (5.10)
Effectively, we have chosen ¢g-momentum and g¢-position operators @, P, satisfying
9QuPy — PyQq =, (5.11)

with the realization @, = z, P, =iV,. (This is yet another realization different from (3.9) for
the deformation.)
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Solutions of the difference equation (5.10) have been given by several authors [19,20], and
involve g-extensions of the Hermite polynomials. The ground state )y is given by

X/ _\n —D,iz2n
Yo(z) = Z %g'n—]r, (5.12)

n=0

where [2n],!! = [2n]4[2n — 2];...[2];. Upon using the identity [2n]; = [2]4[n];: we can identify
the function (5.12) as one of the family of g-exponential functions given by Exton [13].

The eigenstates 1, of the deformed Schrodinger equation (5.10) are labelled by an integer
n, and the energy levels are E, = 1[2n + 1],. (For comparison, note that in the model defined
in Section 4, the energy levels are different: E, = 1([n + 1], + [n]y) = 3[2n + 1]p1/2). The
eigenstates of (5.10), ¥, take the form

Yn(z) = Hi(z)yo (¢~ %), (5.13)

where 1) is given by (5.12) and Hi(z) denotes a g-extension of the classical Hermite polynomial,

with the explicit formula:

n 2n41)r

Crz"qg=

CCT) picaa m 6519

where the coefficients C, are given (for even or odd r) by

r=0

Cam = (=) g ¥D™/2[2n),[2n - 4],...[2n — d4m + 4], (5.15a)
Cam+1 = (=) g™/ 220 — 2] [2n — 6],...[2n — 4m + 2],. (5.15b)

From the explicit eigenstates one can identify ¢-boson operators which step between the eigen-
states ¥,(z), from which one can form the g-coherent states of this model of the g-harmonic
oscillator [20].

6 The q-Symplecton

The idea behind the symplecton construction has a close relationship to harmonic oscil-
lators. In the Jordan-Schwinger realization of angular momentum one obtains uniformly all
unitary irreps in terms of twe independent harmonic oscillators. This naturally suggests the
question: can one do better and realize all irreps uniformly in terms of one harmonic oscillator?
The answer is (of course) yes—this is the symplecton realization [7,21], which uses the creation
operator (a) as the spin-; “up” state and the destruction operator (@) as the “down” state. This
implies that there is no longer a vacuum ket |0) annihilated by @. Instead we define a formal
ket |) and seek to interpret both a|) and @|) as non-vanishing vectors.

Operators in this symplecton calculus will be defined as polynomials over (a,@) with com-
plex numbers as scalars. State vectors will be defined as operators multiplied on the right by
the basic formal ket, i.e.,

lv) = O.)), (6.1)
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where |1} is a vector and O, the operator creating this vector. The action of the generators on
state vectors will be defined as commutation on the relevant operator O,, that is,

Ji(|v)) = [Ji, Ou]])- (6.2)

To be completely explicit we are considering (for the undeformed symplecton) a single boson
operator a and its conjugate @ obeying:

[@,a =1, (6.3)
all other commutators zero. The generators of SU(2) are realized by:
J+ — —1a?, (note the sign!) J- — 1a%, Jo— 1(a@ + @a). (6.4)
It is easily verified that this realization obeys the desired commutation relations:
Jo, J2] = £z, [J+,J-]=2Jo. (6.5)

Note that the action of these generators on symplecton state vectors, verifying the commuta-
tion relations, succeeds precisely because of the J acobi identity. Using commutation under the
generators, the labels J and M can be assigned to define characteristic polynomials P} . The
angular momentum irrep eigenvectors are then given by the set of vectors PM)).

The adjoint polynomial (PM )2di is defined by:

(P2l = (-1)/MPp; M, (6.6)

with @ taken to be adjoint to a. The adjoint (dual space) vector to PM|) is defined as (I(PM yadi,

The crucial problem in this (undeformed) symplecton construction is the proper definition
of an inner product for the Hilbert space of the irreps. Omitting details [7], the answer is
obtained from the multiplication law for symplecton eigen-polynomials.

THEOREM [21]: Let PJ and 'Pf be normalized eigen-polynomials of the generators Ji. Then
these polynomials obey the product law:

a+b
Pepl= 3 (clalb) Chw PYP, (6.7a)
c=la—b|
where
(clalb) = (2¢ + 1)~ ¥ - A(abe), (6.7b)
_ (a+b+c+1) }
Alabe) = [(a+b—c)!(a—b+c)!(—a+b+c)!] ’ (6.7¢)

and C g‘;cris the usual Wigner-Clebsch-Gordan coefficient for S U(2).
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Using this theorem it is now easy to understand the inner product (u|v): one applies the

product law to the polynomials Ozd" and O, and then projects onto the J = 0 part. The
Wigner-Clebsch-Gordan coefficient (for J = 0) quite literally defines here a metric!

Remark: It is clear also that one can extend this structure by adjoining additional symplec-
tons. That is, one considers a symplecton having n “internal” states: aj,az,...,a, and their
conjugates @y, dz,...,dn. Just as the adjunction of a boson with n “internal” states suffices to
realize SU(n), so does an n state symplecton suffice to realize the structure Sp(2n).

An important consequence of the symplecton construction is the definition of a new invariant
angular momentum function: the triangle coefficient A(abc), eq. (6.7c). This triangle function,
Af(abc), has gratifyingly simple properties. It is a function defined symmetrically on three
“lengths” or “sides” a, b, ¢, which (from the properties of the factorial function) vanishes unless
the triangle conditions (that the sum of any two sides equals or exceeds the third side) are
fulfilled. The symplecton realization of angular momentum yields the triangle rule of vector
addition in a particularly graphic way.

The triangle function is clearly a rotationally invariant function defined on three angular
momenta; as such, it fits very nicely into the series of invariant functions defined on 3n angular
momenta: (67) [Racah coefficient] and (95) [Fano coefficient]. The Wigner coefficients are often
called “(3;) symbols”, but in view of the fact—emphasized by Wigner—that these coefficients
are coordinate frame dependent (i.e., involve magnetic quantum numbers) one might consider
the triangle function as the more appropriate to designate as the (37) symbol.

The triangle function obeys the following transformation law, Ref. [21]:

Aacf)A(bdf) = (2f + 1) Z A(abe)A(cde)W (abed; e f). (6.8)

It is quite remarkable that the Racah function appears here as a tetrahedral function coupling
four triangles by pairs.

Having reviewed now the symplecton construction it is time to return to our main theme:
can one define a deformed symplecton (“q-symplecton”) using a single deformed harmonic os-
cillator? The answer (of course) is yes, but there are some surprises [22]. We will develop the
deformed structure using finite ¢g-transformations, which provides further insights into the de-
formation process [23]. (The infinitesimal approach—which obtains the g-generators {J{} using
a single ¢-boson, the ¢-boson analogs to eqs. (6.4)—was developed earlier in ref. [24].)

Let a4 and @, be ¢g-boson creation and annihilation operators obeying:

Ggaq — q’}aqﬁq = 1. (6.9)

This g-commutation relation is invariant under the transformation of g-spaces [23]:

T u
(a,a) = (a,d) (v y), (6.10)
where:

uz:q*:cu, vT =q‘}$v, yv=q§vy, (6.11a,b,¢)
yu = q’}uy, uv = vu, (6.11d,¢)
zy—q'%vu=yx—q%vu=1. (6.11f)
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The adjoint to (a,a) is: (q*ﬁ, —q’*a) and obeys:

(q*ﬁ, —q'*a)’ = (q*ﬁ, —q‘*a) (z :‘) (6.12)

with:
T =Y, u* = -q—iva vt = —Q‘}U, y‘ =T (6.130,b, ¢, d)

Let us denote the q-symplecton eigenpolynomials by: Q7. Then Q isa polynomial of
order j + m in @ and j — m in @ and defined to transform as:

Qr(a', @) = Y dhm(z,u,,4)Q5(a,3). (6.14)
n
Here d, ,,(z,u,v,y) is the q-rotation matriz which obeys:
m'k'(x u,v, y) d ukn(z u,v, y) Z lemn

X Qck‘k“k mk(z,u, v,¥), (6.15)

where ,C are ¢-WCG coefficients. It follows that the set {QT', m = —j, —j+1,...,7}is an
m-educxble tensor of rank j. Moreover QT is a ¢- symmetric functxon

(['ijm ) Qp =g Tt
J
.(L:t__).(.l__l""' +§aJ+m laaa) m— 1+

+ g~ =R+ £(a,7) +...+q"—’z“uai-'"af+"*. (6.16)
Here ¢ is the least number of transpositions needed to put f(a,@) in normal-ordered form.
Example: [4]*Q% = q-%a"’ﬁ + q‘*azﬁa + q*a?.ia2 + q*'&a"‘. (6.17)

As is clear from our review (of the usual symplectons), the major task is to prove a product
law for the deformed g-eigenpolynomials, Q7.

THEOREM [23]: Let Q;’," and Q;-’,‘," be normalized q-eigenpolynomials. Then:

Q7 (a,3)Q (0,8) = ZN(J' ") o Cldim - @7 (a,), (6.18)

where: qu"m,. is the e Wxgner—CIebsc.h Gordan coefficient, and N(j'j"j) is a scalar function
of ¢ dependent only on j',j",].
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N(j'3"5) obeys the recursion relation:

(127”1125 + IDING'3"5) = (I3 = 3" + 7 + Ui + 5" —j],,)*
x N (j'aj" - %’J + %) N (.7 + %a %’])
+ (U +3"+7+ 1,7 +5" + 7))}
x N (7,3" -} —4)- (6.19)

e

The determination of the coefficient N(j';"j) is very difficult. It helps to see a few special
cases. We find:

NG O0j)=1, (6.20)
N(j1,j2s 1 +72) =1 (6.21)
S 1 1Y —q'%F(2j)
V023 = G T 0.2
with: F(n)=[1]+[2]+...+[n], F(0)=0. (6.23)

We remark that the appearance of the function F(n) is characteristic of relations involving the
g-symplecton [23].

One can prove the further property, at this stage, that the function N(j', ;", j) is symmetric
in the first two indices. One of the surprising properties (23] is that the (g-rotationally invariant)
function N(j',5",7) is not symmetric under ¢ — ¢~!.

These results show that N(j',;",7) is not the proper g-analog to the triangle function
A(a,b,c), despite the fact that the g-symplecton product law seemingly appears to define
N(3',7",7) in the proper form. It has been shown in Ref. [22], that the proper way to proceed
is via the definition:

F(2)![2a + 1]![2b + 1]!

Aq(abe) = (~1)*+H+<N(abe)g = F(2a)!F(2b)![2c]!

(6.24)

This g-triangle coefficient has the desired symmetry. As shown in Ref. [22], A;(j17273) ts totally
symmetric in its arguments jy, J2, j3—precisely the same property possessed by the (undeformed)
triangle coefficient A(j17243) in (6.7¢).

Moreover, it is now possible [22] to obtain the proper g-analog of (6.8):

Aglacf)A(d) = [2f + 1) Z Ag(abe)Ay(cde)W,(abed; ef). (6.25)
Let us conclude by citing the product law for g-eigenpolynomials in the proper form now
to show the desired g-analog structure [22]:
a+bd

QIQ = D [2c+1"H A (abe)(baBalca + £), Q. (6.26)

c=|a—b|
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Note the surprising appearance of the ¢-WCG coefficient involving ¢~" as the proper form to

show the analogy.
Space is lacking for more than this brief survey of the g-symplecton and the associated

subtleties of g-analysis. More detail can be found in [22], and related discussions—from the
aspect of Weyl-ordered boson polynomials—is given in [25] and [26].
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WHICH Q-ANALOGUE OF THE SQUEEZED OSCILLATOR?

Allan I. Solomon
Faculty of Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom

1 Introduction and Content

The noise (variance squared) of a component of the electromagnetic field - considered as a quan-
tum oscillator -in the vacuum is equal to one half, in appropriate units (taking Planck’s constant
and the mass and frequency of the oscillator all equal to 1). A practical definition of a squeezed
state is one for which the noise is less than the vacuum value - and the amount of squeezing is
determined by the appropriate ratio. Thus the usual coherent (Glauber) states are not squeezed,
as they produce the same variance as the vacuum. However, it is not difficult to define states
analogous to coherent states which do have this noise-reducing effect. In fact, they are coherent
states in the more general group sense but with respect to groups other than the Heisenberg-Weyl
Group which defines the Glauber states. The original, conventional squeezed state in quantum
optics is that associated with the group SU(1,1). Just as the annihilation operator a of a single
photon mode (and its hermitian conjugate a!, the creation operator) generates the Heisenberg-
Weyl algebra, so the pair-photon operator a® and its conjugate generates the algebra of the group
SU(1,1). Another viewpoint, more productive from the calculational stance, 1s to note that the
automorphism group of the Heisenberg-Weyl algebra is SU(1,1). Needless to say, each of these
viewpoints generalizes differently to the quantum group context. In this talk we shall discuss
both. The structure of the talk is as follows:

e Conventional Coherent and Squeezed States
e Eigenstate Definitions

¢ Exponential Definitions

Algebra (Group) Definitions

e Automorphism Group Definition

Example: Signal-to-Noise Ratio

¢-Coherent and ¢-Squeezed States

M and P ¢-bosons

Eigenstate Definitions
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Exponential Definitions

Algebra (¢-Group) Definitions

Example: Signal-to-Noise Ratio

e Automorphism ¢-Group Definition

2 Conventional Coherent and Squeezed States

The elementary treatment of (a single frequency) of the quantized electromagnetic field leads to
the identification of its components

E~z, B~p, [z,p]=1
in suitably chosen units. We may introduce boson operators b, b' by
z=0b+M)/V2 p=(b-0b)/V2

which then satisfy the Heisenberg-Weyl Algebra

[b,b'] = 1

[N, o] = o (1)

where N = b'b. The interpretation of these operators is that they annihilate (resp. create)
photons; the vacuum state |0 > satisfies

b0 >= 0.
The quantum noise of the z-component (E-field) in the vacuum state is given by

(Azr)? =<2 > -<z>? =1/2

with a similar result for the B-component. The vacuum signal ( < z >?) vanishes.
The conventional coherent states (Glauber [1] states) are defined as eigenstates of the operator
b,
bjA >= AlA > (2)

For these states one readily evaluates
(Az)?=1/2 <z>*=(A+7X)%/2

An alternative, suggestive definition of the coherent states which readily lends itself to generaliza-
tion, is that they are obtained by the action of the realizations of the group corresponding to the
Heisenberg-Wey! Algebra generated by {b,b',1} on the vacuum, thus;

|A >= exp(Ab1)|0 > . (3)
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It is an important practical problem to maximize the signal-to-noise ratio p for radiation states;
here we are of course only considering the quantum noise. What we see from the preceding is that
p vanishes for the vacuum; it attains the value 4N, for a coherent state, taking (real) A = N,
where N, is the number of photons in the signal.

In a classic paper, Yuen [2] showed that for any radiation field the maximum signal-to-quantum
noise ratio p for fixed energy has the value pmae = 4N,(N, + 1), where N, gives the upper
limit on the number of photons in the signal ( effectively a maximum power per unit frequency
constraint). He further showed that this value is attained by the squeezed states [3], two-photon
coherent light states generated as eigenstates of the operator ub+ vb! where |p|? — |v|* = 1. The
only mathematical input to this result consists of the canonical commutation relations Equation
(1). The term “squeezed” derives from the fact that in these states the quantum dispersion may
attain values below the vacuum (or coherent) state value of 1/2. Such states have been produced
experimentally. These squeezed states may also be defined by the action on the vacuum (more
generally, on Glauber coherent states) of the group corresponding to the algebra generated by

{82, ()2, (bb' + bT0)}. (4)

Thus a typical squeezed state (up to normalization) may be written

.2 >= exp(5(H)) exp(6)[0 > @

The state |¢, z > is an eigenstate of (b— £b') with eigenvalue z, in agreement with the definition of
squeezed state above (p = 1,v = —¢ and for convergence we require that |{] < 1.) The operators
in Equation (4) satisfy the commutation relations of SU(1,1)

(K¢ K] = —2Kq
(Ko, Ki] = +Ku. (6)

An alternative definition which results in states exhibiting squeezing is to define them as (normal-
ized) eigenstates of the of the lowering operator K_ = b%. These states have the form

o i
> = =121 >
& 2 757

L pit1s.

l€2> - g\/m (7)

An appropriate sum of these squeezed states recovers a Glauber coherent state.
A more basic definition of squeezed states arises from the observation that the automorphism
group of the H-W algebra is SU(1,1); thus a unitary transformation U on b gives

b UbUY = pub+ vb! (8)

where |2 — |[v|2 = 1. The conventional squeezed state is then defined, exactly as above, as an
eigenstate of the transformed bose destruction operator

(b + vB)lE >= €€ > | (9)
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More generally, a conventional squeezed state is defined as the action of the unitary operator
U(u,v) on a coherent state |z >= D(z)|0 >, thus:

€ >=U(u,v)D(2)|0 >= U(p, v)|2 > (10)

This definition is not only elegant but, by applying the inverse transformation, enables calculations
in squeezed states to be made as readily as in the coherent states.
For example; using

Ulp,v)" b U(p,v) = zb— vb!

one may readily evaluate the dispersion of z in the squeezed state |¢ > to be
2 _ 1 2
(Az) = 3lu o]

and the signal to be
<z >'={(h - )i+ (p—v)2))"

For real values of the parameters, the maximum of the signal-to-quantum noise ratio
p=<z>? /(A1) = 47°

may readily be seen to be attained at pm.. = 4N,(N, + 1) as cited above [2].

3 ¢-Coherent and ¢-Squeezed States

A deformation ap of the standard boson operator b was introduced some years ago by Arik and
Coon [4]. Their deformed bosons satisfy

(1)\,1(1)\,{T - anfO.M =1. (11)

More recently, the deformed ¢-boson operator ap satisfying the Quantum Heisenberg-Weyl Algebra
(H — W, Algebra)
apap' — qaplap = ¢V
[N, apl] = ap! (12)

has been introduced [5, 6]. ( I have used the subscript M to denote the relation to the mathe-
matician’s classical g-analysis, a study which goes back at least as far as Gauss, in contrast to the
more recently introduced physicist’s form, subscript P. The second equation of (12) is satisfied by
both forms. There is no need to subscript the operator N for the reason given below.)

In principle, either Equation (2) or Equation (3) can be used as a starting point for an eigenstate
definition of g-coherent states for both types of deformed bosons. It is easily shown that an attempt
to use Equation (3) does not lead to a normalizable state (for ¢ # 1) in either case. Starting from
Equation (2), g-coherent states for the deformed boson operator of Arik and Coon were constructed
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by these authors [4]; the same equation was used [6] for the g-bosons defined in Equation (12).
Both forms of g-boson lead to the g-coherent state

B>, = N—lequ(ﬂa*)lo > (13)
where a = aps or ap and ;
N? = exp,(18]°). (14)
The g-exponential is defined in both cases by
oo x!‘
exp,(z) = Y ERE (15)
n=0 7

The symbol [r],! is defined by [r]g! = [r]g[r — 1][r — 2] - - - [1], where, in the case of Equation (11),

we define
[z], = (¢" = 1)/(g - 1) (16)

and in the case of Equation (12), we define
[e], = (¢ —q7)/(a—¢7")- (17)

Equation (11) gives rise to the classical form of the g-exponential usually written as E (z),
which converges for |¢| > 1, or for |z| < |1—1;| when |g] < 1. The form of g-exponential corre-
sponding to Equation (12) is convergent for all z and g. In both cases, limg_.; exp,(z) = exp(z),
and when ¢ = 1 the g-boson operators reduce to standard boson operators.

The g-bosons are related to the conventional bosons b as follows:

(18)

where N = btb, using the appropriate definition of [V], for “mathematical” bosons Equation (16)
[7] or “physical” bosons Equation (17) [8].

The g-coherent states defined above do not give rise to (time-independent) squeezing, just as
in the case of the conventional coherent states. In fact, it may be shown [7] that the term which
gives rise to squeezing is, in general,

<al>-—<a>?

which is zero for eigenstates of a. However, Buzek [9] has shown that there is time-dependent
squeezing, by choice of a suitable analogue of the usual Hamiltonian; and this has also been found
by Celeghini, Rasetti and Vitiello [10].

It is not immediately clear how conventional squeezed states can be generalized to the quantum
group context. The most direct approach is to use a g-boson realization of the analogous su,(1,1)
algebra; one may then attempt to define the analogous g-squeezed states by the exponential action
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of the resulting operators on the vacuum (or on the g-coherent states). A realization of su,(1,1)
given by Kulish and Damaskinsky [8] is
1

1
Ky =pa')! K- =pla)' Ko=3(n+;

2 (19

with p= (¢+ ¢ ')"! and [K4, K_] = —[2K,},2. However, the exponential action of the operators
of this algebra fail to give a normalizable state not only for the conventional exponential (which
was to be expected) but also for the g-exponential exp (z) defined above (and also for exp(z)
which one would have thought to be the appropriate function here).
The eigenstates of K_ corresponding to Equations (7), obtained by substituting the “box” facto-
rials for the conventional ones, give normalizable states [11].

We may alternatively carry over the definition

(a —Ea")lé,z >=z|€,2 > (20)

to the ¢-boson case. For the choice z = 0 we obtain

|6, 2 >= N~ gf —[—é—ﬁ]f’ﬂpo (21)

with normalization 21 — 1),
2i |4 — et = 2lg:-
Nt = Y (22)
The symbol [r],!! has the expected meaning [r],!! = [r],[r —2],[r —4], - - - and the first term in (22)
is 1. The squeezing properties of states defined in this way, for various values of the parameters ¢
and ¢ were calculated in [11].

A more basic definition of squeezed states in the quantum group case arises from generalizing
the automorphism group property given in the previous section for the conventional case, Equation
(8) and Equation (9). One may seek by analogy to define ¢-squeezed states in terms of the
automorphism quantum group of the quantum Heisenberg-Weyl algebra of ¢-bosons. Consider
the quantum plane ¢ la Manin generated by two elements o and 4 as defined by Woronowicz [12],
satisfying the following commutation relations:

ay = pya
oyt = py'a
o=
aga—-yy = 1
ac* — piy*y = L (23)

We now introduce a conjugation A — A defined by its effect on
1. c-numbers ¢+ ¢*, (complex conjugation)

2. g-numbers (quantum plane) & = o* a* =a §=puy* v = %'y
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3. operators A = q%(NLN)qu‘;'(NZ'N) (g real ).

Under this transformation, /3 - A, AB= BA : and the boson a satisfying

aa' — qa"a = q‘N

maps to @ , with the pair a, @ satisfying

aa — paa = 1.

with g = ¢%. The two-dimensional fundamental representation of SU,(1,1) is given by

u= [ Qa ;ry**
Yy a
and u satisfies uJu = J where
s-[1 0 ]
=10 -y _

The transformation
[a,a] — [, d]u

(24)

(25)

(26)

is an automorphism which preserves Equation (24). Squeezed states in the quantum group context
may now be defined as the eigenstates of the transformed a, thus generalizing the results of [11].

Finally, we note that one may derive an analogue of Yuen’s result [2] cited above on the
optimal signal-to-Quantum Noise ratio g-photons [13]; the corresponding bound for ¢-photons

may be shown to be

Pq = 4[Na]q[Na + l]q/({Na + 1]q - [Ns]q)Q-

(27)

that is, for a radiation field in terms of photons satisfying the modified commutation relations
of the quantum group version of the Heisenberg-Weyl Algebra. This ratio is always less than the

value in the conventional case, attained for the SU(1,1) squeezed states.
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Abstract

Affine transformations (dilatations and translations) are used to define a deformation of
one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do
not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamilto-
nians are g-isospectral, i.e. the spectrum of one can be obtained from another (with possible
exception of the lowest level) by ¢?-factor scaling. This construction allows easily to rederive
a special self-similar potential found by Shabat and to show that for the latter a ¢-deformed
harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating
algebra. A general class of potentials related to the quantum conformal algebra su,(1,1) is
described. Further possibilities for ¢g-deformation of known solvable potentials are outlined.

1. Introduction

Standard Lie theory is known to provide very useful tools for description of physical systems.
Elegant applications were found in quantum mechanics within the concept of spectrum generating,
or, dynamical (super)symmetry algebras [1]. The most famous example is given by the harmonic
oscillator problem (so the name of this workshop) where spectrum is generated by the Heisenberg-
Weyl algebra. Some time ago a wide attention was drawn to the deformations of Lie algebras
which nowdays are loosely called "quantum algebras”, or, "quantum groups” (2] (below we do not
use the second term because Hopf algebra structure is not relevant in the present context). Spin-
chain models were found [3] where Hamiltonian commutes with generators of the quantum algebra
3u,(2), deformation parameter g being related to a coupling constant. Thus, an equivalence of
a particular perturbation of the interaction between "particles” to the deformation of symmetry
algebra governing the dynamics was demonstrated.

Biedenharn and Macfarlane introduced g-deformed harmonic oscillator as a building block of
the quantum algebras [4, 5]. Various applications of g-oscillators appeared since that time [6-13]
(an overview of the algebraic aspects of g-analysis is given in Ref.[7]). Physical models refering to
g-oscillators can be conditionally divided into three classes. The first one is related to systems on
lattices [8]. In the second class dynamical quantities are defined on "quantum planes” - the spaces

'On leave of absence from the Institute for Nuclear Research, Moscow, Russia
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with non-commutative coordinates [9]. Although Schrddinger equation in this approach looks
similar to the standard one, all suggested explicit realizations of it in terms of the normal calculus
result in purely finite-difference equations. Parameter g responsible for the non-commutativity
of quantum space coordinates serves as some non-local scale on the continuous manifolds and,
therefore, the basic physical principles are drastically changed in this type of deformation. We
shall not pursue here the routes of these two groups of models.

The third - dynamical symmetry realization class — is purely phenomenological: one deforms
already known spectra by postulating the form of a Hamiltonian as some combination of formal
quantum algebra generators [10}, or, as an anticommutator of g-oscillator creation and annihilation
operators [4, 8. This application, in fact, does not have straightforward physical meaning because
of the non-uniqueness of deformation procedure. Even exact knowledge of a spectrum is not enough
for precise reconstruction of an interaction. For a given potential with some number of bound
states one can associate another potential containing new parameters and exhibiting the same
spectrum [14]. Therefore the physics behind such deformations is not completely fixed. Moreover,
for a rich class of spectral problems there are powerful restrictions on the asymptotic growth of
discrete eigenvalues [15] so that not any ordered set of numbers can represent a spectrum. All
this means that one should more rigorously define physical interaction responsible for a prescribed
deformation of a given simple spectrum. g¢-Analogs of the harmonic oscillators were also used
for the description of small violation of statistics of identical particles [13] (general idea on the
treatment of this problem on the basis of a parametric deformation of commutation relations was
suggested in Ref.[16]). The papers listed above represent only a small fraction of works devoted
to quantum algebras and g-analysis. For an account of unmentioned here applications we refer to
reviews (17, 18].

Recently Shabat have found one-dimensional reflectionless potential showing peculiar self-
similar behavior and describing an infinite number soliton system [19]. Following this development
the author proposed [20] to take known exactly solvable Schrodinger potentials and try to deform
their shape in such a way that the problem remains to be exactly solvable but the spectrum
acquires complicated functional character. So, the Shabat’s potential was identified in Ref.[20] as a
g-deformation of conformally invariant harmonic and particular forms of Rosen-Morse and Poschl-
Teller potentials. The hidden g-deformed Heisenberg-Weyl algebra was found to be responsible
for purely exponential character of the spectrum. In comparison with the discussed above third
group of models present approach to "quantum” symmetries is the direct one - physical interaction
is fixed first and the question on quantum algebra behind prescribed rule of g-deformation is
secondary.

In accordance with this guiding principle a deformation of supersymmetric (SUSY) quantum
mechanics [21, 22] was proposed in Ref.[23]. This talk is devoted to description of the results of
Refs.[19, 20, 23] and subsequent developments. We start by giving in Sect.2 a brief account of the
properties of simplest (0 + 1)-dimensional SUSY models. In Sect.3 we describe a2 deformation of
these models on the basis of pure scaling transformation of a superpartner potential, namely, we
find ¢-SUSY algebra following from this rule and analyze its properties. Sect.4 outlines possible
extensions of the simplest potential deformation. In Sect.5 we show that mentioned above self-
similar potential naturally appears within g-SUSY as that characterized by the simplest structure
of Hamiltonian. In this case factorization operators entering the supercharges are well defined on
the Hilbert space of square integrable functions and generate g-oscillator algebra. As a result,
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a representation of g-deformed conformal algebra su,(1,1) is obtained. In Sect.6 we give short
description of further generalizations of the Shabat’s potential which correspond to general g-
deformed conformal quantum mechanics and g-deformation of (hyper)elliptic potentials. Sect.7
contains some conclusions. We would like to stress once more that suggested realizations of g-
algebras are continuous (i.e. they are not purely finite-difference ones) and they are used within
the standard physical concepts.

2. SUSY quantum mechanics

The simplest N = 2 SUSY quantum mechanics is fixed by the following algebraic relations between
the Hamiltonian of a system H and supercharges Qt, Q [21]

©ehor=8, @=@=0 #Q=H=0 (1)

All operators are supposed to be well defined on the relevant Hilbert space. Then, indepen-
dently on explicit realizations the spectrum is two-fold degenerate and the ground state energy is
semipositive, Eyqc > 0.

Let us consider a particle moving in one-dimensional space. Below, the coordinate z is tacitly
assumed to cover the whole line, z € R, if it is not explicitly stated that it belongs to some cut.
Standard representation of the algebra (1) contains one free superpotential W(z) [22]:

a=(5 5). o= ‘}f), A=(p-iWE)VE lepl=i 2

= (% )= (A ) =i W) (3

W'(:c):—:dif;W(z), a'3=((1) _01)

It describes a particle with two-dimensional internal space the basis vectors of which can be
jdentified with the spin "up” and "down” states.
The subhamiltonians H, are isospectral as a result of the intertwining relations

gat=atn,, AH_=H.A (4)

The only possible difference concerns the lowest level. Note that the choice W(z) = z corre-
sponds to the harmonic oscillator problem and then Af, A coincide with the bosonic creation and
annihilation operators at, a which satisfy the algebra

[a.,aT] =1, {N?QT] = at, [N,a] = —a, (5)

where N is the number operator, N = ata. This, and another particular choice, W(z) = A/z,
correspond to the conformally invariant dynamics [24].
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3. ¢-Deformed SUSY quantum mechanics

Now we shall introduce the tools needed for the quantum algebraic deformation of the above
construction. Let T, be smooth g-scaling operator defined on the continuous functions

T.f(z) = f(qz), (6)
where ¢ is a real non-negative parameter. Evident properties of this operator are listed below
d 4 d
T.f(2)g(2) = [Tof(2)Tg(=)],  Togo =¢7'=To,
T, T, = Tgp, Tq’] = T4, I, =1 (N
On the Hilbert space of square integrable functions £, one has
[ #@uieniz =g [~ ¢(q 7 2)(a)da, (®)

where from the hermitian conjugate of T, can be found
Tl=g'17,  @hl=1, ©

As a result, ,/qT, is a unitary operator. Because we take wave functions to be infinitely differen-
tiable, an explicit realization of T, is provided by the operator

Tq = elnq:d/dz = q:d/d:r' (10)

Expanding (10) into the formal series and using integration by parts one can prove relations (9)
on the infinite line and semiline {0, 00]. A special care should be taken for finite cut considerations
since T, moves boundary point(s).

Let us define the g-deformed factorization operators

A= St WENT, A= 16- W), (1)

where W(z) is arbitrary function and for convinience we use the same notations as in the unde-
formed case (3). A and Al are hermitian conjugates of each other on £;. Now one has

ATA = 170" + Wiz) - W(2) = ¢'H-, (12)
Al = 1o+ W) + W(2))T,
= 1q(P*+q W g 'z)+ ¢ 'W'(q7'2)) = ¢H,. (13)

We define g-deformed SUSY Hamiltonian and supercharges to be

e (B 2)=(a 0 ) e=(58) et=(0 4. oo
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These operators satisfy the following g-deformed version of the N = 2 SUSY algebra

@01, =8, {@.@l=1{etet=0, (HQ,=[Q"H,=0 (15)

where we introduced g-brackets
[X,Y], = ¢XY — ¢7'Y X, Y, X), = =[X,Y]¢-1, (16)
{X,Y}, =¢XY +¢7'YX, {YV, X}, = {X,Y}. (17)

Note that the supercharges are not conserved because they do not commute with the Hamiltonian
(in this respect our algebra principally differs from the construction of Ref.[11]). An interesting
property of the algebra (15) is that it shares with (1) the semipositiveness of the ground state
energy which follows from the observation that QT, Q and the operator ¢~°* H satisfy ordinary
SUSY algebra (1). Evidently, in the limit ¢ — 1 one recovers conventional SUSY quantum
mechanics.

For the subhamiltonians H. the intertwining relations look as follows

g At =gatn,, AH. =¢H.A (18)

Hence, Hy are not isospectral but rather g-isospectral, i.e. the spectrum of H_ can be obtained
from the spectrum of H, just by the ¢°-factor scaling:

Hoyp® = EBygH), H_y) = EC)yp),

EF) =g E®, $)« Aty ) o A9, (19)

Possible exception concerns only the lowest level in the same spirit as it was in the undeformed
SUSY quantum mechanics. If At,A do not have zero modes then there is one-to-one correspon-
dence between the spectra. We name this situation as a spontaneously broken g-SUSY because
for it Eyc > 0. If A (or, At) has zero mode then ¢g-SUSY is exact, Ey,c = 0, and H, (or, H.)
has one level less than its superpariner H_ (or, H,).

As a simplest physical example let us consider the case W(z) = gz. The Hamiltonian takes
the form

H = 3+ Ul +a )2 +3e7 -9+ 5((¢" —¢7")2" —g— g ")os
= ' +39°72" — 3970y, (20)
and describes a spin-1/2 particle in the harmonic potential and related magnetic field along the
third axis. The physical meaning of the deformation parameter g is analogous to that in the XXZ-

model [3] - it is a specific interaction constant in the standard physical sense. This model has
exact g-SUSY and if ¢° is a rational number then the spectrum exhibits accidental degeneracies.
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4. General deformation of superpartner Hamiltonians

Described above g-deformation of the SUSY quantum mechanics is by no means unique. If one
chooses in the formulas (11) T, to be not g-scaling operator but, instead, the shift operator

T.f(z) = f(z+4q), T, =e"¥%, (21)

then SUSY algebra will not be deformed at all. The superpartner Hamiltonians will be isospectral

and the presence of T;-operator results in the very simple deformation of old superpartner potential

Ui(z) — Ui(z — g) (kinetic term is invariant). Evidently such deformation does not change the

spectrum of U, (z) and that is why SUSY algebra remains intact. Nevertheless it creates new

physically relevant SUSY quantum mechanical models. The crucial point in generating of them

was the implication of essentially infinite order differential operators as the intertwining operators.
A more general T, is given by the shift operator in arbitrary coordinate system

d 1 d
— qd/dz(z —
TAGee) = f(x(e) + ) Ty= et o o (22)
The effects of choices z = Inz and z = z were already discussed above. In general, operator
T, will not preserve the form of kinetic term in H,-Hamiltonian. Physically, such change would
correspond to the transition from motion of a particle on flat space to the curved space dynamics.

Below we shall assume the definition (6) but full affine transformation on the line
T, f(=) = f(gz + a)

may be used in all formulas without changes.

An interesting question is whether inversion transformation can be joined to the affine part
so that a complete SL(2) group element z — (az + b)/(cz + d) will enter the formalism in a
meaningful way? Application of the described construction to the higher dimensional problems
is not so straightforward. If variables separate (spherically symmetric or other special potentials)
then it may work in a parallel with the non-deformed models. In the many-body case one can
perform independent affine transformations for each of the superselected by fermionic number
subhamiltonians and thus to "deform” these SUSY models as well.

5. g-Deformed conformal quantum mechanics

Particular form of the su(1,1) algebra generators can be realized via the harmonic oscillator
creation and annihilation operators (5)
(T,  K_=

K, = a?, Ko=3(N+1), (23)

1
2

[KU,K:Q:] = :!:Ki, [K+,K_} = —2K0. (24)
This means that harmonic potential has su(1,1) as the dynamical symmetry algebra, physical
states being split into two irreducible representaions according to their parity. Let us show that

the potential introduced in Ref.[19] obeys the quantum conformal symmetry algebra su,(1,1) in
complete parallel with (23),(24).
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First, we shall rederive this potential within g-SUSY physical situation. Let us consider the
Hamiltonian of a spin-1/2 particle in an external potential %U(z) and a magnetic field %B(z)
along the third axis

H = 1(p* + U(z) + B(z)os) (25)

and impose two conditions: we take magnetic field to be homogeneous
B = —p3%¢q? = constant (26)
and require the presence of ¢-SUSY (15). Equating (25) and (14) we arrive at the potential
U(z) = Wi(z) - W'(z) + B¢, (27)
where W (z) satisfies the following mixed finite-difference and differential equation
W'(z) + qW'(gz) + W(z) - ¢’W?(gz) = 28°. (28)

This is the condition of a self-similarity [19] which bootstraps the potential in different points (in
Ref.[20] 82 = 4%(1 4 ¢*)/2 parametrization was used). Smooth solution of (28) for symmetric
potentials U(—z) = U(z) is given by the following power series

oc 2y -1 2
_ i _g¥-1 1 _ 2B
W(Z) —iz-_-:lciz y ¢ = q2.+121_1m2=1 Ci—mCm, C1 = 1+q2' (29)

In different limits of the parameters several well known exactly solvable problems arise: 1) Rosen-
Morse - at ¢ — 0; 2) Poschl-Teller - at 8 o< g — oo; 3) harmonic potential - at ¢ — 1;
4) 1/z%-potential — at ¢ — 0 and 8 — 0. However, strictly speaking for all these limits to be
valid one has to prove their smoothness, e.g., for 4) there may be solutions for which two limiting
procedures do not commute, etc. Note also that for the case 2) the coordinate range should be
restricted to finite cut because of the presence of singularities. Infinite soliton solution of Shabat
corresponds to the range 0 < g < 1 at fixed 8. If ¢ # 0,1, 00, there is no analytical expression for
W (z) but some general properties of this function may be found along the analysis of Ref.[19].

The spectrum can be derived by pure algebraic means. We already know that the spectra of
H, subhamiltonians are related via the ¢’-scaling

E'J = #EWM, (30)

where the number n numerates levels from below for both spectra. Because ¢-SUSY is exact in
this model the lowest level of H_ corresponds to the first excited state of H,. But due to the
restriction (26) the spectra differ only by a constant,

E) = ElY - 877, (31)

Conditions (30) and (31) give us the spectrum of H

2m n
-9

Enm =11

T m=20,1;n=0,1,...,00. (32)
- q
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At g < 1 there are two finite accumulation points, i.e. (32) looks similar to two-band spectrum.
At ¢ > 1 energy eigenvalues seem to grow expomentially to the infinity but there is a catch
which does not allow to identify (32) in this case with real physical spectrum. In Ref.[19] it was
proven that for 0 < ¢ < 1 the superpotential is smooth and positive at z = +0o. But then
-;bf,_)(;c) = exp(— [* W(y)dy) is a normalizable wave function defining the ground state of H_-
subhamiltonian and all other states are generated from it without violation of the normalizability
condition. Therefore relation (32) at 0 < g < 1 defines real physical spectrum.

At ¢ > 1 the series defining W(z) converges only on a finite interval |z] < r < o0. From
inequalities

2=q2_1 q2i_1

= : 1 > 1
Fil g1 <L >

P

we have 0 < cfl) < ¢ < c®, where c,(l’z) are defined by the rule (29) when g-factor on the right
hand side is replaced by p? and 1 respectively (cﬁ"” = ¢;). Asaresult, 1 < 2,/cir/m < p~!, which
means that W(z) is smooth only on a cut at the ends of which it has some singularities. From the
basic relation (28) it follows that these are simple poles with negative unit residues. In fact there
should be an infinite number of simple "primary” and "secondary” poles. The former ones are
characterized by negative unit residues and location points z, tending to r(m+1/2)/,/c;, m € Z,
at ¢ — oo (c; is fixed). "Secondary” poles are situated at z = ¢"z,,, n € Z*, with corresponding
residues defined by some algebraic equations. Unfortunately, general analytical structure of the
function W(z) is not known yet, presented above hypothesis needs rigorous proof with exact
identification of all singularities and this is quite challenging problem.

On the other hand, existence of singularities in superpotential does not allow to take formal
consequences of SUSY as granted. Namely, isospectrality (or, g-isospectrality) of H, and H_ for
the whole line problem is broken at this point. Hence one is forced to consider Shrédinger operator
(25) on a cut [—r,r] with boundary conditions ¥,(+r) = 0. Pole character of W(z) singularities
leads to 6')(:tr) =0, i.e. ¢((,') is true ground state of H_. It also garantees that U_(z) is finite
on the physical boundaries, U_(+r) < co. Note, however, that the spectrum E, for such type of
problems can not grow faster than n” at n — oo [15] in apparent contradiction with (32). This
discrepancy is resolved by observation that action of T,-operator creates singularities inside the
interval [—r,7] so that U, (z) and ¢°U,(gz) are not isospectral potentials (in ordinary sense) as it
was at g < 1. Hence, the ¢ > 1 case of (32) does not correspond to real physical spectrum of the
model.

The number of deformations of a given function is not limited. The crucial property preserved
by the presented above g-curling is the property of exact solvability of undeformed” Rosen-Morse,
harmonic oscillator, and Péschl-Teller potentials. It is well known that potentials at infinitely
small and exact zero values of a parameter may obey completely different spectra. In our case,
deformation with ¢ < 1 converts one-level Rosen-Morse problem into the infinite-level one with
exponentially small energy eigenvalues. Whether one gets exactly solvable potential at ¢ > 1 is
an open question but this is quite plausible because at ¢ = 0o a problem with known spectrum
arises.

Derivation of the dynamical symmetry algebra is not difficult. To find that we rewrite relations
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(12), (13) for the superpotential (28)

2 -1 2, -1
Ata= “H+ﬂ 5 AAT=qH+Tﬁ—_q-?, (33)

where H is the Hamiltonian with purely exponential spectrum

g ik
H=3(0' + W) -We)- 105  B=-7_a0" (34)

Evidently,
Aat — g2ata = p2gt, (35)

Normalization of the right hand side of (35) to unity results in the first relation entering the
definition of g-deformed Heisenberg-Wey! algebra.
The shifted Hamiltonian (34) and AT, A operators satisfy braid-type commutation relations

[AtaH]q = [HvA]q =0,
or,
aat=gate, AH=¢HA (36)

Energy eigenfunctions |n) can be uniquely determined from the ladder operators action

—_ g2(n+1) V
T e e L R B kv L S G

It is convinient to introduce the formal number operator

In[(g* - 1)H/A?]

N= In ¢2

, Nn) = n|n), (38)

which is defined only on the eigenstates of the Hamiltonian. Now one can check that operators

aq = %Aq"v/’, af = %q"v”A* (39)

satisfy original g-deformed harmonic oscillator algebra of Biedenharn and Macfarlane (4, 5
aan - qajaq = q_N’ [Nv GI] = aIa [N7a'q] = —daq. (40)

The quantum conformal algebra su,(1,1) is realized as follows,

K=l K=, K=V,
Ky, K%)= £K* [K*, K~ ] = —M (41)
Uy - ’ L] - q2 _ q—2 '
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Since H o ¢*K°, the dynamical symmetry algebra of the model is su,(1,1). Generators K*
are parity invariant and therefore even and odd wave functions belong to different irreducible
representations of this algebra. We conclude that quantum algebras have useful applications even
within the continuous dynamics described by ordinary differential equations. A different approach
to g-deformation of conformal quantum mechanics on the basis of pure finite difference realizations
was suggested in Ref.[25].

Let us compare presented model with the construction of Ref.[26]. Kalnins, Levine, and Miller
called as the conformal symmetry generator any differential operator L(¢) which maps solutions
of the time-dependent Schrodinger equation to the solutions, i.e. which satisfies the relation

0 . 6

iEL—[H,L]=R(152—H), (42)
where R is some operator. On the shell of Schrdinger equation solutions L(t) is conserved and all
higher powers of space derivative, entering the definition of L(t), can be replaced by the powers
of §/0t and linear in §/0z term. But any analytical function of 8/8t is replaced by the function
of energy when applied to stationary states. This trick allows to simulate any infinite order
differential operator by the one linear in space derivative and to prove that a solution with energy
E can always be mapped to the not-necessarily normalizable solution with the energy E + f(E)
where f(E) is arbitrary analytical function. "On-shell” raising and lowering operators always can
be found if one knows the basis solutions of the Schrodinger equation but sometimes it is easier to
find symmetry generators and use them in search of the spectrum. In our construction we have
"off-shell” symmetry generators, which map physical states onto each other and satisfy quantum
algebraic relations in the rigorous operator sense. In this respect our results are complimentary
to those of the Ref.[26].

It is clear that affine transformations provide a particular example of possible potential de-
formations leading just to scaling of spectra. In general one can try to find a map of a given
potential with spectrum E, to a particular related potential with the spectrum f(E,) for any an-
alytical function f(E). A problem of arbitrary non-linear deformation of Lie algebras was treated
in Ref.[12] using the symbols of operators which were not well defined on proper Hilbert space.
Certainly, the method of Ref.[26] should be helpful in the analysis of this interesting problem
in a more rigorous fashion and the model presented above shows that sometimes an "off-shell”
realization of symmetry generators can be found.

6. Factorization method and new potentials

SUSY quantum mechanics is related to the factorization method of solving of Schrédinger equation
[27-29]. Within the latter approach one has to find solutions of the following nonlinear chain of
coupled differential equations for superpotentials W;(x)

Wi+ W + W -W =k =Xa—X, j=012... (43)
where k;, A; are some constants. The Hamiltonians associated to (43) are

2H; = p* + Uy(=) = p* + Wi(z) - W)(2) + A, (44)

102



Uo(z) = W3 = Wi+ X,  Usn(z) = Uj(=) + 2Wj(=),

where ), is an arbitrary energy shift parameter.

SUSY Hamiltonians are obtained by unification of any two successive pairs H;, H;;, in a
diagonal 2 x 2 matrix. Analogous construction for a piece of the chain (44) with more entries was
called an order N parasupersymmetric quantum mechanics [30, 31]. In the latter case relations
(43) naturally arise as the diagonality conditions of a general (N + 1) x (N + 1)-dimensional
parasupersymmetric Hamiltonian.

If W;(z)’s do not have severe singularities then the spectra of two operators from (44) may
differ only by a finite number of lowest levels. Under the additional condition that the functions

$§)(z) = eI i (45)
are square normalizable one finds the spectrum
HiyP(z) = EP (@), ED = Jhin, (46)

where subscript n numerates levels from below. In this case (45) represents ground state wave
function of H; from which one can determine lowest excited states of Hj, j' < j,

$9(2) & (p+iW;)(p + iWia1) oo (p + Wianoa) 90T, (47)

Any exactly solvable discrete spectrum problem can be represented in the form (43)-(47). Some-
times it is easier to solve Schrédinger equation by direct construction of the chain of associated
Hamiltonians (44). If Up(z) has only N bound states then there does not exist Whn(z) making

(™ normalizable. If Wn(z) = 0, then H;(j < N) has exactly N —j levels, the potential U;(z)
is reflectionless and corresponds to (N — j)-soliton solution of the KdV-equation.

In order to solve evidently underdetermined system (43) one has to impose some closure
conditions. At this stage it is an art of & researcher to find such an Ansatz which allows to generate
infinite number of W; and k; from fewer entries. Most of old known examples are generated by
the choice W,(z) = a(z)j + b(z) + c(z)/j where a,b,c are some functions determined from the
recurrence relations [27, 28] (see also [19]). New look on the equations (43) was expressed in
Ref.[32]. It was suggested to consider that chain as some infinite dimensional dynamical system and
to analyze general constraints reducing it to the finite-dimensional integrable cases. In particular,
it was shown that very simple periodic closure conditions

Wiin(z) = Wiz),  Ajun = A, (48)

for N odd lead to all known hyperelliptic potentials describing finite-gap spectra (i.e. those with
finite number of permitted bands). In this case parameters A; do not, of cause, coincide with the
spectrum. The first non-trivial example appears at N = 3 and corresponds to Lame equation with
one finite gap in the spectrum. Equivalently one can consider arising Schrodinger equation in the
Weierstrass form (then periodic potential has singular points where wave functions are required to
be equal to zero) and again parameters }; do not coincide with (purely discrete) spectrum. Note
that in the analysis of parasupersymmetric models (30, 31] constants k; were naturally treated as
arbitrary parameters only occasionally giving the energy levels.
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The self-similar potential of Sect.5 was found in Ref.[19] by the following Ansatz in the chain
(43) . .

W;(z) = ¢ W(q'z), (49)

which gives a solution provided W(z) satisfies the equation (28) and constants k; are related to

each other as follows '
kj o ¢*, j>0. (50)

As it was already discussed, the parameters ); o« ¢*/ give the spectrum of problem at 0 < ¢ <1
and therefore closure (49) seems to be completely different from (48). However, described above
¢-SUSY quantum mechanics and subsequent derivation of (49),(50) shows that in fact (49) is a
g-deformation of the following closure condition

Win(z) = Wj(z), kis1 = kj, (51)
which leads to harmonic oscillator potential. Indeed, one may write
Win(z) = gWi(gz), ki =gk, (52)

and check that (49), (50) follow from these conditions.

As it was announced in Ref.[23] one can ecasily generalize deformation of SUSY quantum
mechanical models to the parasupersymmetric ones. In the particular case defined by (N + 1)-
member piece of the chain (44) one simply has to act on the successive Hamiltonians by different
affine transformation group elements. This would lead to multiparameter deformation of the
parasupersymmetric algebraic relations. Following the consideration of Ref.[30] one may impose
analogous physical restrictions on the Hamiltonians and look for the explicit form of potentials
accepting these constraints. Analyzing such possibilities the author have found the following
general g-periodic closure of the chain (43)

Wiin(z) = aWilqz),  kjun = ¢k;. (53)

These conditions describe g-deformation of the finite-gap and related potentials appearing at ¢ = 1.
Let us find a symmetry algebra behind (53) at N = 2.
First we write out explicitly the system of arising equations

Wi(z) + Wj(z) + Wi(z) - W(z) = 20,
W;(z) + qWi(qz) + Wi(z) — ¢*W{(qz) = 28 (54)

One can check that the operators
K*=1(p+iW)(p+iW:)vaT,, K =(K*)! (55)
satisfy the relations
K*K-=HH-a), K K*=(H+B)¢H+a+ph), (56)

H = 15" + Wi(z) - Wi(=)).
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The operator H obeys the following commutation relations with K*
HK* — ¢K*H = (a + B)K*, K H-¢HK =(a+pB)K". (57)

Note that by adding to H of some constant equations (57) may be rewritten in the form (36).
On the basis of (56) one may define various g-commutation relations between K* and K~.
The simplest one would be the following

K K* - ¢'K*K™ = ¢*(a(1 + ¢*) + 28)H + B(a + B). (58)

The formal map onto the relations (41) is also available. Therefore relations (57),(58) give &
particular form of the “quantization” of the algebra su(1,1) which is explicitly recovered at ¢ = 1.

Described g-deformation of the conformal quantum mechanics is more general than that pre-
sented in Sect.5. Indeed, various limits of g give the following solvable cases: 1) a two-level
potential corresponding to two-soliton system appears at ¢ = 0; 2) a finite cut analog of two-
soliton potential arises at ¢ — oo; 3) the general conformal potential comprising both oscillator
and 1/z? parts is recovered in the limit ¢ — 1 when W(z) « a/z + bz. In order to find the
spectrum of H at arbitrary g it is neccessary to know general properties of the superpotential
W,. Let us suppose that there exists a solution for positive a and B such that exp(— [* W, ;) are
normalizable wave functions. Then the spectrum consists of two geometric series and by shifting
can be represented in the form

2m —
E, = Ey¢*™, for n=2m (59)
Ei¢*™, for n=2m+1

with the E, < E,;; ordering fulfilled. Even and odd wave functions fall into independent ir-
reducible representations of su,(1,1). A more detailed consideration of potentials and algebraic
structures arising from the g-periodic closure of the chain (43) will be given elsewhere.

7. Conclusions

To gonclude, we described a deformation of the SUSY quantum mechanics on the basis of affine
transformations. The main feature of the construction is that superpartner Hamiltonians satisfy
non-trivial braid-type intertwining relations which remove degeneracies of the original SUSY spec-
tra. Obtained formalism naturally leads to the Shabat's self-similar potential describing slowly
decreasing solutions of the KdV equation. The latter is shown to have straightforward mean-
ing as a g-deformation of the harmonic oscillator potential. Equivalently, one may consider it
as a deformation of a one-soliton system. Corresponding raising and lowering operators satisfy
g-deformed Heisenberg-Weyl algebra atop of which a quantum conformal algebra su,(1,1) can be
built. We also outlined a generalization of the Shabat’s potential on the basis of g-deformation of
periodic closure condition and presented g-deformation of general conformal quantum mechanics
potentials.

In this paper the parameter g was taken to be real but nothing prevents from consideration of
complex values as well (this changes only hermicity properties). The most interesting cases appear
when g is a root of unity [33]. For example, at ¢°> = 1 eq. (28) generates a potential proportional to
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the so-called equianharmonic Weierstrass functions. More complicated hyperelliptic potentials are
generated at higher roots of unity. The nontrivial Hopf algebra structure of the quantum groups
was not considered because it is not relevant in the context of quantum mechanics of one particle
in one dimension. Perhaps higher dimensional and many body problems shall elucidate this point.
In fact, there seems to be no principle obstacles for higher dimensional generalizations although
resulting systems may not have direct physical meaning. Another possibility is that described
self-similar systems may arise from higher dimensional ones after the similarity reductions.

In order to illustrate various possibilities we rewrite the simplest self-similarity equation with-
out scaling (i.e. at ¢ = 1) but with non-trivial translationary part

Wi(z) + W'(z + a) + W¥(z) — W¥(z + a) = constant. (60)

Solutions of this equation provide a realization of the ordinary undeformed Heisenberg-Weyl al-
gebra. The full effect of the presence of the parameter a in (60) is not known to the author but
solutions whose absolute values monotonically increase at £ — 400 seem to be forbidden. Note
also that in all formulas of SUSY and ¢-SUSY quantum miechanics superpotential W(z) may be
replaced by a hermitian n x n matrix function. The equations (28), (35), (60) may be equally
thought as being the matrix ones with the right hand sides proportional to unit matrices. We end
by a speculative conjecture that described machinery may be useful in seeking for g-deformations
of the non-linear integrable evolution equations, like KdV, sin-Gordon, etc.
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PHASE OF THE QUANTUM HARMONIC OSCILLATOR
WITH APPLICATIONS TO OPTICAL POLARIZATION

Scott R. Shepard
Department of Electrical Engineering and Computer Science,
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Abstract

The phase of the quantum harmonic oscillator, the temporal distribution of a particle in
a square-well potential, and a quantum theory of angles are derived from a general theory of
complementarity. Schwinger’s harmonic oscillator model of angular momenta [1] is modified
for the case of photons. Angular distributions for systems of identical and distinguishable
particles are discussed. Unitary and antjunitary time reversal operators are then presented
and applied to optical polarization states in birefringent media.

1 General Theory of Complementarity

The fact that linear momentum is the generator of translations in space, leads to the Fourier
transform relations between the momentum and spatial representations of Schrodinger’s wave-
mechanics [2]. Similarly, since energy generates translations in time, there are Fourier transform
relations between the energy and temporal representations [3]. For the case of the harmonic
oscillator, the energy eigenspectrum is proportional to the integers n = 0,1,2... (recall H =
hw(f + 1/2), where 1 = a'a is the photon number operator) and this spectrum is aperiodic
(i.e. not periodic). Therefore the temporal distribution of the oscillator will be continuous and
periodic. Indeed, the simplest way (that I have found) to describe the phase (® = wt) of the
quantum harmonic oscillator is to form the wavefunction

$(B) = 3 e (1)

which is the Fourier series of the n-space wavefunction (or number-ket expansion coefficients)
¥n = (n|)), where iijn) = n|n). The probability density for finding ® on any 2x interval (the
period of ¥(®)) is then simply |¢(®)|2/2x. The wavefunction approach circumvents complications
associated with the equally correct perspective [4] that this phase distribution corresponds to the
realizable measurement of the Susskind-Glogower (SG) [5] phase operator.

Suppose we wish to study the temporal behavior of a particle in a one dimensional box (the
“phase of the infinite square well”). We do not have to start all over, we can simply take the
Fourier (series) transform of the discrete energy wavefunction, which underlies the discrete energy
eigenspecta:

hin?
' 2ml?

(i) (i=1,2,3...) (2)
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where L is the length of the box and m the mass of the particle. In other words, labeling the energy
eigenstates, {|E,.)}, according to the value of n = (i)?, we'd use the ¢, = (E,|¢) as the Fourier
series coefficients in ¥(®) = 3, ¥.e~""*, where & = t(Ar?/2mL?). The temporal distribution is
therefore like that of a harmonic oscillator for which ¥, = 0 = 93, Y5 = 0 = g = Y7 = s, etc.
For a well of finite depth, the bound state eigenenergies will be perturbed from being proportional
to the squares of integers, but they will still be discrete and we would still sum over the (E;|¢) with
each one weighted by e~*Fit/* to form 4)(¢) which is quasi-periodic (it can’t be ezactly periodic
since the E; are no longer integer multiples of each other, however the difference between (t)
and ¥(t + T) can be made as small as we wish by making T large enough — hence the term
“quasi-periodic”). The unbound states for this problem, however, have a continuous distribution
in energy and for these we would form the aperiodic

¥(t) = [ dE y(E)e B (3)

where ¥(E) = (E|¢). Notice that the unbound states exhibit an aperiodic temporal distribution,
i.e. they can be “here today and gone tomorrow” as they zip past the potential well, whereas the
bound states are trapped into quasi-periodic oscillations.

From the general theory of complementarity we can also obtain a quantum theory of angles.
The z component of angular momentum, J,, is (by definition) the generator of translations in
the angle about the z axis, which shall be denoted as ¢. It is well known that J, has discrete
eigenvalues given by mh where m € {—7,—j + 1,...7 — 1,5} and j is the label of the discrete
eigenvalues of the simultaneously measurable Jj? = Jj2 + J2 + J? which are j(j + 1)*. For states
in which each value of m is uniquely represented (the degenerate case will be discussed in the
next section), such as a particle of spin s (i.e. 7 = s = a fixed number), we can form the angle

representation

P(d) =D Yme™ ™ (4)

where ¥, = (j,m|¢) and the angular distribution is p(¢) = |¢(#)|?/2r. Since ¥(®) is periodic
its transform 3,, must be discrete, i.e. the quantization of angular momentum (projected onto an
axis) is a simple and immediate consequence of the periodicity of the angle (about that axis).

2 Harmonic Oscillator Models of Angular Momenta

In 1952, Schwinger [1] demonstrated a connection between the algebra of two uncoupled harmonic
oscillators and the algebra of angular momenta. The key points of Schwinger’s model are as
follows:

. . h
J_=hala, and J, = 7t — ), (5)

where &, and a4 denote the annihilation operators for the “up type” and “down type” oscillators.
From this we obtain the fundamental commutation relations of angular momentum:

[J.,J_]=28J, and [J,,J.] = £hJ}, (6)

where J, = (J_)! and Ji=J. & ijy, 50 [jz,'jy] — ihJ, etc. Since the quanta of these oscillators
behave like spin 1/2 objects (as seen from eq.(5)), yet only totaly symmetrical states are con-
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structed by this method, these quanta are not believed to correspond to actual particles and the
connection is merely within the mathematics [2].

We put some physics into this connection by considering a rotation of a single frequency
electromagnetic wave about the z axis (along which the k vector lies) which leads to the well known
result that a right handed circularly polarized photon is an eigenstate of J./h with eigenvalue

= +1. Similarly, a left handed photon is associated with m = —1 and since we need only
consider transverse components of the vector potential, the photon is said to be a particle of “spin
1 with m=0 missing” [6]. Since the photon is a boson which resembles a spin 1/2 object in the
sense that its spin space is two dimensional, it seems reasonable to attempt to reconstruct the
algebra of angular momenta from these physically significant photonic primitives. Indeed, taking

J_ = 2kdla, and J, = k(R — ), (7)

where a, and &, are the annihilation operators for the right and left circularly polarized modes of
a single frequency, z propagating, electromagnetic wave, we obtain

Ji,J_] = 4kd, and [J,,Js] = £2hJ.. (8)

where as before J, = (J,)! and J; = J, £ iJ,, so [Jz, J,] = 2ikJ, etc. This is the same group,
however J_ now lowers m by 2 (rather than by 1) which is exactly what we want for photons.
Notice that a differential phase shift between these circularly polarized modes (or between the
up and down oscillators for the case of fermions and ordinary, i.e. “non-photonic”, bosons) is
equivalent to a rotation about the z axis:

RO = T brome P, my). (9)

y,Ny

We can relable our two-mode number states according to the values of j = n, + n; (or j =
(ny + n4)/2) and m = n, — n; (or m = (n, — nq4)/2). To obtain the angle representation for the
case of identical particles (e.g. all these states are photons, or they are all electrons, etc.) we
should allow for quantum interference of all these states (i.e. we should add amplitudes rather
than probabilities) and therefore simply use

Ym =D _{j,mld) (10)

in eq.(4) for these cases. Since the 1, defined in eq.(10) are no longer normalized (for m states
degenerate in j) we must renormalize:

$(6) = B(@)/Ve where c= [ (@)1 (11)

For bosons or photons the minimal non-zero value of |m| is one therefore the period of ¥(¢) is
at most 27, and since Am;, = 1 the period of p(¢) is at most 2x. For fermions m can be 1/2 so
the period of 1/(¢) can be 4. This indicates the rotational Berry’s phase “for fermions”{7], which
we now see to be more correctly stated as being “for fermions which have non-zero overlap with
m = +1/2 states.” Since Am,,;, for fermions is still one, p(#) is still mod 27, indicating that

111



observation of the “mod 47 Berry’s phase” requires interference of this state with another one, as
is well known.

Notice that if we allowed for particles comprised of mixtures of integer and half-integer spin
we could have Ampyin, = 1/2 so that p(¢) (not just ¥(#)) would be periodic mod 4x! Since no
interference with another state is required, the existence of proposed particles of this type would
radically alter our conceptualization of space (each point like a Mobius strip?). Alternatively, we
might argue that it is physicaly reasonable to require that p(¢) have at most a period of 27 and
therefore we would have a theoretical explanation of the “... empirical fact that a mixed symmetry
does not occur” [2]. If however, we had a system comprised of a fermion and a boson (e.g. an
electron and a photon) then since these distinguishable particles do not interfere, the angular
distribution should be (at most) mod 2.

For the case of distinguishable particles we should add probabilities (rather than amplitudes),
i.e. rather than the procedure defined by eq.s (4), (10), and (11), we should do the following. For
each distinguishable particle we should form an angular wavefunction, then square its magnitude
and divide by 27 to form each different particle’s individual angular distribution, then add these
individual distributions to form the angular distribution of the entire system. When these distin-
guishable particles have distinct values of spin (such as a system comprised of a spin 1/2 electron
and a spin 1 photon for example) this proceedure is as follows. For each fixed value of j = s we
form

PNG) =Y bime ™ and plN¢) = PU(g)*/2n (12)

from which we obtain the system’s angular distribution: p(¢) = ¥, p)(¢). This procedure
corresponds to the measurement of Z = (J2 — J2 — hJ,)"1/2J_ where the leading term obviates
the \/(] + m)(j — m + 1) factor from J_ so that the lowering of Z is “pure”: Z|j,m) = |j,m —1).

3 Unitary and Antiunitary Time Reversal

Although in the literature to date [2] it has been argued that a time reversal operator must be
antiunitary (so that kinetic energy, for example, remains non-negative) it is more appropriate for
our purposes to define a unitary time reversal operator since we are mainly interested in relative
(rather than absolute) time and relative time (e.g differential phase) is complementary to the
relative energy (e.g. photon number difference) which can be negative.

For a quantum mechanical operation to conserve probability the corresponding operator must
either be unitary or antiunitary [8] (or some combination thereof). In either case it is reasonable
to require that a time reversal operator, T, should satisfy (2]

U@)T = TU(-t), (13)

where [/(t) denotes (unitary) time evolution of an amount ¢. Equivalently, we could require
U(t)TU(t)T = I and we are neglecting (as we did in eq.(13)) any overall phase which might be
aquired in getting back to the “same” state.

Any antiunitary operator can be expressed as a product of a “complex conjugator” (of c-
numbers) and a unitary operator [8]. Thus the unitary time reversal operator, T.,, is simply the

112



unitary part of the antiunitary time reversal operator
T, = CT.,, (14)

where C' denotes complex conjugation. It has previously been demonstrated that the auxiliary (a)
mode (associated with the realizable measurement of the SG operator) must be “time reversed”
with respect to the original system (s) mode [9]. Therefore, T., should permute these modes so
that T, acting on a two-mode state, [} = T, . ¥nuina %) elna)a, yields

Tol) = S5 9% o radelma)a = S5 i na)elna)a (15)

n; Nga n, Na

Subsequent time evolution (i.e. absolute phase shift) of this state results in

U(t T W" Z Z¢n¢,n, —s(n.+n.+1)wt|n‘)‘|na)a, (16)

n, nga

where U(t) = e~(Ae+he+l)wt  If instead, we first propagated the initial state [¢) “backwards” in
time, and then time reversed we'd obtain T,U/(—t)[4) =

T3 Ynanee ™ttt n ) Ing)g = 33" o e ettt n ) Ing ), (17)

n, Na n, nNga

which is the same state as in eq.(16) and therefore the requirement of eq.(13) is satisfied.

For unitary time reversal, we simply omit the complex conjugation of the expansion coefficients
and we find that in order to satisfy eq.(13) we must consider a differential (rather than absolute)
phase shift [/ (t) = e~¥(#+—fe)ot, Explicitly, we have

0d(t)Tu|¢) = ﬁd(t)zzwn..n.'na)c‘na)a = ZZ’/’".,n.e_‘(“'—m)wtlnc)t|na>a’ (18)

N, Na n, Ta

which is equivalent to T, Us(—t)|s) =
T“ Z Z d’n..n.e“(m_n“)wt|nn>c|na)¢ = Z Z ¢"-a"-e_i(n'-m)wt|nl)l Ina})a- (19)

n, ng n, nNga

Thus the “time” to be associated with unitary time reversal is the difference time, translations in
which are generated by the energy difference hw(#, — #i,).

We have already demonstrated that the differential phase between the two oscillators of our
angular momenta model is equivalent to the angle ¢. Therefore T., corresponds to angle inver-
sion (¢ — —¢) when we take the s and a modes to be the right and left circularly polarized
electromagnetic modes (or the up and down oscﬂlators), i.e. under T, we have:

d)nf,m - ¢m.n, or I()bj,m — d"j,—m s0 ¢'(¢) - ¢(_¢) (20)

(in the antiunitary case, we’d have ¥(¢) — ¥*(#) under T,). A T, eigenstate ((4) = ¥(—¢)) will
therefore have an angular distribution symmetrically centered about ¢ = 0, so that any vector
associated with this state can only be along the x axis. Indeed, from 9., n, = ¥n,n, We can show

((a.)?) = {(&;)?) Vp€ {0,1,2,...} and from the p = 1 result we have (E,) = 0. The T, eigenstates
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(in the cicularly polarized basis) therefore correspond to polarization which is linear in terms of

the polarization “signal” (i.e. the (E)) so that they resemble (and include) the case of putting
one linear polarized mode in the vacuum state, but they can achieve this with a reduction in
polarization “noise” (e.g. A’E, or A?E,). These states therefore provide a foundation for the
study of quantum limits on the performance of devices which utilize circularly birefringent media
(e.g. Faraday rotators, optical isolators, etc.).

As a simple example, compare these two T, eigenstates: one an x polarized coherent state (with
the y polarization unexcited), |a),|a); = |v/2a).|0),; and the other (Ja),[0); + [0).|a):)/vZ+ (1 -
v2)e~1=72|0),|0);, which I'll refer to as the pseudo-coherent state. Both states yield similar
polarization “signals” (E,) ~ —2asin(wt) and (E,) = 0, yet, the polarization “noise” of the
pseudo-coherent state (A%2E, = 1/2) is 3 dB below the shot noise limit of the coherent state
(A?E, = 1), where we assume |a|? >> 1 (else the pseudo-coherent and coherent states both tend
towards the vacuum).

We can also use the phase representation to describe the measurement of the differential phase
shift of two linearly polarized modes which is germane to optical polarization states propagating
through linearly birefringent media. The sense in which 1(¢) would describe the polarization state
for the linear mode set would be different however since we lose the connection with the angular
measurement as the energy eigenstates in the linear basis are not eigenstates of angular momenta.
Nonetheless, the mode exchange eigenstates in this basis correspond to an expected value of the
electric field operator that resembles circular polarization and these states provide a foundation
for the study of quantum limits on the performance of quarter-wave plates, etc.
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Abstract

We discuss the equivalence between the ¢-deformed harmonic oscillator
and a specific anharmonic oscillator model, by which some new insight into
the problem of the physical meaning of the parameter g can be attained.

1 Introduction

Recently there has been a great deal of interest in the study of quantum groups.
Of particular interest here is the development by Macfarlane [1] and independently
by Biedenharn [2] of the realization of the guantum group SU(2), in terms of the
g-analogue of the quantum harnomic oscillator. Although many aspects of the g-
deformation of the bose harmonic oscillator algebra have been investigated, still one
of the most appealing issues is perhaps the physics behind the parameter q. Here
an attempt is made in this direction.

We show that the ¢-deformed harmonic oscillator model can be used to describe
a specific anharmonic oscillator. Thus a g-deformation can be understood as an
effective anharmonic deformation, where ¢ is proportional to the strength of the
harmonicity. The anharmonic and the ¢-deformed oscillator models are presented
respectively in section 2 and 3 and their equivalence is therein discussed. The
latter can in turn be used to examine interesting non-classical features induced by
a g-deformation during the time-evolution of a SU(2) coherent state. This is put
forward in section 4, and discussed in [3]

2 Anharmonic oscillator
The anharmonic oscillator we wish to discuss has the hamiltonian

1
Mi=H+EN=N+_+EN (1)

Wwo 2 Wo
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where Hj is the free hamiltonian of the simple harmonic oscillator whose funder-
mental frenquency is wo. N = b'h is the number operator, whereas b' and b are
respectively the lowering and raising bose operators. H) is in units of wy when Hy
is in units of wp. The anharmonic term is taken proportional to N3, and the anhar-
monicity parameter is positive: specifically we take here g = wgy?/6. In the limit of
small anharmonic deformations the hamiltonian in Eq.(1) can be discussed in terms

of
NGRS
=1+ 2*;3‘) ], =~sinhy (2)
It is readily seen that in this representation
H, = Q.,(ajya., +1/2) (3)

is indeed equivalent [4] to H) in Eq.(1).

States of our anharmonic oscillator can be constructed as quantum states for H,.
First note that the vacuum |0). , defined as a,|0) , = 0, is the same as the vacuum |0),
for the harmonic oscillator. However, eigenstates of the number operator N, = ala,
substantially differ from those for the harmonic oscillator. The former can be defined

CD ), Ml = -2 )

= 4
In), = 2=lo), =, (4)

while the normalization condition . (m|n})., = é,, » determines the c, . ’s:

2’»2 2 2

n
‘Q n[(1+ 5 3‘

L = nio H(1+ L, awy=1 (5)

Iere we will be concerned, in particular, with coherent states. In the basis {|n}),} (n =
0,1,2,...) these can be expressed as [5]

o0 a o a?n
= C_2 = 6
4= C, ng% o ) e n;o Cnn (6)

Where C., derives from the normalization condition {a|a), = 1. The resemblance of
the Ja),’s with coherent states of the harmonic oscillator is resdily seen: however, we
should stress that only in the limit v — oo the anharmonic and harmonic oscillator
models are exactly the same.

3 g¢-deformed harmonic oscillator

Let us recall the (b, b') bose operators for the harmonic oscillator introduced earlier.
They satisfy the Weyl-Heisenberg algebra

[b,6f) =1 [N,b]=b" N =10 (7)
Macfarlane [1] and Biedenharm [2] have discussed a deformation of this algebra so

that
aqa; - qalaq =q N [N,a;] = a; (8)
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and, in particular, its realization in terms of a g-deformed harmonic oscillator. The
parameter g [6] characterizes the strength of the deformation.

We explore in this section the connection between ¢-deformations and anhar-
monic deformations of the harmonic oscillator. We will first study the effect of a
g-deformation on the states of the harmonic oscillator, similarly to what was done
in the previous section for the anharmonic oscillator model. By recalling that the
g-operators can be realized in terms of the bose operators of the form [1, 2]

_ JIN+1, t ot IV + 1
aq = N+1b1 aq_b N+11 (9)

where [z], = (¢° — ¢7%)/(q — ¢7!), we first construct the quantum states for the
g-harmonic oscillator. The ¢-deformed vacuum is defined as a4]0), = 0, and since

a, is a function of b and power of b'h, |0), and the vacuum |0) of the harmonic

oscillator turn out to be the same. Eigenstates of the number operator N, = a;aq
can be defined as
(a})" e
In}y = —2=[0), qunq>q = —1 |n>q (10)
Cnyq Cn-14

With the choice of ¢, , = 1/[n],!, where [n],! = [r]j[n — 1] - - [1],, the set of eigen-
vectors {|n).} (n = 0,1,2,...) is orthonormal (;(m|r); = ém ) and generates the
Fock space for the g-deformed oscillator. On the basis {|n) } (n = 0,1,2,...) one
can express the coherent states of the g-deformed harmonic oscillator as

oo an

IC')q =C, Z ——|n), Co= [equaz]‘lﬂ (11)
n=0 Cnyg

where the factor C, is again set by the normalization condition ¢{a|a), = 1. Here
ezp, stands for the g-exponential, i.e. exp, = Y7o, z/[n],!. Again note that asq — 1
this g-deformed model exactly reduces to that of a simple harmonic oscillator.

A connection can be established between coherent states of g-deformed harmonic
oscillator and coherent states of the anharmonic oscillator in the sense that there
exists a condition under which the |a), s and the |a).’s are equivalent. Namely, for
oscillator displacements a and v (or ¢) such that [3]

ofa+8) <In7t ¢!/ (12)

we have |a), — |a),, provided v = Ing. An analytic proof of this equivalence
is beyond the aim of this paper and will be reported elsewhere [3]. However, we
can compare here the probability number distribution for the |a),’s to that for the
la),’s, that is, PY(a) = |(n]a),|* and P{(a) = |(n]e)e|>. Owing to the definition
of probability as overlap over the same state |n), equal distributions would infer
the equivalence of the states |a), and |a),. A numerical evaluation is reported in
Fig.1 for values of ¢ and « respectitively conforming and not conforming with the
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condition (12). In this latter case P?(a3) is strongly shifted with respect to P¥(az),
whereas in the former case the two distribution are nearly the same.

In conclusion, for appropriate displacements () and anharmonic couplings (x)
coherent, states of an oscillator with anharmonicity ~ N3® (N is the number of
particles) are correctly described in terms of coherent states of the g-deformed Lie
algebra of SU(2), where ¢ ~ exp(u/wo)!/2. This result is particularly important
because the parameter ¢ can be given a direct physical meaning: it is proportional
to the square root of the anharmonic coupling strength.

0'15 T i T T T T 1
P (a
" 22‘, q — Coherent State
0.12 - fa e
q
P ()
0.09 F , .
P (a,)
0.06 - -
0.03 Coherent State -
0.00
° 10 20 30 40 50 60 70 8O
n

FIG.1. Probability number distributions for coherent states (|a)g, , |a)q,)
of a g-deformed quantum oscillator and for coherent states (|a),, |a)+,)
of a quantum oscillator with a third order anharmonicity in the par-
ticle number. From their equivalence one can infer the equivalence
between the corresponding states, which holds depending on whether
the oscillator parameters satisfy (a; = 4, y1 = 0.05) or do not satisfy
(a7 = 10, 7, = 0.1) the condition (12), respectively. Here ¢ = ¢7. P(a)
is a reference Poission (go = 1) distribution with o = 7.
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4 g-deformation and non-classical harmonic os-
cillator

The equivalence we have established between anharmonicity and ¢-deformation of a
harmonic oscillator is a very helpful one: not only does it provide the ¢ parameter
with a definite physical meaning, but also dose it turn out to be useful for inves-
tigating and attaining a sound physical interpretation of interesting non-calssical
effects induced by a g-deformation during time-evolution of a SU(2) coherent state.
The most important of these effects is a g-dependent self-squeezing: i.e. a reduction
of the uncertainty expactations of the two orthogonal components (quadratures) of
the oscillator field below their vacuum values that varies with g. A g-deformation
does also alter the minimality properties of an initial mimimum uncertainty co-
herent state, but not its possionian counling statistics. The connection between
g-deformations of the harmonic oscillator and these rather interesting phenonena is
however beyond the purpose of this paper and will be discussed elsewhere [3].
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Abstract

The “classical limit” of the q-analogue quantized radiation field is studied paralleling con-
ventional quantum optics analyses. The q-generalizations of the phase operator of Susskind
and Glogower (circa 1964) and that of Pegg and Barnett (circa 1988) are constructed. Both
generalizations and their associated number-phase uncertainty relations are manifestly q-
independent in the |n >, number basis. However, in the g-coherent state |z >, basis, the
variance of the generic electric field, (AE)?, is found to be increased by a factor A(z) where
A(z) > 1if ¢ # 1. At large amplitudes, the amplitude itself would be quantized if the avail-
able resolution of unity for the g-analogue coherent states is accepted in the formulation.
These consequences are remarkable versus the conventional ¢ = 1 limit.

1 Introduction

On several occasions during the last fifty years, new mathematical symmetries have been con-
structed in theoretical physics but only found to be relevant to nature five or more years later. If
this is occurring now in the case of quantum algebras, we need to know the physical implications
of these new and distinctly novel symmetry structures. If there are q-oscillators in nature which
realize these new algebras, surely there must be a quantum field which has such g-oscillators as its
normal modes. Until we know the physical properties of such a field , say in its “classical limit”,
we may not be able to glean its distinct relevance to problems and phenomena in quantum optics,
many body physics, particle physics ....

2 A Completeness Relation for the q-Analogue Coherent
States by gq-Integration

The g-analogue coherent states |z >, satisfy a|z >¢= z|z >, where the g-oscillator algebra is (1]
( ¢ — 1, usual bosons)
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aat - q”’aTa = q N2 (1)

[N,at] =qf [N,a] = —a (2)

It is physically very important that there remains the mathematically trivial bosonic [a,¢] = 0.
In the |n >, basis, < m|n >= §,,, and?

aT}n >=14/[n+1]|n +1> aln >= \/[sz]n—l > al0 >=0 (3)

where [z]; = [z] = (¢°/% — ¢7*/%)/(¢"/* — q7/?) is the “g-deformation” of z. More simply
[z] = sinh(sz/2)/sinh(s/2) where ¢ = exps, 0 < ¢ < 1.

The g-analogue coherent states |z >, are good candidates for studying the classical limit of
the q-analogue quantized radiation field because (i) there exists a resolution of unity (2]

I =/|z >< z|du(2) (4)

(i) they indeed are “minimum uncertainty states” for they do minimize the fundamental commu-

tation relation
_ 2AQAP —[<[Q,P]>|

Ugp = >0 5

° <@ P> )

with Ulj;s = 0 but Uljnsyp0> = %ﬁ%’—_‘-ﬁﬂl, and (iii) the n** order correlation function factorizes,
i.e.

Tr(pE~(2)E* (1)) = £-(e)E*(v), .. (6)

But, simultaneously, there are intriguing differences in the |z >, basis for other coherence and
uncertainty properties of the q-analogue quantized field. Some of these will be discussed as we go
along.

In the |z >, basis, from a|z >= 2|z > it follows that for < z|z >=1

zn

In >, N(z) = eq([2|*)7* (7)

|2 >g= N(z) f:

!

3

in terms of the “q-exponential function”

o0

ef(2) =Y 2o Ml = [nlln—1]---[1), (o]l =1 (8)

n=0 [n’]‘ ’

which is an entire function |e,(z)| < eq(]z]) < ezp(]z|). For = > 0, it’s positive, but for z < 0 it
wildly oscillates within these bounds!
To derive the resolution of unity, we need a lemma which is a q-analoque of Euler’s formula:

We define the q-derivative
fg'?z) - flg™/?=z) (9)

3z — q-1/2z

d
dq_zf(z)

1From now on the sub-q’s are usually implicit!
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and for f(z) on the interval [0, a], the inverse operation

/ f(z)dyz = a(q™V? — ¢'/? E g F(q®m+D12q), (10)

d

So, for instance Foaz™ = = a[n]z"?

’ d x
Jeqglaz)dyz = eq(a:c)/a up to the constants. It follows that there are two integration by parts

formulas

2_¢ (az) = aey(az) and inversely [az"'d,z = az"/[n],

[ 2) (ot dee = o= - [ T (@ala™ ) s (11)

and the ¢ — 1/q expression.
We define —( =largest zero of e,(z) and restrict e,(z) = [ T, £ o0 ], for—( < z; 0,otherwise] .
Then by the first integration by parts formula

¢
/o eo(—2)z" doz = [n]! (12)

From this the resolution of unity simply follows for the measure

dp(z) = —eq(lzl Jeg(—12] )dq|"’|2 df (13)

since

/|z >< z|du(z) = Zw/z Z\[;%i[:ln— eo(—2]*) do|2[?

/exp (i(n — m)8)df|n >< m| (14)
x 1 G 2
- ﬂ)_zjowfo sheg(—2)dgz|n >< |, ==z (15)
= §|n><n] =17 (16)

Several remarks are appropriate:(i) states with |z|? > (; do not contribute,(ii) arbitrary |z >4
coherent states are not orthogonal since < al8 >= N(a)N(B)e,(a*B) # 0 ,(iii) the [z >qare
actually overcomplete, since

o >q= / 2 >< zla > dp(z), < zla>#0, (17)

(iv) with f(z) =< z|f >, the at,aact < zlaflf >= z*f(z),and < zla|f >= N(z)ddz N(2)7! f(2),
(v) any zero of e(—(;) = 0 can be the upper endpoint of integration provided somethmg restricts
e,(z) beyond —(;. If not, on the rhs of (12) there is also r, = —[n' 0 m( g ?zr)" * e (—zk)

where z, = ¢*/?|¢;| . This restriction occurs if there are g-discrete auxillary states (|Zx|* = z&)

oo (q1/4zk)_1

|Zk >q= M, E |] + k>, &klik >q= (q1/4ik)|§k >q (18)
=0 4/ (7]!
with k = 0,1,...; My = e (q"/*||?)""/%; with a discrete measure djix = 5z eq(—12|*) d0 .
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3 The g-Analogue Quantized Radiation Field and Its
Uncertainty Relations

In analyzing the field in the |z >, classical limit, we suppress the ¥ mode and ¢ polarization
indices for the generic electric and magnetic ﬁelds, etc. . There are diagonal representations of
operators, e.g. the single-mode density operator

b= [ du(z)gn(z,2"))z >< 2| (19)

where [ du(z) ¢N(z z*)=1asTr(p) =1;s0< (af) a’ >= Tr[p(at) ‘| = [dpu(z) (2*) 2 ¢n (2, 2°).
Similarly, < a (a ) >= [dpu(z) z"(2*)*Yn(z, 2*) for Yn(2,2%) =< z|plz >, [du(z)¥n(z,2°) = 1,

and so
In(z,2") = [ duly) dn(u, 1) NP N (Peglys")eo(o1) (20)

Note that due to the use of gq-integration to obtain (16), a new “ q-quantization” in the z
complex plane has occurred, e.g. ¢n contributes to (19) only when

|22 = ¢3¢, n=0,1,2,.... (21)

Consequently, for the generic electric and magnetic fields

- —
E = i(hw/zeov)lfz[aei( k -?’—wt) _ afe—i( k --F’-wt)] (22)
with z = |z| exp(if),
< 2|E|z >= —2(hw/2V)V? 2| sin(k - 7 — wt + 0) (23)

which indeed “looks ” like a classical field but the possible amplitudes are q-quantized; the modulus
squared assumes a geometric series of discrete values.

With the usual definitions P = —i(hw/2)"/?(a — aT) , @ = (h/2w)V(a + at), the fractional

uncertainties I<A§Q and |<APP| are of O(1) for |z| — oo and
< 2|[Q, Pllz > = < zl[a,al]|z > = ikA(z) > ik (24)

where the important function ( ¢ = exps )

A = oy 35 e eotblein o) @)

n=0

goes as (¢~1/2 — 1)|z|* + 1 as |z| — oo. However, AQAP = 1/2| < [Q, P] > | for |z >, expectation
values, per (5).
For the generic electric field, in the |n > basis

(AE),5 = (hw/26V) ([n + 1] + [n]) (26)
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Instead, in the|z >4 basis
(AER, = (hw/26V) < zl[a,al]|z >= (hw/26V) A(2) (27)

and so the fractional uncertainty in amp £ ( or B ) is also of O(1). Note that from (25)
Mz) = N(2)%eq(|2]*/¢?) — |2]*(1 — ¢*/?) . There is a curious operator identity for ¢ # 1
(—(i/1)[Q, P] cosh(s/4))* — ((2/hw)H sinh(s/4))’ =1 (28)

which fundamentally relates the basic commutation relation and the single-mode hamiltonian? ,

( quadratic in P,Q )

H = (1/2)hw(ala + aal) = (1/2)(P? + w20?). (29)

We get for (1—g) small, that A(z) ~ /1 + ((2E/hw)? ~ 4E /hw) tanh?(s/4) where E = Ep—hw/2
for i =< z|N|z > or < z|[N]|z > , so A depends on the deviation from the vacuum energy.
4 q-Generalizations of the Phase Operators

Since z’s magnitude may be q-quantized as in basic analysis, we next consider possible phase
operators. Recall z = |z|exp(if) and that mathematically a hermitian phase operator conjugate

to N, to [N] = ala, or to H does not exist [3].
An ézp(id), generalization of the phase operator of Susskind-Glogower (3] is defined by [4]

a = ([N + 1)) *&@p(ig) ot = @p(—ig)((V + 1))1/2 (30)

and there are hermitian operators

co3(¢) = (1/2)[exp(i¢) + exp(—i¢)] sin(¢) = (1/2i)[ezp(i¢) — &zp(—ig)l.  (31)
These generalizations give many q-independent operator commutation relations , see [4]. So, from
[N,c03(¢)] = —isin(¢),... the usual number-phase uncertainty relations follow for arbitrary q:
AN AG3(8) 2 (1/2)] < 50(8) > | AN AFR(S) 2 (1/2) < @a(9) > | (32)

In the |n >, basis, these definitions (30-31) correspond to

[~ -]

ep(ig)g= Y, In><n+1| (33)

n=0

which is manifestly g-independent in |n >, non-unitary, and a q-analogue of the SG operator.

3For H, the energy is not additive for two widely separated systems, violating the usual cluster decomposition
“axiom” in quentum field theory. But, for g-quanta this is not unreasonable since the fractional uncertainty in the
energy based on H is also O(1) in the |z > basis and the quanta by (1) are compelled to be always interacting,i.c.
by exclusion-principle-like g-forces! An alternative hamiltonian is Hy = hw(N + 1/2) where N is the number
operator and it has the usual free-quanta additivity, etc. .
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Analogously, a q-generalization of the Pegg and Barnett operator [5] is obtained [4] by introduc-
ing a complete, orthonormal basis of (s+1) phase states |6,, >= (s+1)"12 T2 _, exp (indy)|n >,
b = 0o+ 2mm/(s+1),withm =0,1,...,s,. These are eigenstates of the respectively hermitian
and unitary

b = Y O |0 >< O] (34)
m=0
exp(i¢), = [0><1|+---+|s—1>< 5| +exp(i(s + 1)8o)|s >< 0] (35)

which is manifestly q-independent, unitary, and only differs from (33) by the last term. Chaichian
and Ellinas’ polar operator is the same as exp(i¢), when the reference phase in [6] is chosen to be

ér = (9 + 1)bo.

Finally, although the |z >, coherent states do not minimize the N, ©05(¢), sin(¢) uncertainty
relations (32), they do in the PB-case [7] both give and minimize Dirac’s commutation relation,
i.e. in |z >4 basis for |z| large

[N, ‘2’9] =1 (36)
Also 203(¢), and ain(¢), show some “correspondence principle” type behavior:
< z|sin($)|z > _ sin(f)
< z|éos($)|z >  cos(6)’
and proportionality for < z|&63(4)* — sin(¢)?|z > .
This is based on work with S.-H. Chiu, M, Fields, and R. W. Gray. We thank C. K. Zachos

for discussions; the Argonne, Cornell, and Fermilab theory groups for intellectual stimulation; and
U.S. Dept. of Energy Contract No. DE-FG02-86ER40291 for support.

< 2(203(¢)’ + ain(¢)’|z >= 1 — (1/2)eg(|2*) ™ (37)
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Abstract

The distribution functions of photons in squeezed and correlated light for one-mode and
multimode cases are obtained based on the method of integrals of motion. Correlation
coefficient and squeezing parameter are calculated. The possibility to generate squeezed light
using nonstationary Casimir effect is discussed. Quantum parametric Josephson junction is
proposed as quantum vacuum generator of electrical vibrations.

1 Introduction

The aim of this work is to discuss integrals of the motion and uncertainty relations and to obtain
the distribution function of photons in squeezed and correlated light for one-mode and multimode
cases. The distribution function of photons in squeezed light for one-mode fields was discussed
by Schleich and Wheeler [1], by Agarwal and Adam 2], and by Chaturvedi and Srinivasan [3].
The photon distribution function for squeezed and correlated light [4] and [5] was discussed by
Dodonov, Klimov and Man’ko [6]. This distribution function depends not only on the squeezing
parameter, but also on the correlation parameter connected with Schrédinger uncertainty relation

[7] as well,
bqbp 2

h
S (1)
2v/1—r
where the parameter r is the correlation coefficient of the position and momentum

= toosn) {20 gy ©)

The states with nonzero parameter r we call the correlated states. In the section below we’ll
consider the problem how to find the states which minimize the Schrodinger uncertainty relation.
For such states instead of the Schrodinger inequality we have the equality

_ 3
N ®)

These states describe squeezed and correlated light. We will demonstrate in the next section
how these states are naturally created for quantum parametric oscillator. The case of the photon

dqbp =
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distribution function for tlhfe two-mode squeezed light was considered by Caves, Zhu, Milburn and
Schleich [8]. Multidimensional generalization of the expression for the distribution of photons in
squeezed light in terms of Hermite polynomials of several variables may be reformulated. We
derive this expression on the bases of the result obtained in [17], [9] and [10] for a nonstationary
parametric multidimensional oscillator.

The squeezing phenomenon in quantum optics is closely related to the oscillator models de-
scribed by relativistic wave equations for elementary particles with mass spectrum. These rela-
tivistic models have been studied by Yukawa [11], by Markov {12], by Ginzburg and Man’ko [13],
and by Kim and Noz [14]. As shown in [14], the Lorentz boost applied to relativistic oscillator
gives the squeezing whose mathematics is identical to that of the squeezing in quantum optics.
The statistical properties of such squeezed relativistic oscillators have been studied by Kim and
Wigner [15].

To obtain the photon distribution function we will consider the nonstationary multidimensional
oscillator. We shall discuss first the one-mode case in Sec. 2.

2 One-mode Light

The Hamiltonian for one-mode light is given by the formula
H = hw(dta + %). (4)

This mode of the electromagnetic field in a resonator may be described by the model of the
mechanical oscillator with the Hamiltonian

~2 242

. p mw®q

H=— 5
'2m+ 2 (5)

In this case the annihilation and creation operators with boson commutation relations

. 1 (g ﬁ)
a=—4|-+1—], 6
\/5(1 Po ()

- b(i-2)

h o2

[ = (mw) , Po = (hmw)?, (8)

connect both Hamiltonians and forms, together with the identity operator, the basis of the

Heisenberg-Weyl algebra. In coordinate representation the complete set of coherent states | o)
satisfying the equation

where

N

ala)=ala), (9)
where « is any complex number, is given by the formula
2 2 2
1,1 q | a | V2aq «
(gla) =777 exp | —om ===+~ = |- (10)
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The dispersions of the positions &g and the momentum ép do not depend on the parameter a, and
are given by the relation

l
_n
For the coherent states the product of these dispersions minimizes the Heisenberg inequality
h
Sqép = 5’ (13)

The time evolution of the coherent state | a,t}) may be obtained by simple replacement of the
parameter « in the formula (10) by the term a exp(—iwt) and the phase of the wave function. We
have .
. —1wt
(g1 ast) = {q | aexp (—iwt)) exp (——). (14)
The correlation coefficient of the position and momentum is equal to zero for arbitrary coherent
state. It is also equal to zero for stationary Fock state | n,t) satisfying the eigenvalue equation

ata

n,t) =n|n,t), n=0,1,2,.. (15)

This state has the following wave function in the coordinate representation

2

(g |n,t)= n_i‘l'%Q‘g'(n!)_%Hn(%) exp _L wit(n +

. ) (16)

2

The photon distribution function W, («) for the coherent state | «, 1) is determined by the overlap
mtegral

| (n,t] o, t) | = Wo(a) (17)
and coincides with the Poisson distribution function
X7 _ | « I2n 2
W, (a) = exp (=] a |%). (18)

n!

The mode has the following time-dependent integral of the motion
A(t) = exp (iwt)a. (19)

We now discuss how the influence of the dependence of the oscillator frequency 2(t) on time
will change the photon distribution function and the dispersions of the conjugate variables ¢ and
p. The Hamiltonian of the mechanical parametric oscillator depends on time and has the form

~2 2 ~2
. p mle(t)q
Ay = 2+ m0 (20)

This system has the linear integral of the motion [16]

A(t) = % (f@é - ﬂ‘l) . (21)

Po lw
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Here w = Q(0), and the complex function €(t) satisfies the equation of classical oscillator motion

£+ Q% (t)e = 0. (22)
The integrals of motion A(t) and A'(t) satisfy the boson commutation relation

[A@), A'w)] =1, (23)
if the Wronskian for the equation (22) is given by the equality

€€" — €'€ = 2uw. (24)
The initial condition for the function ¢(t) may be taken as follows

€0) =1, é0) = iw. (25)

If the frequency of the oscillator is constant, the function € = exp(iwt) and the formula (21) gives
the integral of the motion (19). The normalized state | 0,t) satisfying the Schrodinger equation
and the relation

At)]0,t) =0 (26)

has the following wave function in the coordinate representation

(010,0 = w409 e (S0, (21)

2uwel?

The state | «,t) which is the eigenstate of the integral of the motion A(t) given by formula (21)
A(t) | e,t) = a | a,t) (28)

has the following wave function in the coordinate representation

V2a o’e*
(ot =lal0.0pexp (gl a P+ 21— 52 ) (29)
Here « is an arbitrary complex number and
2 2
(ﬂ,tla,w:exp(—";' LB ). (30)

The wave function (29) satisfies the Schrodinger equation. The Fock states of the parametric
mode | n,t) satisfy the eigenvalue equation

ATA@R) | n ) =nnt), n=012,.. (31)
The solutions to this equation have the following form in the coordinate representation

e nf2

<qln,t>=7<q|0t>( ) Hn(,—l"?l). (32)
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Since the state | a,t) is the generating state for the Fock states | m, t)

lal = ’"lmt

E , (33)

| a,t) = exp(—
the transition probability from the initial state | n) may be calculated

m GED IR
% :Wom(Pu_l(W )) m > n. (34)

n

Here the transition probability W is the probability to be in the ground state

Wg =2 62+w‘262+2_1/2. 35
0
For n > m the formula (34) must be changed to
m ml [ (nom) :
Wy = W (P (WD) - (36)

The numbers n and m in the formulae (34) and (35) are either both even or both odd. If one of
these numbers is even and another number is odd the transition probability between such states

is equal to zero
Wit =Wk, =0, kp=0,1,2,.. (37)

The formulae (34) and (36) describe the photon distribution function for the one-mode electromag-
netic field in a resonator either with moving walls or with media with time-dependent refraction
index. Thus, we conclude that the squeezing parameters of the parametric oscillator

1/2
So=(722) sa=lel, (38)
) 1/2 )
S=(r—) o=l¢| (39)

are connected with the photon distribution function by the ratio (35) which may be rewritten in
the form
W =2(S2+ 52 +2)7/". (40)
In the case of vacuum light S, = S, = 1 and the vacuum-vacuum transition probability W¢ is
equal to unity.

Another photon distribution function corresponds to the excitation of light state which may
be described by the model of the forced mechanical oscillator with Hamiltonian

~2

() = & 4 Smatd® - £(0d (41)

This oscillator has the integral of the motion [16]

A

A(t) = exp (iwt)a + 6(t), (42)
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6(t) = \/_h/ f(r)exp (iwT)dT. (43)

If the initial state of a forced oscillator is the coherent state, the squeezing parameters .S, and
S, are time-independent. They are equal to unity. The photon distribution function is described
by a Poisson distribution. Thus, if the initial state is the vacuum state the Poisson distribution
has the form

L
m'exp(] 6 |*)

7

(14)

The physical meaning of the parameter | § |* (43) which determines the integral of the motion (42)
is just the mean photon number after the excitation of the vacuum state by the external linear
force. The photon distribution function W™ in the case when the initial state was the state | n)
with n photons is described by the function

n!l é |2(m—n)

W = x L6 1) (45)

m!exp(] é |

Here the function L}! is the Laguerre polynomial.
Now consider a general situation when the frequency of an oscillator depends on time and an
external force is present. The Hamiltonian of the mechanical oscillator model looks like
1 1

Ti(t) = 5p* + 5" (13" = f(D)3. (46)

We have taken m = w = h = 1. The linear integral of motion A(l) is equal in this case to

A(t) = u(t)a + v(t)at + &(1), (47)
u(t) = %(c(t) —1€(1)), (48)
o(t) = % (1) + (1)), (49)

() =~ [ J()r (50)
The normalized eigenstate 1¥,(q,t) of the integral of motion (47) has the form

| o;|2 + V2aq N a(be +6%¢) aze*J’

€ € 2¢

(51)

l;/’o,((b t) = 11’0(‘], t) exp [_

where

1 % V246 8 | 6 lz
to(g,t) = exp - -

2¢ € 2¢

/ (66" — 66%)dr } (52)

The squeezing parameters S, and S, for the states (51) are described by the formulae for the
unforced parametric oscillator (38), (39). The correlation coefficient 7 is given by the expression

e (et = 1] "

1/2

(53)
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The Fock states which are the eigenstates of the integral of motion At(t)A(t) are of the form

*>n/'2 [{n ((1+ (66*+6*6)/\/§) ] (54)

vl 1) = Yola, 0= (5

n g, = Yolq, \/;Q—T 26 | c l
The photon distribution function for the eiectromagnetic field created due to the nonstationary
Casimir effect is expressed in terms of Hermite polynomials of two variables

2

W

Wo (ntm) ™' Hi (@1, 22) | (55)
0
where 5 5

Iy = —E, T3 =96— UC* ) (56)

and the matrix R has the elements

_ - n -l
R—Cl(_l —n*)'

The parameters ¢ and 7 are given by the relation
e(t) = Ce — et (57)

The photon distribution function (55) has oscillatory behavior due to the oscillatory behavior of
the Hermite polynomial of two variables.

The last photon distribution function describes the influence of the nonstationary Casimir
effect on the initially thermal equilibrium state

1
§0) = 77 exp [-Bata + 3). (58)
Z~! = 2sinh(8/2). (59)
The distribution of photons in the light mode is expressed by the density matrix diagonal elements
pnn 1 {R} — —
— = —HVY(:
POO Tl' nn (T1,$2), (60)
where a 2)
o futv(l =2 -z
RB=D ( —~z uv*(l—z2))
and Sz 4 6o
uz + bv
_]:(1—2) 3 7 _2:.”13_1*.
|ulz? v

The photon distribution function has the following deformed Planck distribution form

1 26ﬁ+1

(n).—_eﬂ_l-l—lvleﬁ_1+|5u*—5*v|2. (61)
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If there is no external force the parameter 6 = 0. The deformed Planck distribution has the form

(n) = 651_1 +] v |? coth(8/2). (62)

The squeezing parameters S, and 5, depend on temperature

S =l €] (coth (8/2))"*, (63)
S, =| €| (coth (8/2))'/. (64)
Thus the parametric excitation of the oscillator may produce the squeezing phenomenon when
S, <1, (65)
or
S, < 1. (66)

But the higher the temperature the more difficult to obtain the squeezing.

3 Polymode Squeezed Light

We will consider the photon distribution function for polymode squeezed and correlated light
using the model of nonstationary parametric multidimensional quantum oscillator with N degrees
of freedom. Its Hamiltonian may be written in the form

,\ 1. . — R
H =zaB(t)a+C(1)q, (67)
where the vector
q:: (ﬁlvﬁ%"'aﬁNai'l"%zi”'viN) = (ﬁ?i) (68)

contains N momentum projection operators and N position projection operators. The 2Nx2N
- matrix B(t) and 2N - vector C(t) are time-dependent parameters of the system. The model
corresponds to N light modes in the resonator. The interaction of these modes depends on time
either due to the motion of the resonator walls or due to the time-dependence of the media
refraction index. The systemn must demonstrate the properties of nonstationary Casimir effect for
N — oo . The oscillator has 2N - vector

Q(t) = A()g + A(y), (69)

which is the linear integral of motion if the 2Nx2N-symplectic matrix A satisfies the classical
equation of motion

A = KEB(t), (70)
where the 2Nx2N-matrix ¥ has the form

z::(_ol (1)) (71)



The 2N — vector ﬂ(t) obeys the equation
A = AOTE(). (72)

The solution (A,ZX) of equations (70) and (72) describe the classical trajectories of multidimen-
sional oscillators and may be considered as an element of the inhomogeneous real symplectic group
ISp(2N,R). The initial conditions for these equations are

A0)=1,  A(0)=0. (73)
The propagator of the system has the form
1 ]
G(z2,11,t) = —————-exp{——(x AT Agx
» det(—2imhs) g e

—2X2A§1X1 + xl)q)\glx; + 2X2)\§1(§'2

- - - - t, o
218 = MATIE) + BoAA1E, — 2 / 06162dr)} , (74)

with (h = 1). Here the matrices A;, ¢ = 1,2,3,4 are NxN blocks of the matrix A

t= (3 %) "
and N-vectors 5-;,5—;, are the components of the vector A
A=(6,8) (76)
The Hamiltonian of the system may be rewritten in terms of the boson annihilation and creation
operators & = (@, ..., an), at = (al,...,al), in the form
i = L(a,ahD(t) (;) +fa+ fal. (77)

If we introduce the 2N — vector

Q’_:_ A

At) = ( ) (78)
this vector is connected with the 2N — vector § = (p,%) by the relation
A =Vyg, (79)
where the 2Nx2N — matrix V has the form

Vz(%(—ii i) vt=v-1. (80)

Then the matrix B(t) in (67) is connected with the matrix D(t) in (77) by the relation

D(t) = VIBV!. (81)
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The integrals of motion of the multimode nonstationary system are given by the formula

~ A

A) = (;) = A() (;) + (1), (82)

The 2N - vector T'(¢) = (7,7*) is connected with the vector A
[(t) = VA(4). (83)
The 2Nx2N - matrix A;(¢) with NxN - blocks ¢ and 5

_ (D |
Al(t) - (f*(t) 6*(t)) (84)

is connected with the matrix A(t) by the relation
A (t) = VAV (85)

The propagator of the system in coherent state representation has the Gaussian form

= l 1 - 1 - —
G@,Bt) = J——=exp (=@ €& + &€ G - ¢+ S
( ) JJdet (1) 2 2

B =g ) + e T - A7 ). (86)

The photon distribution function for multimode case may be obtained by expansion of the prop-
agator (86) into a series with respect to the parameters o*. We have the distribution of photons
in squeezed and correlated light

_l—l Hi_f_ifl} [n—l [B'_ ’_)"” lz. (87)

2
myl..mpy!

| (| B.0) | = Wal(B) = | G(0,5) |

Thus, the distribution function for N — mode system is described by the Hermite polynomial of N
variables. For squeezed and correlated light the behavior of the function W’m(ﬂ_') is very oscillatory
as well as for one- and two- mode cases. The partial cases for two-mode light may be obtained if
one uses the formulae for Hermite polynomials of two variables found in [5].

4 Nonstationary Casimir Effect

Now let us discuss some possible applications. One of the possible methods to generate squeezed
light is to use the nonstationary Casimir effect when moving resonator walls produce continuous
time-dependent reconstruction of the electromagnetic vacuum state. The work against the Casimir
forces produces two effects. The first effect is the generation of photons from the vacuum. Thus,
the resonator with mechanically trembling walls is a quantum vacuum generator of electromagnetic
radiation. The second effect is the squeezing of quantized modes in the resonator due to parametric
change of vacuum energy. Both effects exist simultaneously. Thus, the plates in the Casimir effect
may be moved by external mechanical forces. The refraction index of the media may vary with
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time, the geometrical dimensions of the resonator may be influenced by external mechanical forces.
In all these cases the vacuum state energy must be changed. This means that the vacuum state
is continuously reconstructed. For each of the time moments the state is no longer the vacuum
state due to the change of the parameters. If we have a system with photons or other quanta in
a box with changing volume, it corresponds to the process with the creation of quanta, e.g. the
photons. So, due to the work against the Casimir forces one form of energy may be converted
into the other form. Thus for waving neutral plates (due to mechanical external forces) between
the plates the photons must be created and this means that the mechanical energy from external
sources is converted into electromagnetic energy of photons. It is interesting that this effect must
create the quanta of all other fields existing in nature. Thus, due to Casimir forces we can have
the generation of photons in a parametric resonator which may be called a quantum vacuum
generator.

It is possible to discuss another reduction of nonstationary Casimir effect using the Josephson
junction. If there is no external voltage in the Josephson junction but its parameters are time-
dependent, the vibrations of current and voltage will be excited in it. This suggestion [17] is based
on the analogy of the Josephson junction and a conventional resonant circuit (quantized resonant
circuit). In classical resonant circuits it is impossible to excite electrical vibrations without external
sources of voltage. But for a quantum resonator circuit due to Casimir nonstationary forces, it
is possible to transform mechanical energy which may be the reason for the change of the circuit
parameters into electrical energy of current vibrations. If this idea is realized it will be a quantum
vacuum generator of electrical vibrations. The current and voltage in this case play the role of
conjugate quantum observables and in parametric Josephson junctions they may be squeezed.
Thus, the quantum noise in Josephson junctions may be reduced for current. In this case the
voltage will have larger noise. The squeezed and correlated states of Josephson junctions may be
also excited by changing its parameters with time,
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Abstract

We 1introduce inverses of the harmonic oscillator
creation and annihilaton operators by their actions on the
number states. Three of the two photon annihilation operators,
viz., ;*_1;, ;;+_1 and ;2, have normalizable right eigenstates
with non vanishing eigenvalues. We discuss the eigenvalue
equation of these operators and obtain their normalized
eigenstates. We find that the Fock state representation, in
each case separates into two sets of states, one involving only
the even number states while the other involving only the odd
number states. We show that the even set of eigenstates of the

MR -
operator a 1a is the customary squeezed vacuum S(¢) |0>.

1 Introduction

In quantum optics several different representations of the harmonic
oscillator states have been discussed such as number states, coherent
states [1], squeezed states [2-4], squeezed number states [5], near
number states [6], and photon added coherent states [7]. The basic
operators are the boson annihilation and creation operators ; and ; ,
satisfying the wusual commutation relation [;,;+] = 1. These
operators are defined in terms of their actions on number states as

n1/2ln

aln> = - 1>, (1.1)
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;+ln> = (n + 1)1/2[n + 1>, (1.2)

~ "+
One may introduce the generalized inverses [8] of a and a :

a-1[n> = (n + 1)—1/2|n + 1>, (1.3)

S+ —1/2]n

a > = (1 -5 ) (n) - (1.4)

»

~ -—

- 4+
The operator a 1 behaves as a creation operator whereas a 1 behaves

~

as an annihilation operator. Further a-1 is the right inverse of a

~

and a+ 1 is the left inverse of a+, i.e.,

~r1 P

aa =a a =1I. (1.5)
On the other hand a a and a+a B give

ala=a’a""l=1- |00, (1.8)
where |0><0] is the proJjection operator on the vacuum.

Five of the operators exhibiting two photon processes, viz., a+2,
a_z, a+—2, a+a_1 and a—la+ do not have any normalizable right
eigenstate with non-zero eigenvalue. We can solve the eigenvalue
problem for the remaining three, viz., a+_1a, a.a.+-1 and a2. These

three are the two photon annihilation operators (TAO). The matrix
representation of these TAOs may readily be obtained by noting their
actions on the number states |n>. Using Egs.(1.1)-(1.4) we obtain,

for nz 2

a* laln> = (n/(n -1112|n-2>, (1.7)
aa* 1> = [(n - D)/n) Y2 |n-2>, (1.8)
;2]n> = [n(n —l)Tl/zln—2>, (1.9)
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whereas their action on |n> with n = 0 or 1 gives =zero. We,

therefore, find the following matrix elements for these operators:

<ml;+—1;[n>

1/2
[n/(n - 1)] 6m,n—2' (1.10)

<m];; -1|n> {(n - 1)/!‘1]1/2 é , (1.11)

m, n-2

<m|;2[n> = [n{n - 1)]1/2 6m neo - (1.12)

We now consider the eigenvalue problem for these TAOs in detail.

-

2 Eigenstates of a 1a

We write an eigenvalue equation for the operator a a as:

~

a* a1 = aa, 1, v (2.1)

where |A,1> is a right eigenstate of the first TAO a+_1a with
eigenvalue A and obtain a solution for suitable complex number A.

Expressing |A,1> in the form
w0
A, 1> = L C_[n> (2.2)
n=0

we obtain the following recurrence relation for Cn :

C =altn-nm2c . (2.3)
n n-2

From this recurrence relation it 1s observed that the elgenstates

|A,1> separate into two sets of states 1nQolving either even number

states or odd number states as follows:

[(2n)!]1/2

2nn!

[><]
|A,+1> = N_ T A"|2n> ’ (2.4)
n=0
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and

© 2n n!

A,-1> = N_ ¥ A%|2n + 1>. (2.5)
n=0 [(2n + 1)!]1/2

Here N+ and N_ are the normalization constants given by

2,1/4
N, - A BVE A < 1, (2.6)
-5 22
- [ — ] EENINIPEY (2.7)
sin © |A]

Both of the states |A,+1> and |A,-1> correspond to the same
eigenvalue A and hence any linear combination of these states 1s the

general eigenstate of the TAO a+_1a.

3 Eigenstates of aa+-1

We write the eigenvalue equation for this operator as

AA

aa’ 1A, 2> = a2, 2>, (3.1)
where |A,2> is the right eigenstate of the second operator aa+_1 with
an elgenvalue A. Proceeding in a manner strictly analogous to that
followed in Sec.2, we find that these eigenstates also separate linto
two sets, one involving even number states and the other involving

odd number states

n
© 2 n! n
I\, +2> =M T ——5 A |2n> (3.2)
*nco [(2n)1]117/2
and
w [((2n + 1)!]1/2 n
[A,-2> = M_ T A|2n + 1>, (3.3)
- n
n=0 2 n!
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where M+ and M_ are the normalizatlon constants given by

2)3/2 1/2

, [A] < 1, (3.4)

(1-]a|
M, = [ 2,1/2 -1 ]
(1-121$H Y20 4] sin”! 2|

Moo= 11 - 221372, Al < 1. (3.5)

A general elgenstate of the TAO (aa+_1) is a linear combination of

the states |A,+2> and |A,-2>.
-2
4 Eigenstates of a

Coherent states are the right elgenstates of the annihilation
operator ;, and so that of ;2 also. These states [9] separate neatly
into the even and odd parts both belng the eligenstates of ;2, as in
the case of the other TAOs. Hence the normalized eigenstates of ;2

with eigenvalue A can be expressed in the form

-1/2 3 A"
|A,+3> = (cosh |A]) E——|2n> (4.1)
172
n=0 [(2n)!]
and
sinh [A]| 1-1/2 @ Am
A, -3> = [————] |2n+1>. (4.2)
IA| n=0 [(2n+1)1]1/?

Any linear superposition of [A,+3> and |A,-3> states is an
eigenstate of ;2. Of course, a particular linear combination happens
to be the coherent state |(a)1/2>. Further there is no restriction on
the value of |A|, whereas in the earlier cases |A| was restricted to

be less than 1.

5 Squeezed Vacuum as an Eigenstate of a+-1a

It is interesting to note that the state |A,+1> [Eq.(2.4)] is

essentlially the squeezed vacuum discussed in literature [3, 10-12].
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The squeezed vacuum Iis generated by the action of the squeeze

operator S(¢) on vacuum
~ A+2 *"2
S(o)|0> = exp [1/2 (ea = - ¢ a7 )]|0>. (5.1)

Using the normal ordered form of the operator S(c) we find the number

state representation of the squeezed vacuum as

172

é(o)[O) = (coshr) X y—— (e tanhr)n{2n>, (5.2)

where the squeeze parameter o =r eie. Comparing Eqs. (2.4) and (5.2)
we find that

[A,+1> = é(w)[0>. (5.3)

where the eigenvalue A is related to the squeeze parameter o by

A = ' tanhr. (5.4)

Hence we conclude that the squeezed vacuum is an eigenstate of our

TAO a+-1a. In a similar manner we can show that the squeezed first

-~

number state S(¢)|n=1> is an eigenstate |A,-2> of the operator aa
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Abstract

Via the hydrodynamical formulation of quantum mechanics, a novel approach to the
problem of tunneling through sharp-edged potential barriers is developed. Above all, it is
shown how more general boundary conditions follow from the continuity of mass, momentum,
and energy.

1 Introduction

A commonly used assumption in quantum mechanics [1,2,3,4] is that the boundary conditions
on a surface o where the potential undergoes a finite jump reduce to the requirement that both
the wave function () and its derivative (8y/8z) be continuous on o. We show below through
the hydrodynamical formulation of quantum mechanics how more general boundary conditions
follow from the continuity of mass, momentum, and energy densities. With these new boundary
conditions, a novel approach to tunneling through sharp-edged potential barriers is presented.

2 Formulation

Let us consider the dynamics of a quantum particle described by the coupled hydrodynamical
equations

dp  8(pv) _
S O 1V V) (2)

ot 6z m Oz

where Equation (1) represents the mass conservation law with mass density p = ¢ and Equa-
tion (2) describes trajectories of a particle with velocity v = (h/m)(85/0z), subject to an
external potential V and the quantum potential V,,, = —(h?/2m¢)(8%¢/8z?), which accounts
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for quantum-wave features, such as interference and diffraction [5,6]. The wave function has
been expressed in the polar form ¥ = ¢ exp(:S). Equations (1) and (2) yield

s  muv?
h— V.+V)=0
5t +( 2 +Vau+V) 3 (3)
and the corresponding Schrédinger equation
) 6!/) hz 62¢‘
bR ST VY8
ih ot 2m Ox? Ve (4)

From Equations (1) and (2), we obtain the conservation laws for the momentum and energy

densities as follows:

5t o tmee (5)
U  8Q
5t Tz O (6)
where

J = pv, (7)

K [8% 1 (8p\’

— 2_ - |=—L£_Zt1t=L
P=pv 4m? (0z® »p (Bx) ’ (8)
2

erp(mzv +Vw+v), (9)

K [ 8% 0¢ 8
Q=vl+om (¢8m8t ~ Bt 81) (10)

are the momentum, momentum flux, energy, and energy flux densities, respectively. The mo-
mentum density pv appearing in the hydrodynamical equations can be shown to be the real part
of a more general quantum mechanical local momentum field P defined from the momentum-

density operator

k .
'P=?1/J'%£ = mp(v + tu), (11)

where v = (h/m)(8S/8z) and u = —(kh/2mp)(8p/0z).
It follows now that the boundary conditions for the continuity of mass, momentum, and

energy are:

2
Py PU, PU, andp(%v—+un+V)- (12)

In terms of the wave function and from Equation (3) the above conditions are equivalent to:

¥*y, $°(8¢/0z), and (85/5t).

150



3 Tunneling

Next consider the stationary flow of particles with incident energy E striking a potential
barrier of height V and width L: V(z) = V for 0 < z < L and zero elsewhere. The wave
functions for z < 0 (incidence region 1), 0 < z < L (tunneling region 2), and z > L (transmission
region 3) are given respectively by

Pi(z,t) = (/p1 exp(iSy)
= \/1 + a? 4+ 2acos(2kz — a)

a4 l1—a [s 3
M — 4+ tan~} {__ __])’
X exp z( wt + 2 + tan 1 tan(kz 2) (13)

Yoz, t) = /p2 exp(iS2)
= \/[cize"’az + d?e~%= 4 2dccos(y — 6)] /g

, y+4é _y [ce® — de %= e ]
X exp i ( wt + < + tan [ce‘-ﬂ T de tan( 2 "W, (14)
Y3(z,t) = /ps exp(iS3) = b exp i(—wt + kx + B), (15)

where k? = 2mE/k* and @ = 2m(V — E)/R>.
The boundary conditions from (12) where the potential undergoes a finite jump read:

£1(0) = p2(0), (16)
p3(L) = po(L), (17)
p1(0) = p,(0), (18)
p(L) = pa(D), (19)

£1(0)21(0) = p2(0)u:(0), (20)
(Lyus(L) = poLyvs(L), (21)
=)-(2),
(%)= (F), )
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By applying the above boundary conditions on Equations (13), (14), and (15), we obtain:

c? + d® + 2cd cos(y — 8)
q R

c2eBL + d2e~BL 4 2cd cos(y — 6)

= =

1+ a®+2acosa = ,

b2

2aksina = (¢ — d?),

c=de B,
~%5L gi (m
l— o= 2d% 2111(7 6)’
2d%e %L sin(y — §)

b

: k

From Equations (25) and (27), we have
_ 2d%e=%L(1 + cos(y — §)]

-q- Y

b2

which combined with Equation (29) gives

2 g
2kg
32 — k?
cos(y —6) = =g

Equations (29) and (33) allow us to write Equation (30) as

v (62?1&) e

which, in turn, combined with Equations (27) and (33), reduces Equation (24)

=2 _ k2 =2 kz
1+ a®+ 2acosa = b? (—2%3-—) (1 + %i_kz coshZEL) .
Equations (28) and (29) imply that
a®=1- ¥,

which inserted into Equation (35) gives
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(26)

(27)

(28)

(29)

(30)

(34)

(35)
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=2 k2
acosa = b’ (1 + [q 2-;2 ] sinhz’th) - 1. (37)
By the same procedure above, Equation (26) can be rewritten as
=2 | 2
asina = — [ %) 4 sinh gL, (38)
4kgq
Combination of Equations (36), (37), and (38) leads to
[1+ (Z) sinb? gL]’ + (Z32)  sinb? 25L

- 1+ () sinh’ 3L

Using the identity sinh® 2gL = 4(sinh® L + sinh*gL), and after dividing the numerator by
the denominator in Equation (39), we arrive at the known result

b-2

(39)

-2 2\ 2

b2=1+ (q 2:(_1 ) sinh?gL. (40)

4 Boundary Conditions for Dissipative Systems

Next we show below that the boundary conditions (12) are not only more general but the
assumption that “¢ and (8¢ /0z) are continuous at ¢” is physically incorrect for dissipative
systems. To this end, let us consider the dynamics of a quantum particle in the tunneling region
described by Equation (1) and

@_*_ @+.1_____6(V+V‘7“)_
ot ”az m 8z -

where v is the friction coefficient, and the term on the right-hand side of Equation (41) accounts
for the dissipation. By expressing the wave function as before [see Equation (3)] we have

—vv, (41)

as mu?
h(g+u5)+(T+Vw+V)=0. (42)
The new boundary conditions now are given by Equations (16) through (21) plus
05\ _ (95;
(at)o_(at +usz)o, (43)
352 a53
(at +uS;)L—(at)L, (41)

which shows the discontinuity in the phase of the wave function at ¢. In an upcoming publi-
cation, we will detail the application of the above boundary conditions and show that friction
on the tunneling of a particle through a single, sharp-edged rectangular barrier diminishes the
transmission coefficient.
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Abstract

This paper illustrates the similarity of the functional forms of quantum
mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams.
This functional similarity provides a direct correlation to investigate the spot size of
large-order mode Hermite-Gaussian laser beams. The classical limits of a
corresponding two-dimensional harmonic oscillator provide a definition of the spot
size of Hermite-Gaussian laser beams. The classical limits of the harmonic
oscillator provide integration limits for the photon probability densities of the laser-
beam modes to determine the fraction of photons detected therein. Mathematica is
used to integrate the probability densities for large-order beam modes and to
illustrate the functional similarities. The probabilities of detecting photons within
the classical limits of Hermite-Gaussian laser beams asymptotically approach unity
in the limit of large-order modes, in agreement with the Correspondence Principle.
The classical limits for large-order modes include all of the nodes for Hermite-
Gaussian laser beams; Sturm's theorem provides a direct proof.

1. Introduction

There are many instances in science where different physical models have
similar or identical functional forms. Scientists often exploit and glean ideas from
other disciplines to better understand new areas of research, especially if the
physical models exhibit similar functional forms. The harmonic oscillator is a
powerful tool for explaining and understanding many similar disciplines of physics.
Since exact solutions exist for the classical and quantum harmonic oscillator, it is a
tool and simple model to understand basic principles of vibrational motion and
normal modes. In addition, the harmonic oscillator is an excellent pedagogical
system to help model and understand the basic properties of quantum mechanics,
quantized radiation fields, quantum optics, and other disciplines of physics. Yes—
the harmonic oscillator rightfully deserves its place "on a pedestal” [1].

In this paper we will exploit and use the similarity of the functional forms of
quantum harmonic oscillators and Hermite-Gaussian laser beams to investigate the
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spot size of laser-beam modes and the fractional energy and photons incident
therein. As a result of two slightly different definitions for Hermite polynomials
[2,3], some references indicate that the spot size, as delimited by the peaks of large-
order Hermite-Gaussian beams, does not include most of the energy [4,5]. In view of
the Correspondence Principle, the probability of finding the quantum oscillator
within the classical limits asymptotically increases to unity for higher-order modes.
Since the functional forms of the quantum oscillator and laser-beam mode are
similar, we should expect the probability of detecting photons within the
corresponding classical limits of Hermite-Gaussian laser-beam modes to similarly
approach unity for higher-order modes. Mathematica [6] is used to integrate the
laser-beam mode probability densities for small- and large-order modes to illustrate
these principles. Sturm's theorem provides a direct proof that the classical limits
also contain all of the probability density peaks. The harmonic oscillator's classical
limits, therefore, serve to provide a good measure of large-order mode spot size for
Hermite-Gaussian laser beams.

The classical oscillator, it's classical limits, and the classical probability
density are reviewed in Section 2. Section 3 provides a discussion of the quantum
oscillator, the corresponding probability densities, and the Correspondence
Principle. The Hermite-Gaussian laser beam modes are reviewed in Section 4 and
compared to the quantum oscillator. Section 5 provides a discussion of the
Mathematica results from integrating the laser-beam mode probability densities.
Sturm's theorem and its application to the peaks and zeros of the probability
densities are discussed in Section 6.

2. Classical Limits and Probability Densities

Many systems oscillate by small amounts near a point of stable equilibrium.
The motion of a simple system having one degree of freedom and small oscillations
can be described by a simple linear harmonic oscillator. Some systems having more
than one degree of freedom can also be described by a set of coupled or decoupled
harmonic oscillators. Although the Lagrangian formulation is well suited for
developing the theory of small oscillations [7], the Hamiltonian formulation
provides a direct solution for the simple harmonic oscillator of mass m coupled to a
massless spring of force constant 2. The force on the mass is given by Hooke's law

F =-kx with the corresponding potential V =kx?/2. The Hamiltonian for a

harmonic oscillator can be written as the sum of a kinetic and a potential energy
quadratic in the momentum p and the position x

2

H=T+V=L+1mo2s? (1)
2m 2

where @? = k/m and @ = 27v is the angular frequency of oscillation.
The equations of motion for the harmonic oscillator are obtained from
Hamilton's canonical equations [7]
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036 . _ %

(Ii =5 B (2)
p; og;

Using Hamilton's equations (2) with the Hamiltonian given in (1), the time

derivatives for the canonical variables x and p are obtained

X=——=", p=—-—=-max. (3)

dp m ox

Differentiating x with respect to time and substituting for p in (3), we obtain the
standard harmonic oscillator equation

¥+w?x=0. (4)

The solution of this harmonic oscillator equation can be written as

x(t) = x, cos(wt +¢). (5)

The total energy E, of the classical harmonic oscillator is a constant of the
motion. Using the oscillator Hamiltonian (1) and the relationship between the
momentum and velocity, p = mx, the energy can be written as

E,=imi® +ima’s® = imae®sl. (6)

For the classical harmonic oscillator, the amplitude x, =(2E, / k)"* is a continuous

variable. The energy is, therefore, also a non-negative continuous variable; the
energy can be zero or a positive value. Solving (6) for the speed of the particle

2

|5c|=(2Ec/m-w2x2)]/ = ofx? —xz)w, (7)

we see that the particle oscillates between the classical limits. The particle obtains
maximum velocity at x =0 and zero velocity at the outer limits of its motion. From
(5) we also see that the particle does not classically exceed tx,.

If we measure the oscillator's position x at random, any value within the
classical limits could be observed in principle. The probability for finding the
particle between x and x +dx is equal to the ratio of the time spent between x and
x +dx to the total time for one oscillation period T = 2n/w. Noting that the particle
passes the same position twice per oscillation, we obtain the classical probability
density
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2dt _2dx 1 _2dx o dx

dx = = _— _ =
P T W 2 ) @
1
T x| < x,
p.(x) = sy - ) 9)
0 x>,

We are certain to find the classical harmonic oscillator within the classical

limits +x_; classically, the oscillator will not be observed outside the classical limits
(see Fig. 1). The probability for finding the particle within the classical limits is
unity and the probability for finding the particle outside the classical limits is zero,
as noted by integration of (9)

f:o pe(x)dx = f:o ﬂ:(x2 (jxxz)l/2 - o
L 0.(x)dx=0 (10b)
J:: [ (x)dx =0. (10c¢)

0.2}

|
I
!
|
I
|
!
|
!
I
I
I
I
I
I
1

-1 0
Oscillator position (x/x,)

Figure 1. Classical harmonic oscillator probability density g (x).
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3. Quantum Mechanical Probability Densities

The quantum mechanical harmonic oscillator energy levels and eigenstates
are derived from the Schrodinger equation

. d
Rl = 11
zhdt|w) H|y) (11)

using the same Hamiltonian (1) where the canonical variables (x,p) are replaced
with operators (X, P)

2

H=26x—X,p— P) =+ 1ma?x?. (12)
2m 2

The eigenstates and discrete energies of the quantum harmonic oscillator are
derived and discussed in many older and newer references [1,8-15]. Only the salient
features are presented here in order to compare the classical and quantum
oscillator probability densities with the Hermite-Gaussian laser-beam mode photon
probability densities presented in Section 4.

The time-independent Schriodinger equation, as written in the X-basis

representation,

2 32
[—ﬁ—i—+lmw%ﬂw=Ew (13)
is solved for normalized solutions after tedious operations [1]
V4 2 12
mo maox mo
= ———s - H || — .
v, (x) (Im22"(n!)2) exp( oh ) ,,|:( . ) x:| (14)

If we use o= ma/h and introduce a new dimensionless variable § = Jax, then the

probability amplitude y,(¢) for finding the quantum oscillator between ¢ and
&+ d¢& can be written in a simplified form [9,16]
2

1 2 5
v, (&)= (mﬂ—n') exp(—?)H”(f)_ (15)

The Hermite polynomials H,(£) are nth-degree orthogonal polynomials relative to
the standard weighting function w(§) = e
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[ H.©H,&e¥ds = 8,72 n!. (16)
The Hermite polynomials (first four listed here)

Hy$)=1 H,(5) =4 -2

H,(8)=2¢ H,(E)=88%-12¢

also satisfy the differential equation [3]

y”+(2n+1—x2)y =0

y(x)=e " 2H (x). (17

In contrast to the continuous energy levels (6) of the classical harmonic
oscillator, the energies of the quantum harmonic oscillator are discrete. The

quantized energy values E, correspond to the eigenstates (14) of the Schrodinger
equation (13)

E, = (n+12)ho. (18)

Using (6), we see that the corresponding classical limits can be written as

x, =(Wmw)*@n+1)¥2 (19)

The smallest energy value Aw/2 of the quantum oscillator corresponds to the zero-
state y,(x); the energy increases incrementally by AE,A =#hw. The probability

density |v,|* = v,y for observing the quantum harmonic oscillator between & and
&+ d¢& is obtained from (15)

l‘l’n(‘f)lz = (;ﬁﬁ)e'*’&f (8. (20)

The classical (9) and quantum (20) probability densities are plotted together in Fig.
2 for a few of the oscillator modes. As the order of the oscillator mode increases, we
observe that the fraction of the area or probability to be outside of the classical
limits decreases; the quantum oscillator's probability to be within the classical
limits increases. We also see that the classical probability density is near the
average of the quantum probability densities; this is more apparent for the large-
order modes. The classical limits appear to increase with a corresponding increase
in the mode order such that the outer peaks of the probability densities are always
contained within the classical limits.
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The classical and quantum probability densities are quite different yet
similar in a number of ways. In particular, a position measurement of the quantum

oscillator of energy E, can result in any value between -« and + . However, when
measuring the classical oscillator's position, only values between -x, =-,/2E, /k

and x, = ,/2E, /k will be obtained. If we consider an oscillator having a small mass
of 1 gram and oscillating at 1 rad/sec with an amplitude of 1 cm, then the energy

would be mw?x2/2 = 0.5 erg. We can compare this to the energy difference between

0.6 0.6
n=0 n=3
0.4 0.4 '
{
} }
[} '
| i
0.2 0.2
| l
o 1 1
) 6 0 -8 4 -2 0 2 4 6
0.6 0.6
N=1 Nm=d4
0.4 0.4
[
I I
| !
| !
0.2 0.2
1 '
o 1 L
-8 6 0 -8 4 -2 0 2 4 6
0.6 0.6
N=2
0.4 0.4
0.2 0.2
0 = 8 0

Figure 2. Quantum harmonic oscillator probability densities. (The
dashed vertical lines represent the classical limits. The thin curves
correspond to the classical probability densities.
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the quantum oscillator levels AE =hw = 10% erg. Experimentally it would be

practically impossible to detect energy differences separated by 10% erg. Similarly,
if we invert (18) to determine the mode level for this small oscillator, we see that

n=(E/hw)-1/2=10%. Because the mode order n is equal to the number of nodes in
the quantum oscillator's probability density, it would be virtually impossible to

observe 10?7 oscillation nodes within the 2 cm interval. We would, instead, only
detect or measure the average of the quantum probability density, which is just the
classical result shown previously in Fig. 1. For large n, the classical and quantum
results become indistinguishable as required by the Correspondence Principle [1].

In the limit of large-order modes, this special case of the Correspondence
Principle illustrates how the classical picture is indeed regained. From the
Correspondence Principle and the limit of large-order modes n — -, we should
expect the quantum mechanical probability densities to be functionally similar to
the classical harmonic oscillator probability density. This can be derived in a
number of ways [8,15]. If we examine the quantum oscillator's asymptotic
functional form when the mode order increases to infinity, we find a rapid
oscillatory behavior that averages out to the classical results (9) [8]

( 2 2 xox
— 77z €08 , for even n
) Tand r (xf - xz) ¢
v, (x)] —largen . (21)

2 73 smz( xox)’ for odd n.
7 (x2 - 2?) @

4, Hermite-Gaussian Laser Beam Modes

We now consider an Hermite-Gaussian laser beam propagating along the z
direction. The laser beam considered can have different beam waists along the x
and y directions. The Hermite-Gaussian laser-beam intensity or irradiance at some
+z direction is obtained from a scalar wave equation [17,18]. The irradiance
distribution of an Hermite-Gaussian laser beam that is focused at z=0 can be
written as [4,19]

w, (0w, (0) 2y \gef _x N _y
=E 2 T expl - X2 _|H H . 2
E(x,y,2z)=E, w, (2w, (2) exp( 2 3 w2 "w,(2) =2

The beam waists w, and w, are the distance